
Benchmarking library and application software
with Data Envelopment Analysis

Alexander Chatzigeorgiou • Emmanouil Stiakakis

Published online: 19 September 2010
� Springer Science+Business Media, LLC 2010

Abstract Library software is generally believed to be well-structured and follows certain

design guidelines due to the need of continuous evolution and stability of the respective

APIs. We perform an empirical study to investigate whether the design of open-source

library software is actually superior to that of application software. By analyzing certain

design principles and heuristics that are considered important for API design, we extract a

set of software metrics that are expected to reflect the improved nature of libraries. An

initial comparison by conventional statistical analysis confirms the overall belief that

products of different software size scale should not be compared by simply examining

metric values in isolation. In this paper, we propose the use of Data Envelopment Analysis

(DEA), borrowed from production economics, as a means of measuring and benchmarking

the quality of different object-oriented software designs captured by software metrics and

apply this approach to the comparison of library and application software. The advantages

offered by DEA and the differences between the application of DEA in an economic and a

technological context are discussed. Results of the approach are presented for 44 open-

source projects, equally divided between libraries and applications.

Keywords Object-oriented design � Software metrics � Benchmarking �
Data Envelopment Analysis � Efficiency

1 Introduction

The use of quantitative approaches for the assessment of high-level software quality

attributes, such as maintainability, has a long tradition in the field of Software Engineering.

According to several hierarchical quality models such as ISO 9126 (ISO 1991), quality

attributes of a software system can be mapped to sub-characteristics which in turn, can be

evaluated by appropriate source code metrics. However, researchers agree that metrics

A. Chatzigeorgiou (&) � E. Stiakakis
Department of Applied Informatics, University of Macedonia,
156 Egnatia Str., 54006 Thessaloniki, Greece
e-mail: achat@uom.gr

123

Software Qual J (2011) 19:553–578
DOI 10.1007/s11219-010-9113-8

should not be examined individually since the overall picture is provided by a number of

complementary measures (Arisholm and Sjøberg 2004). As a result, when the goal is to

assess and moreover to compare software products, metrics should be combined to allow

valid interpretation.

All stakeholders of the software development process are interested in identifying the

best software projects and measuring the performance or quality of other projects against

an observed best practice frontier. However, a comparison focusing on a single metric in

isolation each time entails two significant risks that threaten the validity of the analysis.

Both risks are well known to any software practitioner employing software metrics for

quality assurance: (a) If metrics accurately capture design properties of a software system,

the overall quality is reflected by the complete set of the selected metrics, not by each one

of them. In other words, the fact that a software system exhibits a superior design does not

necessarily imply that it excels in all quantitative measures. (b) To compare independent

metric values from software projects of completely different scales in terms of delivered

functionality and behavior is like comparing apples and oranges. As an example, it would

be controversial to claim that an extremely poor system in terms of functionality is better

than a significantly larger one, simply because it has lower cyclomatic complexity or lower

coupling.

Similar problems are encountered in economics where researchers also aim at bench-

marking different companies that have varying size characteristics and whose efficiency is

a non-linear function of a number of inputs and outputs. In a financial context, obviously

one cannot claim that a company A is more efficient than a company B, simply because its

profit is larger. It might be the case, that the larger profit of A is achieved at the cost of ten

times the amount of investment. For a single input/output process, efficiency could be

calculated as the ratio of output over input. However, quantifying efficiency is not as trivial

when there is a non-linear relationship between inputs and outputs, and the factors

affecting performance are numerous.

In this paper, we propose an alternative approach for benchmarking object-oriented

software by treating the software design process as a business unit or production process

(von Mayrhauser et al. 2000). In the same way that a company is interested in maximizing

output (such as profit), for a given input (such as raw materials or investment), a software

designer is interested in maximizing certain metrics (or in some cases minimizing others)

for a given functionality to be implemented. Since the complex interactions of software

production process components do not allow the analytic specification of the production

function relating outputs and inputs of the software design process (von Mayrhauser et al.

2000), the proposed approach is based on Data Envelopment Analysis (Charnes et al.

1978), which involves the use of linear programming methods to measure the performance

of so-called Decision Making Units (DMUs). DEA is suitable for benchmarking companies

or in our case software products, because in contrast to other approaches, such as multi-

variate regression, that identify a theoretical baseline for comparison, DEA constructs

an actual best practice frontier. In the context of software design, comparing against a

theoretical and possibly not feasible design is less useful to the stakeholders of the software

development process, who prefer to know about existing products that are well-designed

and employ best practices. Moreover, DEA enables the comparison of systems that have

varying size in terms of functionality and state, in contrast to conventional approaches

based on independent metric assessment, which are only meaningful when systems with

the same or similar size are compared.

As a case study for investigating the suitability of DEA as a means to compare software

systems, this paper attempts to compare and benchmark open-source library and

554 Software Qual J (2011) 19:553–578

123

application software. In particular, we investigate whether actual open-source libraries

exhibit improved design properties, as captured by appropriate metrics, compared to open-

source application software. The selected metrics have been chosen by analyzing certain

design principles that are believed to be important in API design. The corresponding

metrics are the outputs of the software design process assuming that the designer’s goal is

to maximize their values (such as the abstraction level). As inputs to the design process, we

consider the amount of functionality to be implemented and the size of system state

captured by the number of concrete methods and the number of attributes, respectively.

These inputs have been selected in analogy to a number of previous approaches that treat

the design process as an optimization problem (see Sect. 5.1). In these design optimization

problems, the goal is to minimize (maximize) certain functions such as coupling (cohe-

sion). The independent variables are the behavior of the system (represented by its

methods) and its state (represented by class attributes) (Bowman et al. 2007).

The proposed approach has been applied to 22 open-source applications and 22 open-

source libraries. The results from DEA enable us to classify the analyzed designs based on

their overall efficiency and to identify which aspects should be improved and to what

extent. Although the approach is limited to a small set of metrics, the experience from

using DEA in order to benchmark object-oriented designs seems promising.

The rest of the paper is organized as follows: sect. 2 discusses a set of design principles

and the reasons they are important in API design and lists the corresponding metrics.

Section 3 presents the results of an initial statistical analysis. A brief overview of DEA and

the differences between the application of DEA in an economic and a technological context

are provided in Sect. 4. The input variables to DEA, as well as the data for the projects under

investigation, are presented in Sect. 5. The results of the application of normal and system

differentiated DEA are given and discussed in Sect. 6, while Sect. 7 summarizes the major

threats to validity. Related work is presented in Sect. 8. Finally, we conclude in Sect. 9.

2 Design principles and corresponding metrics

The software engineering literature has systematically recorded a number of design prin-

ciples that should be followed when developing object-oriented systems (Martin 2003) or

design heuristics that should not be violated when taking design decisions (Riel 1996).

Designing a shared library is considered a far more complicated task than building

in-house, closed application software (Tulach 2008). The reasons are mainly the number of

clients depending on that piece of software implying backward compatibility and the need

for constant evolution in a way that does not disturb clients. These requirements impose a

stricter design style making the conformance to design rules even more important. That is,

at least, what most programmers think of library software that is accessible through a well-

defined Application Programming Interface (API). DEA is proposed in this paper to test

the hypothesis that library software follows certain design principles to a larger extent than

application software.

Since the selection and definition of suitable measures depends strongly on specifying

clearly a measurement goal, we formulate the goal of this study according to the Goal-

Question-Metric paradigm by Basili et al. (1994):

Analyze software designs

for the purpose of evaluating their conformance

with respect to generic API design guidelines

Software Qual J (2011) 19:553–578 555

123

from the perspective of the researchers and developers

in the context of 44 open-source software systems.

Table 1 presents a number of design principles or design heuristics (first column) along

with the reason for believing that the corresponding rule is important in API design (second

column). The third column presents a quantitative measure that is strongly or loosely

related to the corresponding design principle or heuristic along with a brief explanation.

Obviously, these are not all of the design principles and heuristics related to API design,

which is a broad field by itself. Other properties that could be quantified and included in a

study of API design quality could be the use of consistent parameter ordering across

methods or cautious overloading. A thorough summary of good practices for API design

can be found in (Bloch 2006). However, it should be borne in mind that the discrimination

power of a DEA model (as the one that will be presented next) improves as the number of

outputs becomes lower. In other words, a model that would incorporate additional metrics

as outputs would not achieve a sharp discrimination among the examined projects.

The selected set of rules and metrics should be regarded as a representative sample to

exemplify the use of DEA for benchmarking software systems with a focus on APIs.

Emphasis is given in the approach rather than the input/output data values. As an example,

it could be the case that one of the projects exhibits a low usage of the final keyword due to

a specific design decision. Obviously, such a decision cannot be revealed by analyzing

numbers and characterizing the corresponding project, after the application of DEA, as not

efficient, might not be fair. Although the study of the reasons that cause a project to deviate

from the advisable levels is beyond the scope of our work, the results of DEA might be a

good starting point to perform thorough analysis on particular cases.

3 Statistical comparison

The conventional approach in comparing library and application software by means of

metrics would be to treat each kind of software as a different group of data and employ

statistical analysis in order to compare these groups for significant differences. Since for

each of the selected metrics we have a one scale, numeric dependent variable that follows a

normal distribution, divided into two unrelated groups, the primary test of choice is an

independent sample t-test (Wohlin et al. 2000). For the data set shown in Sect. 5, the

corresponding t-test statistic results are summarized in Table 2. The first column indicates

the corresponding metric, the second column the 2-tailed significance value, and the third

column the mean difference between the two groups (for the cases where the significance

value is lower than 0.05). The hypothesis being tested can be stated as (Wohlin et al. 2000):

H0: lLibrary ¼ lApplication

H1: lLibrary 6¼ lApplication

where lLibrary and lApplication is the mean of the corresponding dependent variable for

libraries and applications respectively.

As it can be observed, for two of the selected metrics the significance level does not

allow us to draw any conclusions, regarding the superiority of library or application

software as reflected by the metric values. For the metrics where the significance is lower

than 0.05, the fact that the abstraction level and percentage of final fields are higher for

APIs and that coupling (MPC) is lower for APIs agrees with our initial belief concerning

API design practices.

556 Software Qual J (2011) 19:553–578

123

T
a

b
le

1
Im

p
o
rt

an
t

d
es

ig
n

p
ri

n
ci

p
le

s
fo

r
A

P
Is

an
d

co
rr

es
p

o
n

d
in

g
m

ea
su

re
s

D
es

ig
n

p
ri

n
ci

p
le

/d
es

ig
n

h
eu

ri
st

ic
R

ea
so

n
fo

r
b
ei

n
g

im
p
o
rt

an
t

in
A

P
Is

C
o
rr

es
p
o
n
d
in

g
m

ea
su

re

D
ep

en
d

en
cy

in
ve

rs
io

n
p

ri
n

ci
pl

e—
D

IP
‘‘

H
ig

h
-l

ev
el

m
o
d

u
le

s
sh

o
u

ld
n

o
t

d
ep

en
d

o
n

lo
w

-l
ev

el
m

o
d

u
le

s.
B

o
th

sh
o

u
ld

d
ep

en
d

o
n

ab
st

ra
ct

io
n

s’
’

(M
ar

ti
n

2
0

0
3
)

A
P

Is
sh

o
u

ld
d

efi
n
e

im
m

u
ta

b
le

co
n

tr
ac

ts
to

ea
se

cl
ie

n
t

p
ro

g
ra

m
m

in
g

(T
u

la
ch

2
0

0
8
).

If
cl

ie
n

ts
d

ep
en

d
o

n
u

n
st

ab
le

m
o

d
u

le
s,

th
ey

b
ec

o
m

e
v

o
la

ti
le

w
h

en
th

e
li

b
ra

ri
es

ev
o

lv
e.

A
cc

o
rd

in
g

to
th

e
d

ep
en

d
en

cy
in

v
er

si
o

n
p

ri
n

ci
p

le
,

A
P

I
cl

ie
n

ts
sh

o
u
ld

d
ep

en
d

o
n

ab
st

ra
ct

io
n

s
w

h
ic

h
ar

e
b

o
th

st
ab

le
an

d
al

lo
w

ex
te

n
si

o
n

s
to

fu
n

ct
io

n
al

it
y

b
y

su
b

cl
as

si
n

g
.

