
HAL Id: hal-00805856
https://inria.hal.science/hal-00805856

Submitted on 29 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pairwise Testing for Software Product Lines:
Comparison of Two Approaches

Gilles Perrouin, Sabastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry,
Yves Le Traon

To cite this version:
Gilles Perrouin, Sabastian Oster, Sagar Sen, Jacques Klein, Benoit Baudry, et al.. Pairwise Testing for
Software Product Lines: Comparison of Two Approaches. Software Quality Journal, 2012, 20 (3-4),
pp.605-643. �10.1007/s11219-011-9160-9�. �hal-00805856�

https://inria.hal.science/hal-00805856
https://hal.archives-ouvertes.fr

Software Quality Journal manuscript No.
(will be inserted by the editor)

Pairwise Testing for Software Product Lines:

Comparison of Two Approaches

Gilles Perrouin · Sebastian Oster ·

Sagar Sen · Jacques Klein · Benoit
Baudry · Yves le Traon

Received: date / Accepted: date

Abstract Software Product Lines (SPL) are difficult to validate due to com-
binatorics induced by variability, which in turn leads to combinatorial explo-
sion of the number of derivable products. Exhaustive testing in such a large
products space is hardly feasible. Hence, one possible option is to test SPLs
by generating test configurations that cover all possible t feature interactions
(t-wise). It dramatically reduces the number of test products while ensuring
reasonable SPL coverage. In this paper, we report our experience on applying
t-wise techniques for SPL with two independent toolsets developed by the au-
thors. One focuses on generality and splits the generation problem according
to strategies. The other emphasizes providing efficient generation. To evalu-
ate the respective merits of the approaches, measures such as the number of
generated test configurations and the similarity between them are provided.

G. Perrouin
University of Namur, PReCISE, B-5000 Namur, Belgium
E-mail: gilles.perrouin@fundp.ac.be

S. Oster
Real-Time Systems Group, Technische Universität Darmstadt, Germany
E-mail: sebastian.oster@es.tu-darmstadt.de

S. Sen
INRIA Sophia Antipolis, 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex,
France
E-mail: sagar.sen@sop.inria.fr

J. Klein
University of Luxembourg, SnT and LASSY, Campus Kirchberg, Luxembourg
E-mail: jacques.klein@uni.lu

B. Baudry
Triskell Team, IRISA/INRIA Rennes Bretagne Atlantique, Rennes, France
E-mail: bbaudry@irisa.fr

Y. Le Traon
University of Luxembourg, SnT and LASSY, Campus Kirchberg, Luxembourg
E-mail: yves.letraon@uni.lu

2 Gilles Perrouin et al.

By applying these measures we were able to derive useful insights for pairwise
and t-wise testing of product lines.

Keywords Model-based Engineering and Testing · Test Generation · t-wise
and pairwise · Software Product Lines · Alloy

1 Introduction

When a company rapidly derives a wide range of different products a key-
challenge is to ensure correctness and safety of most of these products (if not
all) at a low cost. Software Product Line (Pohl et al, 2005; Clements and
Northrop, 2001a) (SPL) techniques, and tools allow to engineer such families
of related products. However, they rarely focus on testing the SPL as a whole.
A software product line is usually modeled with a feature diagram (Kang et al,
1990), describing the set of features in the SPL and specifying the constraints
and relationships between these features. For example, mandatory features as
well as mutually exclusive ones can be described. As a result, from a feature
diagram it is possible to derive products by selecting a set of features that
satisfy all the constraints. The product is a software system built by composing
the software assets that implement each feature (Perrouin et al, 2008).

Product line testing consists in deriving a set of products and in testing
each product. Although required to achieve 100 % SPL coverage, testing each
product individually is rarely feasible in practice. In the automotive domain,
each car of a certain brand may have a different software configuration induced
by different choices made in the feature diagram. Generally, the number of pos-
sible configurations induced by a given feature diagram grows exponentially
with the number of features quickly leading to millions of possible configura-
tions to test. As a result, test engineers are seeking solutions to reduce the
number of configurations to test in order to meet release deadlines and cost
constraints.

