

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/article/10.1007%2Fs11219-011-9146-7

http://hdl.handle.net/10251/38415

Springer Verlag (Germany)

Montagud Gregori, S.; Abrahao Gonzales, SM.; Insfrán Pelozo, CE. (2012). A systematic
review of quality attributes and measures for software product lines. Software Quality
Journal. 20(3-4):425-486. doi:10.1007/s11219-011-9146-7.

A Systematic Review of Quality Attributes and

Measures for Software Product Lines
Sonia Montagud · Silvia Abrahão · Emilio Insfran

Abstract

It is widely accepted that software measures provide an appropriate mechanism for understanding,

monitoring, controlling and predicting the quality of software development projects. In Software Product Lines

(SPL), quality is even more important than in a single software product since, owing to systematic reuse, a fault

or an inadequate design decision could be propagated to several products in the family. Over the last few years, a

great number of quality attributes and measures for assessing the quality of SPL have been reported in literature.

However, no studies summarizing the current knowledge about them exist.

This paper presents a systematic literature review with the objective of identifying and interpreting all the

available studies from 1996 to date that present quality attributes and/or measures for SPL. These attributes and

measures have been classified using a set of criteria that includes the life cycle phase in which the measures are

applied; the corresponding quality characteristics; their support for specific SPL characteristics (e.g., variability,

compositionality); the procedure used to validate the measures, etc. We found 165 measures related to 98

different quality attributes. The results of the review indicated that 92% of the measures evaluate attributes that

are related to maintainability. In addition, 67% of the measures are used during the design phase of Domain

Engineering, and 56% are applied to evaluate the product line architecture. However, only 25% of them have

been empirically validated.

In conclusion, the results provide a global vision of the state of the research within this area in order to

help researchers in detecting weaknesses, directing research efforts, and identifying new research lines. In

particular, there is a need for new measures with which to evaluate both the quality of the artifacts produced

during the entire SPL life cycle and other quality characteristics. There is also a need for more validation (both

theoretical and empirical) of existing measures. In addition, our results may be useful as a reference guide for

practitioners to assist them in the selection or the adaptation of existing measures for evaluating their software

product lines.

Keywords Software Product Lines · Quality · Measures · Quality Attributes · Systematic

Literature Review

Sonia Montagud

Department of Computer Science and Computation

Universitat Politècnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

Phone: +34 96 3877000, Fax: +34 96 3877359

smontagud@dsic.upv.es

Silvia Abrahão

Department of Computer Science and Computation

Universitat Politècnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

Phone: +34 96 3877000, Fax: +34 96 3877359

sabrahao@dsic.upv.es

Emilio Insfran

Department of Computer Science and Computation

Universitat Politècnica de Valencia

Camino de Vera, s/n, 46022, Valencia, Spain

Phone: +34 96 3877000, Fax: +34 96 3877359

einsfran@dsic.upv.es

1. Introduction

Software Product Line (SPL) engineering is a modern approach for developing a diversity of software

products and software-intensive systems based on the underlying architecture of an organization

product platform. It basically consists of two processes: Domain Engineering, in which a set of core

assets are built, and Application Engineering, in which the core assets are used to derive a specific

target product.

One of the most difficult tasks during product derivation is meeting the required quality

attributes. A quality attribute is a measurable physical or abstract property of an artifact produced

during the product line development. While quality is an important factor in the construction of

individual software products, it becomes crucial in product line engineering since the quality of all the

products of a family must be ensured. In addition, the development of SPLs has characteristics that

distinguish it from the development of individual products. In particular, variability, reusability,

commonality, and compositionality are key characteristics of this software production method that

should be taken into account when evaluating quality.

Moreover, the life cycle model of software product line engineering is different from those of

single product development [57]. In the Domain Engineering phase, the common architecture, the

variabilities and commonalities of the SPL, along with the core assets that support these variabilities

and commonalities are established, whilst in Application Engineering the products are built from the

core assets. Also, in product lines, the architecture assumes a dual role [14]: there is the architecture

for the product line as a whole and the architecture for each one of the products derived from the

product line. The latter are produced from the former by exercising the built-in variation mechanisms

to achieve product instances. Therefore, it is important to evaluate both architectures to ensure that (1)

the product line architecture is robust and general enough to meet the product line scope and (2) the

product architecture meets the specific quality attributes for a given product instance. Due to these

issues, it is not possible to easily reuse quality assessment methods and techniques proposed for

individual products.

In order to assess quality characteristics (both general characteristics and key characteristics for

SPL), software measures
1
 are a good means to understand, monitor, control, predict, and test software

development and maintenance projects [10]. Over the last few years, a great number of measures for

evaluating the quality of SPLs have been proposed. Several relevant quality attributes have also been

identified. Unfortunately, despite the emergence of these measures, the state of industrial practice is still

in its infancy. One possible reason for this might be the absence of information concerning the

appropriateness and limitations of these measures for ensuring the quality of SPL. It is also difficult to

establish the importance of new research achievements owing to the absence of a study that summarizes

all the existing information related to quality attributes and measures for software product lines.

To collect this information, we present a systematic literature review. Systematic reviews are

helpful in identifying, evaluating, and interpreting a research question, a study area, or phenomenon of

interest in a thorough and unbiased manner [32]. They have also been successfully used in several

areas of Software Engineering (e.g., software product lines [38] [13], requirements elicitation [16],

usability evaluation [25], Web Engineering [36]). We have followed the guidelines proposed by

Kitchenham [32] for performing systematic reviews in Software Engineering. To be effective, a

systematic review must be driven by an overall goal. In this review, the main goal is the following:

identify and classify quality attributes and measures that have been proposed for assessing the quality

of Software Product Lines.

The remainder of this paper is organized as follows. Section 2 presents the background,

including a discussion about the specific characteristics of SPLs and existing systematic literature

1
 In this study, we use the terms measure and metric as synonyms since the ISO/IEC 9126 standard [27] uses

the term metric to refer to the defined measurement method and the measurement scale whereas the new

standard for Software Product Quality Requirements and Evaluation (SQuaRE) [26] uses the term measure to

refer to a variable to which a value is assigned as the result of measurement.

reviews in the field. Section 3 explains the research method employed. Section 4 reports the results of

the review. Section 5 discusses the implications of our results for research and practice, along with the

limitations of the review. Finally, Section 6 presents our conclusions and suggests areas for further

research.

2. Background

In this section, we first provide a brief overview of software product lines engineering principles and

their implications for evaluating quality. We then go on to discuss the existing systematic literature

reviews published in the field of SPL.

2.1. Quality in Software Product Line Engineering

According to the Software Engineering Institute (SEI), software product lines are a set of software-

intensive systems that share a common, managed set of features satisfying the specific needs of a

particular market segment or mission and that are developed from a common set of core assets in a

prescribed way [14]. In this approach, the development of core assets is done by analyzing a target

domain with the purpose of identifying common and variable features. The core asset thus realizes the

commonality and variability among family members in the domain [53]. The resulting software will

become unique through the addition or subtraction of features to/from a common architecture.

SPLs are used for the efficient and systematic development of software products. The

expected benefits of this approach are to provide software systems with better quality and

productivity, and lower development costs [14]. However, these benefits cannot be achieved if the

reuse of software is not controlled and planned. A product that is part of a SPL is created based on the

reuse of existing assets. Some of these assets are common to other products in the same product line

and some are specific to individual products. An important issue in this context is, therefore, to capture

and express variability and commonalities among different products.

SPL engineering makes a great impact on the quality of the resulting software [14]. To a large

extent, a new application consists of matured and proven assets. This implies that the defect density of

such products can be expected to be drastically lower than products that are all developed from scratch

[57]. The production of software has historically focused on building individual product. However,

with the arrival of the product line concept, new methods have appeared for software development.

These new methods have a different development life cycle than that of traditional software [57], and

the product lines have specific characteristics (e.g., variability, commonality, compositionality), thus

signifying that existing methods with which to evaluate the quality of individual products cannot be

easily applied to evaluate software product lines.

In recent years, several methods and techniques for evaluating quality in SPLs have been

proposed (e.g., QRF [41], ETAM [30], HoPLAA [43]). Unfortunately, despite the emergence of these

methods and techniques, the state of industrial practice for quality in SPLs needs to be updated since,

in some cases, even the basic measurement principles are unknown. As a consequence, we believe that

a study that summarizes and classifies the knowledge about quality attributes and measures for SPLs

could be useful in allowing researchers and practitioners to improve their current practices.

2.2. Existing Systematic Reviews for Software Product Lines

We conducted several searches in the IEEEXplore, ACM Digital Library, and INSPEC digital libraries

in order to ascertain the existence of any systematic review matching that presented in this paper. The

following search string was used: software AND product AND (line* OR famil*) AND (review* OR

stud* OR systematic* OR evaluation* OR survey) AND (quality OR metric* OR measure* OR

attribute*). However, we did not find any results.

Nevertheless, there are others systematic reviews published in the SPL field. In a previous work

[38], we presented a systematic review in which we analyzed all the methods and techniques for

assessing quality in software product lines. This study analyzed 39 research papers using 13 criteria

(e.g. type of approach used for assessing quality, phase of the life cycle in which the quality

assessment takes place, artifact(s) evaluated, mechanisms used to capture the quality attributes,

priority levels for quality attributes, impact analysis, validation procedure). The results indicated that

many methods and techniques exist, but none of them considers all the characteristics which are

desirable to ensure quality in SPLs. The study also indicated that several of the approaches used for

evaluating the quality of SPLs rely on measures. However, this work was not specifically focused on

the search and classification of measures for SPLs.

Despite the use of measures for assessing the quality of SPLs, there are very few works that

discuss their usefulness. In general, the measures are presented individually. They are not integrated

into a method for quality assessment that can be applied to different quality characteristics or applied

throughout the whole life cycle of software product line development. For example, Etxeberria et al.

[21] briefly mentioned the use of certain measures as a method for assessing the quality of product line

architectures; however, there was no in depth discussion of the measures.

With regard to the research method used, we found other works that performed systematic

literature reviews to identify and analyze measures in other areas of software engineering. For

example, Calero et al. [12] presented a ranking of measures with which to evaluate the quality of Web

information systems. The goal of this study was to provide an overview of the research in this area.

The classification was carried out by using the Web Quality Model, which is a three-dimensional

quality model for the Web. Gomez et al. [23] showed the trends in the software measurement field and

the software process on which the measurement efforts have focused. They used a Software

Measurement Ontology to classify and placed the amount of data in this field.

Other authors have also used systematic reviews as a means to analyze specific research

questions in the SPL field [51], [13], [31], [42], [5], [44], [20]. For instance, Souza Filho et al. [51]

analyzed domain design approaches through a systematic review, which may be useful in allowing

companies to understand the current scenario and to choose a more suitable approach or adapt it to their

needs. Chen et al. [13] conducted a systematic review to provide an overview of different aspects of

the proposed approaches for managing variability in SPLs (e.g., the evolution of the research on

developing variability management approaches, the key issues that have driven the evolution of the

different variability management approaches). Khurum and Gorschek [31] conducted a systematic

review analyzing the level of industrial application and/or empirical validation of the proposed

solutions for the purpose of mapping maturity in terms of industrial application. They went on to

evaluate the usability and usefulness of the proposed solutions.

Odia [42] performed a systematic review to summarize the existing evidence regarding testing

techniques in SPLs. This study addressed research questions regarding the relationship between

product lines and product; the steps needed to develop and execute testing in SPLs; the approaches

that can be used to develop test cases; and the connections between software reuse and reusability of

test cases.

Alves et al. [5] conducted a systematic review in requirements engineering for SPL. The results

of this study showed that the adoption of the requirements engineering methods is not yet mature. The

proposed approaches still have serious limitations in terms of rigor, credibility, and validity of their

findings. A further major drawback is that it does not provide sufficient guidance for practitioners

interested in adopting the proposed methods, thereby limiting its usability in industrial settings. In

particular, there are very few commercial or open source tools available. Another remarkable result is

that the proactive strategy is the most common adoption strategy suggested by the methods.

Finally, Pérez et al. [44], and Engström and Runeson [20] analyzed the state-of-the-art in

testing. Pérez et al. [44] conducted a systematic review in order to identify experience reports and

initiatives carried out in Software Engineering related to testing in SPL. The extracted information of

each study is: the category of testing (e.g., Unit Testing, Integration Testing, Functional Testing, SPL

Architecture Testing); how variability is dealt with; the testing technique used; if there is a tool or

prototype to support it; and if the proposal was tested in an industrial or artificial setting. Engström

and Runeson [20] conducted a systematic mapping to get an overview of existing research of product

line testing. This included gathering identified challenges for testing SPL; recognizing the research

forums SPL testing is published in; looking at which topics in testing SPL have been investigated and

to what extent; and investigating what types of research are represented and to what extent. The

conclusion of this study was that more validation is needed to provide a better foundation for testing in

SPL.

3. Research method

A systematic review is a research method which is developed to obtain, evaluate, and interpret all the

information that is related to a specific research question or area of interest. Its purpose is to provide

an objective assessment of a research topic in a reliable, rigorous, and methodological manner, and it

was for this reason that we selected a systematic review as a research method to conduct the study.

Specifically, we followed the approach suggested by Kitchenham [32].

A systematic review involves several stages and activities (see Figure 1), which are briefly

explained below:

1. Planning the review: the need for the review is identified, the research questions are

specified, and the review protocol is defined.

2. Conducting the review: the primary studies are selected, the quality assessment used to

include studies is defined, the data extraction and monitoring is performed, and the

obtained data is synthesized.

3. Reporting the review: the dissemination mechanisms are specified, and the review report

is presented.

Figure 1. Activities in the Systematic Literature Review Process

The activities concerning the planning and the conducting of our systematic review are

described in the following subsections. The report of the review stage is presented in Section 4.

3.1. Planning the review

The objective of this systematic review is to obtain and analyze the quality attributes and measures

proposed for assessing the quality of SPLs. The study will identify gaps and new areas of research for

further investigation.

Following the systematic review methodology, we will first formulate the research questions,

which are described as follows:

 What quality attributes have been proposed for assessing the quality of software product

lines?

