Software Qual J (2011) 19:553-578
DOI 10.1007/s11219-010-9113-8

Benchmarking library and application software
with Data Envelopment Analysis

Alexander Chatzigeorgiou * Emmanouil Stiakakis

Published online: 19 September 2010
© Springer Science+Business Media, LLC 2010

Abstract Library software is generally believed to be well-structured and follows certain
design guidelines due to the need of continuous evolution and stability of the respective
APIs. We perform an empirical study to investigate whether the design of open-source
library software is actually superior to that of application software. By analyzing certain
design principles and heuristics that are considered important for API design, we extract a
set of software metrics that are expected to reflect the improved nature of libraries. An
initial comparison by conventional statistical analysis confirms the overall belief that
products of different software size scale should not be compared by simply examining
metric values in isolation. In this paper, we propose the use of Data Envelopment Analysis
(DEA), borrowed from production economics, as a means of measuring and benchmarking
the quality of different object-oriented software designs captured by software metrics and
apply this approach to the comparison of library and application software. The advantages
offered by DEA and the differences between the application of DEA in an economic and a
technological context are discussed. Results of the approach are presented for 44 open-
source projects, equally divided between libraries and applications.

Keywords Object-oriented design - Software metrics - Benchmarking -
Data Envelopment Analysis - Efficiency

1 Introduction

The use of quantitative approaches for the assessment of high-level software quality
attributes, such as maintainability, has a long tradition in the field of Software Engineering.
According to several hierarchical quality models such as ISO 9126 (ISO 1991), quality
attributes of a software system can be mapped to sub-characteristics which in turn, can be
evaluated by appropriate source code metrics. However, researchers agree that metrics

A. Chatzigeorgiou (D<) - E. Stiakakis

Department of Applied Informatics, University of Macedonia,
156 Egnatia Str., 54006 Thessaloniki, Greece

e-mail: achat@uom.gr

@ Springer

554 Software Qual J (2011) 19:553-578

should not be examined individually since the overall picture is provided by a number of
complementary measures (Arisholm and Sjgberg 2004). As a result, when the goal is to
assess and moreover to compare software products, metrics should be combined to allow
valid interpretation.

All stakeholders of the software development process are interested in identifying the
best software projects and measuring the performance or quality of other projects against
an observed best practice frontier. However, a comparison focusing on a single metric in
isolation each time entails two significant risks that threaten the validity of the analysis.
Both risks are well known to any software practitioner employing software metrics for
quality assurance: (a) If metrics accurately capture design properties of a software system,
the overall quality is reflected by the complete set of the selected metrics, not by each one
of them. In other words, the fact that a software system exhibits a superior design does not
necessarily imply that it excels in all quantitative measures. (b) To compare independent
metric values from software projects of completely different scales in terms of delivered
functionality and behavior is like comparing apples and oranges. As an example, it would
be controversial to claim that an extremely poor system in terms of functionality is better
than a significantly larger one, simply because it has lower cyclomatic complexity or lower
coupling.

Similar problems are encountered in economics where researchers also aim at bench-
marking different companies that have varying size characteristics and whose efficiency is
a non-linear function of a number of inputs and outputs. In a financial context, obviously
one cannot claim that a company A is more efficient than a company B, simply because its
profit is larger. It might be the case, that the larger profit of A is achieved at the cost of ten
times the amount of investment. For a single input/output process, efficiency could be
calculated as the ratio of output over input. However, quantifying efficiency is not as trivial
when there is a non-linear relationship between inputs and outputs, and the factors
affecting performance are numerous.

In this paper, we propose an alternative approach for benchmarking object-oriented
software by treating the software design process as a business unit or production process
(von Mayrhauser et al. 2000). In the same way that a company is interested in maximizing
output (such as profit), for a given input (such as raw materials or investment), a software
designer is interested in maximizing certain metrics (or in some cases minimizing others)
for a given functionality to be implemented. Since the complex interactions of software
production process components do not allow the analytic specification of the production
function relating outputs and inputs of the software design process (von Mayrhauser et al.
2000), the proposed approach is based on Data Envelopment Analysis (Charnes et al.
1978), which involves the use of linear programming methods to measure the performance
of so-called Decision Making Units (DMUs). DEA is suitable for benchmarking companies
or in our case software products, because in contrast to other approaches, such as multi-
variate regression, that identify a theoretical baseline for comparison, DEA constructs
an actual best practice frontier. In the context of software design, comparing against a
theoretical and possibly not feasible design is less useful to the stakeholders of the software
development process, who prefer to know about existing products that are well-designed
and employ best practices. Moreover, DEA enables the comparison of systems that have
varying size in terms of functionality and state, in contrast to conventional approaches
based on independent metric assessment, which are only meaningful when systems with
the same or similar size are compared.

As a case study for investigating the suitability of DEA as a means to compare software
systems, this paper attempts to compare and benchmark open-source library and

@ Springer

Software Qual J (2011) 19:553-578 555

application software. In particular, we investigate whether actual open-source libraries
exhibit improved design properties, as captured by appropriate metrics, compared to open-
source application software. The selected metrics have been chosen by analyzing certain
design principles that are believed to be important in API design. The corresponding
metrics are the outputs of the software design process assuming that the designer’s goal is
to maximize their values (such as the abstraction level). As inputs to the design process, we
consider the amount of functionality to be implemented and the size of system state
captured by the number of concrete methods and the number of attributes, respectively.
These inputs have been selected in analogy to a number of previous approaches that treat
the design process as an optimization problem (see Sect. 5.1). In these design optimization
problems, the goal is to minimize (maximize) certain functions such as coupling (cohe-
sion). The independent variables are the behavior of the system (represented by its
methods) and its state (represented by class attributes) (Bowman et al. 2007).

The proposed approach has been applied to 22 open-source applications and 22 open-
source libraries. The results from DEA enable us to classify the analyzed designs based on
their overall efficiency and to identify which aspects should be improved and to what
extent. Although the approach is limited to a small set of metrics, the experience from
using DEA in order to benchmark object-oriented designs seems promising.

The rest of the paper is organized as follows: sect. 2 discusses a set of design principles
and the reasons they are important in API design and lists the corresponding metrics.
Section 3 presents the results of an initial statistical analysis. A brief overview of DEA and
the differences between the application of DEA in an economic and a technological context
are provided in Sect. 4. The input variables to DEA, as well as the data for the projects under
investigation, are presented in Sect. 5. The results of the application of normal and system
differentiated DEA are given and discussed in Sect. 6, while Sect. 7 summarizes the major
threats to validity. Related work is presented in Sect. 8. Finally, we conclude in Sect. 9.

2 Design principles and corresponding metrics

The software engineering literature has systematically recorded a number of design prin-
ciples that should be followed when developing object-oriented systems (Martin 2003) or
design heuristics that should not be violated when taking design decisions (Riel 1996).
Designing a shared library is considered a far more complicated task than building
in-house, closed application software (Tulach 2008). The reasons are mainly the number of
clients depending on that piece of software implying backward compatibility and the need
for constant evolution in a way that does not disturb clients. These requirements impose a
stricter design style making the conformance to design rules even more important. That is,
at least, what most programmers think of library software that is accessible through a well-
defined Application Programming Interface (API). DEA is proposed in this paper to test
the hypothesis that library software follows certain design principles to a larger extent than
application software.

Since the selection and definition of suitable measures depends strongly on specifying
clearly a measurement goal, we formulate the goal of this study according to the Goal-
Question-Metric paradigm by Basili et al. (1994):

Analyze software designs
for the purpose of evaluating their conformance
with respect to generic API design guidelines

@ Springer

556 Software Qual J (2011) 19:553-578

from the perspective of the researchers and developers
in the context of 44 open-source software systems.

Table 1 presents a number of design principles or design heuristics (first column) along
with the reason for believing that the corresponding rule is important in API design (second
column). The third column presents a quantitative measure that is strongly or loosely
related to the corresponding design principle or heuristic along with a brief explanation.

Obviously, these are not all of the design principles and heuristics related to API design,
which is a broad field by itself. Other properties that could be quantified and included in a
study of API design quality could be the use of consistent parameter ordering across
methods or cautious overloading. A thorough summary of good practices for API design
can be found in (Bloch 2006). However, it should be borne in mind that the discrimination
power of a DEA model (as the one that will be presented next) improves as the number of
outputs becomes lower. In other words, a model that would incorporate additional metrics
as outputs would not achieve a sharp discrimination among the examined projects.

The selected set of rules and metrics should be regarded as a representative sample to
exemplify the use of DEA for benchmarking software systems with a focus on APIs.
Emphasis is given in the approach rather than the input/output data values. As an example,
it could be the case that one of the projects exhibits a low usage of the final keyword due to
a specific design decision. Obviously, such a decision cannot be revealed by analyzing
numbers and characterizing the corresponding project, after the application of DEA, as not
efficient, might not be fair. Although the study of the reasons that cause a project to deviate
from the advisable levels is beyond the scope of our work, the results of DEA might be a
good starting point to perform thorough analysis on particular cases.

3 Statistical comparison

The conventional approach in comparing library and application software by means of
metrics would be to treat each kind of software as a different group of data and employ
statistical analysis in order to compare these groups for significant differences. Since for
each of the selected metrics we have a one scale, numeric dependent variable that follows a
normal distribution, divided into two unrelated groups, the primary test of choice is an
independent sample r-test (Wohlin et al. 2000). For the data set shown in Sect. 5, the
corresponding z-test statistic results are summarized in Table 2. The first column indicates
the corresponding metric, the second column the 2-tailed significance value, and the third
column the mean difference between the two groups (for the cases where the significance
value is lower than 0.05). The hypothesis being tested can be stated as (Wohlin et al. 2000):

Ho: Hiibrary = MApplication
H;: Hibrary 7é Happlication

where pig jbrary and Uapplication 18 the mean of the corresponding dependent variable for
libraries and applications respectively.

As it can be observed, for two of the selected metrics the significance level does not
allow us to draw any conclusions, regarding the superiority of library or application
software as reflected by the metric values. For the metrics where the significance is lower
than 0.05, the fact that the abstraction level and percentage of final fields are higher for
APIs and that coupling (MPC) is lower for APIs agrees with our initial belief concerning
API design practices.