P
u

t
in

an
o

th
er

w
ay

,
cl

ie
n

ts
(a

n
d

es
p

ec
ia

ll
y

A
P

I
cl

ie
n

ts
),

sh
o

u
ld

co
d

e
ag

ai
n

st
in

te
rf

ac
es

,
n

o
t

im
p

le
m

en
ta

ti
o

n
s

(G
am

m
a

et
al

.
1

9
9

5
).

T
h

e
st

ab
il

it
y

o
f

in
te

rf
ac

es
li

m
it

s
th

e
am

o
u

n
t

o
f

ch
an

g
es

th
at

ca
n

b
e

p
ro

p
ag

at
ed

to
cl

ie
n

ts
ca

u
si

n
g

m
ai

n
ta

in
ab

il
it

y
p

ro
b

le
m

s.

C
o

n
fo

rm
an

ce
to

th
e

co
rr

es
p

o
n

d
in

g
p

ri
n

ci
p

le
is

ex
p

ec
te

d
to

b
e

(a
t

le
as

t
p

ar
ti

al
ly

)
re

fl
ec

te
d

o
n

th
e

sy
st

em
’s

le
v

el
o

f
ab

st
ra

ct
io

n
,

th
at

is
th

e
n
u
m

b
er

o
f

ab
st

ra
ct

cl
as

se
s

an
d

in
te

rf
ac

es
o
v
er

th
e

to
ta

l
n
u
m

b
er

o
f

cl
as

se
s.

M
et

ri
c:

A
b

st
ra

ct
io

n
le

v
el

=
#

a
b

st
ra

ct
C

la
ss

es
þ

#
in

te
rf

ac
es

#
cl

a
ss

es

L
is

ko
v

su
b

st
it

u
ti

o
n

p
ri

n
ci

p
le

—
L

S
P

‘‘
S

u
b

ty
p
es

m
u

st
b

e
su

b
st

it
u

ta
b
le

fo
r

th
ei

r
b

as
e

ty
p
es

’’
(L

is
k

o
v

1
9

8
8
;

M
ar

ti
n

2
0

0
3
)

S
u

b
cl

as
si

n
g

A
P

I
cl

as
se

s
o

p
en

s
a

fa
r

w
id

er
ra

n
g

e
o

f
cl

as
s

u
sa

g
e

b
ey

o
n
d

th
e

A
P

I
d

es
ig

n
er

’s
o

ri
g

in
al

in
te

n
ti

o
n

.
In

h
er

it
an

ce
ca

n
v

io
la

te
en

ca
p

su
la

ti
o

n
:

ce
rt

ai
n

u
se

s
ca

n
v

io
la

te
th

e
L

is
k

o
v

su
b

st
it

u
ti

o
n

p
ri

n
ci

p
le

d
es

tr
o
y

in
g

th
e

v
al

id
it

y
o

f
th

e
in

v
o

lv
ed

o
b

je
ct

s
o

r
ca

u
si

n
g

fu
rt

h
er

p
ro

b
le

m
s

su
ch

as
v

io
la

ti
o

n
s

o
f

th
e

o
p

en
-c

lo
se

d
p

ri
n

ci
p

le
(M

ar
ti

n
2

0
0

3
).

T
h

is
ri

sk
is

p
ar

ti
cu

la
rl

y
in

te
n

se
w

h
en

cl
ie

n
ts

ex
te

n
d

b
as

e
cl

as
se

s
w

it
h

o
u
t

h
av

in
g

fu
ll

k
n

o
w

le
d

g
e

o
f

th
ei

r
in

te
rn

al
s,

as
is

th
e

ty
p

ic
al

ca
se

o
f

A
P

I
u

sa
g

e.
F

o
r

th
e

sa
k

e
o

f
fu

tu
re

ev
o

lu
ti

o
n

an
d

to
li

m
it

th
e

n
u

m
b

er
o

f
w

ay
s

in
w

h
ic

h
an

A
P

I
ca

n
b
e

u
se

d
,

su
b
cl

as
si

n
g

sh
o
u
ld

b
e

d
is

al
lo

w
ed

b
y

m
ak

in
g

ei
th

er
al

l
co

n
cr

et
e

cl
as

se
s

fi
n

al
o

r
at

le
as

t
b

y
m

ak
in

g
m

o
st

m
et

h
o

d
s

fi
n

al
(T

u
la

ch
2

0
0

8
).

T
h

e
co

rr
es

p
o

n
d
in

g
m

et
ri

cs
si

m
p

ly
re

fe
r

to
th

e
ex

te
n
t

b
y

w
h
ic

h
‘‘

fi
n
al

’’
is

em
p
lo

y
ed

in
th

e
d
ec

la
ra

ti
o
n

o
f

cl
as

se
s

an
d

m
et

h
o

d
s.

M
et

ri
cs

:
P

er
ce

n
ta

g
e

o
f

fi
n

al
co

n
cr

et
e

cl
as

se
s

(o
v

er
al

l
co

n
cr

et
e

cl
as

se
s)

P
er

ce
n

ta
g

e
o

f
fi

n
al

m
et

h
o

d
s

Software Qual J (2011) 19:553–578 557

123

T
a

b
le

1
co

n
ti

n
u

ed

D
es

ig
n

p
ri

n
ci

p
le

/d
es

ig
n

h
eu

ri
st

ic
R

ea
so

n
fo

r
b
ei

n
g

im
p
o
rt

an
t

in
A

P
Is

C
o
rr

es
p
o
n
d
in

g
m

ea
su

re

H
eu

ri
st

ic
2

.7
(R

ie
l

1
9

9
6
):

‘‘
C

la
ss

es
sh

o
u

ld
o

n
ly

ex
h

ib
it

n
il

o
r

ex
p

o
rt

co
u

p
li

n
g

w
it

h
o

th
er

cl
as

se
s,

th
at

is
,

a
cl

as
s

sh
o
u
ld

o
n
ly

u
se

o
p
er

at
io

n
s

in
th

e
p
u
b
li

c
in

te
rf

ac
e

o
f

an
o

th
er

cl
as

s
o

r
h

av
e

n
o

th
in

g
to

d
o

w
it

h
th

at
cl

as
s’

’

L
o

o
se

co
u

p
li

n
g

is
k

n
o

w
n

to
re

d
u

ce
ef

fo
rt

an
d

th
e

p
ro

b
ab

il
it

y
o

f
in

tr
o

d
u
ci

n
g

fa
u

lt
s

w
h

en
p

er
fo

rm
in

g
ad

ap
ti

v
e

m
ai

n
te

n
an

ce
an

d
as

su
ch

it
is

ex
tr

em
el

y
im

p
o

rt
an

t
to

m
in

im
iz

e
co

u
p

li
n

g
in

A
P

Is
w

h
ic

h
b

y
d
efi

n
it

io
n

u
n
d
er

g
o

ad
ap

ti
v
e

m
ai

n
te

n
an

ce
fr

eq
u
en

tl
y
.

M
o

re
o

v
er

,
A

P
I

d
es

ig
n

er
s

sh
o

u
ld

st
ri

v
e

to
m

in
im

iz
e

ac
ce

ss
ib

il
it

y
to

al
lo

w
m

o
d
u
le

s
to

b
e

u
se

d
,

u
n
d
er

st
o
o
d
,

b
u
il

t,
te

st
ed

,
an

d
d
eb

u
g
g
ed

in
d
ep

en
d
en

tl
y

(B
lo

ch
2

0
0

6
).

A
cc

o
rd

in
g

to
(T

u
la

ch
2

0
0

8
),

‘‘
D

o
N

ot
E

xp
o

se
M

o
re

T
h

a
n

Y
o

u
W

a
n

t’’
,

in
o

rd
er

to
al

lo
w

fu
tu

re
ev

o
lu

ti
o

n
o

f
th

e
A

P
I.

A
d
ir

ec
t

co
n
se

q
u
en

ce
o
f

m
in

im
iz

ed
ac

ce
ss

ib
il

it
y

(w
h
ic

h
m

ax
im

iz
es

in
fo

rm
at

io
n

h
id

in
g

)
is

re
d
u

ce
d

sy
st

em
co

u
p

li
n
g

.

C
o
n
fo

rm
an

ce
to

th
is

h
eu

ri
st

ic
is

ex
p
ec

te
d

to
b
e

re
fl

ec
te

d
b
y

lo
w

er
co

u
p

li
n
g

m
et

ri
c

v
al

u
es

.
M

et
ri

c:
M

P
C

M
es

sa
g
e

p
as

si
n
g

co
u
p
li

n
g

re
fe

rs
to

th
e

n
u
m

b
er

o
f

m
es

sa
g
es

(m
et

h
o

d
in

v
o

ca
ti

o
n

s)
p

as
si

n
g

fr
o

m
o

n
e

cl
as

s
to

al
l

th
o

se
w

it
h

w
h

ic
h

it
is

co
n

n
ec

te
d

(L
i

an
d

H
en

ry
1

9
9

3
).

A
m

o
n

g
th

e
im

p
o

rt
co

u
p

li
n

g
m

et
ri

cs
th

at
co

n
si

d
er

m
et

h
o

d
–

m
et

h
o
d

in
te

ra
ct

io
n
s,

M
P

C
ev

al
u
at

es
co

u
p
li

n
g

em
p
lo

y
in

g
th

e
to

ta
l

n
u
m

b
er

o
f

m
et

h
o
d

in
v
o
ca

ti
o
n
s,

w
h
il

e
th

e
o
th

er
s

m
ea

su
re

th
e

n
u

m
b

er
o

f
d

is
ti

n
ct

m
et

h
o

d
s

in
v

o
k

ed
.

T
h

is
co

u
p

li
n
g

m
et

ri
c

ca
p

tu
re

s
b

o
th

th
e

fr
eq

u
en

cy
o

f
co

n
n

ec
ti

o
n

s
b
et

w
ee

n
cl

as
se

s,
as

w
el

l
as

th
e

ty
p
e

o
f

d
ep

en
d
en

ci
es

(B
ri

an
d

et
al

.
1

9
9

9
).

T
h

e
m

et
ri

c
v

al
u

e
fo

r
a

cl
as

s
is

th
e

su
m

o
f

M
P

C
fo

r
al

l
m

et
h

o
d
s

w
h

il
e

th
e

sy
st

em
’s

m
et

ri
c

v
al

u
e

is
ca

lc
u
la

te
d

as
th

e
av

er
ag

e
o
v
er

al
l

cl
as

se
s.

P
ri

n
ci

p
le

o
f

le
a

st
p

ri
vi

le
g

e
M

o
d
u
le

s
sh

o
u
ld

o
n
ly

b
e

g
iv

en
ac

ce
ss

to
th

e
re

so
u

rc
es

an
d

in
fo

rm
at

io
n

w
h

ic
h

ar
e

n
ec

es
sa

ry
fo

r
th

ei
r

p
u

rp
o
se

.
re

la
te

d
to

In
fo

rm
a
ti

o
n

h
id

in
g
,

en
ca

p
su

la
ti

o
n

(P
ar

n
as

1
9

7
2
)

an
d

al
so

re
la

te
d

to
D

es
ig

n
b

y
co

n
tr

a
ct

(M
ey

er
2

0
0

0
)

D
es

ig
n

b
y

co
n

tr
ac

t
is

a
p

ro
g

ra
m

m
in

g
m

et
h

o
d
o

lo
g

y
th

at
g

u
ar

an
te

es
ro

b
u

st
so

ft
w

ar
e

b
y

d
ec

la
ri

n
g

fo
rm

al
an

d
v

er
ifi

ab
le

sp
ec

ifi
ca

ti
o

n
s

fo
r

ea
ch

co
m

p
o

n
en

t.
F

ie
ld

in
v

ar
ia

n
ce

co
n

fo
rm

s
to

th
e

p
ri

n
ci

p
le

o
f

le
as

t
p

ri
v

il
eg

e
an

d
ca

n
g

re
at

ly
ai

d
in

en
su

ri
n

g
th

at
o

b
je

ct
s

ar
e

in
a

co
n

si
st

en
t

st
at

e.

A
P

I
d

es
ig

n
s

sh
o

u
ld

m
in

im
iz

e
m

u
ta

b
il

it
y

b
y

m
ak

in
g

o
b

je
ct

s
im

m
u

ta
b

le
(T

u
la

ch
2

0
0

8
).