Previous work (Cohen et al, 1997; Kuhn et al, 2004) has identified combi-
natorial interaction testing (CIT) as a relevant approach to reduce the number
of products for testing. CIT is a systematic approach for sampling large do-
mains of test data. It is based on the observation that most of the faults are
triggered by the interactions between a small numbers of variables. This has
led to the definition of pairwise (or 2-wise) testing. This technique selects the
set of all combinations so that all possible pairs of variable values are included
in the set of test data. Pairwise testing has been generalized to t-wise testing
which samples the input domain to cover all t-wise combinations (Lei et al,
2008; Bryce and Colbourn, 2009). In the context of SPL testing, this consists
of selecting a small set of products in which all t-wise feature interactions occur
at least once.

Such algorithms enable to drastically reduce the number of configurations
to test from billions or millions to a few dozens or hundreds making the testing
effort tractable. However, questions remain with respect to the merits of CIT
for everyday SPL testing practice. CIT algorithms require the use of constraint

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 3

solvers to generate pairwise configurations. Constraint Satisfaction Problems
(CSP) are known to be NP-complete in the general case. This inevitably leads
to scalability issues. These issues have to be handled pragmatically because
the “phase transitions” which distinguish tractable problems from untractable
ones are not known à priori (Monasson et al, 1999). Also these algorithms
do not natively consider constraints between features. As such constraints are
common in SPL modeling, extensions of CIT algorithms are needed (Calvagna
and Gargantini, 2009, 2008; Bryce and Colbourn, 2006; Cohen et al, 2007).
Furthermore, SPL engineers are used to design feature diagrams but not to
write CNF clauses - inputs of CSP solvers - that are numerous for any real-
istic case. Hence, solutions have to be proposed to automatically derive such
inputs from feature diagrams handled by modeling tools. Finally, to increase
confidence of test engineers in the viability of such techniques for SPL testing,
considerations about the efficiency, quality and flexibility of the generation
approach are important. These considerations lead to questions about test
diversity, size of test suites or computation time.

1.1 Contribution

In this paper, we report on our efforts towards solving the aforementioned
questions. In particular, we describe two approaches developed by the au-
thors, (Oster et al, 2010; Perrouin et al, 2010), exhibiting different concerns
and choices in the implementation of the pairwise algorithms for testing soft-
ware product lines. Our goal is to provide decision criteria to the software
tester willing to apply t-wise testing for SPL. To support these criteria in an
objective way, we generalize measures, initially presented in (Perrouin et al,
2010) to qualify any t-wise generation algorithm. For example, we are able to
characterize if and how optimally the t-wise criteria is met by analyzing the
number of times a given interaction appears in a generated test suite. Such a
value can be used by testers to gain confidence that their tests will cover the
same interaction in various cases. Providers of t-wise toolsets can also use such
a measure to improve their implementations. Another important criteria is the
similarity of generated test configurations: depending on their needs, testers
validate small variations in important products or test the SPL broadly. To
assess this, we form the concept of test configuration similarity based on a
distance metric. We present these measures in Section 4 and this is the first
contribution of this paper.

The second contribution is formed by the lessons we have learned in ap-
plying these measures on several feature diagrams with our two approaches.
By applying our measures we are able to highlight the particular impact the
choice of implementation technologies (and the theories underlying them) has
on generated test suites. We confirm here previously identified tendencies in
our previous work (Oster et al, 2010; Perrouin et al, 2010). Our conviction is
that we have learned with these approaches is transferable to other approaches

4 Gilles Perrouin et al.

as well, serving as an evaluation framework for pairwise and t-wise testing of
software product lines.

1.2 Outline

The remainder of this paper is structured as follows: Section 2 provides the
background of our approach. There, we first introduce the context of our con-
tribution together with our running example, which we use throughout this
paper. Furthermore, those preliminaries give a short introduction to feature
modeling and SPL testing, and define the vocabulary used to introduce and
compare both approaches. A problem statement describing the challenges of
our contribution is provided at the end of Section 2. Both approaches are de-
scribed in Section 3 using our running example. To compare both approaches
we define a comparison framework in Section 4 by defining criteria for com-
parison. The actual experimentation is presented in Section 5. Section 6 deals
with experimental results and summarizes pros and cons of each approach in
order to assist the tester in his choice. Section 7 discusses related work. Finally,
Section 8 concludes this paper and discusses the ongoing research and open
research questions.

2 Background

In this section we provide the preliminaries of our contribution describing the
use of feature models within SPL engineering, and how it can be related to
SPL testing purposes. Furthermore, this section provides the detailed problem
description we address in this paper.