 What measures have been proposed for assessing the quality of software product lines and

how are they used?

Kitchenham indicates that some guidelines recommend considering and framing research

questions by following several criteria adapted to Software Engineering which have been collected

from several other sources [32]. These are the following: population, intervention, comparison,

outcomes and context. Population, in software engineering, could be any of the following: a specific

software engineering role, a category of software engineering, an application area, or an industry

group. Intervention is the software methodology, tool, technology or procedure that addresses a

specific issue. Comparison is the software engineering methodology, tool, technology or procedure

with which the intervention is being compared. Outcomes should relate to factors of importance to

practitioners. Finally, the Context in Software Engineering is the context in which the comparison

takes place: the participants taking part in the study being performed, and the tasks that are being

performed. In our systematic review, these criteria are expressed as follows:

 Population: This corresponds to studies that propose quality attributes for SPL and/or

propose measures for evaluating the quality of SPL.

 Intervention: This is the set of quality attributes and measures that are used for evaluating

the quality characteristics of SPLs.

 Comparison: We do not compare the quality attributes and measures with other

techniques or models. Our intention is to classify them based on specific criteria.

 Outcomes: To gather the attributes and measures proposed by the researchers for

evaluating the quality of SPLs.

 Context: We are working in a research context in which there are experts in the domain.

3.1.1. Identification of data sources and search strategy

To obtain the primary studies, we consulted the digital libraries of the most relevant organizations in

the Software Engineering community. We selected the following: IEEEXplore, ACM Digital Library,

Science Direct, SpringerLink, and INSPEC.

The search covered the period from 1996 to July 2009. We chose 1996 because it was the first

year in which a conference specifically dedicated to SPL was held. With regards to the search options

of the digital libraries, we ensured that the search included magazines, journals, and conference

proceedings.

We tested several search strings, and the following retrieved the greatest number of relevant

papers: ((attribute* OR factor* OR propert* OR criterion OR criteria OR characteristic*) OR

(metric* OR measur*)) AND (software OR engineering OR architectur*) AND ("product line*" OR

"product famil*") AND (quality OR non-functional OR “no functional” OR assess* OR assur*).

The search was conducted using the titles and abstracts of the articles. We also adapted the

search string notation for each digital library, since they each use a different syntax. In order to assess

the results of the search process, we compared the results obtained with a small sample of primary

studies that had previously been identified as studies expected to appear in the results, this allowed us

to ensure that the search process was able to find the relevant sample.

We additionally selected those conference proceedings and journals in which studies relevant to

our domain had previously been published (see Table 1). These conference proceedings and journals

were checked in order to determine whether or not they are indexed in the digital libraries for each

year included in our study. We performed a manual search of them in order to:

 Complement the automated search to cover the cases in which the conference proceedings

or journals did not appear in the digital libraries.

 Validate the search string in cases in which the conference proceedings or journals

appeared in some digital libraries.

Table 1. Conferences selected for manual search

Software product line Software quality Software engineering
SPLC (Software Product Line

Conferences),
PFE (International Workshop on

Product-Family Engineering)
IWSAPF (International Workshop on

Software Architectures for Product
Families).

ESEM (Empirical Software Engineering
and Measurement)

ISESE (International Symposium on
Empirical Software Engineering)

MENSURA (Int. Conference on
Software Process and Product
Measurement)

METRICS (IEEE International Software
Metrics Symposium)

QSIC (Conference on Quality Software)
QoSA (Quality of Software

Architectures)
RefsQ (Requirements Engineering:

Foundation for Software Quality).

ICSE (International Conference on
Software Engineering)

CAiSE (Int. Conference on Advanced
Information Systems Engineering)

MODELS (Model-Driven Engineering
Languages and Systems)

ECSA (European Conference on
Software Architecture).

To broaden the study as much as possible, we added grey literature to the review that did not

appear in the digital libraries used. Specifically, we added primary studies that were known in

advance, along with other studies that were found by using several combinations of the same search

string in Google and Yahoo. However, the references included in the primary studies were not

systematically followed up since most of the relevant conferences were already manually or

automatically searched (see Table 1). Several systematic reviews conducted in the Software

Engineering field (e.g., [5], [13], [44]) have also been left out or replaced in the secondary search by

other practices. Nevertheless, the previously mentioned grey literature included six new primary

studies that did not appear using the automatic search.

3.1.2. Selection criteria for primary studies

The search performed with the search string is a syntactic search, i.e., the result of the search is the set

of papers in which the research string appears. However, on occasions, a given study may match the

search string but the topic of the paper is different to the study area. As such syntactic search must be

performed with a semantic check. This is done by reading the title and abstract of the papers in order

to ensure that the collection is consistent with the research area under study. This selection is

performed in an objective manner by applying the inclusion and exclusion criteria (shown in Table 2)

whilst reading the titles and abstracts of the potential studies.

Table 2. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria
 Papers which present measures for quality

assessment in software product lines.
 Papers showing attributes that are desirable

measures for assessing quality in software
product lines.

 Papers not written in English.
 Papers proposing measures which are not directly

related to the quality (e.g. cost models).
 Papers that propose measures but do not explain

how they are used.
 Introductory papers for special issues, books,

workshops or posters.
 Papers presenting measures for assessing other

types of quality (process quality, quality of use,
etc.).

However, titles and abstracts are not extensive and thus are not always clear indicators of what

an article is about. For this reason, in some cases we scanned the full paper in order to ensure whether

the data satisfied the inclusion and exclusion criteria.

3.1.3. Data extraction strategy

To extract the data from the set of selected primary studies, we divided the research questions into

various criteria. Table 3 summarizes the data extraction criteria for classifying the collected quality

attributes and measures. Note that for each measure, we indicate the quality attribute it was measured

by. For each quality attribute with a measure associated with it, we indicate the type of attribute

(internal or external) and its domain (SPL relevant attribute or general attribute).

In the analysis of results section, we summarize the most significant results regarding the

quality attributes. We also discuss those quality attributes considered to be most relevant for

researchers, along with the number of measures proposed for measuring each one of them.

Table 3. Data extraction form

1. Quality characteristic evaluated

  Functional Suitability

 Performance efficiency

 Security

 Maintainability

 Reliability

 Operability

 Compatibility

 Transferability

2. Quality attribute evaluated by the measure

 Name of attribute

 

 2.1. Type of attribute

  Internal  External

3. Type of measure

  Base Measure  Derived Measure

4. Result of the measure

 4.1. Type of evaluation

  Qualitative  Quantitative  Hybrid

 4.2. Precision

  Exact  Probabilistic

5. Phase of the life cycle in which the measure is applied

 Domain Eng.:  Requirements  Design  Test  Realization

Application Eng.:  Requirements  Design  Test  Realization

  Evolution

6. Artifact(s) used to calculate the measure

  Common Architecture  Core Asset

 Product architecture  Final product

7. Other characteristics

 7.1 Compositionality

  Yes  No

 7.2. Variability/Commonality

  Yes  No

8. Validation procedure

  Theoretical validation  Empirical validation  Not validated

 8.1. Theoretical validation

  Property-based approach  Measurement-theory approach

 8.2. Empirical validation

  Case studies  Surveys  Controlled Experiments

9. Tool support

  Manual  Automatic

10. Current usage

  Academic  Industrial

Each data extraction criterion (with the possible options) is explained as follows:

Criterion 1. Quality characteristic evaluated. We classified each measure that was extracted from

the selected papers according to the quality characteristics suggested in the ISO/IEC 25000 (SQuaRE)

standard [26]. Thus, each measure was classified in a quality characteristic if it measures a quality

attributed related with: Functional Suitability, Reliability, Performance efficiency, Operability,

Security, Compatibility, Maintainability, and Transferability. For more information about these quality

characteristics readers are referred to [26].

Criterion 2. Quality attribute evaluated by the measure. The measures measure quality

attributes. This criterion indicates the quality attribute evaluated by the measures. It also indicates the

type of attribute. The quality model defined in the ISO/EIC 9126-1 standard for product quality

evaluation classifies quality attributes as external (visible on the system level), and internal (properties

of subsystems and components). A measure is thus classified as being Internal if the quality attribute

is measured at analysis or design time. If the measure can only be applied at runtime, or once the

product has been developed, then it is classified as External.

Criterion 3. Type of Measure. According to the SQuaRE standard [26], there are two types of

measure: base measure and derived measure. A base measure is defined in terms of an attribute and

the method for quantifying it while a derived measure is defined as a function of two or more base

measures. A measure is therefore classified as a Base Measure if it is functionally independent of

other measures and as a Derived Measure if it uses other measures.

Criterion 4. Result of measure: We have divided the types of results into two categories: (1)

those related to the type of evaluations (i.e., quantitative, qualitative or hybrid) and (2) those related to

the precision with which the attribute is measured (i.e., exact, probabilistic):

 Type of evaluation. A measure can measure a quality attribute in a qualitative,

quantitative, or hybrid manner. Quantitative evaluations are concerned with

evaluating the attributes numerically, using continuous values (e.g., an attribute can be

measured with continuous values between 0 and 1). Qualitative evaluations are those

that indicate qualities (e.g., an attribute can be measured as high, medium or low).

Hybrid evaluations are those that use both qualitative and quantitative evaluations.

 Precision. The measurement values obtained by applying the measure can be exact or

probabilistic. The value is exact when the result of the measure is a numeric value

(e.g. the sum of the number of classes). The value is probabilistic when the result of

the measure is a percentage (e.g., the probability of improving the software usability).

Criterion 5. Phase of the life cycle in which the measure is applied. In this work, we have

classified the measures by adopting the life cycle proposed by Van der Linden et al. [57]. According

to this framework, the Domain Engineering phase contains four phases:

(1) Domain Requirements Engineering is the process of creating and managing requirements for

the entire product line. A measure is therefore classified in this phase if it is defined for

measuring the quality of domain requirements artifacts;

(2) Domain Design is the process of creating a common architecture for the SPL. A measure is

classified in this phase if it is defined for assessing the quality of software artifacts related to

the design of the whole product line and/or common architecture, taking into account the

variability, the common parts, etc.;

(3) Domain Realization is the process of creating the core assets. A measure is classified in this

phase if it is defined to evaluate the quality of core assets;

(4) Domain Testing is the process of testing the common architecture and core assets created. A

measure is therefore classified in this phase if it measures a quality attribute related to the

testing phase (for example, the quality of the proven cases).

The phases of the Application Engineering phase are:

(5) Application Requirements Engineering, which addresses the requirements of a particular

product within the product line. A measure is thus classified in this phase if it measures

quality attributes in the artifacts of the Application Requirements phase (e.g. use cases,

scenarios);

(6) Application Design, which is a product architecture that is derived from the common

architecture. A measure is therefore classified in this phase if it evaluates the quality of the

product architecture;

(7) Application Realization, which addresses the implementation of products using the specific

core assets and unique core assets. A measure is accordingly classified in this phase if it is

defined to measure the quality of the implemented products;

(8) Application Testing, which addresses the testing of the implemented product. A measure is

classified in this phase if it measures the quality attributes of a final product.

In addition to these phases, we also include another phase suggested by Bosch [9]:

(9) Evolution, which is driven by changes in the requirements of the products in the product line.

A measure is thus classified in this phase if it evaluates whether the product line fits new

requirements and some of the desired quality attributes.

Criterion 6. Artifact(s) used to calculate the measure. In order to discover which types of

artifact are used to apply the measures, we have established the following classification: (1) Common

architecture, if the measure measures the architecture of the entire product line created in the Domain

Engineering phase; (2) Assets, if the measure measures a component (a large-grained reuse unit) of the

product line; (3) Product Architecture, if the measure measures the architecture of a particular

product; (4) the Final Product, if the measure measures the product that is produced in the Application

Engineering phase.

Criterion 7. Other characteristics: Software product lines have their own characteristics that

are specifically relevant to them or that are not present in other software development approaches. We

therefore wished to discover which measures were defined by considering the following

characteristics:

 Compositionality. The main idea of compositionality in SPL [47] is that the software

platform of the product line is not a fully integrated software solution, but a set of

components, architecture guidelines, principles as well as testing, documentation and

use case support. Thus, the final products are composed, integrated and tested. If the

measure takes into account the different artifacts and the compositionality among

them, it is classified as Yes (e.g., measures that take into account the relationship

among assets, the relationship between the architecture of the product line with the

assets, etc.). If the measure evaluates only one artifact without taking into account

issues related to others artifacts, it is classified as No.

 Variability/Commonality. In SPL, variability provides the required flexibility for

product differentiation and diversification while and the commonality forms a

common base. In [57] three types of variability are presented: Commonality,

Variability and Product-specific. Commonality is when a characteristic (functional or

non-functional) can be common to all products in the product line (this is then

implemented as part of the platform). Variability is when a characteristic may be

common to some products, but no to all. It must then be explicitly modeled as a

possible variability and must be implemented in a way that allows having it in selected

products only. Product-specific is when a characteristic may be part of only one

product (at least for the foreseeable future); while these variabilities will not be

integrated into the platform, the platform must be able to support them. Thus,

variability is a key aspect of SPLs. If the measure takes into account variability, it is

classified as Yes. Otherwise, it is classified as No.

Criterion 8. Validation procedure. It is widely acknowledged that a software measure must be

validated according two complementary validations: (1) Theoretical validation, which ensures that the

measure measures the attribute that it is supposed to measure, and (2) Empirical validation, which

provides evidence on the usefulness of the measures.

The theoretical validation is generally carried out using measurement frameworks based on

measurement-theory or other property-based approaches. Property-based approaches [11] allow one to

prove that a measure satisfies properties characterizing a concept (e.g., size, complexity, coupling).

Measurement-theory based approaches [46] [58] are more rigorous than property-based approaches

since they prescribe theories and conditions for modeling and defining measures. The theory provides

an empirical interpretation of the numbers (of software measures) by the hypothetical empirical

relational system.

The empirical validation of a software measure can be carried out through case studies, surveys,

or controlled experiments. A Case Study is an observational study and data is collected for a specific

purpose throughout the study. A Survey is research performed in retrospect, when the method has been

in use for a certain period of time. A Controlled Experiment is a formal, rigorous, and controlled

study. Experiments provide a high level of control and are useful for validating software measures.