C
la

ss
es

an
d

m
em

b
er

s
sh

o
u

ld
b

e
im

m
u

ta
b

le
o

ff
er

in
g

th
e

ad
v

an
ta

g
es

o
f

si
m

p
li

ci
ty

,
te

st
ab

il
it

y
,

th
re

ad
-s

af
et

y
an

d
re

u
sa

b
il

it
y

(B
lo

ch
2

0
0

8
).

Im
m

u
ta

b
le

cl
as

se
s

h
av

e
th

e
in

h
er

en
t

p
ro

p
er

ty
o

f
b

ei
n

g
sa

fe
fo

r
si

m
u

lt
an

eo
u

s
ac

ce
ss

fr
o

m
m

u
lt

ip
le

th
re

ad
s.

M
o

re
o

v
er

,
w

h
en

u
si

n
g

im
m

u
ta

b
le

cl
as

se
s

it
is

ea
si

er
to

b
u

il
d

a
m

en
ta

l
m

o
d

el
o

f
th

e
sy

st
em

si
n

ce
th

er
e

is
n

o
as

so
ci

at
ed

ef
fo

rt
to

th
in

k
ab

o
u

t
h

o
w

in
st

an
ce

s
w

il
l

b
eh

av
e

at
ru

n
ti

m
e

(i
m

m
u

ta
b

le
fi

el
d

s
ca

n
o

n
ly

b
e

in
a

si
n

g
le

st
at

e)
.

T
h

e
fi

rs
t

st
ep

to
d

es
ig

n
im

m
u

ta
b

le
cl

as
se

s
is

to
en

su
re

th
at

al
l

fi
el

d
s

in
th

e
cl

as
s

ar
e

d
ec

la
re

d
fi

n
al

(T
u

la
ch

2
0

0
8
).

S
in

ce
im

m
u

ta
b

il
it

y
ca

n
b

e
ea

si
ly

en
fo

rc
ed

b
y

d
ec

la
ri

n
g

fi
el

d
s

as
fi

n
al

,
th

e
co

rr
es

p
o

n
d
in

g
m

et
ri

c
q

u
an

ti
fi

es
th

e
ex

te
n
t

b
y

w
h
ic

h
fi

n
al

is
em

p
lo

y
ed

in
th

e
d
ec

la
ra

ti
o
n

o
f

fi
el

d
s:

M
et

ri
c:

P
er

ce
n

ta
g

e
o

f
fi

n
al

fi
el

d
s

558 Software Qual J (2011) 19:553–578

123

Even if comparison by statistical analysis was flawless and not subject to any threat to

validity, the results indicate that safe and clear conclusions cannot be drawn. Moreover,

even if metrics are normalized over some global system measure (e.g. averaged over all

classes), they neglect the fact that some of the systems are significantly larger in terms of

functionality compared to others. The system’s size and relevant complexity obviously

affects all design decisions in unknown ways and cannot be neglected when comparing

software systems of unequal dimensions. Comparing and especially benchmarking soft-

ware systems neglecting their size is similar to comparing the structural quality of a

skyscraper and a one-story building simply by measuring the steel fibers per cubic meter of

concrete.

4 Data Envelopment Analysis

Data Envelopment Analysis, initially proposed by Charnes, Cooper and Rhodes (Charnes

et al. 1978) is a non-parametric approach that can be used to measure the performance of a

number of Decision Making Units. Performance evaluation is achieved by constructing a

discrete piecewise frontier over the data and by calculating a maximal performance

measure for each DMU in relation to all the other DMUs. Let us consider the simplified

case of DMUs having a single input and output. Their efficiency can be calculated as the

ratio of output over input. In Fig. 1, a number of sampled DMUs are represented by the

Table 2 t-Test statistic results

* Sample mean for App group–
sample mean for API group

Metric Sig. (2-tailed) Mean difference*

Abstraction level 0.000 -0.163

Perc. final methods 0.628

Perc. final classes 0.293

Perc. final fields 0.005 -0.148

MPC 0.005 10.677

Input

O
u

tp
u

t

Regressi
on Line

Effi
cie

nt
 F

ro
nt

ie
r

DMU with
largest

output/input

A

Fig. 1 Efficient frontier vs. regression line [adapted from Cooper et al. (2007)]

Software Qual J (2011) 19:553–578 559

123

corresponding dots, and the slope of the line from the origin through each dot represents

the efficiency of each DMU. The line corresponding to the most efficient DMU defines the

so-called efficient frontier. This frontier envelops all other DMUs (Cooper et al. 2007)

whose efficiency is obtained by their distance to this line. On the contrary, a conventional

statistical regression approach identifies a central tendency for the selected DMUs (Fig. 1).

DMUs in this case are compared to this theoretical baseline rather than to the best per-

forming peer. This signifies the most important difference between DEA and regression

approaches.

Figure 1 also illustrates the second benefit from employing DEA. An inefficient DMU

can be made efficient in several ways (for a multi input–output model). For example, the

DMU represented by dot A can be made efficient either by increasing its output or by

decreasing its input. Both actions can move the DMU closer to the efficient frontier.

The relative efficiency of any DMU is obtained as the ratio of a weighted sum of

m outputs to a weighted sum of n inputs. Weights are selected in a manner that the

efficiency measure of each DMU is maximized, subject to the constraint that no DMU can

have a relative efficiency score greater than unity (Cooper et al. 2007): This can be

formulated for a given DMU (e.g. DMU 1) as:

max
u;v

uT � y1=vT � x1

subject to uT � yi=vT � xi� 1 8 i ¼ 1; 2; . . .; k

u; v� 0

where u is an m 9 1 vector of output weights, v is an n 9 1 vector of input weights, yi is

an m 9 1 vector of output values of DMU i, xi is an n 9 1 vector of input values of DMU

i, and k the number of DMUs.

Usually the above fractional problem is transformed into a linear programming problem

(multiplier form) by equating the denominator of the efficiency ratio of the DMU under

study to unity. Then, by using the equivalent dual model, the DEA problem takes the

following envelopment form:

min
h;k

h

subject to � y1 þ Y � k� 0

h � x1 � X � k� 0

k� 0

where h is the efficiency score of DMU 1 (0 \ h B 1), k is a k 9 1 vector of constants,

Y is the m 9 k output matrix, X is the n 9 k input matrix.

The above model is the so-called CCR model (CCR stands for the initials of the authors

who proposed the model), which assumes constant returns to scale. A production function

is said to exhibit constant returns to scale (CRS) if a proportionate increase in all inputs

results in the same proportionate increase in output (Coelli et al. 2005). The assumption of

constant returns to scale is only appropriate when all DMUs operate at an optimal scale and

there is a proportional relationship between inputs and outputs. If this is not a valid

assumption, as occurs in our study, the CCR model should be extended to account for

variable returns to scale. The most representative model, which has been proposed so far

for variable returns to scale, is the BCC model (Banker et al. 1984) (BCC also stands for

the initials of the authors). This model has been employed in our study.

560 Software Qual J (2011) 19:553–578

123

In summary, the main advantages of DEA over other approaches are:

• DEA can handle multiple inputs and outputs.

• Inputs and outputs can have varying measurement scales.

• Based on projections of the inefficient DMUs onto the efficient frontier, estimates for

improvements in inputs and/or outputs can be produced.

• DMUs are directly compared against a peer or a combination of peers and not against a

theoretical baseline, making the approach appropriate for benchmarking.

Application of DEA in order to evaluate and benchmark a purely technological aspect

of software development differs from the conventional use of DEA in an economic context

regarding the meaning of inputs. Since according to the proposed model the inputs to the

software design process refer to the behavior and state that the designer has to implement

in the system, they differ from conventional inputs in an economic context. Inputs, such as

investments, number of employees or salaries are subject to optimization, whereas the

number of methods and attributes that should exist in a software design are not negotiable

(considering that a flawless object-oriented analysis has preceded the design phase).

To illustrate this difference between inputs in an economic context and inputs to a

software design process, consider the simplified examples with a single input and single

output, one from each domain, shown in Fig. 2.

As already mentioned, in an economic context, the overall goal is to maximize the

outputs and at the same time to minimize inputs, i.e. the criterion for benchmarking a

simplified company as in Fig. 2 can be stated as Performance ¼ output
input

. In other words,

between two companies with the same output, one would consider as better the smaller

one, e.g. the one that achieves this output with the smaller investment (smaller input).

On the other hand, for a software design process, the input is fixed and not subject to

optimization. However, to understand the difference in the technological context, consider

the following example case: let us assume that two software designs have the same

abstraction level (same value for the output). For these systems, we usually regard as better

achievement the larger one, in the sense that it achieves the same abstraction level despite

the fact that it is larger in size, in terms of operations or any other size measure. To state

this mathematically (although inputs are fixed), the criterion for benchmarking software

designs can be stated as Performance = input 9 output.

Therefore, we model the inputs to DEA for the software products that have been

analyzed as 1
input metric

, for each one of the two selected input metrics.

A reasonable concern regarding the choice of inputs could be that methods and attri-

butes are not the actual inputs of the software design process. Indeed, when the software

analysis and design process is viewed as a whole, a set of given requirements can be

implemented in several ways, corresponding to varying sets of methods and attributes. In

this context, attribute and method selection and allocation is obviously negotiable.

(a) economic context (b) S/W development context

Fig. 2 Simplified examples comparing economic and software development contexts

Software Qual J (2011) 19:553–578 561

123

However, in the context of Data Envelopment Analysis, it would not make sense to

suggest an artificial reduction (or increase) in the number of attributes and methods, just to

improve the efficiency of a software project in terms of some of its metrics. The ideal

would be to employ as input to DEA measures of functionality that are provided by the

system (such as function points). However, in the lack of well-established metrics of

functionality that can be extracted from source code, we opted for the alternative of

employing the number of methods and attributes as an indicator of the requested func-

tionality and amount of state information. The analogy can be found in an object-oriented

analysis and design methodology (e.g. the ICONIX methodology), in which most domain-

related attributes and operations have been extracted with the completion of the pre-

liminary design phase. In this context, it can be assumed (neglecting the iterative nature of

current processes) that attributes and methods act as input to the design process where

methods are allocated to classes, class relationships are finalized, design principles are

followed and design patterns are applied if appropriate. This consideration, which defines

the environment in which DEA is applied, is illustrated in Fig. 3.

For the selected outputs, the designer’s goal should be to maximize the abstraction level

and the percentage of final classes, methods and fields in the system. However, for MPC,

the goal is to minimize its value as it expresses coupling. To be consistent with the other

outputs and be able to employ the BCC approach, we model the corresponding output as

1/MPC, i.e. the values fed to DEA analysis are the inverse of MPC metric value.

5 Inputs and data

5.1 Input variables

As already mentioned, there are a number of approaches in the literature that treat the

design of an object-oriented system as a multi-objective optimization problem in which the

goal is to reassign methods and attributes to classes (either from scratch or by employing

stepwise modifications in the form of refactorings) in order to optimize the value of

selected metrics, typically coupling and cohesion (O’Keeffe and O’Cinneide 2006; Seng

et al. 2006; Bowman et al. 2007). The common denominator of these approaches is that the

‘‘independent’’ variables of a software design are its behavior, expressed by the methods

that provide the functionality and its state, expressed by the attributes holding the system’s

information. Since the goal is to express the functionality that is required from the system

under development, we count only concrete methods that have an implementation.

Therefore, we select as inputs to DEA the following two measures:

Software Analysis and Design

...

Functional
Requirements

Software Design
whose quality is

assessed by

software
metrics

Analysis
Preliminary

Design

Part of the process
which is being

evaluated by DEA

Fig. 3 Relaxed view of the software design process forming the context of DEA

562 Software Qual J (2011) 19:553–578

123

Number of Concrete Methods: Total number of implemented methods in a class,

regardless of access specifier. The metric value for a system is calculated as the sum over

all classes.

Number of Attributes (NOA): Total number of attributes defined in a class, regardless of

access specifier (Lorenz and Kidd 1994). The metric value for a system is calculated as the

sum over all classes.

Since these two measures are actually extracted from the source code (i.e. after the

design has been completed), it could be argued that they are also output metrics, in the sense

that the software designer assigns responsibilities and attributes to the classes of the system.

However, as already mentioned, in the absence of reliable tools for counting other measures

of functionality and considering that for the same methods and attributes numerous alter-

natives for a software design exist, we can regard them as indicators of the functionality that

is requested to be implemented and given supposedly as input to the design team.