@ Springer

557

Software Qual J (2011) 19:553-578

pringer

As

SpoyloW [euy Jo 93eIuAdI]

(sassepd
9]2I0UO0D [[B I9AO0) SISSB[D 919I0UOJ [BUY JO 93BIUIIS]
oL

‘spoyjoul pue

SASS[O JO UONeIR[oap Y ur pakordwa st Jeuy,, yorgm
£q 1u91x2 9y 03 191 Ajdunrs sorow Surpuodsalriod Ay,

SaSSD]OH
SQIRLIDUIF + SISSD])) 1OD4ISGD:

2 = [A] UONoENSqY
DLW

"S9SSBO JO JOqUINU [B)0) S} IOAO SORJIUI

pue $asSe[d JOoRI)SqE JO JaqUINU Y} SI Jey) ‘UOTdRISqe

JO [9A9[s, wd)sAs ayy uo pajoapar (Arented Iseaf je) oq
0} pajoadxa st o[drourid Surpuodsariod dyy 0] SOUBULIOJUOD)

(00T yoe[nL) Teuy spoyjow jsowr Sunjewr £q 1seo]
Je JO [eULJ SISSE[O 9J2I0U0D [[€ JOyIId Supjew Aq Pamo[[esIp
9q prnoys SuIsse[oqns ‘pasn aq ued [JV Ue YOIym Uur skem
JO Ioquunu Ay} JIWI[0) PUB UONN[OAD dININJ JO AYeS) I0]
-a8esn [V Jo ased [eordK) oy I se ‘speusdul Jay) Jo
o3permouy [[nJ SUTARY INOYIIM SISSE[O dSBQ PUA)XS SIUAI[D
uaym asudul Aprernonied st YSU SIYL, (€00 UIMBIA)
9rdrourid pasoro-uado oy Jo suone[ola se yons swajqoid
1oU3InJ ursned 1o s3199[qo paAjoaur oy} Jo ANpIfeA
oy Surkomsop ordourid uonminsqns AOYSIT Y} JL[OIA
UBd SAsn Ure}Iad :uone[nsdeous 9Je[oTA UBD 90UE)LIOYU]
‘uonuuI [eUISLIO S JOUSISOP [V Y) puokaq oFesn
sse[o Jo aSuer 1opim IeJ e suado sasse[o [y Suissejoqng
swapqoid Ayjiqeurejurews Suisned
sjuar[d 0) pajededord oq ued jey) seSueyd Jo Junowe
o SYWI[SAdELINUI JO ANIqeIS S, *(S661 ‘& 10 ewiuen)
suonjejuow[dwI J0U ‘SoIIoIul JsureSe opod pInoys
‘(syualpd [V Aqreroadse pue) sjudro ‘Aem Jayjoue ur ng
‘Sursseroqns
Aq Aj1feuonoUNy 0) SUOISUA)XS MO[[E PUB I[qels
[10q 918 YoIysm suonoensqe uo puadop pnoys sjudlo [dy
‘oidrourid uorsioaur Aouapuadap Yy 0} SUIPIOIDY OAJOA
SOLIRIQI] Y} UdYM I[IIB[OA dWO09q A3Y) ‘so[npou d[qelsun
uo puadop sjuard I (8007 yoenL) Surwwersord
JUQI[D 9SE? 0 SIOBNUOD [qeINWWI dUYap PINoys S[JV

(£00T UBIBIN (8861 AOYSIT) sodKy aseq
Iy 10y 2[qeImnsqns o jsnw sadAigng,,
dST—2d1outid uonynisqns aoysry

(€00T unIRy) suonoensqe

uo puadop p[noys ylog ‘sI[NPoU [9AJ[-MO]
uo puadop jou pnoys seynpowr [9AS[-YSTH,,
dId—7a1durid uoisiaaur Louapuadaq

amseaw Jurpuodsario)

SIdV ur juepodwr Suraq 10 uosedy

onsunay udisap/erdiounid udisoq

samseaw Jurpuodsaiiod pue s[dy Joj sordourid uSisop juepodwy | dqey,

Software Qual J (2011) 19:553-578

558

SP[Y [euy Jo a3vIUDI]
LI
SpRY
Jo uonere[dap ay) ur pakodwa st [euy YoIym Aq Ju)xd
oy seynuenb omowr Surpuodsariod oy ‘feuy se spoy
Sune[oap Aq padiojua A[Isea aq ued AJIqeInwiwil dUI

"SISSB[O [[B JOAO 9TRIOAER Q) SE Paje[no[ed SI an[eA
JLIIOW S, WAJSAS 9y} S[IYM SPOYIdW [[e 10 DJIN JO wns
) SI SSe[d & 10J anfeA dMaw YL (6661 ‘Te 30 puelq)

sorouapuadep Jo od£) oy Se [[oMm St ‘SasSe[o Uaam}aq
suonoaUu0d Jo Aduanbaiy oy yloq sermdes osmow
Surdnoo s1yJ, "padoAUT Spoyjaw JOUNSIP JO Joquinu Ay
QINSeouW SIOYJO Y} 9[IYM ‘SUOTIEOOAUT POYIOW JO Ioquunu
1e101 oy Jurkordwe Surpdnoos sayenieas DJIA ‘SuonovIAIUI
POYIRW—POYIdW JOPISU0d Jey) soraw Surjdnods jzodwr ayy
Suowry ‘(¢66] AIUSH pue I'T) PAJOAUUOD SI I YIIYM M
9soy) [[e 03 sse[o auo woij Surssed (SUOTJEOOAUT POYIOUI)
sagessow Jo roquunu 2y} 0 s1oja1 Jurjdnoo Surssed a3esSIIN
OdIN
DL
'sanfeA ouow Jurdnod 1omoj
£q pa109pa1 9q 0} pa30adxa ST OMISLINAY SIY) 0} AIUBULIOJUOD)

"(800T YoBINL) [RUY PAIR[OIP I8 SSB[O Ay} UI SP[Y [[B
Jey) 2INSUD 0} ST SASSB[D d[qeInuwil uisap o3 doys IsIy oy,
*(oye)s Q[3urs B ur 9q AJUO ULD SP[OY I[qEINUIWIT)
QWINUNI JB 9ABYAQ [[IM SIOULISUT MOY] JNOGE JUIY) 0 1I0JJd
PIJBIOOSSE OU ST QI OUIS WAISAS) JO [OPOW [BIUW
B p[INg 0} IAISEd ST JI SASSB[O [QRINWII JUISN UAYM
IOAOJIOIA "SPEAIY) A[dNNW WIOI] $SI0JB SNOJUL)[NWIS I0J
9yes Sureq Jo A1radoid juaroyur Jyy ALY SISO J[qeInUI]
“(800¢ yoo[g) Anjiqesnar pue K1oyes-peary ‘AN[Iqe)so)
‘Kyordwts Jo saSejueApe 2y) SuLIQJJO J[qeInwiwil 9q
PINOYS SIdQUIAW pue SIsse[) "(800T Yor[NL) S[qeinuuur
s100[qo Sunjew £q Apigeinw dzwuIw pinoys susisap [dv

‘3uridnoo
wA)sAs paonpal s (SUIpIY UOHBULIOJUT SIZIWIXEW
yorym) AN[IQISSI00E PIZIWIUIW JO 90UaNbasuod 10a11p v
‘IdV 9} JO UonnjoAd 9ININJ MO[[e 0} JOpIO Ul ¢ JUDM NOL
uvy] 240 asodxsg J0N 0(,, (8007 Yor[nL) 01 SUIpIOddY
*(900T yoorg) Apuspuadopur padsngap pue ‘pajsa) ‘g
pOOISIOpUN ‘pasn dq 0} SINPOUI MO[[e 0} AJN[IQISSIIL
QZIWTUIW 0) 9ALIS P[NOYS SIQUSISIP [JV ‘TOAOIOIN
‘Apuenbaiy doueuojurew aandepe oSIopun uonIUYIP
£q yorym sidy ut Surdnod azrwirurw o3 jueprodur
K[owenxa ST 31 yons se pue doueudjurews dandepe
Suruoyrad uoym synej Suronponur jo Arjiqeqold
Q) pue }10JJ9 dnpai1 0} umouy st Jurdnod asoo

“are)s
JUQISISUOD © Ul dIe $393[qo jey) JuLmsud
ur pre Ajea1s ued pue a39[1and Jsed|
Jo ordrourd 9y 0] SULIOJUOD QOUBLIBAUL P[AL]
1uauodwod yoes 10y suoneoyroads
9[qQRYLIOA pUE [eWLIO) SULIR[OIP Aq 9IBMIJOS
Isnqoa sedjuerens jeyy A3ojopoyjouwr
Surwwresoxd e st joenuod Aq usisaq
(0007 TRASIN) 100.47U00 £q US1Sa(]
0) pajefaI os[e pue
(TLel
seureq) uoupnsdpoua ‘Suipry uoyvuLIOfuy
0] pojefal
‘asodind 119y) 10§ A1eSsoou
QIe YOIYM UOTJEUWLIOJUI PUE SQOINOSAI
A} 01 $S9908 UAAIT 9q A[UO P[NOYS SI[NPOJA!
28apa1id 352y Jo apdidoutig

SSB[O JBY) Y)IM Op O}
SUIyIOU 9ARY IO SSB[O ISYIOUR JO OBJIAUI
origqnd oy ur suonerado asn A[uo pnoys
SSB[O B “SI JRy) ‘sasse[d 1oyjo yim Surjdnod
310dxa I0 TIU JIQIYX? A[UO P[NOYS SISSE[D),,
(9661 191Y) L'C dnSUNAy

amseaw Jurpuodsario)

SIdV ur juepodwr Suraq 10 uosedy

onsunay udisap/ordiound udisaq

panunuod T J[qe],

pringer

Qs

Software Qual J (2011) 19:553-578

559

Table 2 t-Test statistic results

Metric Sig. (2-tailed) Mean difference*
Abstraction level 0.000 —0.163

Perc. final methods 0.628

Perc. final classes 0.293

Perc. final fields 0.005 —0.148

* Sample mean for App group— MPC 0.005 10.677
sample mean for API group

Even if comparison by statistical analysis was flawless and not subject to any threat to
validity, the results indicate that safe and clear conclusions cannot be drawn. Moreover,
even if metrics are normalized over some global system measure (e.g. averaged over all
classes), they neglect the fact that some of the systems are significantly larger in terms of
functionality compared to others. The system’s size and relevant complexity obviously
affects all design decisions in unknown ways and cannot be neglected when comparing
software systems of unequal dimensions. Comparing and especially benchmarking soft-
ware systems neglecting their size is similar to comparing the structural quality of a
skyscraper and a one-story building simply by measuring the steel fibers per cubic meter of
concrete.