Thus, we have classified each measure as follows:

 Theoretical validation: Yes, if the measure was theoretically validated, and No if the

measure was not theoretically validated. If the measure was theoretically validated, we

gather the type of approach which was used: Property-based approach, Measurement-

theory based approach, or Other.

 Empirical validation: Yes, if the measure was empirically validated, and No if the

measure was not empirically validated. If the measure was empirically validated, we

gather the method which was used: Case Study, Survey or Controlled Experiment.

 Not validated: if the measure was not theoretically or empirically validated.

Criterion 9. Tool support. If the measure has a tool that facilitates automatic or semiautomatic

measurement, it is classified as Automatic. Otherwise, it is classified as Manual.

Criterion 10. Current usage. If the measure was proposed in an academic environment and no

evidence concerning its actual use is provided, it is classified as Academic usage. If the measure was

proposed (or is currently being used) in the context of a company, it is classified as Industrial usage.

3.2. Conducting the review

The search to identify primary studies in the digital libraries was conducted on the 10
th
 of June, 2010.

A total of 305 research papers were obtained from those digital libraries obtained (some papers were

duplicated as a result of their appearance in several digital libraries). We also carried out a manual

search in the principal software engineering, SPL, and quality conference proceedings. This search did

not lead to the discovery of papers which had not already been found with the automatic search. The

search of these proceedings did not, therefore, add more papers to the systematic review, but the

effectiveness of the search string was confirmed. Finally, we searched grey literature using several

combinations of the search string in the Google and Yahoo search engines. This search allowed us to

add 6 papers to the total.

The papers were selected in accordance with inclusion and exclusion criteria. The most

significant aspect of this selection was that many of the papers from digital libraries were included as

potential papers because their titles and abstracts contained the search string. However, once the titles

and abstracts had been read (and this sometimes also required scanning the full paper) we discovered

that the topic of the paper was different to that of our study. Finally, 35 papers were selected for our

study. Table 5 shows a summary of both potential and selected papers by source.

Table 5. Summary of papers found and selected by source.

Source
Potential

Papers

Selected
Papers

(duplicates)

Selected
Papers

(not duplicates)

Digital Libraries
 IEEExplore 78 15 15
 ACM 73 14 5
 Science Direct 36 5 2
 Inspec 103 15 7
 Springer Link 15 2 0
Grey Literature 6 6

 Total: 35

Since some papers were available in several digital libraries, they appeared in more than one

source. Table 5 summarizes the selection of papers by source. It shows that the sources that

contributed the greatest number of papers were IEEExplore, ACM Digital Library, and Inspec. The

column Number of Selected Papers (duplicates) shows the total number of papers selected from each

source. Note that the sum of the number of papers in each digital library was greater than the total

number of studies that were included in our study. This is because some studies were repeated.

Specifically, 18 studies were found in only one source; 12 studies were found in two sources; and 6

studies were found in three sources. The column Number of Selected Papers (not duplicates) shows

the total number of papers from each source, but in this case we have not considered a paper when it

has appeared in a previous source.

4. Results of the systematic review

The systematic review found 35 primary studies, 22 of which presented measures and quality attributes.

In these papers we gathered 165 measures that evaluate 98 different quality attributes. The remainder (13

papers) solely discuss quality attributes but do not explain what measures(s) can be used.

The results of the review are discussed in the following subsections. Section 4.1 presents and

discusses the results of the data extraction process. Section 4.2 presents statistics concerning the

results related to the quality attributes (e.g. number of measures per quality attribute). The appendices

show all the results. Appendix A lists the references of the primary studies. Appendix B shows all the

measures with each data extraction criteria along with the quality attribute related with these measures.

Finally, Appendix C shows the quality attributes (for each quality attribute it shows how many times

the quality attribute has been named by an author in the primary studies and the number of measures

that measured it).

4.1. Measures for evaluating quality in software product lines

In this subsection we discuss each data extraction criterion and the results obtained. Table 6

summarizes the number of measures and the percentages for each data extraction criterion. Moreover,

Appendix B shows all the measures and their classification.

Table 6. Data extraction criteria results.

Data Criteria Strategy Possible answers # Measures Percentage

Criterion 1. Quality characteristic evaluated
 Functionality Suitability 2 1%
 Reliability 1 1%
 Performance efficiency 9 5%
 Operability 1 1%
 Security 1 1%
 Compatibility 0 0%
 Maintainability 151 92%
 Transferability 0 0%

Criterion 2. Quality attribute evaluated by the measure
 2.1. Type of attribute Internal attribute 144 87%
 External attribute 21 13%

Criterion 3. Type of measure
 Base Measure 47 28%
 Derived Meaure 118 72%

Criterion 4. Result of the measure
 4.1. Type of evaluation Qualitative 2 1%
 Quantitative 163 99%
 Hybrid 0 0%

 4.2. Precision Exact 163 99%
 Probabilistic 2 1%

Criterion 5. Phase of the life cycle in which the measure is applied
 DE Requirements 16 9%
 DE Design 116 67%
 DE Realization 7 4%
 DE Test 6 3%
 AE Requirements 0 0%
 AE Design 2 1%
 AE Realization 3 2%
 AE Test 4 2%
 Evolution 18 10%

Criterion 6. Artifact(s) used to calculate the measure
 PL Architecture 110 56%
 Asset 63 32%
 Product architecture 7 4%
 Final Product 17 9%

Criterion 7. Other characteristics
 7.1. Compositionality Yes 71 43%
 No 94 57%

 7.2. Variability Yes 79 48%
 No 86 52%
Criterion 8. Validation procedure
 Theoretical validation Yes 13 8%
 No 152 92%

 Property-based approach 13 100%
 Measurement-theory approach 0 0%

 Other 0 0%

 Empirical validation Yes 42 25%
 No 123 75%

 Case study 38 90%
 Survey 0 0%
 Controlled Experiment 4 10%

 Not validated 110 67%

Criterion 9. Tool support
 Manual 80 48%
 Automatic 85 52%

Criterion 10. Current usage
 Academic 139 84%
 Industrial 26 16%

Following, we discuss each data extraction criterion:

Criterion 1. Quality characteristic evaluated by the measure

The results indicate that most of the measures evaluate attributes related to maintainability (92%). In

general, these measures are related to variability [6], reusability [61] [53] [48] [56], complexity [61] or

evolution [2]. For example, Alves de Oliveira et al. [6] present a measure suite to support SPL

architecture evaluation. The measures are divided according to the UML element that they measure:

use cases, classes, components, diagrams, and UML models representing the overall PL. These

measures measure the variability complexity of the UML elements.

Her et al. [53] propose a framework for evaluating the reusability of core assets in PL

engineering, which consists of five core quality attributes (i.e., Functional commonality, Non-

functional commonality, Variability richness, Applicability, Tailorability) and two auxiliary quality

attributes (i.e., Understandability, Component replaceability) and their corresponding measures, along

with guidelines for applying the measures. Zhang et al. [61] measure the complexity of product line

architecture by considering variability. Ajila and Dumitrescu [2] propose measures such as Number of

modules, Source of change, Code churn, Changes in product line, etc. in order to record changes in the

product line and to understand software product line evolution. The rationale for classifying these

measures in this quality characteristic is that these describe aspects of the maintainability. SQuaRE

[26] classifies reusability as a sub-characteristic of maintainability. We have classified variability as a

subcharacteristic of reusability since the reusability in SPL is related with the degree of the variability

of the product line. In the literature several studies suggest a relationship between the structural

complexity of a software artifact and its maintainability [3]. Moreover, the measures proposed by

Zhang et al. [61] measure the complexity of product line architecture by considering variability.

Finally, the evolution of a SPL [54] is driven by changes in the requirements on the products in the

family, and this is partially represented by the modifiability characteristic. In SQuaRE [26],

modifiability is a subcharacteristic of maintainability that represents the degree to which a product or

system can be effectively and efficiently modified without introducing defects or degrading existing

product quality.

Of the total number of measures, 5% measure efficiency; such as the Platform efficiency

measure and the Efficiency measure for the entire stream of derivate products based on a common

product line architecture proposed by Meyer and Dalal [37].

Of the total number of measures, 1% measure quality attributes that are related to the functional

suitability characteristic. Inoki and Fukazawa [24] proposed Number of kinds of core assets and Total

number of core assets measures with which to discover the level of coverage in the SPL.

Of the total number of measures, 1% measure operability. Her et al. [53] measure the

understandibility of core assets by using the Overall Understandability (OU) measure. This measure

measures how easily, efficiently, and correctly the core asset description can be comprehended by

users, where the core asset description includes the specification, user manual, and any document

describing the core asset.

Of the total number of measures, 1% measure reliability. Abdelmoez et al. [1] measure the

probability of an error that arises in one component being propagated to other components, using the

Error Propagation measures.

Of the total number of measures, 1% measure security. Needham and Jones [40] propose a

measure with which to compare the safety represented by the structure and composition of software

fault trees with the same root hazard. Unfortunately, we did not find any measure for compatibility and

transferability.

The existing literature has clearly focused on assessing relevant aspects of product lines such as

variability and reusability (i.e., quality characteristics included in maintainability). We believe that this

fact is produced because these are characteristics very important for SPL. A product that is part of a

software product line is created based on the reuse of existing assets. The way the assets are reused

depends on the built-in variation mechanisms the assets contain. However, other characteristics are

important too in order to assure quality in SPL. There are other measures in literature with which to

evaluate quality characteristics, such as those described in the standard ISO 9126 [27], but they are

designed to assess individual products and not product lines. It would thus be necessary (1) to

theoretically and/or empirically demonstrate that it is possible to use these measures to evaluate

software product lines, or (2) to adapt the existing measures or propose new ones to evaluate other

characteristics which are different from maintainability.

Criterion 2. Quality attribute evaluated by the measure

With regard to the type of attribute, most of the measures evaluate internal attributes (87%), such as

the variability complexity [6], the tailorability [53], the evolution [2], the structural soundness [56],

which are all related to the product line architecture, structure and its components. For example, the

Total number of core assets and the Number of kinds of core assets are examples of measures for the

Levels of Coverage [24] attribute.

The external attributes are evaluated in 13% of the cases (e.g. the Maturity of an asset is

measured in [48] with several measures such as Number of open faults, Number of closed faults,

Average of number of days a fault remains, or Average age of a fault). We believe that a final result of

a large number of measures that measure internal attributes is a good result, since these attributes can

be measured at design time. Moreover, it would be interesting to relate internal attributes to external

attributes, since internal attributes may make an impact on external attributes. However, one of the

problems that we identified is that we could not find any studies that related internal quality attributes

with external quality attributes. Evaluating quality in an efficient manner throughout the whole life

cycle of software product lines is a major challenge, and the existence of measures to measure internal

attributes would greatly help to achieve this goal.

Criterion 3. Type of measure

The results show that most of the measures are derived measures (72%). Only 28% of the measures

can be calculated without using other measures (base measures). This is because, in general, the

attributes are complex and cannot be calculated directly. Base measures are often used to count the

number of elements (e.g., Number of class alternative inclusive variants, Number of use case

alternative exclusive variants, Number of variabilities in a class diagram, etc. [1]).

Some measures presented here are the basis for calculating other derived measures. For

example, Alves de Oliveira et al. [1] define the CompVariant measure as a complexity measure

(WMC value) for a given class, and the CompVariantVP as the CompVariant value of the class that is

a variation point. They then defined CompVP as CompVariantVP plus the summation of the

CompVariant of every Variant (CompVP = CompVariant + (summation from 1 to nVariants

(CompVariant))). In [56], Van der Hoek et al. present the Pactual and Ptotal measures. Pactual is the

number of services provided by a component x that is actually used by other components in the

architecture and Ptotal is the total number of services provided by the component x. The authors use

these measures to propose the Provided Service Utilization measure (PSU) for individual components

(PSU(x) is Pactual divided into Ptotal) and Compound PSU (CPSU) for architectures as a whole (CPSU

is defined as the sum of Pactual of all components in the architecture, divided by the sum of Ptotal of

all components in the architecture).

Criterion 4. Result of the measure

With regard to the type of evaluation, in general, the measures are calculated in a quantitative manner

(99%). For example, Platform efficiency [37], Relative cost to test a non-generic component [22], and

Tracking degradation [28] are calculated by assigning numbers. The measures are calculated in a

qualitative manner in 1% of cases. For example, [56] use the Compound Provided Service Utilization

and Compound Required Service Utilization measures to evaluate the internal cohesion of an

architecture by assigning the following values: unbalanced architecture; architecture significantly

degraded functionality; the architecture is too large, etc. Finally, none of the measures found provided

hybrid results. We believe that having most of the measures with quantitative results is more

comfortable for the evaluators as they can establish the values accepted for specific SPL (and for a

specific domain).

With regard to the precision, most of the measures provided exact measurement results (99%).

Only 1% of the measures provided probabilistic results. For example, Shaik [52] and Abdelmoez et al.

[1] calculate the Change propagation probability and the Error Propagation Probability of product line

architectures, respectively. While having many measures with exact results is beneficial, we think that

it would be advantageous to have probabilistic measures which had different results as a consequence

of several parameters.

Criterion 5. Phase of the life cycle in which the measure is obtained

Most of the measures are obtained during the Design stage of the Domain Engineering phase (67%);

for example, the Functional Coverage, the Coverage of Variability, the Cumulative Applicability and

the Component Compliance measures proposed by SunHer [53]. Of the total number of measures, 9%

were related to the Requirements stage of the Domain Engineering phase. Some examples of measures

that can be applied in this phase include the measures proposed by Alves de Oliveira [1]: number of

variation points in a use case diagram; number of alternative inclusive variants in a use case diagram;

number of alternative exclusive variants in a use case diagram; number of optional variants in a use

case diagram; number of variabilities in a use case diagram. This is a good result from the point of

view of the design. Of the total measures, 4% were related to the Realization stage of the Domain

Engineering phase. Some measures that can be applied in this phase are: Clone Coverage [60],

Number of Readable Properties, Number of Writable Properties [48]). Another 3% of the total is

obtained during the Test stage of the Domain Engineering phase. Some measures that can be applied

in this phase are the Number of Open Faults, Average of Number of Days to Close a Fault, and

Average of Number of Age of a Fault proposed in [48]).