5.2 Data

To achieve efficiency discrimination among DMUs, DEA requires that the number of

DMUs is significantly larger than the number of inputs and outputs. For n inputs and

m outputs, a rule of thumb (Cooper et al. 2007) suggests that the number of DMUs should

be #DMUs C max {n 9 m, 3 9 (n ? m)}. From the previous analysis, we have 2 inputs

and 5 outputs. Therefore, at least 21 DMUs should be included in the analysis. We have

analyzed 44 software projects.

The selection of the projects that have been chosen as DMUs was based on the fol-

lowing criteria:

• The projects should be open-source in order to allow the calculation of the

corresponding metric values from source code.

• Projects should have diverse size characteristics to evaluate DEA’s ability to handle

DMUs that have varying mix of inputs/outputs.

• The pool of projects should contain mature projects (e.g. APIs that have been

constantly evolving for a number of years) that are expected to have a relatively good

performance, as well as immature and possibly poorly structured projects that are

expected to have low efficiency. The maturity of each project is estimated considering

the date when the project was registered in an open-source repository and the date on

which the latest file was committed. A long period between the two dates implies, in

most of the cases, a mature and active project.

• Projects should be from several domains to limit the threats to external validity.

• Projects should be written in the same programming language (i.e. Java) to minimize

any effect of the programming language on the calculation of metrics.

The projects that have been included in the analysis, along with a brief description, are

listed in Table 3.

An overview of the data for the above referenced projects that have been used as inputs

and outputs for DEA along with two size measures (LOC—Lines of Code and NOC—

Number of Classes) is given in Table 4. LOC and NOC are provided only for reference and

have not been used as inputs to the DEA analysis since they result from the design process

and cannot be considered as inputs to it.

It should be noted that correlated inputs and outputs do not distort the calculated effi-

ciency scores. According to the developers of DEA (Charnes et al. 1995), high correlation

coefficients do not prevent us from running a DEA model because of the non-parametric

Software Qual J (2011) 19:553–578 563

123

T
ab

le
3

S
et

o
f

p
ro

je
ct

s
(D

M
U

s)
u

n
d

er
st

u
d

y

L
ib

ra
ri

es
A

p
p

li
ca

ti
o

n
s

1
ja

v
ax

.s
q

l
A

P
I

fo
r

se
rv

er
si

d
e

d
at

a
so

u
rc

e
ac

ce
ss

an
d

p
ro

ce
ss

in
g

1
JH

o
tD

ra
w

5
.1

.4
G

U
I

fr
am

ew
o

rk
fo

r
te

ch
n
ic

al
an

d
st

ru
ct

u
re

d
g

ra
p

h
ic

s

2
ja

v
ax

.s
o

u
n

d
Ja

v
a

lo
w

-l
ev

el
A

P
I

fo
r

cr
ea

ti
n

g
,

m
o

d
if

y
in

g
,

an
d

co
n

tr
o
ll

in
g

th
e

in
p

u
t

an
d

o
u

tp
u

t
o

f
so

u
n

d
m

ed
ia

,
in

cl
u

d
in

g
b

o
th

au
d

io
an

d
M

ID
I

2
V

io
le

t
0

.1
6

a
C

ro
ss

-p
la

tf
o

rm
,

ea
sy

to
u

se
U

M
L

ed
it

o
r

3
ja

v
ax

.x
m

l
D

efi
n

es
co

re
X

M
L

co
n

st
an

ts
an

d
fu

n
ct

io
n
al

it
y

fr
o
m

th
e

X
M

L
sp

ec
ifi

ca
ti

o
n

s
3

Je
p

p
er

s
W

eb
-b

as
ed

sp
re

ad
sh

ee
t

ed
it

o
r

4
ja

v
a.

aw
t

C
o
ll

ec
ti

o
n

o
f

o
ri

g
in

al
Ja

v
a

cl
as

se
s

fo
r

cr
ea

ti
n

g
u

se
r

in
te

rf
ac

es
an

d
fo

r
p

ai
n
ti

n
g

g
ra

p
h

ic
s

an
d

im
ag

es
4

JM
o
l

9
.0

M
o
le

cu
la

r
v
ie

w
er

fo
r

th
re

e-
d
im

en
si

o
n
al

ch
em

ic
al

st
ru

ct
u

re
s

5
ja

v
a.

io
R

es
o
u

rc
es

fo
r

sy
st

em
in

p
u

t
an

d
o

u
tp

u
t

th
ro

u
g

h
d

at
a

st
re

am
s,

se
ri

al
iz

at
io

n
an

d
th

e
fi

le
sy

st
em

5
JE

d
it

4
.0

P
ro

g
ra

m
m

er
’s

te
x

t
ed

it
o

r
th

at
ca

n
b

e
co

n
fi

g
u

re
d

as
an

ID
E

6
N

et
b
ea

n
s

5
.0

D
eb

u
g

g
er

C
o
re

D
efi

n
it

io
n
s

o
f

co
m

m
o
n

st
ru

ct
u
re

s
fo

r
in

te
g
ra

ti
o
n

o
f

d
eb

u
g
g
er

im
p
le

m
en

ta
ti

o
n
s

in
to

th
e

N
et

B
ea

n
s

ID
E

6
G

an
tt

P
ro

je
ct

2
.0

.9
P

ro
je

ct
sc

h
ed

u
li

n
g

ap
p
li

ca
ti

o
n

fe
at

u
ri

n
g

G
an

tt
ch

ar
ts

,
re

so
u

rc
e

m
an

ag
em

en
t,

ca
le

n
d

ar
in

g
,

im
p

o
rt

/e
x

p
o

rt

7
N

et
b
ea

n
s

5
.0

U
I

U
ti

li
ti

es
U

ti
li

ty
cl

as
se

s
p
er

ta
in

in
g

to
th

e
v
is

u
al

ap
p
ea

ra
n
ce

o
f

th
e

ID
E

7
E

JE
—

E
v
er

y
o

n
e’

s
Ja

v
a

E
d

it
o

r
2

.7
S

im
p
le

li
g
h
t-

w
ei

g
h
t

Ja
v

a
ed

it
o
r

8
JF

re
eC

h
ar

t
0

.7
Ja

v
a

ch
ar

t
li

b
ra

ry
th

at
al

lo
w

s
d

ev
el

o
p

er
s

to
d

is
p

la
y

ch
ar

ts
in

th
ei

r
ap

p
li

ca
ti

o
n
s

8
C

o
m

p
ie

re
2

.4
.4

E
R

P
so

lu
ti

o
n

fo
r

d
is

tr
ib

u
ti

o
n

,
re

ta
il

,
m

an
u

fa
ct

u
ri

n
g

an
d

se
rv

ic
e

in
d

u
st

ri
es

th
at

au
to

m
at

es
ac

co
u

n
ti

n
g
,

su
p

p
ly

ch
ai

n
,

in
v
en

to
ry

an
d

sa
le

s
o

rd
er

s

9
A

lg
o

ri
th

m
S

tu
d

y
0

.2
.0

P
ro

v
id

es
im

p
le

m
en

ta
ti

o
n

s
o

f
al

g
o
ri

th
m

s
(s

o
rt

in
g

,
se

ar
ch

in
g

,
et

c.
)

an
d

d
at

a
st

ru
ct

u
re

s
(l

is
ts

,
tr

ee
s,

et
c.

)
9

F
ra

n
k

li
n

M
at

h
0

.1
1

A
co

m
p

u
te

r
al

g
eb

ra
sy

st
em

(C
A

S
)

th
at

su
p

p
o

rt
s

b
o

th
n

u
m

er
ic

an
d

sy
m

b
o

li
c

ar
it

h
m

et
ic

an
d

o
th

er
co

m
p

u
ta

ti
o

n
s

1
0

JD
O

M
1
.1

P
ro

v
id

es
a

Ja
v
a-

b
as

ed
so

lu
ti

o
n

fo
r

ac
ce

ss
in

g
,

m
an

ip
u
la

ti
n

g
,

an
d

o
u

tp
u

tt
in

g
X

M
L

d
at

a
fr

o
m

Ja
v

a
co

d
e

1
0

S
ta

tS
V

N
0

.5
.0

M
et

ri
cs

-a
n
al

y
si

s
to

o
l

fo
r

ch
ar

ti
n

g
so

ft
w

ar
e

ev
o

lu
ti

o
n

th
ro

u
g

h
an

al
y

si
s

o
f

S
u

b
v

er
si

o
n

so
u

rc
e

re
p
o

si
to

ri
es

1
1

o
rg

.e
cl

ip
se

.
co

re
.fi

le
sy

st
em

P
ro

v
id

es
an

in
te

rf
ac

e
fo

r
in

te
ra

ct
in

g
w

it
h

a
fi

le
sy

st
em

1
1

JF
ig

u
re

1
.0

.8
A

p
p
li

ca
ti

o
n

fo
r

d
ra

w
in

g
d
y
n
am

ic
m

at
h
em

at
ic

s
fe

at
u
re

s
(a

s
g

eo
m

et
ri

c
fi

g
u
re

s,
d

y
n

am
ic

al
g

eb
ra

)
an

d
fo

r
cr

ea
ti

n
g

d
y

n
am

ic
an

im
at

io
n
s

u
si

n
g

g
eo

m
et

ri
cs

to
o

ls

1
2

o
rg

.e
cl

ip
se

.u
i.

v
ie

w
s

A
p

p
li

ca
ti

o
n

p
ro

g
ra

m
m

in
g

in
te

rf
ac

es
fo

r
in

te
ra

ct
io

n
w

it
h

an
d

ex
te

n
si

o
n

o
f

th
e

ec
li

p
se

p
la

tf
o

rm
u

se
r

in
te

rf
ac

e

1
2

Jn
s

1
.7

Ja
v

a
v

er
si

o
n

o
f

th
e

n
s-

2
n

et
w

o
rk

si
m

u
la

to
r

o
ri

g
in

al
ly

fr
o

m
B

er
k

el
ey

.
It

al
lo

w
s

d
ev

el
o

p
er

s
o

f
ro

u
ti

n
g

an
d

o
th

er
n

et
w

o
rk

p
ro

to
co

ls
to

si
m

u
la

te
th

ei
r

p
ro

to
co

ls
u

n
d

er
v

ar
io

u
s

co
n

d
it

io
n

s.

564 Software Qual J (2011) 19:553–578

123

T
ab

le
3

co
n

ti
n

u
ed

L
ib

ra
ri

es
A

p
p

li
ca

ti
o

n
s

1
3

Ja
sp

er
re

p
o
rt

s
3
.5

.0
Ja

v
a

re
p
o
rt

in
g

li
b
ra

ry
th

at
d
el

iv
er

s
so

p
h
is

ti
ca

te
d

p
ri

n
t

o
r

w
eb

re
p
o

rt
s

1
3

JS
p
id

er
0

.5
.0

A
h

ig
h

ly
co

n
fi

g
u

ra
b

le
an

d
cu

st
o
m

iz
ab

le
w

eb
sp

id
er

en
g

in
e

1
4

B
C

E
L

5
.2

B
y
te

co
d

e
en

g
in

ee
ri

n
g

li
b

ra
ry

th
at

is
in

te
n

d
ed

to
g

iv
e

u
se

rs
a

p
o

ss
ib

il
it

y
to

an
al

y
ze

,
cr

ea
te

,
an

d
m

an
ip

u
la

te
(b

in
ar

y
)

Ja
v

a
cl

as
s

fi
le

s.
P

ar
t

o
f

th
e

A
p

ac
h

e
Ja

k
ar

ta
p

ro
je

ct

1
4

JS
ig

n
p
d

f
0

.8
.0

A
p

p
li

ca
ti

o
n

w
h

ic
h

ad
d

s
d

ig
it

al
si

g
n

at
u

re
s

to
P

D
F

d
o

cu
m

en
ts

1
5

S
ax

2
r3

S
im

p
le

A
P

I
fo

r
X

M
L

1
5

JF
le

x
1

.4
.3

L
ex

ic
al

an
al

y
ze

r
g

en
er

at
o

r
fo

r
Ja

v
a

1
6

A
p

ac
h

e
C

o
m

m
o

n
s

C
o
ll

ec
ti

o
n

s
3

.2
C

o
ll

ec
ti

o
n

o
f

o
p
en

-s
o
u
rc

e
re

u
sa

b
le

Ja
v
a

co
m

p
o
n
en

ts
fr

o
m

th
e

A
p

ac
h

e/
Ja

k
ar

ta
co

m
m

u
n

it
y

1
6

JD
ep

en
d

2
.9

A
Ja

v
a

p
ac

k
ag

e
d

ep
en

d
en

cy
an

al
y
ze

r
th

at
g

en
er

at
es

d
es

ig
n

q
u

al
it

y
m

et
ri

cs

1
7

T
ro

v
e

2
.1

.0
H

ig
h

p
er

fo
rm

an
ce

co
ll

ec
ti

o
n

s
fo

r
Ja

v
a

o
b

je
ct

s
an

d
p

ri
m

it
iv

e
ty

p
es

1
7

B
lu

eJ
2

.5
.1

Ja
v

a
ID

E
sp

ec
ifi

ca
ll

y
d

es
ig

n
ed

to
le

ar
n

an
d

te
ac

h
o
b
je

ct
-o

ri
en

te
d

p
ro

g
ra

m
m

in
g

an
d

Ja
v
a

1
8

M
an

g
o

Ja
v

a
li

b
ra

ry
co

n
si

st
in

g
o
f

a
n
u
m

b
er

o
f

it
er

at
o
rs

,
al

g
o
ri

th
m

s
an

d
fu

n
ct

io
n

s,
lo

o
se

ly
in

sp
ir

ed
b

y
th

e
C

?
?