2.1 Context & Example

In this paper, we address the problem of testing software developed accord-
ing to the SPL paradigm - “a set of software intensive systems, that share a
common, managed set of features satisfying the specific needs of a particular
market segment or mission, and that are developed from a common set of core
assets in a prescribed way” (Clements and Northrop, 2001b) - to effectively
address differences required by each product while reusing common parts to
increase productivity. Hence the key to success in any SPLE approach is the
sensible management of commonalities and differences or variability manage-
ment (Metzger et al, 2007). One of the most practical techniques is feature
modeling (Kang et al, 1990) which aims at representing the common and vari-
able features 1 of a product family. Feature modeling can be used to document
and analyze variability during any phase of the SPL development lifecycle.

1 Defined by Pamela Zave as “An increment in functionality”. See http://www.research.
att.com/~pamela/faq.html and (Batory et al, 2006).

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 5

Hence, every stakeholder can manipulate features “as is”, independently of
the kind of variability and the level of abstraction. Moreover, feature models
(FMs) encourage defining a standard vocabulary for a domain language and
are ideal abstractions which customers, experts, and developers can easily un-
derstand. FMs hierarchically structure domain concepts into multiple levels
of increasing detail thus proposing a taxonomy. The upper most feature is
called the root. Root feature is then decomposed in sub-features (children),
and when a feature has no child it is denoted as a leaf (on the contrary, the
root feature has no parent). When decomposing a feature into sub-features,
the sub-features may be optional, mandatory or may form Alternative, Or, or
And groups. We can also denote the fact that a feature requires another one
or excludes it. A particular product is formed according to the valid selection
of features in the feature model. Such a valid selection of features is called a
configuration of the feature model. The process of actually building the corre-
sponding software on the basis of a configuration is called product derivation
(Ziadi and Jézéquel, 2006).

Fig. 1 depicts the feature model for a smartphone-based SPL based on the
Google Android operating system. This example will be used as a running
example throughout the paper to illustrate and compare our two approaches
for pairwise testing. The FM was added to the FM repository on the SPL
Online Tool website (Mendonca et al, 2009) in order to provide it to the
community.

8MP

Basic Functions

Voice Call

Cell Phone

Bluetooth UMTSWLAN

Communication Extras

MP3 CameraMessage

MMSSMS 3MP

Or 2Or 1

Mandatory

Optional

OrEither

Or-Group

Alternative-

Group

exclude

require

Fig. 1 Feature model of our AndroidSPL running example

The features Basic Functions, Messages, Voice Call, and SMS are
mandatory and part of every product derived from the cell phone SPL. The
feature MMS is optional for product instantiation. Communication and
its subfeatures: WLAN, Bluetooth, and UMTS are optional as well. The
feature Extras is mandatory and the underlying or-group demands that at
least one element of the or-group (MP3 or Camera) has to be selected. It
is also possible to select both MP3 and Camera within the same product.
Either the 3MP (3 megapixel) or the 8MP (8 megapixel) has to be chosen
if Camera is included. As this example illustrates, there are certain rules

6 Gilles Perrouin et al.

to fulfill in order to correctly select features for a given configuration of the
feature model; 1) The root feature has to be in the selection, 2) The selection
should evaluate to true for all operators referencing them, 3) All constraints
(require and exclude) must be satisfied 4) For any feature that is not the root,
its parent(s) have to be in the selection. Considering this, 61 valid products
can be derived on the basis of this FM.

2.2 Feature Modeling and SPL Testing

Due to its intuitiveness and conciseness, feature modeling has become a de
facto standard to represent and analyze SPL. Indeed, Feature models have
to be considered for integration with the concrete syntax of current attempts
to standardize a common variability modeling language at the Object Man-
agement Group2. However to be a suitable for automated SPL testing (and
verification), feature models have to satisfy two requirements; 1) be precise
enough so that automatic extraction of test configurations can be performed
against well-defined criteria and 2) be able to relate “concrete” assets of the
SPL. Regarding this last requirement, it is important to note that the notion of
“feature” can have many different meanings depending on the context (Classen
et al, 2008). To preserve concision a feature should abstract the details of its re-
alization while efficiently associating them to allow product construction. Pro-
viding such solutions (Czarnecki and Antkiewicz, 2005; Perrouin et al, 2008)
are out of the scope of this paper as we focus on the problem of generating
abstract test cases and not executing them. Regarding the first requirement,
feature models have been equipped with formal semantics (Schobbens et al,
2007; Czarnecki et al, 2005; Batory, 2005; Schobbens et al, 2006; Czarnecki and
Wasowski, 2007) and automated analysis (Benavides et al, 2010) techniques
and tools. There are three main benefits of formal semantics for SPL testing:

– Notation-independent toolsets. Since their original proposal 20 years
ago, a plethora of different notations ((Czarnecki et al, 2005; Griss et al,
1998; Kang et al, 1998) to name a few) have been developed. Indeed, fea-
ture models can be considered as a product line of notations sharing com-
monalities and exposing syntactical and semantic differences which were
not always explicitly motivated. In such a context, it is not obvious for
modelers to choose a specific notation on objective grounds. Furthermore,
similar tool support performing analysis and derivation has to be devel-
oped for each notation. Based on a formal evaluation framework to evalu-
ate the expressiveness of feature models, we were able to define a generic
metamodel (Perrouin et al, 2008) for feature modeling, independent of any
concrete syntax, and able to capture various feature modeling approaches.
This metamodel is used to characterize the inputs of (Perrouin et al, 2010)
testing approach and broaden its applicability.

2 See document ad/09-12-03 on the OMG website for the full request for proposals

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 7

– Test configuration generation. Automated test case generation re-
quires the ability to form automatically valid configuration of the feature
model. As we have seen this implies satisfying all the constraints of the fea-
ture model. Formally, this can be seen as a Constraint Satisfaction Prob-
lem (CSP). Formalization in terms of propositional logic (Batory, 2005;
Schobbens et al, 2007) helps encoding the problem in terms of inputs pro-
cessable by CSP or SAT-solvers. The testing approaches described in this
paper make use of these solvers.

– Test metrics and coverage. Formalization of feature models also per-
mits to define metrics for testing and assess coverage. For example, it is
possible to compute all the possible valid configuration of a feature model
as we have done for our example above. Even if we usually do not build
all the possible members of a product line, this is an important metric
to evaluate the efficiency of test case reduction. Another interesting figure
is the number of core or common features (Mendonça et al, 2009). This
helps to characterize the distribution of feature in the generated test con-
figurations. This contribution focuses on feature model based metrics and
coverage criteria and does not take into account metrics and coverage ad-
dressing code or models for test or implementation purposes linked to the
features of the feature model.

Therefore, we can use feature models as a relevant artifact to generate test
configuration suites for SPLs. We introduce some vocabulary to establish a
mapping between feature modeling concepts and testing ones.

SPL Test Case

A SPL test case is one valid product of the product line. Therefore, a test case
is formed by a valid configuration of the feature model and its appropriate
derivation. Once this test case is generated from a feature diagram, its be-
havior has to be tested. This is the goal pursued by the MoSo-PoLiTe (Oster
et al, 2010) approach. However, in this article we focus only on the first step;
obtaining a set of abstract test cases with respect to a given criteria.

SPL Test Configuration

A SPL test configuration is one valid configuration of a feature model. This
configuration is then used to form a test case. In the following we will simply
refer to SPL test configuration as “test configuration”.

SPL Test Configuration Suite

A SPL test configuration suite is a set of SPL test configurations. We will refer
this term to as “test suite”.

8 Gilles Perrouin et al.

Valid/Invalid t-tuple

A t-tuple (were t is a natural integer giving the number of features present
in the t-tuple3) of features is said to be valid (respectively invalid), if it is
possible (respectively impossible) to derive a product that contains the pair
(t-tuple) while satisfying the feature model’s constraints.

SPL test adequacy criterion

SPL variability represented in feature models can induce billions of possibili-
ties, making any attempt of exhaustive testing unfeasible. Thus, to determine
whether a test suite is able to cover all the SPL configurations represented by
the feature model, we need to express test adequacy conditions that will allow
reducing the number of test configurations to handle. In this paper we use the
combinatorial interaction testing techniques which were successfully applied to
test software were multiple combinations are possible such as medical systems
(Kuhn et al, 2004) or web browsers on multiple platforms (Kuhn et al, 2008).
In particular, we consider the “t-wise” (Kuhn et al, 2004; Cohen et al, 2006)
adequacy criterion (all-t-tuples) were each valid t-tuple of features is required
to appear in at least one test case.

Test generation

In our context of SPL testing, test generation consists of analyzing a feature
model in order to generate a test configuration suite that satisfies pairwise
coverage of features.