4 Data Envelopment Analysis

Data Envelopment Analysis, initially proposed by Charnes, Cooper and Rhodes (Charnes
et al. 1978) is a non-parametric approach that can be used to measure the performance of a
number of Decision Making Units. Performance evaluation is achieved by constructing a
discrete piecewise frontier over the data and by calculating a maximal performance
measure for each DMU in relation to all the other DMUs. Let us consider the simplified
case of DMUs having a single input and output. Their efficiency can be calculated as the
ratio of output over input. In Fig. 1, a number of sampled DMUs are represented by the

S
@
— N
N @
< o
N N
Aqf\ G
O atd
4 & Qe
DMU with /‘
largest \ //
output/input [L
- Vil
=] e
Q. R
= s o
o | L
4
A~ [J
//
///
4 "
4
///
7
e
7
// 1 1 1 1 1 1 1 1
t t t t t t t {
Input

Fig. 1 Efficient frontier vs. regression line [adapted from Cooper et al. (2007)]

@ Springer

560 Software Qual J (2011) 19:553-578

corresponding dots, and the slope of the line from the origin through each dot represents
the efficiency of each DMU. The line corresponding to the most efficient DMU defines the
so-called efficient frontier. This frontier envelops all other DMUs (Cooper et al. 2007)
whose efficiency is obtained by their distance to this line. On the contrary, a conventional
statistical regression approach identifies a central tendency for the selected DMUs (Fig. 1).
DMUs in this case are compared to this theoretical baseline rather than to the best per-
forming peer. This signifies the most important difference between DEA and regression
approaches.

Figure 1 also illustrates the second benefit from employing DEA. An inefficient DMU
can be made efficient in several ways (for a multi input—output model). For example, the
DMU represented by dot A can be made efficient either by increasing its output or by
decreasing its input. Both actions can move the DMU closer to the efficient frontier.

The relative efficiency of any DMU is obtained as the ratio of a weighted sum of
m outputs to a weighted sum of n inputs. Weights are selected in a manner that the
efficiency measure of each DMU is maximized, subject to the constraint that no DMU can
have a relative efficiency score greater than unity (Cooper et al. 2007): This can be
formulated for a given DMU (e.g. DMU 1) as:

maxu’ -y, /vl - x
uyv

subjectto u’ -y,/v -x;<1 Vi=1,2,... .k
u,v>0

where u is an m x 1 vector of output weights, v is an n x 1 vector of input weights, y; is
anm x 1 vector of output values of DMU i, x; is an n x 1 vector of input values of DMU
i, and k the number of DMUs.

Usually the above fractional problem is transformed into a linear programming problem
(multiplier form) by equating the denominator of the efficiency ratio of the DMU under
study to unity. Then, by using the equivalent dual model, the DEA problem takes the
following envelopment form:

min 0
0.

subjectto —y; +Y-A>0
0-x; —X-A>0
>0

where 0 is the efficiency score of DMU 1 (0 < 0 < 1), 4is a k x 1 vector of constants,
Y is the m x k output matrix, X is the n x k input matrix.

The above model is the so-called CCR model (CCR stands for the initials of the authors
who proposed the model), which assumes constant returns to scale. A production function
is said to exhibit constant returns to scale (CRS) if a proportionate increase in all inputs
results in the same proportionate increase in output (Coelli et al. 2005). The assumption of
constant returns to scale is only appropriate when all DMUs operate at an optimal scale and
there is a proportional relationship between inputs and outputs. If this is not a valid
assumption, as occurs in our study, the CCR model should be extended to account for
variable returns to scale. The most representative model, which has been proposed so far
for variable returns to scale, is the BCC model (Banker et al. 1984) (BCC also stands for
the initials of the authors). This model has been employed in our study.

@ Springer

Software Qual J (2011) 19:553-578 561

In summary, the main advantages of DEA over other approaches are:

e DEA can handle multiple inputs and outputs.
Inputs and outputs can have varying measurement scales.

e Based on projections of the inefficient DMUs onto the efficient frontier, estimates for
improvements in inputs and/or outputs can be produced.

e DMUs are directly compared against a peer or a combination of peers and not against a
theoretical baseline, making the approach appropriate for benchmarking.

Application of DEA in order to evaluate and benchmark a purely technological aspect
of software development differs from the conventional use of DEA in an economic context
regarding the meaning of inputs. Since according to the proposed model the inputs to the
software design process refer to the behavior and state that the designer has to implement
in the system, they differ from conventional inputs in an economic context. Inputs, such as
investments, number of employees or salaries are subject to optimization, whereas the
number of methods and attributes that should exist in a software design are not negotiable
(considering that a flawless object-oriented analysis has preceded the design phase).

To illustrate this difference between inputs in an economic context and inputs to a
software design process, consider the simplified examples with a single input and single
output, one from each domain, shown in Fig. 2.

As already mentioned, in an economic context, the overall goal is to maximize the
outputs and at the same time to minimize inputs, i.e. the criterion for benchmarking a
simplified company as in Fig. 2 can be stated as Performance = %. In other words,
between two companies with the same output, one would consider as better the smaller
one, e.g. the one that achieves this output with the smaller investment (smaller input).

On the other hand, for a software design process, the input is fixed and not subject to
optimization. However, to understand the difference in the technological context, consider
the following example case: let us assume that two software designs have the same
abstraction level (same value for the output). For these systems, we usually regard as better
achievement the larger one, in the sense that it achieves the same abstraction level despite
the fact that it is larger in size, in terms of operations or any other size measure. To state
this mathematically (although inputs are fixed), the criterion for benchmarking software
designs can be stated as Performance = input x output.

Therefore, we model the inputs to DEA for the software products that have been

analyzed as for each one of the two selected input metrics.

A reasonable concern regarding the choice of inputs could be that methods and attri-
butes are not the actual inputs of the software design process. Indeed, when the software
analysis and design process is viewed as a whole, a set of given requirements can be
implemented in several ways, corresponding to varying sets of methods and attributes. In

this context, attribute and method selection and allocation is obviously negotiable.

Design Process
—P Company | —»> »
input output_ input (Software Product) ozletzut
(e.g. amount of (e.g. profit) | (e.g. no. of -9
i : abstraction
investment) operations) level)
(a) economic context (b) S/W development context

Fig. 2 Simplified examples comparing economic and software development contexts

@ Springer

562 Software Qual J (2011) 19:553-578

Software Analysis and Design
Software Design
whose quality is

5 — assessed by
e > software
~ Design

~ metrics
Py

Functional —>

) Preliminary
Requirements

Analysis Design

=

e ————

Part of the process
which is being

evaluated by DEA

Fig. 3 Relaxed view of the software design process forming the context of DEA

However, in the context of Data Envelopment Analysis, it would not make sense to
suggest an artificial reduction (or increase) in the number of attributes and methods, just to
improve the efficiency of a software project in terms of some of its metrics. The ideal
would be to employ as input to DEA measures of functionality that are provided by the
system (such as function points). However, in the lack of well-established metrics of
functionality that can be extracted from source code, we opted for the alternative of
employing the number of methods and attributes as an indicator of the requested func-
tionality and amount of state information. The analogy can be found in an object-oriented
analysis and design methodology (e.g. the ICONIX methodology), in which most domain-
related attributes and operations have been extracted with the completion of the pre-
liminary design phase. In this context, it can be assumed (neglecting the iterative nature of
current processes) that attributes and methods act as input to the design process where
methods are allocated to classes, class relationships are finalized, design principles are
followed and design patterns are applied if appropriate. This consideration, which defines
the environment in which DEA is applied, is illustrated in Fig. 3.

For the selected outputs, the designer’s goal should be to maximize the abstraction level
and the percentage of final classes, methods and fields in the system. However, for MPC,
the goal is to minimize its value as it expresses coupling. To be consistent with the other
outputs and be able to employ the BCC approach, we model the corresponding output as
1/MPC, i.e. the values fed to DEA analysis are the inverse of MPC metric value.

5 Inputs and data
5.1 Input variables

As already mentioned, there are a number of approaches in the literature that treat the
design of an object-oriented system as a multi-objective optimization problem in which the
goal is to reassign methods and attributes to classes (either from scratch or by employing
stepwise modifications in the form of refactorings) in order to optimize the value of
selected metrics, typically coupling and cohesion (O’Keeffe and O’Cinneide 2006; Seng
et al. 2006; Bowman et al. 2007). The common denominator of these approaches is that the
“independent” variables of a software design are its behavior, expressed by the methods
that provide the functionality and its state, expressed by the attributes holding the system’s
information. Since the goal is to express the functionality that is required from the system
under development, we count only concrete methods that have an implementation.
Therefore, we select as inputs to DEA the following two measures:

@ Springer

Software Qual J (2011) 19:553-578 563

Number of Concrete Methods: Total number of implemented methods in a class,
regardless of access specifier. The metric value for a system is calculated as the sum over
all classes.

Number of Attributes (NOA): Total number of attributes defined in a class, regardless of
access specifier (Lorenz and Kidd 1994). The metric value for a system is calculated as the
sum over all classes.

Since these two measures are actually extracted from the source code (i.e. after the
design has been completed), it could be argued that they are also output metrics, in the sense
that the software designer assigns responsibilities and attributes to the classes of the system.
However, as already mentioned, in the absence of reliable tools for counting other measures
of functionality and considering that for the same methods and attributes numerous alter-
natives for a software design exist, we can regard them as indicators of the functionality that
is requested to be implemented and given supposedly as input to the design team.