Although we found a great number of measures, few of them can be applied in the Application

Domain Phase. Specifically, there is no measure that can be applied in the Requirements of the

Application Domain Phase; only 1% of them can be applied in the Design phase (e.g. Software Fault

Tree measure [40], Component Reuse Rate [61]); only 2% of them can be applied in the Realization

phase (e.g., Maintainability Index [2]), and only 2% of them can be applied in the Test phase (e.g.

Tracking Degradation [28]).

It is widely accepted that a good design improves the final software and decreases future errors.

Maybe for this reason most of the measures are focused on the Design stage of the Domain

Engineering phase. However, the quality assessment in the following phases of the SPL life cycle is

equally important since the quality in these phases could be modified when new requirements are

introduced. We believe that it would be desirable to have measures with which to validate a SPL in all

the phases of its construction, rather than being centered on only a few stages of its life cycle. The

results therefore show that more measures are needed to cover more phases of the SPL life cycle.

Finally, 10% of the measures measure the SPL in the Evolution Phase (e.g. Impact of change,

Adjusted product line growth, and Source of change measures proposed by [2]).

Criterion 6. Artifact(s) used to calculate the measure

The results show that the first most frequently evaluated artifact is Common architecture (56%) (e.g.,

[61], who propose PLA-IFG Cyclomatic Complexity, PLA-IFG vertex complexity, or PLA-IFG total

complexity, and [6], who propose Number of variabilities in use cases of a PL, Number of variabilities

in classes of a PL, or Number of variabilities in a PL). This result is consistent with the phase of the

life cycle that is most frequently evaluated: the Design in the Domain Engineering phase. Furthermore,

we believe that this is a good result for the challenges posed by product lines. By ensuring the quality

of the common architecture this quality can be inherited by the product architecture. The second most

frequently evaluated artifact is the asset (32%). For example, the measures proposed by Rahman [48]

for Interface Complexity (Number of properties, Number of services, Number of events, Number of

pre-conditions, Number of postconditions, Number of distinct range constraints on properties, etc.).

The quality of the assets is also very important since the final product will be built by using a set of

assets. Of the total, 9% are related to the Final Product artifact (e.g. Binary Size, Performance or

Cyclomatic complexity [50]). The product architecture artifact is evaluated by 4% of the measures

(e.g., the Component Reuse Rate [61], or Software Fault Tree Metric [53]).

Criterion 7. Other characteristics

The results show that 43% of the measures take into account issues related to the compositionality. For

example, the measures proposed by Ganesan et. al. [22] evaluate issues related to the component,

types of components and the relationship between them. On the other hand, there are other measures

such as Binary Size, Performance and Cyclomatic Complexity proposed in [50] that do not take the

compositionality into consideration.

The situation with regards to the variability is very similar: 48% of the measures take into

account issues related to the variability whereas 52% do not. For example, the variability is considered

in the measures proposed by Sun Her [53], Alves de Oliveira [6], and Zhang [61]. But others like

Code churn, Size of code in the product line or Impact of change [2]; Efficiency for any single

derivate product or Reuse for any single product [37]; or Change propagation probability [52] do not.

We believe that, depending on the quality attribute (e.g., maintainability, reusability,

modifiability) and the life cycle phase (e.g., requirements in domain engineering, design in domain

engineering) in which the measure is evaluated, the compositionality and the variability properties

may be more or less important. For instance, variability may be more important in the reusability for

an asset in the domain engineering design phase than for a final product in the application engineering

testing life cycle. Thus, we believe that when the measures are defined, they should consider these

properties.

Criterion 8. Validation procedure

The results show than 67% of the measures are not validated. With regard the validated

measures, 13 measures (8%) have been theoretically validated and 42 measures (25%) have been

empirically validated.

With regard the measures validated theoretically, all of them use a Property-based approach. For

instance Sun Her et al. [53] included a limited theoretical analysis based on the framework proposed

by Kitchenham [33] as well as an analysis of conformance using some criteria described by Ejiogu

[19] and IEEE Std 1061-1998 [18].

With regard the measures validated empirically, 90% of them use Case Studies and 10% use

Controlled Experiments. For instance, Wnuk et al. [59] evaluate the four measures (e.g., number of

scope inclusions at the timestamp, number of days needed to make a final decision about feature

extension) in three large platform projects and one measure (Reasons for scope exclusions) in one

large project. Sethi et al. [49] compare the conclusions reached by their measures with the conclusions

obtained from previous researchers for the same system.

The validation confirms that the measure is measuring that it intends to measure and the results

are as expected. Thus, although the systematic review has found many measures, there is a need to

validate them in order to verify them. Moreover, we want to comment that the significance and

relevance of the methods for software validation is often confusing. For example, many authors claim

to perform a case study when in fact they are making a proof of concept of their proposal. We intend

to differentiate between the two cases. Thus, we classified the measures as Not validated, as their

validations were carried out using an incorrect design of the validation. Unfortunately, most of the

papers do not fully explain the validation process and results. As such, it is difficult to know if a good

design exists or if it is only a proof of concept or a short validation.

Criterion 9. Support for the measure

The results show that many of the measures do not have a tool to support their evaluation (48%). In

some cases, the tool offers a semi-automatic evaluation. In these cases, we have classified these

measures as being automatic because there is a tool to assist the user. In total, 52% of the measures

have a tool which assists in the evaluation. Among the tools available are SD Metrics and the Eclipse

plug-in [6], SemanticDesigns [2], Matlab [2], Architecture Change Propagation Tool (SACPT) [52].

Criterion 10. Current usage

The results show that the authors of the articles commonly belong to universities. The use of the

measure is therefore often academic (84%). However, sometimes the measure has been adapted for

industrial use (16%) (e.g., Testo AG [22] or Ericcson Mobile Communication AB [28]). Perhaps

future research should attempt to determine why quality assurance measures are not being widely used

by the industrial sector. Nevertheless, our study is focused on papers and journals published in

research forums. This may be a limitation of this study because there might be other measures being

used in industrial settings.

4.2. Quality Attributes for Software Product Lines

 Quality attributes form the basis for product line quality evaluation. However, they should be

precisely defined because without elaboration quality attributes are subject to interpretation and

misunderstanding. Quality attributes exist in the context of specific goals (e.g., a system is modifiable

or not with respect to a specific type of change). The first step in defining a measure must be to

establish which quality attribute it is suppose to measure (and why it is relevant to measure it). In

section 4.1, we have summarized the software measures that have been proposed by researchers and

we have related them with their measured quality attribute. In some cases the authors of the papers

explicitly state the quality attribute. But in others, the authors do not relate the quality attributes with

the proposed measure(s) (the measures are proposed but no explanation about the quality attributes are

provided). We want to highlight this issue because it is important to specify the quality attribute

measured when a measure is proposed. In these cases, we have attempted to infer the quality attribute

from the context.

Moreover, some authors have discussed the importance of quality attributes for SPLs. We have

found 13 papers that discuss 76 quality attributes but do not propose measures for measuring them.

This is a good reference through which to discover which attributes are considered to be important by

other authors. Also, this information can be useful to provide quality attributes for the measures

presented in Section 4.1 (only few studies indicated the quality attribute being measured). Although

the authors of these papers do not present a measure in their works, some of these attributes have had a

measure proposed in other papers which allows them to be measured. We do not know why these

authors do not use other existing measures. Software engineers often need to express the artifact in a

specific model or language to use a measure. Perhaps these authors cannot use existing measures in

their works.

The table shown in Appendix C summarizes all the attributes founded in this systematic review.

Each quality attribute may appear in several papers. This quantity is shown in the Number of

repetitions column. In addition, each quality attribute may have several measures with which to

measure it (or no measure). This quantity is shown in the Number of measures column.

We have attempted to classify the attributes without measures in several criteria (characteristic

of quality, type of attribute, phase of life cycle), but the majority of authors do not correctly explain all

the information. The attributes with measures are classified in Section 4.1 (Criterion 2) together with

their measures. Moreover, the table shown in Appendix B shows the quality attribute measured by

each measure.

The results show that there are 98 quality attributes that have measures (165 measures in total)

and 76 quality attributes that do not have measures. There are thus many quality attributes that do not

have measures. The quality attributes with the greatest number of measures are: Complexity of a class

(12 measures), Complexity of a class diagram (9 measures), Complexity of a use case (9 measures),

Effort (7 measures), Complexity of a use case diagram (6 measures), Maturity (6 measures), or

Structural Soundness (6 measures).

From our analysis we detected that there are quality attributes that are relevant for any type of

product lines since they have an impact on the product line architectural level (e.g., modifiability,

variability). However, there are several other quality attributes that are very specific from the domain.

Considering the information extracted from the papers, it is not clear what the relevance is of these

quality attributes in practice. In general, the information provided in the papers about the quality

attributes is very poor (e.g., no scenario to illustrate the quality attributes was found). As future work

we plan to validate the relative importance of these quality attributes for specific domains (e.g.,

embedded systems, safety-critical systems) to provide more guidance to practitioners.

5. Discussion

In this section, we discuss the relevance and the contribution of the results of the systematic review,

and we point out the strengths and weaknesses of the evidence gathered. Since we wish to ensure the

validity of our systematic review, we also discuss its possible limitations and how they can be

resolved. Furthermore, we explain the validation of the review protocol using the procedure described

in Section 3.1.1.

5.1. Strengths and weaknesses

The main strengths are related to the life cycle development phase and the type of attribute evaluated.

With regard to the life cycle development phase, many measures are used in early stages of the life

cycle for evaluating specific properties of the product line architecture. However, regardless of this

result, we still believe that new measures should be proposed to cover the entire life cycle. With regard

to the attribute evaluated, many measures evaluate attributes that are relevant for SPL. We believe that

this is a good result since SPL is a development approach that is quite new, and there are fewer

methods and techniques for its evaluation than those available for the development of individual

products.

The main weaknesses are related to: the difficult application and adaptation of the measures to

any given SPL; the absence of measures that evaluate all of the quality characteristics; and the need to

validate the measures. With regard to the difficult application and adaptation of the measures, we have

found a large number of measures; however, it is not generally possible to select one and implement it

quickly. The main problem is that the measures are not correctly specified and/or do not specify the

attribute evaluated. For example, Alves de Oliveira et al. [6] propose a large number of measures.

They indicate 35 measures to support the evaluation of the product line architecture and also indicate

that combinations of these measures that can be used to calculate attributes such as complexity,

maintainability, and testability. However, the process is not clear. Some of the attributes measured are

not defined (they proposed 35 measures but they do not indicate the quality attribute measured by each

measure), and some of the measures are not clearly defined. For example, for the measure

UseCaseOptional [6] only a brief description is provided (“Use case is an optional variant”). The

authors do not clearly define what quality attribute this measure is supposed to measure neither how it

can be measured. Another aspect to consider is the type of specification or notation used to represent

the artifacts. Depending on the specification used, some measures can be used and others cannot. For

example, the Software Fault Tree measure [40] uses a representation with logic gates, the measures

proposed by [50] or [2] use the source code, and the measures proposed by [61] to specify the product

line architecture with using vADL language (a product line architecture description language) that was

designed for this purpose. Each measure is thus defined for a particular specification of the artifact and

it is not possible to use all of measures definitions in different artifacts.

With regard to the absence of measures that evaluate all quality characteristics, we have proved

in the results that most of the measures evaluate attributes that are related to the maintainability

characteristic. This characteristic is relevant for SPL because it is related to subcharacteristics such as

reusability, compositionality, and complexity. However, the remaining quality characteristics are also

important for SPL engineering.

With regard to the need to validate the measures, quality is an important issue since these

measures are intended to assess the quality of software product lines; we believe that they should also

be evaluated. The validation of a measure ensures that the measure evaluates the attribute correctly.

This undertaking gives the measures more relevance. However, according to the systematic review

only 31% of the measures have been validated. However, many authors confuse case study validation

with proof of concept, which are different actions. Moreover, none of the measures from our review

were tested in a controlled experiment to study the effects of internal quality attributes on external

quality attributes.

Among the measures reviewed, we highlight those of [53], who propose a framework for

evaluating the reusability of core assets in product lines. This study presents a clear statement of the

proposed measures, the artifacts used, and the relations among them. Moreover, the authors attempt to

perform a theoretical validation of the proposed framework.

5.2. Implications for research and practice

The contributions of this paper have implications for both research and practice. The review shows the

current state of the art with a certain level of guaranteed quality in the results. Knowing the state of the

art helps us to detect deficiencies, direct efforts, and identify new lines of research.

For both researchers and practitioners, the result of this systematic review is a catalogue of

measures which will enable them to discover which measures might be useful to them, which phase of

the life cycle the measure should be applied to, and which artifact can be evaluated. Our study also

shows whether the measure can be directly applied or whether it must be adapted to the SPL. The need

for new quality attributes or measures can also be detected.

The measures and quality attributes collected in this study are a good starting point for defining

a quality model for SPL. As defined in ISO/IEC 25000 (SQuaRE) [26], a quality model is a set of

characteristics and their relationships with each other, which form a framework for specifying

requirements and evaluating quality. Both researchers and practitioners can save time and effort since

they can reuse the measures or adapt them to other artifacts or specifications. Moreover, new measures

could be defined to measure the quality attributes that have been identified in this study and that do not

have any measure; or to cover the gaps that have been identified in the results of the systematic

review. There is a lack of quality attributes and measures related to functional suitability, reliability,

performance efficiency, operability, security, compatibility, and transferability. Additionally, it is

important to validate both existing measures and new proposed measures.

It would also be of interest to define a catalog of measures for specific domains with

information about each of them (e.g., quality attribute evaluated, the definition of the measure, the

artifact evaluated, and how to apply the measure with these artifacts) and classify them taking into

account the relative importance for the domain.