S
T

L
1

8
P

M
D

4
.1

Ja
v

a
so

u
rc

e
co

d
e

an
al

y
ze

r
th

at
lo

o
k

s
fo

r
p

o
te

n
ti

al
p

ro
b

le
m

s

1
9

JG
A

P
3

.0
1

G
en

et
ic

al
g

o
ri

th
m

s
an

d
g

en
et

ic
p

ro
g

ra
m

m
in

g
co

m
p

o
n

en
t

p
ro

v
id

ed
as

a
Ja

v
a

fr
am

ew
o

rk
1

9
F

re
eC

o
l

0
.7

.2
T

u
rn

-b
as

ed
st

ra
te

g
y

g
am

e
si

m
il

ar
to

C
iv

il
iz

at
io

n

2
0

A
S

M
2

.0
A

ll
p

u
rp

o
se

Ja
v

a
b

y
te

co
d

e
m

an
ip

u
la

ti
o

n
an

d
an

al
y
si

s
fr

am
ew

o
rk

2
0

R
o
b

o
co

d
e

1
.5

.1
P

ro
g
ra

m
m

in
g

g
am

e
w

h
er

e
th

e
g

o
al

is
to

d
ev

el
o

p
a

ro
b

o
t

b
at

tl
e

ta
n

k
to

b
at

tl
e

ag
ai

n
st

o
th

er
ta

n
k
s

2
1

G
u
av

a
r0

3
G

o
o
g
le

’s
co

re
Ja

v
a

li
b
ra

ri
es

2
1

B
ea

u
ty

J
1
.1

S
o
u
rc

e
co

d
e

tr
an

sf
o
rm

at
io

n
to

o
l

fo
r

Ja
v
a

so
u
rc

e
fi

le
s

th
at

g
en

er
at

es
a

cl
ea

n
,

n
o

rm
al

iz
ed

re
p
re

se
n
ta

ti
o
n

o
f

th
e

co
d
e

2
2

JM
ea

su
re

m
en

t
0

.7
0
.1

2
9

Ja
v

a
A

P
I

fo
r

m
o

n
it

o
ri

n
g

ru
n

ti
m

e
an

d
u

sa
g

e
o

f
u

se
r

d
efi

n
ed

p
o

in
ts

in
ja

v
a

p
ro

d
u

ct
io

n
co

d
e

2
2

JA
ll

In
O

n
e

0
.9

.1
0

E
R

P
/C

R
M

Ja
v

a
ap

p
li

ca
ti

o
n

h
av

in
g

a
S

w
in

g
fr

o
n

t-
en

d

Software Qual J (2011) 19:553–578 565

123

T
a

b
le

4
P

ro
je

ct
in

p
u

ts
an

d
o

u
tp

u
ts

P
ro

je
ct

L
O

C
N

O
C

In
p
u
ts

O
u
tp

u
ts

#
C

o
n
cr

et
e

m
et

h
o
d
s

#
F

ie
ld

s
%

(A
b
st

ra
ct

cl
as

se
s

?
in

te
rf

ac
es

)

%
F

in
al

cl
as

se
s

%
F

in
al

m
et

h
o
d
s

M
P

C
%

F
in

al

fi
el

d
s

L
ib

ra
ri

es

1
ja

v
ax

.s
q
l

1
4
6
4
3

4
7

3
1
3

1
4
0

0
.5

7
4

0
.0

0
0

0
.0

0
0

1
3
.4

5
7

0
.1

3
6

2
ja

v
ax

.s
o
u
n
d

1
1
9
0
5

7
0

2
6
2

1
6
4

0
.4

7
1

0
.0

0
0

0
.0

9
4

1
0
.8

5
2

0
.5

1
8

3
ja

v
ax

.x
m

l
3
5
3
2
3

2
7
4

7
1
9

4
3
8

0
.6

1
3

0
.1

3
2

0
.0

1
7

6
.1

9
7

0
.6

5
8

4
ja

v
a.

aw
t

1
4
7
5
5
7

4
8
2

4
5
7
8

3
2
5
8

0
.3

4
9

0
.1

9
7

0
.0

4
8

2
8
.2

7
8

0
.5

7
3

5
ja

v
a.

io
2
6
1
2
8

1
0
9

9
7
4

4
2
0

0
.2

0
2

0
.0

5
7

0
.0

5
8

2
8
.9

0
6

0
.4

3
6

6
N

et
b
ea

n
s

5
D

eb
u
g
g
er

C
o
re

3
9
2
1

3
4

1
9
3

9
8

0
.4

7
1

0
.3

3
3

0
.0

2
3

2
7
.4

7
8

0
.3

8
8

7
N

et
b
ea

n
s

5
.0

U
I

U
ti

li
ti

es
9
6
9
2

6
7

4
2
5

2
4
4

0
.1

9
4

0
.1

6
7

0
.0

3
1

5
1
.7

6
9

0
.3

4
0

8
JF

re
eC

h
ar

t
0
.7

1
9
0
9
8

1
1
0

7
3
8

3
9
0

0
.2

4
5

0
.0

0
0

0
.0

0
0

3
0
.1

7
8

0
.2

5
6

9
A

lg
o
ri

th
m

S
tu

d
y

0
.2

.0
2
5
7
8

3
0

1
1
5

9
9

0
.1

6
7

0
.0

0
0

0
.0

0
0

4
.5

0
0

0
.1

5
2

1
0

JD
O

M
1
.1

1
8
0
8
1

7
3

7
2
0

2
5
5

0
.1

2
3

0
.1

2
5

0
.0

1
5

3
3
.5

6
5

0
.4

2
7

1
1

o
rg

.e
cl

ip
se

.c
o
re

.fi
le

sy
st

em
3
4
8
8

2
2

1
5
7

9
2

0
.3

6
3

0
.0

0
0

0
.0

5
2

7
.6

8
2

0
.5

0
0

1
2

o
rg

.e
cl

ip
se

.u
i.

v
ie

w
s

5
1
4
3

3
7

2
2
0

1
0
8

0
.3

2
4

0
.0

4
0

0
.0

0
0

6
.7

2
2

0
.1

5
7

1
3

Ja
sp

er
re

p
o
rt

s
3
.5

.0
1
9
7
7
4
1

1
3
3
0

1
0
6
4
9

6
1
0
4

0
.2

3
9

0
.0

0
8

0
.0

0
9

2
4
.7

5
1

0
.4

7
1

1
4

B
C

E
L

5
.2

3
8
4
2
3

3
5
7

2
2
5
5

9
8
2

0
.1

9
9

0
.2

0
3

0
.1

4
6

2
0
.3

7
0

0
.5

6
0

1
5

S
ax

2
r3

8
7
8
1

4
1

2
7
5

7
1

0
.3

9
0

0
.1

6
0

0
.0

0
0

1
1
.7

1
1

0
.1

4
1

1
6

A
p
ac

h
e

C
o
m

m
o
n
s

C
o
ll

.
3
.2

2
4
6
3
5

4
1
2

3
0
8
7

7
6
3

0
.1

4
7

0
.1

4
9

0
.0

0
5

1
7
.4

8
5

0
.4

9
8

1
7

T
ro

v
e

2
.1

.0
3
2
5
0

5
4

2
8
0

7
1

0
.3

0
2

0
.1

7
0

0
.0

7
8

1
4
.7

4
1

0
.4

6
5

1
8

M
an

g
o

1
8
3
7

8
1

2
5
4

5
3

0
.0

8
3

0
.0

0
0

0
.0

0
0

6
.0

3
8

0
.4

1
5

1
9

JG
A

P
3
.0

1
1
5
0
6
1

2
4
2

1
3
0
6

7
1
8

0
.3

1
4

0
.0

0
8

0
.0

0
4

1
5
.5

0
4

0
.4

1
0

2
0

A
S

M
2
.0

1
4
1
3
4

1
4
6

9
0
6

7
0
5

0
.1

3
0

0
.2

9
5

0
.1

0
0

2
0
.5

8
9

0
.2

7
4

2
1

G
u
av

a
r0

3
2
2
7
3
5

4
6
5

2
8
3
8

7
2
3

0
.2

2
4

0
.2

5
1

0
.0

1
8

1
3
.2

0
4

0
.7

4
3

2
2

JM
ea

su
re

m
en

t
0
.7

0
.1

2
9

9
5
5
8

1
0
4

6
6
0

3
8
1

0
.1

1
5

0
.2

3
1

0
.3

4
0

2
7
.1

7
3

0
.4

1
2

566 Software Qual J (2011) 19:553–578

123

T
a

b
le

4
co

n
ti

n
u
ed

P
ro

je
ct

L
O

C
N

O
C

In
p
u
ts

O
u
tp

u
ts

#
C

o
n
cr

et
e

m
et

h
o
d
s

#
F

ie
ld

s
%

(A
b
st

ra
ct

cl
as

se
s

?
in

te
rf

ac
es

)