5.2 Data

To achieve efficiency discrimination among DMUs, DEA requires that the number of
DMUs is significantly larger than the number of inputs and outputs. For n inputs and
m outputs, a rule of thumb (Cooper et al. 2007) suggests that the number of DMUs should
be #DMUs > max {n x m, 3 x (n + m)}. From the previous analysis, we have 2 inputs
and 5 outputs. Therefore, at least 21 DMUs should be included in the analysis. We have
analyzed 44 software projects.

The selection of the projects that have been chosen as DMUs was based on the fol-
lowing criteria:

e The projects should be open-source in order to allow the calculation of the
corresponding metric values from source code.

e Projects should have diverse size characteristics to evaluate DEA’s ability to handle
DMUs that have varying mix of inputs/outputs.

e The pool of projects should contain mature projects (e.g. APIs that have been
constantly evolving for a number of years) that are expected to have a relatively good
performance, as well as immature and possibly poorly structured projects that are
expected to have low efficiency. The maturity of each project is estimated considering
the date when the project was registered in an open-source repository and the date on
which the latest file was committed. A long period between the two dates implies, in
most of the cases, a mature and active project.

e Projects should be from several domains to limit the threats to external validity.

e Projects should be written in the same programming language (i.e. Java) to minimize
any effect of the programming language on the calculation of metrics.

The projects that have been included in the analysis, along with a brief description, are
listed in Table 3.

An overview of the data for the above referenced projects that have been used as inputs
and outputs for DEA along with two size measures (LOC—Lines of Code and NOC—
Number of Classes) is given in Table 4. LOC and NOC are provided only for reference and
have not been used as inputs to the DEA analysis since they result from the design process
and cannot be considered as inputs to it.

It should be noted that correlated inputs and outputs do not distort the calculated effi-
ciency scores. According to the developers of DEA (Charnes et al. 1995), high correlation
coefficients do not prevent us from running a DEA model because of the non-parametric

@ Springer

Software Qual J (2011) 19:553-578

564

*SUOT}IPUOD SNOLIBA Iopun
s[oo0301d I19Y3 9)e[NUIIS 0 S[000301d YI0MIOU IOYIO
pue Sunnoi Jo s13do[oAap smof[e] ‘A9[ayIeg woly

QoejIUI
1asn wojrerd asdi[oe ay3 JO UOISUIIXI pue YIm

A[[euISLIO I0je[NUWIS JI0MIU Z-SU Y} JO UOISIOA BAR[Lrsur 7l uonoeIdul 10j sadejroul Jurwerdold uoneorddy smararesdipadio 7
S[00} $OIRW0aS Julsn suonewWIUE OIWEBUAP SuneaId
10J pue (e1qaSe orweukp ‘saInSy omowoas se) wAISAs o[y © WAISASIY 2100
SaInJesJ Soneweyjew JIweukp Suimerp JoJ uonedrddy 80T om3Lif] im SUIOBINUI JOJ 90BJIOIUT UB SOPIAOIJ osdrpoarSio 17
9pod eAR[
$9110)1s0da1 90IN0S UOISIAQNS JO SIsA[eue y3noy) woij eep TINX Sumndino pue ‘Junendiuewr
UoNN[0Ad AIeMIJOS JunIeyd I0J [00) SISA[eUB-SOINIIA 0°S°0 NASI®IS 01 ‘3uISS9008 JOJ UONN[OS PISEq-BAR[B SOPIAOI] I'T NOdf 01
suonendwod
IOUIO pUE OTAUIILIE JI[OqUIAS PuUB OLIdWINU (032 ‘sdam ‘S)ST[) SAINONI)S BILP PuE (*019 ‘FuIyoILes 070 Apms
yloq syoddns ey (SYD) waishs viqage rondwod v (70 YR uIpjuely 6 ‘unos) swyuoge jo suonejuawdwr sopIAolg wyuosy 6
SIopIo saes pue Krojuaaul ‘ureyo Addns
‘Sununoooe sejeWOINE JBY) SLSNPUT AITAIOS pUE suonjeoridde 1oy ur syreyo
SuumjoeynueRW ‘[IeIaI ‘UoNNqLISIp IoJ uonnjos JYJ 47 21e1dwo) 8 Keydsip 03 s1odofoaap smoj[e Jey) AIeiqi Jeyd ARl L°0 MeYDALI[8
L'T 10py eAef qdr °aw jo sanImN
1031pa eae[JySram-ydiy oidurg S QuoAIAg—H(d L Qouereadde [ensia ay) 0y Surureyrad sassed Amn 1N 0°S SueaqlaN L
110dxo/1odwr ‘Surrepus[ed JuowaSeurt 90IN0SAI I sueagioN 2y} ojur suonejuawa(dwr 1983nqap jo 310D 1933Nnqaq
‘s3reyo yuen) Suumyesy uonedrdde Surmpayos 100lo1g 6°0°C 109loignuen 9 uoneISAUI I0J SAINJONIS UOWWOD JO SUONIUyaq 0°G sueaqloN 9
gd[ue se WSS 9 oY) pue UOTIBZI[ELISS ‘SWEANS
paIn3yuod 2q ued Jey) JOIP? IXd) s Jowwer3old 0% MpAl S eyep ySnoayy ndino pue ndur weiss 10§ S9OINOSAY oreael S
SaIN)ONNS sagew pue sorydess Sunured 10j pue saoejIduUI
[EOTWAYO [BUOISUSWIP-99IY} IO JOMOIA IR[NOJOIN 06 TOIN[¥ Iosn SuneaId IOJ SOSSe[d BAE[[RUISLIO JO UONIS[[0) jmeeael ¥
suoneoyroads TINX Ul
101IPa 109yspealds paseq-qopm sxoddor ¢ woJy A)I[euonounj pue sjuBIsuod X 2109 sauyaqg [ux-xeael I
IAIA pue otpne yjoq Surpnjout
‘erpawt punos jo ndino pue jndur ayy Surjonuod
IOYIPa I °snh 0} Aseo ‘urrope[d-sso1) BYT°() I9[OIA z pue ‘SurJipow ‘SuneaId 10J [V [9AS[-MO[BAR[punos-xeael z
somyderd pamjonns pue [edTUYD9) I0] JIOMOWeI) [ND $'1°S MBIQIOH[I Sursseooid pue ss900E 90INOS BIEP OPIS IOAIdS 10J [V bs xeael I
suonedrddy SoLIRIqI]

Apmys Jopun (SNIANQ) s1o2foxd Jo 19 ¢ dqe],

pringer

Qs

565

Software Qual J (2011) 19:553-578

pringer

As

puo-juoy Surms

9pod uononpoid eael ur syurod pauyep

6C1'0L0

e Suraey uoneordde eaer \NMD/IYA 01°6°0 QUQUINIVL TT Iosn Jo oSesn pue ownunl SULIO)IUOW I0J [V BAE[JUQWAINSBIN[CT
9pod 2y} Jo uonejuasaidar
PZI[EWIOU ‘UBI[d B SI)RIUAT Jey) Sy
Q0INOS BAR[JOJ [00) UOTJEWLIOJSULI) 9POO 92IN0S 1'T fhmeag |¢ SOLIRIQI] BAR[910D S 9[S000) €0l eABDD [T
syue} 19Y0 Jsurede ofeq o) Jue) o3req 10qoI B yIomowrel sisA[eue
doroaap 03 st [e03 9y} a1oym Jwed Jurwwersord 1°G'[9p020qoy 0T pue uonendiuew opodd)Lq eae[asodind [y 0CZINSY 0T
SIomawely eAe[© se papiaoid
UONBZI[IAL) 0) Je[ruils awesd AS9rens paseq-uing, TL0T10D®I 61 juouodwos Jurwerdord orousS pue swWILIOI[E d1joUD) 10°€ AVOL 61
swarqoid LS ++D 2y Aq pandsur A[9soo] ‘suonouny pue
renuajod 103 SYOO[Jey) IoZATeUR 9POJ 99INOS BAR['Y dNd 81 SUIILIOS[E ‘SI0JRIA) JO JOqUINU B JO SunsISU0d AIeIqI] BAR(oSuelN Q]
eae[pue Surwwerdord pjuaro-102[qo sad£) aanmwund pue
oBd) pue uIed] 0} pausIsop A[reoyroads [eaer rsereng Ll $100[qo0 eAR[JOJ SUONIR[[0D douewIojrdd YSIH 0T'zonroll, /]
soow Ayifenb ugisop Aunuuod eyreye[/eyoedy oY) woiy '€ suonoa9[o)
sareI0ua3d Jey) 19zATeue Aoudpuadop afeyoed eae[v ez puadogr 91 sjuouodwod BAB[9[qesnal 20In0s-uado Jo uonde[o) suowwo)) ydedy 9]
BAR[JOJ IOJRIOUAS IOZATeur [BOTXo| €Y1 XL ST TIAX 103 IdV orduig Iz Xe§ G
100fo1d eyreyer oyoedy oy3 Jo 11ed "SO[Y SSB[O BAR[
syjuawINd0p J(d 0} (Areurq) arerndruew pue ‘9eard ‘ozAreue oy Ajqiqissod e
sanjeudis [endip sppe yomym uoneonddy 0'8°0JpdudiSr] sIoSn QAIS 0) papuAuI SI Jey) Areiqi] SulRAUISUD 9pod ALY 7S 1aD9 vl
Quiuo 1opids qom syodar gam 10 Jund
9[qezIwolsnd pue dqein3yuod A[ysy vy 0°S0repdsr €1 pareonsiydos s1aarop ey Areiqr) Suniodar eaer ('g'¢ smodoradser ¢
suonedrddy SoLIRIqI]