6. Validation of the systematic review

The main limitations of this study concern publication selection bias, incomplete string search, and

inaccuracy in data extraction or misclassification. To ensure that the systematic review was as correct,

complete and objective as possible, in this section, we discuss the threats to validity and the actions

taken to validate the planning of the systematic review protocol, the selection of primary studies, and

the data extraction strategy.

Before validating the planning, we reviewed the possible limitations. We thus selected digital

libraries that contain a very large set of publications in the Software Engineering field (IEEExplore,

ACM Digital Library, Science Direct, Springer Link and Inspec). Moreover, we scanned relevant

conference proceedings and journals. We chose those sources in which studies concerning software

quality, SPL and software engineering are normally published.

With regard to the search string, we attempted to collect all the strings that were representative

of the two research questions used. We refined the search string on several occasions based on the

results obtained in order to maximize the selection of papers related to the systematic review. We

additionally considered synonyms and included the lexeme of words. We also applied term patterns

and adapted the search string to each digital library in order to make the replication of the process

easier. Then, we ensured that the studies with which we were familiar were in the results. In addition,

we included grey literature. However, we did not consider unpublished results or papers not written in

English.

6.1. Validation of the review protocol

In order to evaluate the systematic review protocol we analyzed several guidelines to ensure that

we had included all the important activities. Once the guidelines to evaluate the review activities had

been established, we formulated the questions shown in Table 4. These were given to five domain

experts in the field of software engineering, who reviewed the planning and answered the questions

proposed for evaluating the protocol.

Table 4. Questionnaire for validating the planning of the systematic review

Issues concerning the final search string: 5 4 3 2 1

 The search string has sufficient synonyms.     

 The search string has sufficient lexemes.     

 The search string is too generic. (It obtains too many studies)     

 Familiar studies that are representative of the quality in SPL appear in the
results of the automatic search. (Example list of SPL papers)

- Van der Hoek et al. “Using Service Utilization Metrics to Assess the
Structure of Product Line Architectures”. IEEExplore.
- D. Needham and S. Jones. “A Software Fault Tree Metric”. IEEExplore.
- T. Zhang et al. “Some Metrics for Accessing Quality of Product Line
Architecture”. IEEExplore.
- N. Siegmund. “Measuring Non-functional Properties in Software Product
Lines for Product Derivation”. IEEExplore.

- J. S. Her. “A framework for evaluating reusability of core asset in product
line engineering”. ACM.

    

Issues concerning the primary sources: 5 4 3 2 1

 The digital libraries are representative of the area of study.     

 The conference and journals selected for the manual search are
representative of the area of study.

    

Issues concerning the extraction data criteria: 5 4 3 2 1

 The two research questions are fully answered using the established criteria.     

 There are other criteria that could be of interest.     

Indicate which ones:
 The descriptions of the criteria are clear.     

Each question has a descending scale of five possible values. The value of 5 signifies complete

agreement with the statement. The value of 1 signifies complete disagreement with the statement. The

empirical study consists of calculating the average of all the domain experts. If the final result is close

to 5, we consider that the planning protocol has an appropriate level of quality. If the result is close to

1, it must be reviewed.

The validation obtained a mark of 4.8 points of a possible 5. Although we believe that this is a

good result, we have considered the feedback of these experts in order to make improvements. The

main improvements were to introduce QoSA and RefsQ conference into the manual search, to change

the name of several data extraction criteria in order to improve their understanding, and to establish a

more accurate definition for certain data extraction criteria

6.2. Validation of selection of primary studies

In order to validate the correct descriptions of the inclusion and exclusion criteria, and the correct

selection of the studies by the reviewers, we did the following:

1. We selected a random set of ten studies (from which 6 studies were included and 4

studies were excluded).

2. The three reviewers of this research selected the studies by using the inclusion and

exclusion criteria.

3. The results were analyzed with Fleiss’ kappa.

Fleiss' kappa is a statistical measure for assessing the reliability of agreement between a fixed

numbers of raters when assigning categorical ratings to a number of items or classifying items. The

measure calculates the degree of agreement in classification over that which would be expected by

chance and is scored as a number between 0 and 1 (0 is a low agreement and 1 is a high agreement).

We used the Fleiss’ kappa to validate the process of inclusion/exclusion of primary studies. Finally,

http://en.wikipedia.org/wiki/Statistical_measure
http://en.wikipedia.org/wiki/Inter-rater_reliability
http://en.wikipedia.org/wiki/Categorical_rating

the results of the selection of each reviewer were checked and the discrepancies were resolved with

consensus.

Fleis’s kappa for agreement on inclusion in the review was 0.86 for the three raters. Although

there is not yet a general agreement on measure of significance, Landis and Koch [34] provide a table

for interpreting the values. In this table, they interpret that values between 0.81 and 1.00 are

considered Almost perfect agreement. Overall, this suggests excellent agreement among our raters.

6.3. Quality assessment of the primary studies

We have checked the relevance of the primary studies to provide their quality assessment. Each

study is rated according to two issues: (1) relevance of the conference or journal where the paper was

published, and (2) number of citations of the paper.

With regard the relevance of the conference or journal where the paper was published, we have

classified the papers in three categories: “Very relevant”, “Relevant”, and “Not so relevant”. This

question was rated by considering the CORE conference ranking (A, B, and C conferences) [15], and

the Journal Citations Reports (JCR) lists [29]. The following shows how the papers were classified:

 Very relevant: papers published in conferences rated as A in the CORE classification

or published in journals included in the JCR lists. In addition, we included in this

category the papers from conferences dedicates to SPL (e.g., Software Product Line

Conference, Software Product Families Engineering) since these conferences do not

appear in the CORE classification but they are very relevant for the SPL area. They

were scored with 10 points.

 Relevant: papers published in conferences ratted as B or C in the CORE classification

or published in journals not included in the JCR lists. In addition, we included in this

category thesis and technical reports. They were scored with 5 points.

 Not so relevant: papers published in conferences not indexed in the CORE

classification. They were scored with 0 points.

With regard to the number of citations of the paper, we classified again the papers in three

categories: “High”, “Medium”, and “Low”. This question was rated by considering the Google scholar

citation count. Note that we classified in a different way the papers published before 2008 and the rest

of papers. The reason is to not penalize the early publications. The following shows how the papers

were classified:

 If the paper was published before 2008:

o High: papers with more than 5 citations. They were scored with 10 points

o Medium: papers cited by 1-5 authors. They were scored with 5 points.

o Low: papers have not been cited. They were scored with 0 points.

 If the paper was published in or after 2008:

o Potentially High: papers cited. They were scored with 10 points

o Potentially Medium (n/d): papers have not been cited. They were scored with

5 points.

For each paper we have calculated these two aspects. These scores were not used to exclude

papers in the systematic review due the fact our objective is to gathering all the quality attributes

considered relevant for SPL and the measures proposed for SPL. However, these results address the

quality of the primary studies of our study.

The average of the first quality assessment (relevance of the conference or journal where the

paper is published) is 7.14 points. Whilst, the average of the second quality assessment (number of

citations of the paper) is 8.14 points. The results show that the selected papers are, generally,

published in relevant conferences and/or journals and they have been referenced by several other

publications.

6.4. Validation of data extraction criteria and classification

The threats to validity with regard to data extraction criteria and classification are related to an unclear

description of the data extraction criteria and problems with misclassification. With regard to the

description of the data extraction criteria, it is important to ensure that the definition is clear. A

confusing description may cause problems in the classification.

The data extraction criteria were validated by following similar steps to those described in

Section 6.2. First, we selected a random set of 3 studies (corresponding with 48 measures). Then,

three reviewers classified the studies with the data extraction criteria, and the results were analyzed

with Fleiss’ kappa. The results of the selection of each reviewer were checked and the discrepancies

were resolved by consensus.

Fleis’s kappa for agreement in the review was 0.79. Landis and Koch [34] interpret values

between 0.61 to 0.80 as Substantial agreement. Note that the value is very close to the next category:

Almost perfect agreement. The classification was not easy since the studies did not provide clear

answers to our data extraction criteria. Many measures were not described correctly or others were not

related to a quality attribute. Upon considering these drawbacks, we believe that this result provides a

good coefficient of agreement.

7. Conclusions and future work

Quality is a crucial factor in software engineering, but it is more important in SPL because an error in

the common architecture or in core assets may be propagated to final products. When evaluating

quality, measures are a good approach through which to predict, control and evaluate the software. A

great number of measures for evaluating SPL exist in literature. However, no study that gathers all the

relevant information about this topic exists.

We have presented a systematic literature review with the aim of locating and obtaining relevant

information about the measures and quality attributes used by researchers from 1996 to 2010 to assess

the quality of SPL. We have identified 165 measures and 174 quality attributes. Of 174 quality

attributes, 98 are evaluated for one or more measures, that is to say, 76 quality attributes found do not

have any measure for measuring them.

With regard to the measures, the most significant result is that 67% are not validated. We want

to point out that many authors claim that their measures are empirically validated through a case study,

but in fact they are using the case study as a proof of concept to show how the measures works.

Validation is an essential process to ensure the usefulness of software measures and it is important to

emphasize the relevance of the validation methods. A further significant result is that a high number of

measures were proposed for evaluating the maintainability characteristic (92%), whilst the remaining

quality characteristics are drastically ignored.

With regard to the life cycle phase in which the measures are applied, the study shows that the

measures focus on measuring artifacts produced during the requirements of domain engineering (9%),

the design of domain engineering (67%) and evolution (10%). That is to say, most of the measures

focus on the early phases of life cycle (requirements and design of domain engineering). In SPL, it is

important to evaluate the quality in these phases, since the common architecture and core assets are

designed in these phases. However, new requirements and assets, unpredictable restrictions between

assets etc. may appear. In summary, errors may be introduced in other phases, so it is important to

ensure quality in the whole life cycle.

The results obtained show that there is a need to propose more measures in order to cover

different gaps (e.g., to measure more quality attributes, quality characteristics, in more phases of the

life cycle), and the measures must be correctly validated.

We hope that our study will be used by both researchers and practitioners. The study is of

interest to researchers since they may find gaps in this topic and suggest issues to be further

investigated, whereas practitioners will be able to discover the current state of the art and recognize

measures which can be used/adapted in their companies. Only 16% of the measure findings are used in

an industrial environment. We believe that it is important to transfer and share knowledge between

companies and academic researchers.

As future work, we are defining a quality model for SPLs from the decomposition of the quality

model proposed in the standard SQuaRE [26]. This will integrate the measures obtained in this work

and add others necessary to complete the model. We have recently presented a preliminary version of

our quality model in [39]. Since most of the measures founded in this systematic review are not

validated, we will also conduct empirical studies to validate the usefulness of selected measures.

Acknowledgements. This research has been funded by the Spanish Ministry of Science and Technology

under the MULTIPLE (Multimodeling Approach For Quality-Aware Software Product Lines) project with ref.

TIN2009-13838.

References

[1] Abdelmoez, W., Nassar, D.M., Shereschevsky, M., Gradetsky, N., Gunnalan, R.,

Ammar, H.H., Yu, B., Mili, A.: Error Propagation In Software Architectures. In 10th

International Symposium on Software Metrics (METRICS), Chicago, Illinois, USA,

2004.

[2] Ajila, S. A., Dumitrescu, R. T.: Experimental use of code delta, code churn, and rate

of change to understand software product line evolution. Journal of Systems and

Software 80, pp.74-91, 2007.

[3] Aldekoa, G., Trujillo, S., Sagardui, G., Díaz, O. Experience measuring maintainability

in software product lines. In XV Jornadas de Ingeniería del Software y Bases de Datos

(JISBD). Barcelona, 2006.

[4] Aldekoa, G., Trujillo, S., Sagardui, G., Díaz, O.: Quantifying Maintanibility in Feature

Oriented Product Lines, Athens, Greece, pp.243-247, 2008.

[5] Alves, V., Niu, N., Alves, C., Valença, G. Requirements engineering for software

product lines: A systematic literature review. Information & Software Technology

52(8): 806-820 (2010)

[6] Alves de Oliveira Junior, E., Gimenes, I. M. S., Maldonado, J. C.: A Metric Suite to

Support Software Product Line Architecture Evaluation. In XXXIV Conferencia

Latinamericana de Informática (CLEI), Santa Fé, Argentina, pp.489-498, 2008.

[7] Bachmann, F. & Clements, P. Variability in Software Product Lines (CMU/SEI-2005-

TR-012, ADA450337). Pittsburgh, PA: Software Engineering Institute, Carnegie

Mellon University, 2005.

[8] Benavides, D., Segura, S., Trinidad, P., and Ruiz-Cortés, A. “FAMA: Tooling a

Framework for the automated analysis of feature models”. In 1st International

Workshop on Variability Modelling of Software Intensive Systems, 2007, pp.129-134.

[9] Bosch, J.: Design and use of software architectures: adopting and evolving a product

line approach. ACM Press/Addison-Wesley Publishing Co., USA, 2000.

[10] Briand, L.C., Differing, C.M., Rombach, D. Practical Guidelines for Measurement-

Based Process Improvement. Software Process-Improvement and Practice 2, pp.253-

280, 1996.

[11] Briand, L.C., Morasca, S., and Basili, V.R. Property Based Software Engineering

Measurement. IEEE Trans. Software Eng., vol. 22, no. 1, pp. 68-86, Jan. 1996.

[12] Calero, C., Ruiz, J., Piattini, M.: Classifying web metrics using the Web Quality

Model. Online Information Review, OIR - 29, 3 Emerald Literari. United Kingdom.

[13] Chen, L., Ali Babar, M., Ali, N. Variability Management in Software Product Lines:

A Systematic Review. In 13th International Software Product Lines Conferences

(SPLC), San Francisco, USA, 2009.

[14] Clements, P., and Northrop, L. Software Product Lines. 2003. Software Product Lines:

Practices and Patterns, Addison-Wesley, Boston, MA, 2002.

[15] Conference Rankings of Computing Research and Education Association of

Australasia (CORE). Available in

http://core.edu.au/index.php/categories/conference%20rankings/1

[16] Crnkovic, I., Larsson, M. Classification of Quality Attributes for Predictability in

Component-Based Systems. Journal of Econometrics, pp.231-250, 2004.