%
F

in
al

cl
as

se
s

%
F

in
al

m
et

h
o
d
s

M
P

C
%

F
in

al

fi
el

d
s

A
p
p
li

ca
ti

o
n
s

1
JH

o
tD

ra
w

5
.1

.4
1
3
0
3
0

1
5
8

1
0
0
0

3
3
4

0
.1

9
6

0
.0

2
4

0
.0

0
2

1
9
.0

1
3

0
.2

2
5

2
V

io
le

t
0
.1

6
a

8
2
7
2

7
4

3
6
4

2
6
1

0
.1

6
2

0
.0

0
0

0
.0

0
0

2
6
.6

8
7

0
.2

8
4

3
Je

p
p
er

s
2
9
0
9

2
1

1
1
3

9
3

0
.0

0
0

0
.0

0
0

0
.0

0
0

3
1
.5

7
1

0
.0

1
1

4
JM

o
l

9
.0

4
1
9
6
9

3
1
6

1
9
5
6

1
8
2
4

0
.0

5
7

0
.0

2
0

0
.0

0
0

3
9
.0

8
5

0
.2

5
4

5
JE

d
it

4
.0

8
9
1
3
8

5
5
8

3
4
9
6

2
2
4
4

0
.0

8
2

0
.0

3
1

0
.1

7
8

4
8
.9

7
5

0
.1

7
6

6
G

an
tt

P
ro

je
ct

2
.0

.9
5
9
3
2
3

7
3
3

3
8
7
5

2
5
6
5

0
.2

1
6

0
.0

0
7

0
.0

0
1

2
8
.6

9
5

0
.3

6
3

7
E

JE
2
.7

9
3
7
1

9
7

4
3
8

4
5
0

0
.0

9
3

0
.0

0
0

0
.0

0
7

3
8
.2

3
0

0
.1

3
8

8
C

o
m

p
ie

re
2
.4

.4
2
0
0
2
2
1

7
3
7

7
7
4
9

5
3
1
7

0
.0

6
9

0
.1

6
5

0
.0

0
7

4
5
.3

4
8

0
.2

7
5

9
F

ra
n
k
li

n
M

at
h

0
.1

1
9
0
9
6

7
2

4
1
2

2
9
3

0
.0

6
9

0
.1

1
9

0
.0

8
6

1
7
.8

6
8

0
.1

4
7

1
0

S
ta

tS
V

N
0
.5

.0
6
4
7
0

4
1

3
2
4

2
0
2

0
.0

4
9

0
.3

0
8

0
.0

0
9

4
0
.8

1
1

0
.5

5
9

1
1

JF
ig

u
re

1
.0

.8
1
2
6
5
0
6

8
8
3

5
8
5
5

3
3
1
1

0
.0

4
9

0
.0

8
8

0
.3

4
2

3
2
.5

6
9

0
.3

1
0

1
2

jn
s

1
.7

5
8
7
4

6
1

2
4
8

2
0
5

0
.1

9
7

0
.0

0
0

0
.0

0
0

1
1
.2

4
6

0
.1

9
5

1
3

JS
p
id

er
0
.5

.0
1
0
9
8
6

2
5
1

8
8
4

5
4
7

0
.3

1
1

0
.0

0
0

0
.0

0
3

9
.5

0
2

0
.3

4
6

1
4

JS
ig

n
p
d
f

0
.8

.0
6
2
7
6

3
0

3
3
7

3
3
5

0
.0

3
3

0
.0

3
4

0
.0

0
3

3
9
.6

4
3

0
.4

1
2

1
5

JF
le

x
1
.4

.3
1
5
1
6
3

5
7

4
4
7

4
9
1

0
.1

0
5

0
.3

7
3

0
.0

3
5

2
8
.6

3
0

0
.2

4
2

1
6

JD
ep

en
d

2
.9

2
3
7
9

2
9

2
8
3

8
6

0
.1

0
3

0
.0

0
0

0
.0

0
0

3
7
.4

8
3

0
.1

9
8

1
7

B
lu

eJ
2
.5

.1
7
6
3
5
2

6
9
3

4
4
8
7

2
9
1
3

0
.1

3
2

0
.1

3
0

0
.0

6
3

2
8
.5

6
8

0
.2

7
0

1
8

P
M

D
4
.1

4
2
6
2
6

5
9
5

3
2
9
8

1
6
6
7

0
.1

2
1

0
.0

2
0

0
.1

1
0

1
7
.8

8
9

0
.2

0
8

1
9

F
re

eC
o
l

0
.7

.2
6
0
7
5
4

4
8
6

3
5
2
3

3
5
1
7

0
.1

0
4

0
.3

4
7

0
.0

1
7

4
7
.9

2
2

0
.7

3
7

2
0

R
o
b
o
co

d
e

1
.5

.1
2
6
7
5
4

2
6
5

2
4
0
1

1
4
1
3

0
.0

4
9

0
.0

4
5

0
.0

2
7

3
6
.4

7
9

0
.1

6
7

2
1

B
ea

u
ty

J
1
.1

2
2
5
1
4

2
4
2

1
7
4
6

6
8
8

0
.4

5
9

0
.0

1
7

0
.2

6
1

2
4
.6

9
4

0
.1

3
5

2
2

JA
ll

In
O

n
e

0
.9

.1
0

1
3
2
7
9
5

1
2
3
9

7
2
4
1

8
0
4
4

0
.0

0
8

0
.0

0
0

0
.1

7
1

5
.1

5
4

0
.0

3
1

M
et

ri
c

v
al

u
es

h
av

e
b
ee

n
ex

tr
ac

te
d

b
y

an
al

y
zi

n
g

al
l

p
ro

je
ct

s
w

it
h

a
cu

st
o
m

-d
ev

el
o
p
ed

E
cl

ip
se

p
lu

g
in

.
L

O
C

an
d

M
P

C
h
av

e
b
ee

n
ex

tr
ac

te
d

w
it

h
B

o
rl

an
d

T
o
g
et

h
er

2
0
0
6

fo
r

E
cl

ip
se

Software Qual J (2011) 19:553–578 567

123

nature of DEA, which mitigates this effect. Moreover, DEA remains unaffected when

outputs are scaled by inputs as in the presented model where the number of final methods

and fields (outputs) is averaged over the total number of methods and fields (inputs),

respectively. According to Dyson et al. (2001), if scale is thought of as the physical size of a

unit (as it happens for the aforementioned software metrics), then scaling by input is

appropriate. Moreover, a major pitfall would occur if ratios (as the other three outputs) had

been mixed with volume measures. This would lead to improper comparisons (we observed

this problem initially in our experiments) and is avoided by averaging the two outputs over

the corresponding inputs.

6 Results and discussion

6.1 Normal DEA model

Data Envelopment Analysis has been performed on the selected projects/metrics

employing the DEA-Solver v6.0 software by SAITECH Inc. The results are shown in

Table 5 (rows in italics correspond to libraries). The 3rd column corresponds to the overall

efficiency score calculated for each project. Projects are ranked (1st column) according to

this score.

As it can be observed, 15 projects are considered as fully efficient (i.e. have an effi-

ciency score equal to one and no shortages or excesses in outputs), with nine of them

belonging to the group of libraries. Moreover, the average efficiency score for libraries is

0.845, whereas the average efficiency score for applications is 0.629, confirming our initial

expectation about the superiority of libraries, in the context of the selected metrics. The

difference between the means of the two groups is according to an independent sample

t-test statistically significant (p = 0.005).

To provide an overview on what could be improved in each project, the rest of the

columns in Table 5 show the differences between the actual and the expected data when

each inefficient software design is projected onto the efficient frontier. In other words,

these columns indicate the required changes on the selected metrics in order to make the

efficiency score of an inefficient project equal to one. Differences for the input metrics are

not shown, since the inputs to the design process represented by number of operations and

attributes, are considered in the proposed model as not negotiable, as already mentioned.

According to the theory of DEA, the efficient projects are not in need of any

improvement, within the context of the examined metrics, since they are placed on the

efficient frontier. Having a look at the marginally inefficient projects [with an efficiency

score between 0.9 and 1.0 (von Mayrhauser et al. 2000)], i.e. projects javax.sql,

javax.sound and Mango, they show a tremendous hysteresis in the number of final classes,

since according to the data they all have zero classes declared as final providing room for

subclassing (javax.sql and Mango have also a very small percentage of final methods).

Thus, an increase in the corresponding metrics is suggested vividly by the model.

Results should be viewed in light of the assumptions that have been made earlier. For

example, if the projections indicate that one of the outputs should be improved (e.g. the

percentage of abstract classes and interfaces), this does not necessarily mean that the

system suffers from a serious design problem. But in the context of benchmarking, another

project with a similar mix of inputs/outputs and a better percentage of abstract classes and

interfaces is viewed as more efficient. As already mentioned, in the case where two

projects have the same or similar outputs (i.e. the same quality level according to the

568 Software Qual J (2011) 19:553–578

123

Table 5 Efficiency scores and projections onto the efficient frontier

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract
classes ?
interfaces)

% Final
classes

% Final
methods

MPC % Final
fields

1 JMeasurement 0.70.129 1.000 0.00 0.00 0.00 0.00 0.00

1 Guava r03 1.000 0.00 0.00 0.00 0.00 0.00

1 ASM 2.0 1.000 0.00 0.00 0.00 0.00 0.00

1 Jasperreports 3.5.0 1.000 0.00 0.00 0.00 0.00 0.00

1 Algorithm Study 0.2.0 1.000 0.00 0.00 0.00 0.00 0.00

1 Netbeans 5.0 Debugger Core 1.000 0.00 0.00 0.00 0.00 0.00

1 JFigure 1.0.8 1.000 0.00 0.00 0.00 0.00 0.00

1 BCEL 5.2 1.000 0.00 0.00 0.00 0.00 0.00

1 Compiere 2.4.4 1.000 0.00 0.00 0.00 0.00 0.00

1 java.awt 1.000 0.00 0.00 0.00 0.00 0.00

1 javax.xml 1.000 0.00 0.00 0.00 0.00 0.00

1 JFlex 1.4.3 1.000 0.00 0.00 0.00 0.00 0.00

1 JAllInOne 0.9.10 1.000 0.00 0.00 0.00 0.00 0.00

1 BeautyJ 1.1 1.000 0.00 0.00 0.00 0.00 0.00

1 FreeCol 0.7.2 1.000 0.00 0.00 0.00 0.00 0.00

16 javax.sql 0.937 6.73 999.90 999.90 -53.95 384.50

17 javax.sound 0.930 7.56 999.90 7.56 -26.88 7.56

18 Mango 0.901 427.55 999.90 999.90 -9.90 10.99

19 StatSVN 0.5.0 0.888 141.71 12.66 131.42 -11.24 12.66

20 org.eclipse.core.filesystem 0.856 42.27 999.90 16.78 -14.37 16.78

21 Trove 2.1.0 0.792 26.24 26.24 26.24 -27.07 26.24

22 org.eclipse.ui.views 0.790 26.56 82.00 999.90 -20.98 172.34

23 Sax 2r3 0.751 33.08 33.08 999.90 -24.86 282.77

24 Apache Commons
Coll. 3.2

0.723 45.84 48.88 398.62 -27.73 38.37

25 JGAP 3.01 0.672 48.79 999.90 760.20 -32.79 48.79

26 java.io 0.669 49.38 275.90 49.38 -61.40 49.38

27 GanttProject 2.0.9 0.667 50.02 999.90 999.90 -33.34 50.02

28 BlueJ 2.5.1 0.662 50.99 50.99 50.99 -33.77 90.76

29 JSpider 0.5.0 0.640 56.63 999.90 999.90 -36.02 56.29

30 PMD 4.1 0.624 60.16 382.05 60.16 -37.56 60.16

31 JEdit 4.0 0.603 65.84 194.05 65.84 -39.70 80.90

32 Netbeans 5.0 UI Utilities 0.589 69.87 69.87 69.87 -66.84 69.87

33 Franklin Math 0.11 0.586 72.57 70.66 70.66 -41.40 70.66

34 JDOM 1.1 0.582 79.34 100.37 71.76 -60.12 71.76

35 JSignpdf 0.8.0 0.554 572.01 627.90 508.52 -66.69 80.37

36 jns 1.7 0.480 108.38 999.90 999.90 -52.01 121.25

37 JFreechart 0.7 0.405 147.05 999.90 999.90 -78.77 147.52

38 Violet 0.16a 0.403 148.23 999.90 999.90 -67.42 148.23

39 JMol 9.0 0.401 187.80 999.90 999.90 -59.87 149.18

Software Qual J (2011) 19:553–578 569

123

selected metrics), the approach ranks as better the one with larger inputs, i.e. the one that is

larger in terms of functionality and state variables.

If the model results are interpreted accurately, the differences provide a form of

guidelines on what should be improved in each project, when comparing it to the most

efficient projects. For example, library JFreeChart is less efficient (score: 0.405) than

javax.xml (score: 1). The projection indicates that in the context of this analysis all of its

metrics could be improved. What the model captures is the fact that javax.xml, which is a

fully efficient project that is most directly comparable to JFreeChart (because they have a

similar mix of inputs and outputs), excels in all of the five output metrics and therefore the

model expects from JFreeChart significantly improved outputs in all of the examined

aspects. As a result, the information to the designers of JFreeChart is to learn from

javax.xml and using it as a baseline to attempt to improve the corresponding design

properties of JFreeChart. The information that is provided by the model, combined with

other objective or subjective sources of information, can help the design team of any

project to establish a golden set of projects, whose best practices should be emulated. For

example, the overall high efficiency scores for all java libraries combined with the fact that

JDK API is considered to be professionally designed (Tulach 2008) strengthens the belief

that Java libraries are safe to rely upon and to follow as an example for API design.

As another example, JHotDraw 5.1.4, which is a well-known project widely

acknowledged for its proper use of design patterns, is unexpectedly ranked 40th. The

projection indicates that in the context of this analysis all of its metrics could be improved.

Compared to javax.xml, which is also a project having inputs that are roughly similar,

JHotDraw appears to have a significantly lower percentage of abstract classes and inter-

faces, final classes, final methods and final fields and a larger MPC value (see Table 4).

This is also confirmed by the reference sets or peer groups that are provided by DEA for

each inefficient DMU. The reference set consists of those efficient peers that operate closer

to a given DMU considering their mix of inputs and outputs. In other words, it provides

for the inefficient DMUs the efficient ones with which they are most directly comparable.

It is the existence of these efficient peers that forces a DMU to be inefficient. Table 6

provides the reference sets for the inefficient projects. This is another valuable aspect of

DEA, since it provides efficient projects to which a given system can be compared in order

to gain insight into what and how much can be improved. As von Mayrhauser et al. (2000)

suggest, projects which according to subjective analysis are considered successful and

according to a production model like DEA are indicated as efficient are the ones that we

would like to learn from.