panunuod ¢ qe],

553-578

Software Qual J (2011) 19

566

(4840 ELT'LT oreo 1€2°0 SIT°0 18¢ 099 Y01 86S6 6C1°0L"0 JuswaInSeaN [(44
€rL’0 Y0T €l 8100 1ST0 ¥CT0 €L 8¢€8T Sov SELTT €01 eABDD Ic
YLTO 685°0C 001°0 S6T0 0€1°0 SoL 906 14! PEIVI 0'C NSV 0c
01¥°0 P0S°S1 ¥00°0 800°0 1€0 8IL 90¢l e 19051 10°€ dVOI 61
SIv'0 8¢09 0000 0000 £80°0 €S ¥SC 8 LE8I oSuEy 81
S9v'0 |87 4! 8L0°0 0LT°0 0¢°0 IL 08¢ 13 0sce 0°1°C 9A01L L1
867°0 S8Y'LI §00°0 6v1°0 LY1°0 €9L L80E Cly SE9vC T'€ 110D suowrwo) dydedy 91
1o TILTT 0000 091°0 06¢°0 1L SLT 184 18L8 ¢IT Xes ST
095°0 0LE0C 910 £€0T°0 661°0 86 §see LSE £€Cr8¢e [Aggcel| 14!
ILY°0 ISLvT 6000 8000 6£C°0 019 67901 0gel IvLL6T 0°¢'¢ suodarradsef €l
LST'0 L9 0000 0700 20 801 0ce LE (3419 smata'm-asdioa 1o 1!
00S°0 89°L 500 0000 £9¢°0 6 LST (44 88Y¢ w)sAso[y-o109-asdifoa-510 I
LTY'0 §og¢ee S10°0 sero €¢ro 994 0cL €L 18081 I'T Wodr o1
o 00s'v 0000 0000 L9T°0 66 8! (3 8LST 070 ApmS WyLos|Y 6
960 8L1°0€ 0000 0000 SvTo 06¢ 8¢€L OrT 86061 L0 HeyDddaLf 8
0v¢0 69L°1S 1€0°0 L9T°0 Y61°0 e 44 L9 7696 SanIMmN IN 0°C sueaqiaN L
88¢°0 8LY'LT €200 €ee0 1LY°0 86 €61 123 1c6¢ 210D 1038nqa(§ SULAQIAN 9
9¢¥°0 906'8C 860°0 LS00 070 ocy YL6 601 8C19C oreael S
€LS°0 8LT'8C 8¥0°0 L61°0 6¥¢°0 86C¢ 8LSY 414 LSSLYT meeael 14
869°0 L61°9 L10°0 (43N] €190 8¢ 61L YLT [4333 [urx-xeael €
8160 s8°01 ¥60°0 0000 1LY°0 91 9¢ oL SO6TT punos-xeae([
9¢1’0 LSY'El 0000 0000 VLSO orl €le Ly [32%4! [bs xeael I
SouvAqIT

Spley spoyjout SISSB[D (sQ0BJIUI + SISSB[D spoyjout

euld % OdIN eutd % [euld % 10BNSqY) % SPIL] # AlIdU0Y #

sindinQ synduy DON D01 199l01g

sindino pue sindur 10901y ¢ dqe],

pringer

Qs

567

553-578

Software Qual J (2011) 19

asd1og 10J 9007 1OYIeS0, pue[og YIIM PRjdenXa Udq 2Ary DJIN pue DOT ‘uidnid asdijog padooaep-woisnd & yim syoafoxd [re SurzA[eue £q pajoenxd udaq dABY SON[eA OLIRA

1€0°0 ySr's ILT°0 000°0 800°0 108 IvcL 6¢Cl Se6LTElL 01'6°0 2UQUIIVI [44
SN0 69'¥C 190 L10°0 6570 889 VL1 we 148544 "1 rhneog 1
L91°0 6LY'9¢ L200 SY0°0 6v0°0 elvl 10¥¢ §9¢ YSL9T 1°G"T 9p020qoy 0T
LELO 'Ly L10°0 LYe0 v01°0 LISE £C5¢E 98v ¥SLO9 CT'L°0 1009914 6l
80C°0 688°L1 0rro 0200 1cro L991 86C¢ S6S 99Ty I'v AINd 81
0LT0 89¢°8¢ £€90°0 0€1°0 o £16C L8YY €69 TSE9L 1°6°C renig L1
861°0 £81°LE 0000 000°0 €01°0 98 €8¢ 6C 6LET 6'C puado(if 91
w0 0€9°8C Se0’0 €LEO So1°o 161 Ly LS €9161 €Y1 Xl Sl
o £V9°6¢ €000 €0°0 £€0°0 gee Lee 0¢ 9LC9 0'8°0 Jpdusige 4!
9Ie0 w0s6 €000 000°0 11eo LYS 788 15¢ 98601 0°6°0 1oprdsy €l
$61°0 i 00070 000°0 L61°0 S0T 8¥C 19 YL8S L1 suf 4!
0re0 696°CE weo 880°0 6v0°0 Tree §S8¢ £88 9059¢C1 8'0°T 2ImBLif 11
6550 118°0¥ 6000 80€°0 6¥0°0 (14 (4 184 0L¥9 0°6°0 NASI®IS (U
LY1°0 898'L1 980°0 611°0 6900 £6C (484 L 9606 [1°0 WeN ulpyuery 6
SLTO 8Yesy L00°0 So1°0 690°0 L1ES 6VLL LEL 122002 ¥ 21erdwo) 8
8¢1°0 0€T8¢ L00°0 000°0 €600 (US4 394 L6 1LE6 L'cdri L
£9¢°0 $69°8C 1000 L00°0 91T0 §9¢¢T SL8E €eL £CE6S 6'0°C waloignuen 9
9LT'0 SL6'8Y 8LIO 1€0°0 800 vee 96ve 8¢S 8¢€168 0¥ MPH(S
¥$T0 $80°6€ 00070 0200 LSOO ve8l 9¢s61 9l¢ 69611 06 IO 14
1100 1LS°T€ 00070 000°0 0000 €6 ell 1 606¢ stoddop €
¥8C°0 L89°9¢ 000°0 000°0 w910 19C ¥9¢ YL LT BOL°0 W9I0IA [4
§TT0 £10°61 2000 ¥20°0 961°0 yee 0001 8¢1 0€0eT P'1°S MBIQIOH[I
suoyvonyddy
Sp[oy spoyow S3sSB[O (seorpIaIUL + S3SSB[O spoyow
euld % OdIN euld % [euld % wensqv) % SPII # 9aIdu0) #
sindinQ sindug DON D01 100l01g

panunuod § Jqe],

pringer

As

568 Software Qual J (2011) 19:553-578

nature of DEA, which mitigates this effect. Moreover, DEA remains unaffected when
outputs are scaled by inputs as in the presented model where the number of final methods
and fields (outputs) is averaged over the total number of methods and fields (inputs),
respectively. According to Dyson et al. (2001), if scale is thought of as the physical size of a
unit (as it happens for the aforementioned software metrics), then scaling by input is
appropriate. Moreover, a major pitfall would occur if ratios (as the other three outputs) had
been mixed with volume measures. This would lead to improper comparisons (we observed
this problem initially in our experiments) and is avoided by averaging the two outputs over
the corresponding inputs.

6 Results and discussion
6.1 Normal DEA model

Data Envelopment Analysis has been performed on the selected projects/metrics
employing the DEA-Solver v6.0 software by SAITECH Inc. The results are shown in
Table 5 (rows in italics correspond to libraries). The 3rd column corresponds to the overall
efficiency score calculated for each project. Projects are ranked (1st column) according to
this score.

As it can be observed, 15 projects are considered as fully efficient (i.e. have an effi-
ciency score equal to one and no shortages or excesses in outputs), with nine of them
belonging to the group of libraries. Moreover, the average efficiency score for libraries is
0.845, whereas the average efficiency score for applications is 0.629, confirming our initial
expectation about the superiority of libraries, in the context of the selected metrics. The
difference between the means of the two groups is according to an independent sample
t-test statistically significant (p = 0.005).

To provide an overview on what could be improved in each project, the rest of the
columns in Table 5 show the differences between the actual and the expected data when
each inefficient software design is projected onto the efficient frontier. In other words,
these columns indicate the required changes on the selected metrics in order to make the
efficiency score of an inefficient project equal to one. Differences for the input metrics are
not shown, since the inputs to the design process represented by number of operations and
attributes, are considered in the proposed model as not negotiable, as already mentioned.

According to the theory of DEA, the efficient projects are not in need of any
improvement, within the context of the examined metrics, since they are placed on the
efficient frontier. Having a look at the marginally inefficient projects [with an efficiency
score between 0.9 and 1.0 (von Mayrhauser et al. 2000)], i.e. projects javax.sql,
javax.sound and Mango, they show a tremendous hysteresis in the number of final classes,
since according to the data they all have zero classes declared as final providing room for
subclassing (javax.sql and Mango have also a very small percentage of final methods).
Thus, an increase in the corresponding metrics is suggested vividly by the model.