[17] Davis, A., Dieste, Ó., Hickey, A., Juristo, N., Moreno, A.M. Effectiveness of

Requirements Elicitation Techniques: Empirical Results Derived from a Systematic

Review. In 14th IEEE International Conference Requirements Engineering, pp.179-

188, 2006.

[18] IEEE standard for a software quality metrics methodology, IEEE Std 1061-1998,

1998.

[19] Ejiogu, L. Software Engineering with Formal Metrics. QED Publishing, 1991.

[20] Engström, E., Runeson, P. Software product line testing - A systematic mapping

study. Information & Software Technology 53(1): 2-13 (2011).

[21] Etxeberria, L., Sagarui, G., Belategi, L. Quality aware software product line

engineering. Journal of the Brazilian Computer Society, vol.14, no.1, Campinas Mar,

2008.

[22] Ganesan, D., Knodel, J., Kolb, R., Haury, U., Meier, G.: Comparing Costs and

Benefits of Different Test Strategies for a Software Product Line: A Study from Testo

AG. In 11th International Software Product Line Conference, Kyoto, Japan, pp.74-83,

September 2007.

[23] Gómez, O., Oktaba, H., Piattini, M., García, F.: A Systematic Review Measurement in

Software Engineering: State-of-the-Art in Measures. In First International Conference

on Software and Data Technologies (ICSOFT), Setúbal, Portugal, pp.11-14.

September, 2006.

[24] Inoki, M., Fukazawa, Y.: Software Product Line Evolution Method Based on Kaizen

Approach. In 22nd Annual ACM Symposium on Applied Computing, Korea, 2007.

[25] Insfran, E., Fernandez, A. A systematic review of usability evaluation in Web

development. 2
nd

 International Workshop on Web Usability and Accessibility

(IWWUA’08), New Zeland, LNCS 5176, Springer, pp.81-91, 2008.

[26] ISO/IEC 25000:2005. Software Engineering. Software product Quality Requirements

and Evaluation (SQuaRE).

[27] ISO/IEC 9126. Software Engineering. Product Quality.

[28] Johansson, E., Höst, R.: Tracking Degradation in Software Product Lines through

Measurement of Design Rule Violations. In 14th International Conference on

Software Engineering and Knowledge Engineering, Ischia, Italy, pp.249-254, 2002.

[29] Journal Citation Reports of Thomson Reuters. Available in

http://thomsonreuters.com/products_services/science/science_products/a-

z/journal_citation_reports/

[30] Kim, T., Ko, I.Y., Kang, S.W., and Lee, D.H. “Extending ATAM to assess product

line architecture”. In 8th IEEE International Conference on Computer and Information

Technology, pp. 790-797, 2008.

[31] Khurum, M., Gorschek, T. A systematic review of domain analysis solutions for

product lines. The Journal of Systems and Software. 2009.

[32] Kitchenham, B. “Guidelines for Performing Systematic Literature Reviews in

Software Engineering”. Version 2.3, EBSE Technical Report, Keele University, UK.

[33] Kitchenham, B., Pfleeger, S., Fenton, N.: Towards a framework for software

measurement validation. IEEE Transactions on Software Engineering 21 (12), 1995.

[34] Landis, J. R. and Koch, G. G. (1977) "The measurement of observer agreement for

categorical data" in Biometrics. Vol. 33, pp. 159–174.

[35] Matinlassi, M., Niemelä, E., and Dobrica, L. “Quality-driven architecture design and

quality analysis method: A revolutionary initiation approach to a product line

architecture”. Technical Report VTT-PUBS-456, VTT, 2002.

[36] Mendes, E.: A systematic review of Web engineering research. International

Symposium on Empirical Software Engineering. 2005. Noosa Heads, Australia.

[37] Meyer, M. H., and Dalal, D. Managing platform architectures and manufacturing

processes for non assembled products. Journal of Product Innovation Management.

Volume 19, Issue 4, pages 277–293, July 2002.

[38] Montagud, S., Abrahão, S. Gathering Current Knowledge about Quality Evaluation in

Software Product Lines. In 13th International Software Product Lines Conferences

(SPLC), San Francisco, USA, 2009.

[39] Montagud, S. Abrahão, S. A SQuaRE-bassed Quality Evaluation Method for Software

Product Lines. Master’s thesis, December 2009 (in Spanish).

[40] Needham, D., Jones, S.: A Software Fault Tree Metric. In 22nd International

Conference on Software Maintenance (ICSM), Philadelphia, Pennsylvania, USA,

2006.

[41] Niemelä E., and Immonen, A. “Capturing quality requirements of product family

architecture”. Information and Software Technology, 2007, vol. 49(11-12), pp.1107-

1120.

[42] Odia, O. E. Testing in Software Product Lines. Master Thesis Software Engineering of

School of Engineering, Bleking Institute of Technology. Thesis no. MSE-2007:16,

Sweeden, 2007.

[43] Olumofin, F. G., and Mišić, V. B. “A holistic architecture assessment method for

software product lines”. Information and Software Technology 49, 2007, pp. 309-323.

[44] Pérez Lamancha, B., Polo Usaola, M., Piattini Velthius, M. Software Product Line

Testing - A Systematic Review. ICSOFT (1) 2009: 23-30.

[45] Petticrew, Mark and Helen Roberts. Systematic Reviews in the Social Sciences: A

Practical Guide, Blackwell Publishing, 2005, ISBN 1405121106.

[46] Poels, G. and Dedene, G. Distance-based software measurement: necessary and

sufficient properties for software measures. Information and Software Technology.

42(I), 35-46. 2000.

[47] Prehofer, C., van Gurp, J., Bosch, J. Compositionality in Software Platforms. In

Emerging Methods, Technologies and Process Management in Software Engineering,

Wiley, 2008.

[48] Rahman, A.: Metrics for the Structural Assessment of Product Line Architecture.

Master Tesis on Software Engineering, Thesis no. MSE-2004:24. School of

Engineering, Blekinge Institute of Technology, Sweden, 2004.

[49] Sethi, K. Cai, Y., Wong, S., Garcia, A., Sant’Anna, C. From Retrospect to Prospect:

Assessing Modularity and Stability from Software Architecture. Joint Working

IEEE/IFIP Conference on Software Architecture, 2009 & European Conference on

Software Architecture. WICSA/ECSA 2009.

[50] Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Saake, G.: Measuring

Non-functional Properties in Software Product Lines for Product Derivation. In 15th

Asia-Pacific Software Engineering Conference, Beijing, China, 2008.

[51] de Souza Filho, E. D., de Oliveira Cavalcanti, R., Neiva, D. F. S., Oliveira, T.H.B.,

Barachisio Lisboa, L., de Almeida E.S., and de Lemos Meira, S. R. “Evaluating

Domain Design Approaches Using Systematic Review”. In 2nd European Conference

on Software Architecture, Cyprus, 2008, pp.50-65.

[52] Shaik I., Abdelmoez, W,. Gunnalan, R., Shereshevsky , M., Zeid, A., Ammar, H.H.,

Mili, A., and Fuhrman, C. Change Propagation for Assessing Design Quality of

Software Architectures. 5th Working IEEE/IFIP Conference on Software Architecture

(WICSA’05), 2005.

[53] Sun Her, J., Hyeok Kim, J., Hun Oh, S., Yul Rhew, S., Dong Kim, S.: A framework

for evaluating reusability of core asset in product line engineering. Information and

Software Technology 49, pp. 740-760, 2007.

[54] Svahnberg, M., Bosch, J. Evolution in software product lines. In 3
rd

 International

Workshop on Software Architectures for Products Families (IWSAPF-3). Las Palmas

de Gran Canaria, 2000.

[55] Thiel, S. “On the definition of a framework for an architecting process supporting

product family development”. In 4th International Workshop on Software Product-

Family Engineering, Springer-Verlag, London, UK, 2002, pp.125–142.

[56] Van der Hoek, A., Dincel, E., Medidović, N.: Using Services Utilization Metrics to

Assess the Structure of Product Line Architectures. In 9th International Software

Metrics Symposium (METRICS), Sydney, Australia, 2003.

[57] Van der Linden, F., Schmid, K., Rommes, E. Software Product Lines in Action.

Springer, 2007.

[58] Whitmire, S. Object Oriented Design Measurement. 1997.

[59] Wnuk, K., Regnell, B., Karlsson, L. What Happened to Our Features? Visualization

and Understanding of Scope Change Dynamics in a Large-Scale Industrial Setting. In

17
th
 IEEE International Requirements Engineering Conference, 2009.

[60] Yoshimura, K., Ganesan, D., Muthig, D.: Assessing Merge Potential of Existing

Engine Control Systems into a Product Line. In International Workshop on Software

Engineering for Automative Systems, Shangai, China, pp.61-67, 2006.

[61] Zhang, T., Deng, L., Wu, J., Zhou, Q., Ma, C.: Some Metrics for Accessing Quality of

Product Line Architecture. In International Conference on Computer Science and

Software Engineering (CSSE), Wuhan, China, pp.500-503, 2008.

Appendix A

List of papers selected in the systematic review.

S01 Abdelmoez, W., Nassar, D.M., Shereschevsky, M., Gradetsky, N., Gunnalan, R., Ammar, H.H., Yu, B., Mili, A.:

Error Propagation In Software Architectures. In 10th International Symposium on Software Metrics (METRICS),

Chicago, Illinois, USA, 2004.

S02 Ajila, S. A., Dumitrescu, R. T.: Experimental use of code delta, code churn, and rate of change to understand

software product line evolution. Journal of Systems and Software 80, pp.74-91, 2007.

S03 Aldekoa, G., Trujillo, S., Sagardui, G., Díaz, O.: Quantifying Maintanibility in Feature Oriented Product Lines.
In 12th European Conference on Software Maintenance and Reengineering, Athens, Greece, pp.243-247, 2008.

S04 Alves de Oliveira Junior, E., Gimenes, I. M. S., Maldonado, J. C.: A Metric Suite to Support Software Product

Line Architecture Evaluation. In XXXIV Conferencia Latinamericana de Informática (CLEI), Santa Fé,

Argentina, pp.489-498, 2008.

S05 Axelsson, J. Evolutionary Architecting of Embedded Automotive Product Lines: An Industrial Case Study. In

Joint Working IEEE/IFIP Conference on Software Architecture 2009 and European Conference on Software

Architecture 2009, WICSA/ECSA 2009, Cambridge, UK, 14-17 September 2009.

S06 Dincel, E., Medvidovic, N., Van der Hoek, A.: Measuring Product Line Architectures. In 4th International

Workshop on Product Family Engineering (PFE), Bilbao, Spain, 2001.

S07 Etxeberria, L., and Sagardui, G. Product-Line Architecture: New Issues for Evaluation. Software Product Lines

Conference, 2005,

S08 Gallina, B. and Guelfi, N. A Product Line Perspective for Quality Reuse of Development Framework for

Distributed Transactional Applications. In Internacional Computer Software and Applications Conference, 2008

S09 Gallina, B., and Guelfi, N. A Template for Requirement Elicitation of Dependable Product Lines. In International

Workshop on Requirements Engineering: Foundation for Software Quality (RefSQ), 2007.

S10 Ganesan, D., Knodel, J., Kolb, R., Haury, U., Meier, G.: Comparing Costs and Benefits of Different Test

Strategies for a Software Product Line: A Study from Testo AG. In 11th International Software Product Line

Conference, Kyoto, Japan, pp.74-83, September 2007.

S11 Gannod, G.C., and Lutz, R.R. An Approach to Architectural Analysis of Product Lines. In 22nd International

Conference on Software Engineering, 2000, pp.548-557.

S12 Geppert, B., Weiss, D.M. Goal-Oriented Assessment of Product-Line Domains. International Software Metrics

Symposium (METRICS’03), 2003.

S13 Hwan, S., Kim, J., Kim, J. An Elicitation Approach of Measurement Indicator Based on Product Line Context.

Proceedings of the Fourth International Conference on Software Engineering Research, 2006,

S14 Inoki, M., Fukazawa, Y.: Software Product Line Evolution Method Based on Kaizen Approach. In 22nd Annual

ACM Symposium on Applied Computing, Korea, 2007.

S15 Johansson, E., Höst, R.: Tracking Degradation in Software Product Lines through Measurement of Design Rule

Violations. In 14th International Conference on Software Engineering and Knowledge Engineering, Ischia, Italy,

pp.249-254, 2002.

S16 Kim, T., Ko, I.Y., Kang, S.W., and Lee, D.H. “Extending ATAM to assess product line architecture”. In 8th

IEEE International Conference on Computer and Information Technology, pp. 790-797, 2008.

S17 Land, R., Alvaro, A., Crnkovic, I. Towards Efficient Software Component Evaluation: An Examination of

Component Selection and Certification. 34th Euromicro Conference Software Engineering and Advanced

Applications, 2008.

S18 Lin, Y., Ye, H., and Tang, J. Measurement of the Complexity of Variation Points in Software Product Lines.

World Congress on Software Engineering, 2009.

S19 Lutz, R.R., Gannod, G.C. Analysis of a software product line architecture: an experience report. Journal of

Systems and Software 66 (2003) 253-267.

S20 Mellado, D., Rodríguez, J., Fernández-Medina, E., and Piattini, M. Automated Support for Security

Requirements Engineering in Software Product Line Domain Engineering. International Conference on

Availability, Reliability and Security, 2009.

S21 Meyer, M. H., and Dalal, D. Managing platform architectures and manufacturing processes for non assembled

products. Journal of Product Innovation Management. Volume 19, Issue 4, pages 277–293, July 2002.

S22 Misic, V. B. Measuring the Coherence of SoftwareProduct Line Architectures. technical report TR 06/03,

Department of Computer Science, University of Manitoba, June 2006.

S23 Mustapic, G., Andersson, J., Norström, C., and Wall, A. A Dependable Open Platform for Industrial Robotics –

A Case Study. In Architecting Dependable Systems II. Lecture Notes in Computer Science, 2004, Volume

3069/2004, 307-329

S24 Needham, D., Jones, S.: A Software Fault Tree Metric. In 22nd International Conference on Software

Maintenance (ICSM), Philadelphia, Pennsylvania, USA, 2006.