Table 5 continued

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract
classes ?
interfaces)

% Final
classes

% Final
methods

MPC % Final
fields

40 JHotDraw 5.1.4 0.394 153.71 479.40 999.90 -60.59 160.17

41 Robocode 1.5.1 0.315 249.08 343.61 217.62 -68.52 217.62

42 JDepend 2.9 0.278 259.07 999.90 999.90 -75.26 259.07

43 EJE 2.7 0.204 400.46 999.90 389.07 -79.55 389.07

44 Jeppers 0.143 999.90 0.00 0.00 -85.75 999.90

Rows in italics correspond to libraries

570 Software Qual J (2011) 19:553–578

123

6.2 System differentiated DEA model

The results concerning the software categories that have been examined might have been

affected by the different inherent characteristics of libraries and applications. Recent

extensions to basic DEA models attempt to address this issue by the introduction of

categorical variables in the analysis and the corresponding modification of the linear

programming formulation, forming the so-called system differentiated DEA (SYS-DEA),

which allows cross-system comparisons (Cooper et al. 2007). System differentiated DEA is

appropriate when the operating environment of the examined DMUs exhibits systematic

differences (Yang 2009). In this way, it is not only possible to evaluate the efficiency of

each DMU but also to compare the two or more categories by observing the efficiency of

DMUs in each system. The results of system differentiated DEA are given in Table 7.

Table 6 Reference sets for the inefficient DMUs

Project Score Reference set

javax.sql 0.937 javax.xml

javax.sound 0.930 javax.xml, JMeasurement, BeautyJ

Mango 0.901 javax.xml, AlgorithmStudy, JAllInOne

StatSVN 0.5.0 0.888 FreeCol, JFlex, javax.xml

org.eclipse.core.filesystem 0.856 javax.xml, JMeasurement, JAllInOne

Trove 2.1.0 0.792 javax.xml, JMeasurement, FreeCol, Netbeans 5.0 Debug. Core

org.eclipse.ui.views 0.790 javax.xml, AlgorithmStudy, JAllInOne

Sax 2r3 0.751 javax.xml, Netbeans 5.0 Debug. Core, JFlex

Apache Commons Coll. 3.2 0.723 Guava, Jasperreports, JAllInOne

JGAP 3.01 0.672 java.awt, javax.xml, Guava JAllInOne

java.io 0.669 Guava, javax.xml, JMeasurement

Gantt project 2.0.9 0.667 java.awt, JAllInOne, javax.xml, Guava, FreeCol

BlueJ 2.5.1 0.662 java.awt, FreeCol, JFigure, JAllInOne, Guava

JSpider 0.5.0 0.640 javax.xml, JAllInOne, FreeCol

PMD 4.1 0.624 JFigure, java.awt, JAllInOne, javax.xml, BeautyJ

JEdit 4.0 0.603 JFigure, BeautyJ, java.awt, JAllInOne

Netbeans 5.0 UI Utilities 0.589 FreeCol, Netbeans 5.0 Debug. Core, javax.xml, JMeasurement

Franklin Math 0.11 0.586 JFlex, JAllInOne, JMeasurement, javax.xml

JDOM 1.1 0.582 Guava, JMeasurement

JSignpdf 0.8.0 0.554 Guava

jns 1.7 0.480 javax.xml, AlgorithmStudy, JAllInOne

JFreechart 0.7 0.405 javax.xml, BeautyJ

Violet 0.16a 0.403 Guava, javax.xml

JMol 9.0 0.401 FreeCol, javax.xml, JAllInOne

JHotDraw 5.1.4 0.394 javax.xml, java.awt, JAllInOne

Robocode 1.5.1 0.315 FreeCol, JAllInOne, javax.xml, Guava, JFigure

JDepend 2.9 0.278 Guava, javax.xml

EJE 2.7 0.204 javax.xml, Guava, JMeasurement

Jeppers 0.143 AlgorithmStudy

Software Qual J (2011) 19:553–578 571

123

Table 7 Efficiency scores and projections onto the efficient frontier according to system differentiated
DEA

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract
classes ?
interfaces)

% Final
classes

% Final
methods

MPC % Final
fields

1 JMeasurement 0.70.129 1.000 0.00 0.00 0.00 0.00 0.00

1 Guava r03 1.000 0.00 0.00 0.00 0.00 0.00

1 ASM 2.0 1.000 0.00 0.00 0.00 0.00 0.00

1 Jasperreports 3.5.0 1.000 0.00 0.00 0.00 0.00 0.00

1 Algorithm Study 0.2.0 1.000 0.00 0.00 0.00 0.00 0.00

1 Netbeans 5.0
Debugger Core

1.000 0.00 0.00 0.00 0.00 0.00

1 JFigure 1.0.8 1.000 0.00 0.00 0.00 0.00 0.00

1 BCEL 5.2 1.000 0.00 0.00 0.00 0.00 0.00

1 Compiere 2.4.4 1.000 0.00 0.00 0.00 0.00 0.00

1 java.awt 1.000 0.00 0.00 0.00 0.00 0.00

1 javax.xml 1.000 0.00 0.00 0.00 0.00 0.00

1 JFlex 1.4.3 1.000 0.00 0.00 0.00 0.00 0.00

1 JAllInOne 0.9.10 1.000 0.00 0.00 0.00 0.00 0.00

1 BeautyJ 1.1 1.000 0.00 0.00 0.00 0.00 0.00

1 FreeCol 0.7.2 1.000 0.00 0.00 0.00 0.00 0.00

16 BlueJ 2.5.1 0.991 0.86 0.86 0.86 -0.85 35.73

17 javax.sound 0.964 3.71 999.90 3.71 -29.28 15.05

18 javax.sql 0.937 6.73 999.90 999.90 -53.95 384.50

19 Mango 0.907 451.22 999.90 999.90 -9.29 15.94

20 StatSVN 0.5.0 0.894 109.35 11.88 165.76 -10.62 11.88

21 org.eclipse.core.filesystem 0.867 38.45 999.90 15.28 -13.25 15.28

22 Trove 2.1.0 0.800 24.98 24.98 24.98 -27.13 24.98

23 Apache Commons
Coll. 3.2

0.796 53.51 50.52 240.17 -20.40 43.19

24 org.eclipse.ui.views 0.793 29.60 87.59 999.90 -20.72 178.90

25 JSpider 0.5.0 0.777 71.47 999.90 522.09 -22.27 78.71

26 Sax 2r3 0.759 42.83 31.73 999.90 -24.09 291.95

27 GanttProject 2.0.9 0.707 41.37 999.90 999.90 -29.26 42.93

28 PMD 4.1 0.701 42.58 419.20 42.58 -29.86 42.58

29 JGAP 3.01 0.675 48.22 999.90 668.13 -32.53 48.22

30 java.io 0.669 49.38 275.90 49.38 -61.40 49.38

31 JEdit 4.0 0.659 51.83 108.32 51.83 -37.29 70.89

32 Netbeans 5.0 UI Utilities 0.620 61.39 61.39 61.39 -62.60 61.39

33 Franklin Math 0.11 0.593 387.29 68.74 68.74 -40.74 233.82

34 JDOM 1.1 0.582 79.34 100.37 71.76 -60.12 71.76

35 JSignpdf 0.8.0 0.554 572.01 627.90 508.52 -66.69 80.37

36 jns 1.7 0.490 136.35 999.90 999.90 -51.02 150.91

37 JMol 9.0 0.440 127.13 999.90 999.90 -55.97 127.13

38 JHotDraw 5.1.4 0.411 143.08 542.97 895.46 -58.86 195.20

572 Software Qual J (2011) 19:553–578

123

Table 8 presents a summary of the comparison between the results of normal DEA and

system differentiated DEA. System differentiated analysis yields a slightly higher average

efficiency score for all projects and the same number of efficient projects, while the relative

ranking order of the projects presents only minor differences. These observations are in

agreement with the remarks by Yang (2009) which applied system differentiated DEA to

account for differences between several geographical areas in the assessment of Canadian

bank branches’ performance.

According to the system differentiated DEA model, the average efficiency score of

applications is 0.664, whereas the average score of libraries is 0.853, confirming the

conclusions derived so far. To test statistically the difference between the two groups in

terms of efficiency and to assess whether differences occur by chance or are statistically

significant, an independent sample t-test may be used, since the distribution of the effi-

ciency scores has been tested for normality. The resulting p-value is equal to 0.013. As a

result, at the a = 0.05 level of significance, there is enough evidence to conclude that there

is a difference in the efficiency scores between the two types of software.

7 Threats to validity

7.1 Threats to internal validity

As threats to internal validity, we consider those factors that may cause interferences

regarding the relationships that we are trying to investigate (Wohlin et al. 2000). There are

Table 7 continued

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract
classes ?
interfaces)

% Final
classes

% Final
methods

MPC % Final
fields

39 JFreechart 0.7 0.406 146.51 999.90 999.90 -78.96 155.43

40 Violet 0.16a 0.403 148.23 999.90 999.90 -67.42 148.23

41 Robocode 1.5.1 0.361 176.68 323.00 176.68 -63.86 176.68

42 JDepend 2.9 0.278 259.07 999.90 999.90 -75.26 259.07

43 EJE 2.7 0.204 400.46 999.90 389.07 -79.55 389.07

44 Jeppers 0.143 999.90 0.00 0.00 -85.75 999.90

Rows in italic correspond to libraries

Table 8 Comparison between normal and system differentiated DEA

Normal DEA model System differentiated DEA model

Number of efficient DMUs 15 15

Libraries Applications Libraries Applications

9 6 9 6

Average efficiency score 0.737 0.759

Libraries Applications Libraries Applications

0.845 0.629 0.853 0.664

Software Qual J (2011) 19:553–578 573

123

two threats related to internal validity and essentially concern incorrect model specifica-

tion. First of all, important inputs and most probably outputs might have been ignored in

the analysis. Since a limited number of design principles have been analyzed with respect

to API design, it cannot be claimed that all aspects of the design quality of the examined

systems have been accurately captured by the selected metrics. Second, DEA does not

impose weights on any of the outputs, treating all output metrics as equally important. This

is obviously questionable for a software system since certain design decisions might put

emphasis on some aspects of the design, neglecting others. However, as already mentioned,

the proposed analysis does not aim to provide an indisputable ranked list of software

projects according to their efficiency but to illustrate how DEA can be used for comparing

projects when multiple criteria for analysis are in hand. Finally, software systems from

different domains might have fundamental differences in inherent complexity and there-

fore in the way that functionality and state affect design and implementation (the under-

lying production function that the model explores). To confront this threat, future research

could investigate the use of categorical input variables to allow for further differences,

such as the software domain, to obtain more refined evaluations and insights.

7.2 Threats to external validity

As threats to external validity, we consider those factors that limit the possibility to

generalize the DEA findings beyond the immediate study to other settings. Obviously, a

different set of projects would lead to a different ranked list for APIs and applications. This

kind of threat is always valid in an empirical study when the number of systems is limited

and the criticism is related to possible differences between the projects that have been

selected for analysis and other kinds of projects.

8 Related work

In the literature of software engineering, there is a consensus among researchers that metric

values should be combined in order to extract valuable information and several approaches

have been proposed in this direction. In the work by Yamashita et al. (2009) concept

mapping is proposed as a means to assess software maintainability by incorporating

multiple metrics. Concept mapping, whose origin lies in social research, aims at structuring

the knowledge for a domain by specifying pertinent entities and the relations between

them. The final outcome is a conceptual representation of the elements under analysis

where logical groups of concepts form clusters. The approach is in line with Arisholm and

Sjøberg’s observation (Arisholm and Sjøberg 2004) that metrics may be more practical

when used in combination than when interpreted individually, a view which is also shared

by the proposed DEA approach. Conceptual mapping has several inherent benefits,

including the fact that the involved mapping criteria are made explicit and that a context-

specific quality model can be derived for each setting. However, in comparison with DEA,

conceptual mapping does not aim directly at benchmarking different systems or projects,

since there is no systematic way of combining several factors which might have different

measures or scales. A cluster map generated by conceptual mapping requires further

analysis by means of visual interpretation that prohibits the automation of the approach.