Results should be viewed in light of the assumptions that have been made earlier. For
example, if the projections indicate that one of the outputs should be improved (e.g. the
percentage of abstract classes and interfaces), this does not necessarily mean that the
system suffers from a serious design problem. But in the context of benchmarking, another
project with a similar mix of inputs/outputs and a better percentage of abstract classes and
interfaces is viewed as more efficient. As already mentioned, in the case where two
projects have the same or similar outputs (i.e. the same quality level according to the

@ Springer

Software Qual J (2011) 19:553-578 569

Table 5 Efficiency scores and projections onto the efficient frontier

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract % Final % Final MPC % Final

classes + classes methods fields
interfaces)
1 JMeasurement 0.70.129 1.000 0.00 0.00 0.00 0.00 0.00
1 Guava r03 1.000 0.00 0.00 0.00 0.00 0.00
1 ASM 2.0 1.000 0.00 0.00 0.00 0.00 0.00
1 Jasperreports 3.5.0 1.000 0.00 0.00 0.00 0.00 0.00
1 Algorithm Study 0.2.0 1.000 0.00 0.00 0.00 0.00 0.00
1 Netbeans 5.0 Debugger Core 1.000 0.00 0.00 0.00 0.00 0.00
1 JFigure 1.0.8 1.000 0.00 0.00 0.00 0.00 0.00
1 BCEL 5.2 1.000 0.00 0.00 0.00 0.00 0.00
1 Compiere 2.4.4 1.000 0.00 0.00 0.00 0.00 0.00
1 Jjava.awt 1.000 0.00 0.00 0.00 0.00 0.00
1 Jjavax.xml 1.000 0.00 0.00 0.00 0.00 0.00
1 JFlex 1.4.3 1.000 0.00 0.00 0.00 0.00 0.00
1 JAIlInOne 0.9.10 1.000 0.00 0.00 0.00 0.00 0.00
1 BeautyJ 1.1 1.000 0.00 0.00 0.00 0.00 0.00
1 FreeCol 0.7.2 1.000 0.00 0.00 0.00 0.00 0.00
16 Jjavax.sql 0.937 6.73 999.90 999.90 —53.95 384.50
17 Jjavax.sound 0.930 7.56 999.90 7.56 —26.88 7.56
18 Mango 0.901 427.55 999.90 999.90 —9.90 10.99
19 StatSVN 0.5.0 0.888 141.71 1266 13142 —1124 12.66
20 org.eclipse.core.filesystem 0.856 42.27 999.90 16.78 —14.37 16.78
21 Trove 2.1.0 0.792 26.24 26.24 2624 —=27.07 26.24
22 org.eclipse.ui.views 0.790 26.56 82.00 999.90 —20.98 172.34
23 Sax 2r3 0.751 33.08 33.08 99990 —24.86 282.77
24 Apache Commons 0.723 45.84 48.88 398.62 —27.73 38.37
Coll. 3.2
25 JGAP 3.01 0.672 48.79 999.90 760.20 —32.79 48.79
26 Jjava.io 0.669 49.38 275.90 49.38 —61.40 49.38
27 GanttProject 2.0.9 0.667 50.02 999.90 999.90 —3334 50.02
28 BlueJ 2.5.1 0.662 50.99 50.99 5099 -33.77 90.76
29 JSpider 0.5.0 0.640 56.63 999.90 99990 —36.02 56.29
30 PMD 4.1 0.624 60.16 382.05 60.16 —37.56 60.16
31 JEdit 4.0 0.603 65.84 194.05 65.84 —39.70 80.90
32 Netbeans 5.0 Ul Utilities 0.589 69.87 69.87 69.87 —66.84 69.87
33 Franklin Math 0.11 0.586 72.57 70.66 70.66 —41.40 70.66
34 JDOM 1.1 0.582 79.34 100.37 71.76 ~ —60.12 71.76
35 JSignpdf 0.8.0 0.554 572.01 627.90 50852 —66.69 80.37
36 jns 1.7 0.480 108.38 999.90 99990 —52.01 121.25
37 JFreechart 0.7 0.405 147.05 999.90 999.90 —78.77 147.52
38 Violet 0.16a 0.403 148.23 999.90 99990 —67.42 14823
39 JMol 9.0 0.401 187.80 999.90 99990 —59.87 149.18

@ Springer

570 Software Qual J (2011) 19:553-578

Table 5 continued

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract % Final % Final MPC % Final

classes + classes methods fields
interfaces)
40 JHotDraw 5.1.4 0.394 153.71 479.40 999.90 —60.59 160.17
41 Robocode 1.5.1 0.315 249.08 343.61 217.62 —68.52 217.62
42 JDepend 2.9 0.278 259.07 999.90 999.90 —75.26 259.07
43 EJE 2.7 0.204 400.46 999.90 389.07 —79.55 389.07
44 Jeppers 0.143 999.90 0.00 0.00 —85.75 999.90

Rows in italics correspond to libraries

selected metrics), the approach ranks as better the one with larger inputs, i.e. the one that is
larger in terms of functionality and state variables.

If the model results are interpreted accurately, the differences provide a form of
guidelines on what should be improved in each project, when comparing it to the most
efficient projects. For example, library JFreeChart is less efficient (score: 0.405) than
javax.xml (score: 1). The projection indicates that in the context of this analysis all of its
metrics could be improved. What the model captures is the fact that javax.xml, which is a
fully efficient project that is most directly comparable to JFreeChart (because they have a
similar mix of inputs and outputs), excels in all of the five output metrics and therefore the
model expects from JFreeChart significantly improved outputs in all of the examined
aspects. As a result, the information to the designers of JFreeChart is to learn from
javax.xml and using it as a baseline to attempt to improve the corresponding design
properties of JFreeChart. The information that is provided by the model, combined with
other objective or subjective sources of information, can help the design team of any
project to establish a golden set of projects, whose best practices should be emulated. For
example, the overall high efficiency scores for all java libraries combined with the fact that
JDK API is considered to be professionally designed (Tulach 2008) strengthens the belief
that Java libraries are safe to rely upon and to follow as an example for API design.

As another example, JHotDraw 5.1.4, which is a well-known project widely
acknowledged for its proper use of design patterns, is unexpectedly ranked 40th. The
projection indicates that in the context of this analysis all of its metrics could be improved.
Compared to javax.xml, which is also a project having inputs that are roughly similar,
JHotDraw appears to have a significantly lower percentage of abstract classes and inter-
faces, final classes, final methods and final fields and a larger MPC value (see Table 4).
This is also confirmed by the reference sets or peer groups that are provided by DEA for
each inefficient DMU. The reference set consists of those efficient peers that operate closer
to a given DMU considering their mix of inputs and outputs. In other words, it provides
for the inefficient DMUs the efficient ones with which they are most directly comparable.
It is the existence of these efficient peers that forces a DMU to be inefficient. Table 6
provides the reference sets for the inefficient projects. This is another valuable aspect of
DEA, since it provides efficient projects to which a given system can be compared in order
to gain insight into what and how much can be improved. As von Mayrhauser et al. (2000)
suggest, projects which according to subjective analysis are considered successful and
according to a production model like DEA are indicated as efficient are the ones that we
would like to learn from.

@ Springer

Software Qual J (2011) 19:553-578 571

Table 6 Reference sets for the inefficient DMUs

Project Score Reference set

javax.sql 0.937 javax.xml

javax.sound 0.930 javax.xml, JMeasurement, BeautyJ

Mango 0.901 javax.xml, AlgorithmStudy, JAIlInOne

StatSVN 0.5.0 0.888 FreeCol, JFlex, javax.xml
org.eclipse.core.filesystem 0.856 javax.xml, JMeasurement, JAIlInOne

Trove 2.1.0 0.792 javax.xml, JMeasurement, FreeCol, Netbeans 5.0 Debug. Core
org.eclipse.ui.views 0.790 javax.xml, AlgorithmStudy, JAIlInOne

Sax 2r3 0.751 javax.xml, Netbeans 5.0 Debug. Core, JFlex
Apache Commons Coll. 3.2 0.723 Guava, Jasperreports, JAIIInOne

JGAP 3.01 0.672 java.awt, javax.xml, Guava JAIlInOne

java.io 0.669 Guava, javax.xml, JMeasurement

Gantt project 2.0.9 0.667 java.awt, JAllInOne, javax.xml, Guava, FreeCol
BlueJ 2.5.1 0.662 java.awt, FreeCol, JFigure, JAllInOne, Guava
JSpider 0.5.0 0.640 javax.xml, JAIlInOne, FreeCol

PMD 4.1 0.624 JFigure, java.awt, JAllInOne, javax.xml, Beauty]J
JEdit 4.0 0.603 JFigure, Beauty], java.awt, JAIlInOne

Netbeans 5.0 UI Utilities 0.589 FreeCol, Netbeans 5.0 Debug. Core, javax.xml, JMeasurement
Franklin Math 0.11 0.586 JFlex, JAIlInOne, JMeasurement, javax.xml
JDOM 1.1 0.582 Guava, JMeasurement

JSignpdf 0.8.0 0.554 Guava

jns 1.7 0.480 javax.xml, AlgorithmStudy, JAIIInOne
JFreechart 0.7 0.405 javax.xml, Beauty]

Violet 0.16a 0.403 Guava, javax.xml

JMol 9.0 0.401 FreeCol, javax.xml, JAIlIInOne

JHotDraw 5.1.4 0.394 javax.xml, java.awt, JAIlInOne

Robocode 1.5.1 0.315 FreeCol, JAIlInOne, javax.xml, Guava, JFigure
JDepend 2.9 0.278 Guava, javax.xml

EJE 2.7 0.204 javax.xml, Guava, JMeasurement

Jeppers 0.143 AlgorithmStudy

6.2 System differentiated DEA model

The results concerning the software categories that have been examined might have been
affected by the different inherent characteristics of libraries and applications. Recent
extensions to basic DEA models attempt to address this issue by the introduction of
categorical variables in the analysis and the corresponding modification of the linear
programming formulation, forming the so-called system differentiated DEA (SYS-DEA),
which allows cross-system comparisons (Cooper et al. 2007). System differentiated DEA is
appropriate when the operating environment of the examined DMUs exhibits systematic
differences (Yang 2009). In this way, it is not only possible to evaluate the efficiency of
each DMU but also to compare the two or more categories by observing the efficiency of
DMUs in each system. The results of system differentiated DEA are given in Table 7.