S25 Rahman, A.: Metrics for the Structural Assessment of Product Line Architecture. Master Tesis on Software

Engineering, Thesis no. MSE-2004:24. School of Engineering, Blekinge Institute of Technology, Sweden, 2004.

S26 Sethi, K. Cai, Y., Wong, S., Garcia, A., Sant’Anna, C. From Retrospect to Prospect: Assessing Modularity and

Stability from Software Architecture. Joint Working IEEE/IFIP Conference on Software Architecture, 2009 &

European Conference on Software Architecture. WICSA/ECSA 2009.

S27 Shaik I., Abdelmoez, W,. Gunnalan, R., Shereshevsky , M., Zeid, A., Ammar, H.H., Mili, A., and Fuhrman, C.

Change Propagation for Assessing Design Quality of Software Architectures. 5th Working IEEE/IFIP Conference

on Software Architecture (WICSA’05), 2005.

S28 Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Saake, G.: Measuring Non-functional Properties in

Software Product Lines for Product Derivation. In 15th Asia-Pacific Software Engineering Conference, Beijing,

China, 2008.

S29 Stoll, P., Bass, L., Golden, E., John, B.E. Supporting Usability in Product Line Architectures. In Software

Product Lines Conference, 2009.

S30 Stuikys, V., Damasevicius, R. Measuring Complexity of Domain Models represented by Feature Diagrams.

Information Technology and Control, 2009, Vol.38, No.3.

S31 Sun Her, J., Hyeok Kim, J., Hun Oh, S., Yul Rhew, S., Dong Kim, S.: A framework for evaluationg reusability of

core asset in product line engineering. Information and Software Technology 49, pp. 740-760, 2007.

S32 Van der Hoek, A., Dincel, E., Medidović, N.: Using Services Utilization Metrics to Assess the Structure of

Product Line Architectures. In 9th International Software Metrics Symposium (METRICS), Sydney, Australia,

2003.

S33 Wnuk, K., Regnell, B., Karlsson, L. What Happened to Our Features? Visualization and Understanding of Scope

Change Dynamics in a Large-Scale Industrial Setting. In 17th IEEE International Requirements Engineering

Conference, 2009.

S34 Yoshimura, K., Ganesan, D., Muthig, D.: Assessing Merge Potential of Existing Engine Control Systems into a

Product Line. In International Workshop on Software Engineering for Automative Systems, Shangai, China,

pp.61-67, 2006.

S35 Zhang, T., Deng, L., Wu, J., Zhou, Q., Ma, C.: Some Metrics for Accessing Quality of Product Line Architecture.

In International Conference on Computer Science and Software Engineering (CSSE), Wuhan, China, pp.500-503,

2008.

Appendix B

Classification of software measures found in the systematic review.

Legend
Measure Name of measure

Characteristic F = Functional Suitability, R = Reliability, Pe = Performance efficiency, O = Operability,

S = Security, C = Compatibility, M = Maintainability, T = Transferability

Quality Attribute Name: name of the quality attribute

Tp: Type of the attribute I = Internal, E = External

Type of Measure QN = Quantitative, QL = Qualitative

E = Exact, P = Probabilistic

Life-cycle Phase DE = Domain Engineering, DA = Domain Application

Req. = Requirements, Des. = Design, Real. = Realization, Test = Test, Evol. = Evolution

Artifact evaluated PLA = Product Line Architecture, Ass = Asset, Pro Arc = Product Architecture, Fin Pro = Final Product

Other

characteristics

C = Compositionality

V = Variability

Validation T = Theoretical validation, Met = Method PB = Property-based approach, MT = Measurement-theory approach

E = Empirical validation, Met. = Method CS = Case Studies, S = Surveys, CE = Controlled Experiments

Tool x = Some tool exists

Actual Usage A = Academic, I = Industrial

Reference Paper reference from Appendix A

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Binary Size M Binary Size I D QN E
DA

Test
 x x N - N - x x A S28

Cyclomatic

Complexity
M

Complexity of

source code
E D QN E

DA

Test
 x x N - N - x x A S28

Performance P Performance E D QN E
DA

Test
 x N - N - x x A S28

Class AlternativeOR M
Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Class

AlternativeXOR
M

Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

Class Mandatory M
Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

ClassNumVariantsA

ltOR
M

Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

ClassNumVariantsA

ltXOR
M

Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

ClassNumVariantsM

andatory
M

Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

ClassNumVariantsO

ptional
M

Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

ClassOptional M
Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

ClassTotal

PLVariabilities
M

Complexity of an

architecture (PLA)
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassTotal

AlternativeOR
M

Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassTotal

AlternativeXOR
M

Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassTotal

Mandatory
M

Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassTotalOptional M
Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassTotal

Variabilities
M

Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassTotalVP M
Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

ClassVP M
Complexity of a

class
I B QN E

DE

Des.
x x x N - N - x x A S04

Component

TotalVariabilities
M

Complexity of a

component diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Component Variable M
Complexity of a

component
I B QN E

DE

Des.
x x x N - N - x x A S04

CompPL M
Complexity of an

architecture (PLA)
I D QN E

DE

Des.
x x x N - N - x x A S04

CompVariability M
Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

CompVariant M
Complexity of a

class
I D QN E

DE

Des.
x x x N - N - x x A S04

CompVariantVP M
Complexity of a

class
I D QN E

DE

Des.
x x x N - N - x x A S04

CompVP M
Complexity of a

class
I D QN E

DE

Des.
x x x N - N - x x A S04

nVariants M
Complexity of a

class diagram
I D QN E

DE

Des.
x x x N - N - x x A S04

nVP M
Complexity of a

class diagram
I B QN E

DE

Des.
x x x N - N - x x A S04

PLTotalVariability M
Complexity of an

architecture (PLA)
I D QN E

DE

Des.
x x x N - N - x x A S04

UseCase

AlternativeOR
M

Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCase

AlternativeXOR
M

Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCaseMandatory M
Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCaseNum

VariantsAltOR
M

Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCase

NumVariants

AltXOR

M
Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCaseNum

VariantsMandatory
M

Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCaseNum

VariantsOptional
M

Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

UseCaseOptional M
Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotal

AlternativeOR
M

Complexity of a use

case diagram
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotal

AlternativeXOR
M

Complexity of a use

case diagram
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotal

Mandatory
M

Complexity of a use

case diagram
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotal

Optional
M

Complexity of a use

case diagram
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotalPL

Variabilities
M

Complexity of an

architecture (PLA)
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotal

Variabilities
M

Complexity of a use

case diagram
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseTotalVP M
Complexity of a use

case diagram
I D QN E

DE

Req.
x x x N - N - x x A S04

UseCaseVP M
Complexity of a use

case
I B QN E

DE

Req.
x x x N - N - x x A S04

Maintainability

Index (MI) (for a

product)

M

Maintainability

Index (MI) of a

product

I D QN E
DA

Real.
 x x N - N - x x A S03

Maintainability

Index (MI) (of a

feature)

M

Maintainability

Index (MI) of a

feature

I D QN E
DA

Real.
x x x N - N - x x A S03

Maintainability

Index (MI) (of the

architecture)

M

Maintainability

Index (MI) of the

architecture

I D QN E
DA

Real.
x x x N - N - x x A S03

Architecture

Variability (AV)
M Variability of PLA I D QN E

DE

Des.
x x N - N - x x A S35

Component Reuse

Rate (CRR)
M Component reuse I D QN E

DA

Des.
 x x N - N - x x A S35

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Exterior information

flow complexity

(EIFC)

M

Complexity of

interaction of the

ports of components

and the roles of

connectors

I D QN E
DE

Des.
x x N - N - x x A S35

Interior information

flow complexity

(IIFC)

M

Complexity of

interior information

flow arc of

component and

connector

I D QN E
DE

Des.
x x N - N - x x A S35

PLA-IFG

Cyclomatic

Complexity (PCC)

M
Flow structure

attribute of PLA
I D QN E

DE

Des.
x x N - N - x x A S35

PLA-IFG

information flow

complexity

M

Total complexity of

the PLA partially

from different point

of view

I D QN E
DE

Des.
x x N - N - x x A S35

PLA-IFG total

complexity (PTC)
M

Total complexity of

the PLA
I D QN E

DE

Des.
x x N - N - x x A S35

PLA-IFG vertex

complexity (PVC)
M

Total complexity of

the PLA partially

from some point of

view

I D QN E
DE

Des.
x x N - N - x x A S35

Reuse Benefit Rate

(RBR)
M Reuse Benefit I D QN E

DE

Real.
 x x N - N - x x A S35

Strong Coupling

Coefficient (SCC)
M

Strong Coupling of

PLA
I D QN E

DE

Des.
x x N - N - x x A S35

Structure Similarity

Coefficient (SSC)
M Similarity of PLA I D QN E

DE

Des.
x x N - N - x x A S35

Structure Variability

Coefficient (SVC)
M

Structure Variability

Coefficient (SVC)
I D QN E

DE

Des.
x x N - N - x x A S35

Variability Points

Number (VP)
M Variability of PLA I B QN E

DE

Des.
x x N - N - x x A S35

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Weak Coupling

Coefficient (WCC)
M

Weak Coupling of

PLA
I D QN E

DE

Des.
x x N - N - x x A S35

Architectural

Commonality (AC)
M

Architectural

commonality
I D QN E

DE

Des.
x x Y PB N - A S31

Component

Compliance (CC)
M

Component

replaceability
I D QN E

DE

Des.
 x x Y PB N - A S31

Coverage of

Variability (CV)
M Variability richness I D QN E

DE

Des.
x x x Y PB N - A S31

Cumulative

Applicability (CA)
M Applicability I D QN E

DE

Des.
x x x Y PB N - A S31

Effectiveness of

Tailoring (ET)
M

Effectiveness of

Tailoring
I D QN E

DE

Des.
 x x Y PB N - A S31

Functional Coverage

(FC)
M

Functional

commonality
I D QN E

DE

Des.
x x Y PB N - A S31

Non-Functional

Commonality (NFC)
M

Non-functional

commonality
I D QN E

DE

Des.
x x Y PB N - A S31

Non-functional

Coverage (NC)
M

Non-functional

features

commonality that

are not covered

I D QN E
DE

Des.
x x Y PB N - A S31

Overall

Understandability

(OU)

O Understandability I D QN E
DE

Des.
 x x Y PB N - A S31

Reusability (RE) M
Reusability of a core

asset
I D QN E

DE

Des.
x x x Y PB N - A S31

Tailorability (TL) M Tailorability I D QN E
DE

Des.
 x x Y PB N - A S31

Tailorability of

Closed variability

(TC)

M
Tailorability of

Closed variability
I D QN E

DE

Des.
 x x Y PB N - A S31

Tailorability of

Open variability

(TO)

M
Tailorability of

Open variability
I D QN E

DE

Des.
 x x Y PB N - A S31

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Cognitive

Complexity of a

Feature Model (I)

M

Cognitive

Complexity of a

Feature Model

I B QN E
DE

Des.
x x N - N - x A S30

Cognitive

Complexity of a

Feature Model (II)

M

Cognitive

Complexity of a

Feature Model

I B QN E
DE

Des.
x x N - N - x A S30

Compound

Complexity of a

Feature Diagram

M

Compound

Complexity of a

Feature Diagram

I D QN E
DE

Des.
x x N - N - x A S30

Structural

Complexity of a

Feature Model

M

Structural

Complexity of a

Feature Model

I D QN E
DE

Des.
x x N - N - x A S30

Efficiency for any

single derivate

product

P
Final product

efficiency
I D QN E Evol. x N - Y CS A S21

Efficiency for the

entire stream of

derivative products

based on a common

PLA

P PLA efficiency I D QN E Evol. x x N - Y CS A S21

Reuse for any single

product
M

Final product

reusability
I D QN E Evol. x x N - Y CS A S21

Reuse for the entire

stream of derivative

products based on a

common platform

architecture

M PLA reusability I D QN E Evol. x x N - Y CS A S21

Adjust product line

growth
M Effort I D QN E Evol. x x N - N - x I S02

Changes on product

line
M Effort I D QN E Evol. x x N - N - x I S02

Code churn (changes

in product line layer)
M Effort I B QN E Evol. x N - N - x I S02

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Code churn (for

product layer)
M Effort I D QN E Evol. x N - N - x I S02

Code churn on

product line
M Effort I D QN E Evol. x x N - N - x I S02

Efficiency M Efficiency I D QN E Evol. x x N - N - x I S02

Impact of change M Effort I D QN E Evol. x N - N - x I S02

Number of modules M Size I B QN E Evol. x N - N - x I S02

Product line growth M Size I D QN E Evol. x N - N - x I S02

Size of code in the

product line
M Size I B QN E Evol. x N - N - x I S02

Size of product code M Size I B QN E Evol. x N - N - x I S02

Source of change M Effort I D QN E Evol. x x x N - N - x I S02

Software Fault Tree

Metric
S

Security of product

architecture
I D QN E

DA

Des.
 x x x N - N - x I S24

Average of number

of age of a fault
M Maturity E D QN E

DE

Test
 x N - Y CS A S25

Average of number

of days to close a

fault

M Maturity E D QN E
DE

Test
 x N - Y CS A S25

Configuration

Complexity Metric
M

Configuration

Complexity
I D QN E

DE

Des.
 x N - Y CS A S25

Constraint

Complexity Metric
M

Constraint

complexity
I D QN E

DE

Des.
 x N - Y CS A S25

Interface

Complexity Metric
M

Interface

Complexity of a

sofware component

I D QN E
DE

Des.
 x N - Y CS A S25

Modularity M
Modularity of the

architecture
I D QN E

DE

Des.
x N - Y CS A S25

Number of closed

faults
M Maturity E B QN E

DE

Test
 x N - Y CS A S25

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Number of

constraints on

sequence of interface

invocations

M
Interface Constraints

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of different

configurations a

component can

operate in

M

Interface Packaging

and Configurations

Complexity

I D QN E
DE

Des.
 x N - Y CS A S25

Number of distinct

range constraints on

properties

M
Interface Constraints

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of events M
Interface Signature