The fact that the approach relies on expert judgment on one hand is an advantage in the

sense that prior knowledge and experience is exploited but on the other makes the approach

dependent on the availability of sufficiently qualified experts.

574 Software Qual J (2011) 19:553–578

123

In the work by Anda (2007), it is acknowledged that the maintainability of software is

affected by a large number of factors, including several code properties but also qualifi-

cations of developers, maintenance tasks and tools. Moreover, it is claimed that assessment

models focus mainly on individual modules, while the maintainability of complete soft-

ware systems has received relatively little attention. Therefore, the paper suggests the

assessment of maintainability combining structural measures and expert assessments. Two

concepts are involved in the interpretation of several metrics (Benestad et al. 2006):

Combination, which is the process of providing a combined view of the selected metric

values, employs techniques such as the weighted sum or profile comparison. However,

combination approaches require the specification of weights, thresholds or coefficients,

implying the need for a calibration phase before application. Aggregation refers to the

creation of a system-level measure based on class-level measures employing summary

statistics such as sums, mean or median values, dispersion or outliers. However, depending

on the aggregation approach, different aspects of the underlying information might not be

retained. Measures may be combined at the class level and then aggregated to the system

level or alternatively, class-level measures may be aggregated before combination.

Significant research work has been devoted to the application of DEA to measure

efficiency within an economic or business-related context and even to the software engi-

neering industry (Asmild et al. 2006; Stensrud and Myrtveit 2003). von Mayrhauser et al.

(2000) applied DEA to assess the efficiency of 46 software projects from the NASA-SEL

database. In this study, outputs also reflect characteristics of the produced software (mainly

different types of LOC such as new and modified lines) but inputs are indicators of labor

and computer resources (such as technical and management effort, and CPU hours). The

model identified which development activities were efficient, defined by the ability of the

corresponding organization to produce outputs given input resources. This conforms to

the standard definition of efficiency, which refers to the amount of effort that it takes to

accomplish a certain task or operation, commonly measured as output/input. In this paper,

we illustrated the application of DEA on a software design-related context to investigate

whether APIs exhibit improved quality properties compared to applications. The produc-

tion model in this case identified efficient projects according to a different perspective of

efficiency, which refers to the quality of a software system (as captured by software

metrics) given the system’s functionality and state (as inputs).

DEA can deal with a particularly wide range of problems, some of which have nothing

to do with the economic efficiency which has been originally the target of DEA. Some

characteristic examples, where inputs and outputs do not have the usual, economic-related

meaning, are given next. In a study recommending the relocation of the Japanese capital to

a new site, inputs such as ‘‘susceptibility to earthquakes’’ and outputs such as ‘‘ability to

recover from earthquakes’’ have been used (Cooper et al. 2005). There are also various

innovative engineering applications of DEA, as for instance, the maintenance of highways.

One application took into account inputs, such as the climate factor, and outputs, such as

the accident prevention factor (Cook et al. 1995). DEA has also been used for the eval-

uation of a large-scale solar power system compared to fossil, thermal, and nuclear

technologies (Criswell and Thompson 1996). A rather unconventional application of DEA

was the comparison of baseball players. The only input used was plate appearances, which

represent the number of opportunities that the batter had to attempt to produce a walk or a

hit. The outputs were the number of walks, singles, doubles, triples, and home runs that the

batter produced in those plate appearances (Anderson 2004). A domain which has also

attracted the interest of decision makers and researchers is education. In an effort to

evaluate the efficiency of school districts, the only input to DEA was the expenditure per

Software Qual J (2011) 19:553–578 575

123

pupil, whereas outputs such as pass rates on standardized tests were used (Ruggiero 2004).

As it can be observed, there are no limitations in the uses of DEA. What is actually needed

is to define efficiency according to the requirements of the specific problem.

9 Conclusions

In this paper, we have attempted to approach the problem of benchmarking object-oriented

designs by transferring a tool for performance measurement that is extensively employed

in economics. In particular, we have employed Data Envelopment Analysis to obtain

relative efficiency scores for a number of open-source libraries and applications. The

advantage of DEA is that benchmarking is performed by comparing each software design

to its best performing peers rather than a theoretical baseline and that efficiency is esti-

mated by considering all input and output items enabling the comparison of projects with

diverse size characteristics.

The vehicle for illustrating the applicability of DEA in the context of software design is

the investigation of whether libraries exhibit a superior design quality compared to

applications. To this end, a set of widely acknowledged design principles that are expected

to underlie the design of libraries has been analyzed. Metrics that reflect the conformance

to these principles have been used as outputs in DEA. The results of the application of

DEA on twenty-two open-source libraries and twenty-two open-source applications con-

firm the belief that libraries excel, at least within the context of our study, since their

average efficiency score is higher than that of applications. Although the set of inputs-

outputs that has been employed refers to particular aspects of design quality, limiting the

possibility to generalize these findings, DEA appears to be a promising approach for

benchmarking software designs, a task which is not possible when simply examining

metric values in isolation.

Further empirical research could focus on investigating the relation of the produced

rankings to high-level quality attributes of the examined systems. Moreover, the applica-

tion of DEA to projects from a single domain in combination with other means of qual-

itative evaluation could reveal particular projects exhibiting best practices in design.

References

Anda, B. (2007). Assessing software system maintainability using structural measures and expert assess-
ments. In Proceedings of the 23rd IEEE international conference on software maintenance (Paris,
France, October 2–5, 2007, pp. 204–213). ICSM’07.

Anderson, T. R. (2004). Benchmarking in sports: Bonds or Ruth, determining the most dominant baseball
batter using DEA. In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on Data Envelopment
Analysis (pp. 443–454). Boston, MA: Kluwer.

Arisholm, E., & Sjøberg, D. I. K. (2004). Evaluating the effect of a delegated versus centralized control style
on the maintainability of object-oriented software. IEEE Transactions on Software Engineering, 30(8),
521–534.

Asmild, M., Paradi, J. C., & Kulkarni, A. (2006). Using Data Envelopment Analysis in software devel-
opment productivity measurement. Software Process Improvement and Practice, 11(6), 561–572.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale
inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078–1092.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). Goal question metrics paradigm. In J. J. Marciniak
(Ed.), Encyclopedia of software engineering (Vol. I, pp. 528–532). New York: Wiley.

576 Software Qual J (2011) 19:553–578

123

Benestad, H. C., Anda, B., & Arisholm, E. (2006). Assessing software product maintainability based on
class-level structural measures. In Proceedings of the 7th international conference on product-focused
software process improvement (Amsterdam, Netherlands, June 12–14, 2006). PROFES’06.

Bloch, J. (2006). How to design a good API and why it matters. Companion to the 21st ACM SIGPLAN
symposium on object-oriented programming systems, languages, and applications (Portland, Oregon,
USA: ACM Press, October 22–26, 2006). OOPSLA’2006.

Bloch, J. (2008). Effective java (2nd ed.). Boston: Addison-Wesley.
Bowman, M., Briand, L. C., & Labiche, Y. (2007). Multi-objective genetic algorithms to support class

responsibility assignment. In Proceedings of the 23rd IEEE international conference on software
maintenance (Paris, France, October 2–5, 2007, pp. 124–133). ICSM’07.

Briand, L. C., Daly, J. W., & Wüst, J. K. (1999). A unified framework for coupling measurement in object-
oriented systems. IEEE Transactions on Software Engineering, 25(1), 91–121.

Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (Eds.). (1995). Data Envelopment Analysis:
Theory, methodology and applications. Boston: Kluwer.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units.
European Journal of Operational Research, 2(6), 429–444.

Coelli, T. J., Prasada Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and
productivity analysis. Berlin: Springer.

Cook, W. D., Kazakov, A., & Roll, Y. (1995). On the measuring and monitoring of relative efficiency of
highway maintenance patrols. In A. Charnes, W. W. Cooper, A. Lewin, & L. M. Seiford (Eds.), Data
Envelopment Analysis: Theory, methodology and applications (pp. 195–210). Norwell, MA: Kluwer.

Cooper, W. W., Seiford, L. M., & Tone, K. (2005). Introduction to Data Envelopment Analysis and its uses:
With DEA-solver software and references. New York, USA: Springer.

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). Data Envelopment Analysis: A comprehensive text with
models, applications, references and DEA-solver software. New York, USA: Springer.

Criswell, D. R., & Thompson, R. G. (1996). Data Envelopment Analysis of space and terrestrially based
large commercial power systems for earth: A prototype analysis of their relative economic advantages.
Solar Energy, 56(1), 119–131.

Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls
and protocols in DEA. European Journal of Operational Research, 132(2), 245–259.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable object-
oriented software. Boston: Addison-Wesley.

ISO/IEC. (1991). International standard ISO, IEC 9126, International Organization for Standardization,
Geneva.

Li, W., & Henry, S. (1993). Object-oriented metrics that predict maintainability. Journal of Systems and
Software, 23(2), 111–122.

Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Notices, 23(5), 17–34.
Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics. Upper Saddle River, NJ: Prentice Hall.
Martin, R. C. (2003). Agile software development: Principles, patterns and practices. Upper Saddle River,

NJ: Prentice Hall.
Meyer, B. (2000). Object-oriented software construction. Upper Saddle River, NJ: Prentice Hall PTR.
O’Keeffe, M., & O’Cinneide, M. (2006). Search-based software maintenance. In Proceedings of the 10th

European conference on software maintenance and reengineering (Bari, Italy, March 22–24, 2006).
CSMR’06.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of
the ACM, 15(12), 1053–1058.

Riel, A. J. (1996). Object-oriented design heuristics. Boston: Addison-Wesley Professional.
Ruggiero, J. (2004). Performance evaluation in education: Modeling educational production. In

W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on Data Envelopment Analysis
(pp. 323–348). Boston, MA: Kluwer.

Seng, O., Stammel, J., & Burkhart, D. (2006). Search-based determination of refactorings for improving the
class structure of object-oriented systems. In Proceedings of the 8th annual conference on genetic and
evolutionary computation (Seattle, WA, July 8–12, 2006). GECCO’06.

Stensrud, E., & Myrtveit, I. (2003). Identifying high performance ERP projects. IEEE Transactions on
Software Engineering, 29(5), 398–416.

Tulach, J. (2008). Practical API design: Confessions of a java framework architect. APress.
von Mayrhauser, A., Wohlin, C., & Ohlsson, M. C. (2000). Assessing and understanding efficiency and

success of software production. Empirical Software Engineering, 5(2), 125–154.
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Experimentation in

software engineering: An introduction. Boston, MA: Kluwer.

Software Qual J (2011) 19:553–578 577

123

Yamashita, A. F., Anda, B., Sjøberg, D. I. K., Benestad, H. C., Arnstad, P. E., & Moonen, L. (2009). Using
concept mapping for maintainability assessments. In Proceedings of the 3rd international symposium
on empirical software engineering and measurement (Florida, USA, October 15–16, 2009). ESEM’09.

Yang, Z. (2009). Assessing the performance of Canadian bank branches using Data Envelopment Analysis.
Journal of the Operational Research Society, 60(6), 771–780.

Author Biographies

Alexander Chatzigeorgiou is an assistant professor of software
engineering in the Department of Applied Informatics at the University
of Macedonia, Thessaloniki, Greece. He received the Diploma in
electrical engineering and the PhD degree in computer science from
the Aristotle University of Thessaloniki, Greece, in 1996 and 2000,
respectively. From 1997 to 1999, he was with Intracom, Greece, as a
telecommunications software designer. His research interests include
object-oriented design, software maintenance, and metrics. He is a
member of the IEEE.

Emmanouil Stiakakis is a lecturer in Digital Economics at the
Department of Applied Informatics, University of Macedonia—Thes-
saloniki—Greece. He holds a BSc in Mechanical Engineering from
the Aristotle University of Thessaloniki, an MSc in Manufacturing
Systems Engineering from Cranfield University—UK, and a PhD in
Applied Informatics from the University of Macedonia. His research
interests include production and operations management, Total Quality
Management, e-business, and digital economy. His research has been
published in international journals and conference proceedings.

578 Software Qual J (2011) 19:553–578

123

	Benchmarking library and application software with Data Envelopment Analysis
	Abstract
	Introduction
	Design principles and corresponding metrics
	Statistical comparison
	Data Envelopment Analysis
	Inputs and data
	Input variables
	Data

	Results and discussion
	Normal DEA model
	System differentiated DEA model

	Threats to validity
	Threats to internal validity
	Threats to external validity

	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