@ Springer

572 Software Qual J (2011) 19:553-578

Table 7 Efficiency scores and projections onto the efficient frontier according to system differentiated
DEA

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract % Final % Final MPC % Final

classes + classes methods fields
interfaces)
1 JMeasurement 0.70.129 1.000 0.00 0.00 0.00 0.00 0.00
1 Guava r03 1.000 0.00 0.00 0.00 0.00 0.00
1 ASM 2.0 1.000 0.00 0.00 0.00 0.00 0.00
1 Jasperreports 3.5.0 1.000 0.00 0.00 0.00 0.00 0.00
1 Algorithm Study 0.2.0 1.000 0.00 0.00 0.00 0.00 0.00
1 Netbeans 5.0 1.000 0.00 0.00 0.00 0.00 0.00
Debugger Core
1 JFigure 1.0.8 1.000 0.00 0.00 0.00 0.00 0.00
1 BCEL 5.2 1.000 0.00 0.00 0.00 0.00 0.00
1 Compiere 2.4.4 1.000 0.00 0.00 0.00 0.00 0.00
1 Jjava.awt 1.000 0.00 0.00 0.00 0.00 0.00
1 Javax.xml 1.000 0.00 0.00 0.00 0.00 0.00
1 JFlex 1.4.3 1.000 0.00 0.00 0.00 0.00 0.00
1 JAIlInOne 0.9.10 1.000 0.00 0.00 0.00 0.00 0.00
1 Beauty]J 1.1 1.000 0.00 0.00 0.00 0.00 0.00
1 FreeCol 0.7.2 1.000 0.00 0.00 0.00 0.00 0.00
16 BlueJ 2.5.1 0.991 0.86 0.86 0.86 —0.85 35.73
17 Jjavax.sound 0.964 3.71 999.90 3.71 —29.28 1505
18 Javax.sql 0.937 6.73 999.90 999.90 —53.95 384.50
19 Mango 0.907 451.22 999.90 999.90 -9.29 15.94
20 StatSVN 0.5.0 0.894 109.35 11.88 165.76 —10.62 11.88
21 org.eclipse.core filesystem 0.867 38.45 999.90 15.28 —13.25 15.28
22 Trove 2.1.0 0.800 24.98 24.98 24.98 —27.13 24.98
23 Apache Commons 0.796 53.51 50.52 240.17 —20.40 43.19
Coll. 3.2
24 org.eclipse.ui.views 0.793 29.60 87.59 999.90 —20.72 178.90
25 JSpider 0.5.0 0.777 71.47 999.90 522.09 —2227 7871
26 Sax 2r3 0.759 42.83 31.73 999.90 —24.09 291.95
27 GanttProject 2.0.9 0.707 41.37 999.90 999.90 —29.26 4293
28 PMD 4.1 0.701 42.58 419.20 42.58 —29.86 42.58
29 JGAP 3.01 0.675 48.22 999.90 668.13 —32.53 4822
30 Jjava.io 0.669 49.38 275.90 49.38 —61.40 49.38
31 JEdit 4.0 0.659 51.83 108.32 51.83 —-37.29 70.89
32 Netbeans 5.0 UI Utilities 0.620 61.39 61.39 61.39 —62.60 61.39
33 Franklin Math 0.11 0.593 387.29 68.74 68.74 —40.74 233.82
34 JDOM 1.1 0.582 79.34 100.37 71.76 —60.12 71.76
35 JSignpdf 0.8.0 0.554 572.01 627.90 508.52 —66.69 80.37
36 jns 1.7 0.490 136.35 999.90 999.90 —51.02 15091
37 JMol 9.0 0.440 127.13 999.90 999.90 —5597 127.13
38 JHotDraw 5.1.4 0.411 143.08 542.97 895.46 —58.86 195.20

@ Springer

Software Qual J (2011) 19:553-578 573

Table 7 continued

Rank Project Efficiency Difference between actual and projected value (%)

% (Abstract % Final % Final MPC % Final

classes + classes methods fields

interfaces)
39 JFreechart 0.7 0.406 146.51 999.90 999.90 —78.96 155.43
40 Violet 0.16a 0.403 148.23 999.90 999.90 —67.42 148.23
41 Robocode 1.5.1 0.361 176.68 323.00 176.68 —63.86 176.68
42 JDepend 2.9 0.278 259.07 999.90 999.90 —75.26 259.07
43 EJE 2.7 0.204 400.46 999.90 389.07 —79.55 389.07
44 Jeppers 0.143 999.90 0.00 0.00 —85.75 999.90

Rows in italic correspond to libraries

Table 8 Comparison between normal and system differentiated DEA

Normal DEA model System differentiated DEA model
Number of efficient DMUs 15 15
Libraries Applications Libraries Applications
9 6 9 6
Average efficiency score 0.737 0.759
Libraries Applications Libraries Applications
0.845 0.629 0.853 0.664

Table 8 presents a summary of the comparison between the results of normal DEA and
system differentiated DEA. System differentiated analysis yields a slightly higher average
efficiency score for all projects and the same number of efficient projects, while the relative
ranking order of the projects presents only minor differences. These observations are in
agreement with the remarks by Yang (2009) which applied system differentiated DEA to
account for differences between several geographical areas in the assessment of Canadian
bank branches’ performance.

According to the system differentiated DEA model, the average efficiency score of
applications is 0.664, whereas the average score of libraries is 0.853, confirming the
conclusions derived so far. To test statistically the difference between the two groups in
terms of efficiency and to assess whether differences occur by chance or are statistically
significant, an independent sample #-test may be used, since the distribution of the effi-
ciency scores has been tested for normality. The resulting p-value is equal to 0.013. As a
result, at the o = 0.05 level of significance, there is enough evidence to conclude that there
is a difference in the efficiency scores between the two types of software.

7 Threats to validity
7.1 Threats to internal validity

As threats to internal validity, we consider those factors that may cause interferences
regarding the relationships that we are trying to investigate (Wohlin et al. 2000). There are

@ Springer

574 Software Qual J (2011) 19:553-578

two threats related to internal validity and essentially concern incorrect model specifica-
tion. First of all, important inputs and most probably outputs might have been ignored in
the analysis. Since a limited number of design principles have been analyzed with respect
to API design, it cannot be claimed that all aspects of the design quality of the examined
systems have been accurately captured by the selected metrics. Second, DEA does not
impose weights on any of the outputs, treating all output metrics as equally important. This
is obviously questionable for a software system since certain design decisions might put
emphasis on some aspects of the design, neglecting others. However, as already mentioned,
the proposed analysis does not aim to provide an indisputable ranked list of software
projects according to their efficiency but to illustrate how DEA can be used for comparing
projects when multiple criteria for analysis are in hand. Finally, software systems from
different domains might have fundamental differences in inherent complexity and there-
fore in the way that functionality and state affect design and implementation (the under-
lying production function that the model explores). To confront this threat, future research
could investigate the use of categorical input variables to allow for further differences,
such as the software domain, to obtain more refined evaluations and insights.

7.2 Threats to external validity

As threats to external validity, we consider those factors that limit the possibility to
generalize the DEA findings beyond the immediate study to other settings. Obviously, a
different set of projects would lead to a different ranked list for APIs and applications. This
kind of threat is always valid in an empirical study when the number of systems is limited
and the criticism is related to possible differences between the projects that have been
selected for analysis and other kinds of projects.

8 Related work

In the literature of software engineering, there is a consensus among researchers that metric
values should be combined in order to extract valuable information and several approaches
have been proposed in this direction. In the work by Yamashita et al. (2009) concept
mapping is proposed as a means to assess software maintainability by incorporating
multiple metrics. Concept mapping, whose origin lies in social research, aims at structuring
the knowledge for a domain by specifying pertinent entities and the relations between
them. The final outcome is a conceptual representation of the elements under analysis
where logical groups of concepts form clusters. The approach is in line with Arisholm and
Sjgberg’s observation (Arisholm and Sjgberg 2004) that metrics may be more practical
when used in combination than when interpreted individually, a view which is also shared
by the proposed DEA approach. Conceptual mapping has several inherent benefits,
including the fact that the involved mapping criteria are made explicit and that a context-
specific quality model can be derived for each setting. However, in comparison with DEA,
conceptual mapping does not aim directly at benchmarking different systems or projects,
since there is no systematic way of combining several factors which might have different
measures or scales. A cluster map generated by conceptual mapping requires further
analysis by means of visual interpretation that prohibits the automation of the approach.
The fact that the approach relies on expert judgment on one hand is an advantage in the
sense that prior knowledge and experience is exploited but on the other makes the approach
dependent on the availability of sufficiently qualified experts.

@ Springer

Software Qual J (2011) 19:553-578 575

In the work by Anda (2007), it is acknowledged that the maintainability of software is
affected by a large number of factors, including several code properties but also qualifi-
cations of developers, maintenance tasks and tools. Moreover, it is claimed that assessment
models focus mainly on individual modules, while the maintainability of complete soft-
ware systems has received relatively little attention. Therefore, the paper suggests the
assessment of maintainability combining structural measures and expert assessments. Two
concepts are involved in the interpretation of several metrics (Benestad et al. 2006):
Combination, which is the process of providing a combined view of the selected metric
values, employs techniques such as the weighted sum or profile comparison. However,
combination approaches require the specification of weights, thresholds or coefficients,
implying the need for a calibration phase before application. Aggregation refers to the
creation of a system-level measure based on class-level measures employing summary
statistics such as sums, mean or median values, dispersion or outliers. However, depending
on the aggregation approach, different aspects of the underlying information might not be
retained. Measures may be combined at the class level and then aggregated to the system
level or alternatively, class-level measures may be aggregated before combination.

Significant research work has been devoted to the application of DEA to measure
efficiency within an economic or business-related context and even to the software engi-
neering industry (Asmild et al. 2006; Stensrud and Myrtveit 2003). von Mayrhauser et al.
(2000) applied DEA to assess the efficiency of 46 software projects from the NASA-SEL
database. In this study, outputs also reflect characteristics of the produced software (mainly
different types of LOC such as new and modified lines) but inputs are indicators of labor
and computer resources (such as technical and management effort, and CPU hours). The
model identified which development activities were efficient, defined by the ability of the
corresponding organization to produce outputs given input resources. This conforms to
the standard definition of efficiency, which refers to the amount of effort that it takes to
accomplish a certain task or operation, commonly measured as output/input. In this paper,
we illustrated the application of DEA on a software design-related context to investigate
whether APIs exhibit improved quality properties compared to applications. The produc-
tion model in this case identified efficient projects according to a different perspective of
efficiency, which refers to the quality of a software system (as captured by software
metrics) given the system’s functionality and state (as inputs).