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of faults in

requirements and

design

M Maturity E B QN E
DE

Test
 x N - Y CS A S25

Number of open

faults
M Maturity E B QN E

DE

Test
 x N - Y CS A S25

Number of post-

conditions
M

Interface Constraints

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of pre-

conditions
M

Interface Constraints

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of

properties
M

Interface Signature

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of readable

properties
M Observability I D QN E

DE

Des.
 x N - Y CS A S25

Number of services M
Interface Signature

Complexity
I B QN E

DE

Des.
 x N - Y CS A S25

Number of writable

properties
M Customizability I D QN E

DE

Des.
 x N - Y CS A S25

Avg. Nº of days a

fault remains
M Maturity E D QN E

DE

Test
 x N - Y CS A S25

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Overall Interface

Complexity of a

Component Metric

M

Interface

Complexity of a

Component

I D QN E
DE

Des.
 x N - Y CS A S25

Ratio de servicios

provistos sin

parámetros de un

componente

(SCp(c))

M

Self Completeness

(Degree of

independence in

term of the

functionality that it

provides)

I D QN E
DE

Des.
 x N - Y CS A S25

Ratio de servicios

provistos sin valor

de retorno de un

componente (SCr(c))

M

Self Completeness

(Degree of

independence in

term of the

functionality that it

provides)

I D QN E
DE

Des.
 x N - Y CS A S25

Reusability of

architecture
M

Reusability of

architecture
I D QN E

DE

Des.
x x N - Y CS A S25

Signature

Complexity Metric
M

Signature

Complexity
I D QN E

DE

Des.
 x N - Y CS A S25

Compound PSU

(CPSU)
M Internal cohesion I D QN E

DE

Des.
x x x N - N - x A S32

Compound RSU

(CRSU)
M Internal cohesion I D QN E

DE

Des.
x x x N - N - x A S32

Internal cohesion of

architecture
M Internal cohesion I D QL E

DE

Des.
x x x N - N - x A S32

Number of services

provided by

component x that is

actually used by

other components in

the architecture

(Pactual(x))

M Structural soundness I D QN E
DE

Des.
x x x N - N - x A S32

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Number of services

required by

component x that is

actually used by

other components in

the architecture

(Ractual(x))

M Structural soundness I D QN E
DE

Des.
x x x N - N - x A S32

Provided Service

Utilization (PSU)
M Structural soundness I D QN E

DE

Des.
x x x N - N - x A S32

Required Service

Utilization (RSU)
M Structural soundness I D QN E

DE

Des.
x x x N - N - x A S32

Total number of

services provided by

component x

(Ptotal(x))

M Structural soundness I B QN E
DE

Des.
 x x N - N - x A S32

Total number of

services required by

component x

(Rtotal(x))

M Structural soundness I B QN E
DE

Des.
 x x N - N - x A S32

Error Propagation R Error propagation I D QN P
DE

Des.
x x N - Y CS x A S01

Average PSU M
Cohesion of a

complex component
I D QN E

DE

Des.
 x x N - N - x A S06

Average PSU per

Product Family

Architecture

M

Average PSU per

Product Family

Architecture

I D QN E
DE

Des.
x x N - N - x A S06

Average RSU M
Cohesion of a

complex component
I D QN E

DE

Des.
 x x N - N - x A S06

Average RSU per

Product Family

Architecture

M

Average RSU per

Product Family

Architecture

I D QN E
DE

Des.
x x N - N - x A S06

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Number of days

from the beginning

of the project until a

feature was included

P

Time when a feature

was included into

the scope of the

project

I B QN E
DE

Des.
x N - Y CS x A S33

Number of days

needed to make a

final decision about

feature exclusion

P
Number of scope

decision per feature
I B QN E

DE

Des.
x N - Y CS x A S33

Number of scope

chages for non-

survivors needed to

mrevoe them from

the scope

P
Number of scope

decisions per feature
I B QN E

DE

Des.
x N - Y CS x A S33

Number of scope

exclusions at the

timestamp

P

Size and direction of

scope changes over

time

I B QN E
DE

Des.
x N - Y CS x A S33

Number of scope

inclusions at the

timestamp

P
Size and direction of

scope changes over
I B QN E

DE

Des.
x N - Y CS x A S33

Reason for scope

exclusions
P

Rationale for

removing features

from the scope

I B QL E
DE

Des.
x N - Y CS A S33

Number of kinds of

core assets
F Level of Coverage I B QN E

DE

Des.
x x N - N - x A S14

Total number of core

assets
F Level of Coverage I B QN E

DE

Des.
x x N - N - x A S14

Clone Coverage M Similarity I D QN E
DE

Real.
 x N - N - x I S34

Tracking

Degradation
M

Tracking

Degradation
E D QN E

DA

Test
x x x x N - N - x I S15

Coherence of a

component
M Coherence E D QN E

DE

Des.
x x x N - N - x A S22

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Cost of testing a

single product
M

Cost of testing a

single product
E D QN E

DE

Des.
 x x N - N - x x I S10

Percentage of non-

generic reusable

components per

product

M

Percentage of non-

generic reusable

components per

product

E D QN E
DE

Des.
 x x N - N - x x I S10

Percentage of

product-specific

components per

product

M

Percentage of

product-specific

components per

product

E D QN E
DE

Des.
 x x N - N - x x I S10

Percentage of

slightly generic

reusable components

per product

M

Percentage of

slightly generic

reusable

components per

product

E D QN E
DE

Des.
 x x N - N - x x I S10

Percentage of very

generic reusable

components per

product

M

Percentage of very

generic reusable

components per

product

E D QN E
DE

Des.
 x x N - N - x x I S10

Relative cost to test

a non-generic

component

M

Relative cost to test

a non-generic

component

E D QN E
DE

Des.
 x x N - N - x x I S10

Relative cost to test

a slightly generic

component

M

Relative cost to test

a slightly generic

component

E D QN E
DE

Des.
 x x N - N - x x I S10

Relative cost to test

a very generic

component

M

Relative cost to test

a very generic

component

E D QN E
DE

Des.
 x x N - N - x x I S10

Relative cost to test

adaptations to a non-

generic component

M

Relative cost to test

adaptations to a non-

generic component

E D QN E
DE

Des.
 x x N - N - x x I S10

Measure
Cha-

racte-
ristic

Quality Attribute
Type

Meas.
Result of
measure

Life-
cycle
Phase

Artifact evaluated
Other

Charact.
Validation

Tool
Actual
Usage

Refe-
rence

Name Tp PLA Ass
Pro
Arc

Fin
Pro

C V T Met E Met
Not

Valid

Relative cost to test

adaptations to a

slightly generic

component

M

Relative cost to test

adaptations to a

slightly generic

component

E D QN E
DE

Des.
 x x N - N - x x I S10

Relative cost to test

adaptations to a very

generic component

M

Relative cost to test

adaptations to a very

generic component

E D QN E
DE

Des.
 x x N - N - x x I S10

Variation Rank of a

variant
M

Variability of a

variant
I D QN E

DE

Des.
x x N - N - x A S18

Variation Rank of a

variation point
M

Variability of a

variation point
I D QN E

DE

Des.
x x N - N - x A S18

Change Propagation

Coefficient (CPC)
M

Potencial of an

architecture to

insulate its

components from

each other's changes

I D QN E
DE

Des.
x x x N - Y CS x A S27

Change propagation

probability (CP)
M

Change propagation

probability on

architecture

I D QN P
DE

Des.
x x x N - Y CS x A S27

Concern Overlap M
Interaction between

two concerns
I D QN E

DE

Des.
x N - Y CE x A S26

Decision Volatility M
Stability of a

decision
I D QN E

DE

Des.
x N - Y CE x A S26

Design Volatility M
Stability of all

decisions
I D QN E

DE

Des.
x N - Y CE x A S26

Independence Level M
Independece of the

system
I D QN E

DE

Des.
x N - Y CE x A S26

Binary Size M Binary Size I D QN E
DA

Test
 x x N - N - x x A S28

Appendix C

List of quality attributes for software product lines found in the systematic review

Quality attribute
Number of

occurrences

Number of

Measures

Accuracy 1 0

Active domain 1 0

Applicability 1 1

Architectural commonality 1 1

Architecture compliance 1 0

Atomicity 1 0

Availability 3 0

Average PSU per Product Family Architecture 1 1

Average RSU per Product Family Architecture 1 1

Behaviour 1 0

Beneficio de la reusabilidad 1 0

Binary Size 1 1

Change propagation probability on architecture 1 1

Clarity of the reasons for scope decisions 1 0

Cognitive Complexity of a Feature Model 2 2

Coherence 1 1

Cohesion of a complex component 2 2

Commercial efficiency 1 0

Complexity 1 0

Complexity of a class 12 12

Complexity of a class diagram 9 9

Complexity of a component 1 1

Complexity of a component diagram 1 1

Complexity of a use case 9 9

Complexity of a use case diagram 6 6

Complexity of an architecture (PLA) 4 4

Complexity of interaction of the ports of components and the

roles of connectors
1 1

Complexity of interior information flow arc of component and

connector
1 1

Complexity of source code 1 1

Compliance 1 0

Component replaceability 1 1

Component reuse 1 1

Composability 1 0

Compound Complexity of a Feature Diagram 1 1

Confidentiality 1 0

Configurability 1 0

Configuration Complexity 1 1

Quality attribute
Number of

occurrences

Number of

Measures

Consistency 1 0

Constraint complexity 1 1

Cost for production of core assets 1 0

Cost of testing a single product 1 1

Cost of use of core assets 1 0

Customer satisfaction 1 0

Customizability 1 1

Defect density of applied artifacts 1 0

Defect density of core assets 1 0

Defect density trend 1 0

Deletions 2 0

Direct product cost 1 0

Durability 1 0

Effect to investment 1 0

Effectiveness of Tailoring 1 1

Efficiency 2 1

Effort 7 7

EMC 1 0

Energy efficiency 1 0

Error propagation 1 1

Evolution 1 0

Extensibility 5 0

Final product efficiency 1 1

Final product reusability 1 1

Flexibility 1 0

Flow structure attribute of PLA 1 1

Functional commonality 1 1

Functional requirements 1 0

Independece of the system 1 1

Independent domain 1 0

Infraestructure production cost 1 0

Integrity 2 0

Interaction between two concerns 1 1

Interface Complexity of a Component 1 1

Interface Complexity of a sofware component 1 1

Interface Constraints Complexity 4 4

Interface Packaging and Configurations Complexity 1 1

Interface Signature Complexity 3 3

Internal cohesion 3 3

Interoperability 2 0

Isolation 1 0

Quality attribute
Number of

occurrences

Number of

Measures

Level of Coverage 2 2

Maintainability 2 0

Maintainability Index (MI) of a feature 1 1

Maintainability Index (MI) of a product 1 1

Maintainability Index (MI) of the architecture 1 1

Market feature application scope 1 0

Market satisfaction 1 0

Maturity 6 6

Mission focus 2 0

Modifiability 1 0

Modularity of the architecture 1 1

Non-functional commonality 1 1

Non-functional features commonality that are not covered 1 1

Number of scope decision per feature 1 1

Number of scope decisions per feature 1 1

Observability 1 1

Operational time during parking 1 0

Percentage of non-generic reusable components per product 1 1

Percentage of product-specific components per product 1 1

Percentage of slightly generic reusable components per product 1 1

Percentage of very generic reusable components per product 1 1

Performance 3 1

Physical fitness 1 0

Physical weight of the system 1 0

PLA efficiency 1 1

PLA reusability 1 1

Portability 4 0

Potencial of an architecture to insulate its components from each

other's changes
1 1

Power consumption during normal operation 1 0

Process compliance 3 0

Produceability 1 0

Productivity 1 0

Quality of core assets 1 0

Rationale for removing features from the scope 1 1

Relative cost to test a non-generic component 1 1

Relative cost to test a slightly generic component 1 1

Relative cost to test a very generic component 1 1

Relative cost to test adaptations to a non-generic component 1 1

Relative cost to test adaptations to a slightly generic component 1 1

Relative cost to test adaptations to a very generic component 1 1

Reliability 3 0

Quality attribute
Number of

occurrences

Number of

Measures

Responsiveness of the communication networks 1 0

Restructuring 2 0

Reusability 1 0

Reusability of a core asset 1 1

Reusability of architecture 1 1

Reuse rate 2 0

Revenue-producing domain 1 0

Robustness 1 0

Safety 5 0

Scalability 3 0

Schedule difference 1 0

Security 1 0

Security of product architecture 1 1

Self Completeness (Degree of independence in term of the

functionality that it provides)
2 2

Serviceability 1 0

Signature Complexity 1 1

Similarity 1 1

Similarity of PLA 1 1

Size 4 4

Size and direction of scope changes over time 2 2

Stability of a decision 1 1

Stability of all decisions 1 1

Stability of the scoping process 2 0

Strong Coupling of PLA 1 1

Structural Complexity of a Feature Model 1 1

Structural soundness 6 6

Structure Variability Coefficient (SVC) 1 1

Styling compatibility 1 0

Suitability 1 0

Tailorability 1 1

Tailorability of Closed variability 1 1

Tailorability of Open variability 1 1

Testability 1 0

The number and type of artifacts in asset library 1 0

The number of products (past, current, and future) 1 0

Throughput 1 0

Time distributed over cycle time activity 1 0

Time to market 2 0

Time when a feature was included into the scope of the project 1 1

Total complexity of the PLA 1 1

Quality attribute
Number of

occurrences

Number of

Measures

Total complexity of the PLA partially from different point of

view
1 1

Total complexity of the PLA partially from some point of view 1 1

Total product development cost 1 0

Tracking Degradation 1 1

Understandability 1 1

Usability 2 0

Usefulness of core assets 1 0

Variability of a variant 1 1

Variability of a variation point 1 1

Variability of PLA 2 2

Variability richness 1 1

Viable domain 1 0

Volatility and dynamics of the scope decisions 2 0

Volatility of the scope decisions 1 0

Weak Coupling of PLA 1 1