DEA can deal with a particularly wide range of problems, some of which have nothing
to do with the economic efficiency which has been originally the target of DEA. Some
characteristic examples, where inputs and outputs do not have the usual, economic-related
meaning, are given next. In a study recommending the relocation of the Japanese capital to
a new site, inputs such as “susceptibility to earthquakes” and outputs such as “ability to
recover from earthquakes” have been used (Cooper et al. 2005). There are also various
innovative engineering applications of DEA, as for instance, the maintenance of highways.
One application took into account inputs, such as the climate factor, and outputs, such as
the accident prevention factor (Cook et al. 1995). DEA has also been used for the eval-
uation of a large-scale solar power system compared to fossil, thermal, and nuclear
technologies (Criswell and Thompson 1996). A rather unconventional application of DEA
was the comparison of baseball players. The only input used was plate appearances, which
represent the number of opportunities that the batter had to attempt to produce a walk or a
hit. The outputs were the number of walks, singles, doubles, triples, and home runs that the
batter produced in those plate appearances (Anderson 2004). A domain which has also
attracted the interest of decision makers and researchers is education. In an effort to
evaluate the efficiency of school districts, the only input to DEA was the expenditure per

@ Springer

576 Software Qual J (2011) 19:553-578

pupil, whereas outputs such as pass rates on standardized tests were used (Ruggiero 2004).
As it can be observed, there are no limitations in the uses of DEA. What is actually needed
is to define efficiency according to the requirements of the specific problem.

9 Conclusions

In this paper, we have attempted to approach the problem of benchmarking object-oriented
designs by transferring a tool for performance measurement that is extensively employed
in economics. In particular, we have employed Data Envelopment Analysis to obtain
relative efficiency scores for a number of open-source libraries and applications. The
advantage of DEA is that benchmarking is performed by comparing each software design
to its best performing peers rather than a theoretical baseline and that efficiency is esti-
mated by considering all input and output items enabling the comparison of projects with
diverse size characteristics.

The vehicle for illustrating the applicability of DEA in the context of software design is
the investigation of whether libraries exhibit a superior design quality compared to
applications. To this end, a set of widely acknowledged design principles that are expected
to underlie the design of libraries has been analyzed. Metrics that reflect the conformance
to these principles have been used as outputs in DEA. The results of the application of
DEA on twenty-two open-source libraries and twenty-two open-source applications con-
firm the belief that libraries excel, at least within the context of our study, since their
average efficiency score is higher than that of applications. Although the set of inputs-
outputs that has been employed refers to particular aspects of design quality, limiting the
possibility to generalize these findings, DEA appears to be a promising approach for
benchmarking software designs, a task which is not possible when simply examining
metric values in isolation.

Further empirical research could focus on investigating the relation of the produced
rankings to high-level quality attributes of the examined systems. Moreover, the applica-
tion of DEA to projects from a single domain in combination with other means of qual-
itative evaluation could reveal particular projects exhibiting best practices in design.

References

Anda, B. (2007). Assessing software system maintainability using structural measures and expert assess-
ments. In Proceedings of the 23rd IEEE international conference on software maintenance (Paris,
France, October 2-5, 2007, pp. 204-213). ICSM’07.

Anderson, T. R. (2004). Benchmarking in sports: Bonds or Ruth, determining the most dominant baseball
batter using DEA. In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on Data Envelopment
Analysis (pp. 443-454). Boston, MA: Kluwer.

Arisholm, E., & Sjgberg, D. I. K. (2004). Evaluating the effect of a delegated versus centralized control style
on the maintainability of object-oriented software. IEEE Transactions on Software Engineering, 30(8),
521-534.

Asmild, M., Paradi, J. C., & Kulkarni, A. (2006). Using Data Envelopment Analysis in software devel-
opment productivity measurement. Software Process Improvement and Practice, 11(6), 561-572.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale
inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092.

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). Goal question metrics paradigm. In J. J. Marciniak
(Ed.), Encyclopedia of software engineering (Vol. 1, pp. 528-532). New York: Wiley.

@ Springer

Software Qual J (2011) 19:553-578 577

Benestad, H. C., Anda, B., & Arisholm, E. (2006). Assessing software product maintainability based on
class-level structural measures. In Proceedings of the 7th international conference on product-focused
software process improvement (Amsterdam, Netherlands, June 12-14, 2006). PROFES’06.

Bloch, J. (2006). How to design a good API and why it matters. Companion to the 21st ACM SIGPLAN
symposium on object-oriented programming systems, languages, and applications (Portland, Oregon,
USA: ACM Press, October 22-26, 2006). OOPSLA’2006.

Bloch, J. (2008). Effective java (2nd ed.). Boston: Addison-Wesley.

Bowman, M., Briand, L. C., & Labiche, Y. (2007). Multi-objective genetic algorithms to support class
responsibility assignment. In Proceedings of the 23rd IEEE international conference on software
maintenance (Paris, France, October 2-5, 2007, pp. 124-133). ICSM’07.

Briand, L. C., Daly, J. W., & Wiist, J. K. (1999). A unified framework for coupling measurement in object-
oriented systems. IEEE Transactions on Software Engineering, 25(1), 91-121.

Charnes, A., Cooper, W. W., Lewin, A. Y., & Seiford, L. M. (Eds.). (1995). Data Envelopment Analysis:
Theory, methodology and applications. Boston: Kluwer.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units.
European Journal of Operational Research, 2(6), 429-444.

Coelli, T. J., Prasada Rao, D. S., O’Donnell, C. J., & Battese, G. E. (2005). An introduction to efficiency and
productivity analysis. Berlin: Springer.

Cook, W. D., Kazakov, A., & Roll, Y. (1995). On the measuring and monitoring of relative efficiency of
highway maintenance patrols. In A. Charnes, W. W. Cooper, A. Lewin, & L. M. Seiford (Eds.), Data
Envelopment Analysis: Theory, methodology and applications (pp. 195-210). Norwell, MA: Kluwer.

Cooper, W. W, Seiford, L. M., & Tone, K. (2005). Introduction to Data Envelopment Analysis and its uses:
With DEA-solver software and references. New York, USA: Springer.

Cooper, W. W, Seiford, L. M., & Tone, K. (2007). Data Envelopment Analysis: A comprehensive text with
models, applications, references and DEA-solver software. New York, USA: Springer.

Criswell, D. R., & Thompson, R. G. (1996). Data Envelopment Analysis of space and terrestrially based
large commercial power systems for earth: A prototype analysis of their relative economic advantages.
Solar Energy, 56(1), 119-131.

Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls
and protocols in DEA. European Journal of Operational Research, 132(2), 245-259.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable object-
oriented software. Boston: Addison-Wesley.

ISO/IEC. (1991). International standard ISO, IEC 9126, International Organization for Standardization,
Geneva.

Li, W., & Henry, S. (1993). Object-oriented metrics that predict maintainability. Journal of Systems and
Software, 23(2), 111-122.

Liskov, B. (1988). Data abstraction and hierarchy. SIGPLAN Notices, 23(5), 17-34.

Lorenz, M., & Kidd, J. (1994). Object-oriented software metrics. Upper Saddle River, NJ: Prentice Hall.

Martin, R. C. (2003). Agile software development: Principles, patterns and practices. Upper Saddle River,
NI: Prentice Hall.

Meyer, B. (2000). Object-oriented software construction. Upper Saddle River, NJ: Prentice Hall PTR.

O’Keeffe, M., & O’Cinneide, M. (2006). Search-based software maintenance. In Proceedings of the 10th
European conference on software maintenance and reengineering (Bari, Italy, March 22-24, 2006).
CSMR’06.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Communications of
the ACM, 15(12), 1053-1058.

Riel, A. J. (1996). Object-oriented design heuristics. Boston: Addison-Wesley Professional.

Ruggiero, J. (2004). Performance evaluation in education: Modeling educational production. In
W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on Data Envelopment Analysis
(pp- 323-348). Boston, MA: Kluwer.

Seng, O., Stammel, J., & Burkhart, D. (2006). Search-based determination of refactorings for improving the
class structure of object-oriented systems. In Proceedings of the Sth annual conference on genetic and
evolutionary computation (Seattle, WA, July 8-12, 2006). GECCO’06.

Stensrud, E., & Myrtveit, I. (2003). Identifying high performance ERP projects. IEEE Transactions on
Software Engineering, 29(5), 398—416.

Tulach, J. (2008). Practical API design: Confessions of a java framework architect. APress.

von Mayrhauser, A., Wohlin, C., & Ohlsson, M. C. (2000). Assessing and understanding efficiency and
success of software production. Empirical Software Engineering, 5(2), 125-154.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2000). Experimentation in
software engineering: An introduction. Boston, MA: Kluwer.

@ Springer

578

Software Qual J (2011) 19:553-578

Yamashita, A. F., Anda, B., Sjgberg, D. I. K., Benestad, H. C., Arnstad, P. E., & Moonen, L. (2009). Using
concept mapping for maintainability assessments. In Proceedings of the 3rd international symposium
on empirical software engineering and measurement (Florida, USA, October 15-16, 2009). ESEM’09.

Yang, Z. (2009). Assessing the performance of Canadian bank branches using Data Envelopment Analysis.
Journal of the Operational Research Society, 60(6), 771-780.

Author Biographies

@ Springer

Alexander Chatzigeorgiou is an assistant professor of software
engineering in the Department of Applied Informatics at the University
of Macedonia, Thessaloniki, Greece. He received the Diploma in
electrical engineering and the PhD degree in computer science from
the Aristotle University of Thessaloniki, Greece, in 1996 and 2000,
respectively. From 1997 to 1999, he was with Intracom, Greece, as a
telecommunications software designer. His research interests include
object-oriented design, software maintenance, and metrics. He is a
member of the IEEE.

Emmanouil Stiakakis is a lecturer in Digital Economics at the
Department of Applied Informatics, University of Macedonia—Thes-
saloniki—Greece. He holds a BSc in Mechanical Engineering from
the Aristotle University of Thessaloniki, an MSc in Manufacturing
Systems Engineering from Cranfield University—UK, and a PhD in
Applied Informatics from the University of Macedonia. His research
interests include production and operations management, Total Quality
Management, e-business, and digital economy. His research has been
published in international journals and conference proceedings.

	Benchmarking library and application software with Data Envelopment Analysis
	Abstract
	Introduction
	Design principles and corresponding metrics
	Statistical comparison
	Data Envelopment Analysis
	Inputs and data
	Input variables
	Data

	Results and discussion
	Normal DEA model
	System differentiated DEA model

	Threats to validity
	Threats to internal validity
	Threats to external validity

	Related work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