Pairwise (and more generally t-wise) is a set of constraints over a range of
variables (mathematically defined as covering arrays (Phadke, 1995)). Thus,
it is possible to use SAT-solving technology (Torlak and Jackson, 2007; Ma-
hajan and Z. Fu, 2004; Niklas Een and Niklas Sorensson, 2005) to compute
such arrays. In our case, variables are the features of a given feature model. As
we have seen feature models can be formalized in terms of propositional logic
which enable to see the problem “t-wise generation for feature models” as con-
straint satisfaction problem (CSP). Another possibility besides SAT-solving is
to apply another well-known CSP solver: Forward Checking (Haralick and El-
liott, 1980).
Extensions of original CIT techniques have been proposed to handle con-
straints. Calvagna et al. (Calvagna and Gargantini, 2008) generates pairwise
test sets on abstract state machines and propositional formulas representing
constraints over the variables. A Satisfiability Modulo Theory (SMT) solver
is employed to verify consistency of the test configuration to include in the
suite. This approach is very close to one of strategies developed in (Perrouin
et al, 2010) though the models and technologies employed differ. Cohen et al.

3 In general we will use the term “tuple” to mention a t-tuple when t does not matter. In
the special case of pairwise, i.e. when t = 2, we denote a 2-tuple by the term “pair”.

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 9

(Cohen et al, 2007) examines the need for mixing pairwise algorithms with
SAT solvers to handle constraints and present possible extensions of AETG
in this respect. Bryce et al. (Bryce and Colbourn, 2006) distinguish different
kinds of constraints and assign priorities to pairs. However this last method is
not directly applicable to feature models since ”hard constraints” (constraints
that prevents unfeasible combination of pairs to occur in a test configuration)
are not covered by the approach.

3 Two Approaches for t-wise Testing

In this section, we present the toolsets developed by the authors to address
pairwise (and more generally t-wise) testing of software product lines. The
first one has been developed by Perrouin et al. (Perrouin et al, 2010) and
called “Alloy-Based Toolset/Approach” in the reminder of this paper. The
second one has been developed by Oster et al. (Oster et al, 2010) and called
“Dedicated CSP based Toolset/Approach”.

3.1 Alloy-Based Approach (Perrouin et al, 2010)

In the following, we describe the automatic generation of test products from
a feature diagram that satisfy the t-wise SPL test adequacy criteria. Our tool
support has been designed to support any value of t. The toolset has been
implemented mostly in JAVA (approximately 2.3 KLOC) for t-wise generation
and metrics computation and Kermeta (Muller et al, 2005) for transforming
feature diagrams into alloy specifications. The methodology consists of five key
steps shown in Figure 2.

The generation is based on Alloy as the underlying formalism to formally
capture all dependencies between features in a feature diagram as well as the
interactions that should be covered by the test configurations. Alloy is a formal-
ism dedicated to lightweight formal analysis (Jackson, 2006). Alloy provides
a set of concepts allowing to specify elements and constraints between them.
The first construct is Signature (sig). A signature defines a set of elements
and possibly the relationships with other elements. Signatures are similar to
type declarations in an object-oriented language. Facts (fact) are axioms that
specify constraints about elements and relationships. These axioms must al-
ways hold, they are close to the concept of invariants in other specification
languages. Predicates, (pred), as opposed to facts, define constraints which
can evaluate to true or false. With these constructs it is possible to build var-
ious kinds of Alloy models and to ask alloy if it is possible to find instances
that satisfy all constraints and evaluate one predicate to true. The scope is
an integer bound on the maximum number of instances for each signature
(Jackson, 2006). This allows the limitation of the search space in which Alloy
looks for a solutions and this is a way to finely tune how Alloy builds instances
satisfying a model.

10 Gilles Perrouin et al.

��������	
����
�	����

���������	�
���

�
���������������

��������	�
���������

�
������������	��	

�������	������	������	�

�
������
����	��	

�����	������

�
	��������	���	�������	

������
�����	��	������

����������� �
��������

�����!

�
��������	�

�����	��	�

"����	

#������	�������

��

���	��	�����	������

�

$%��&%�'(�����

$%��&%�'(�����	��

����
����	������
�

���	��	����	�����)
����
��*

�������	���	�����	������

�

Fig. 2 Product Line Test Generation Methodology

3.1.1 Step 1: Transforming Feature Diagrams to Alloy

In order to generate valid test configurations directly from a feature diagram,
we need to transform the diagram in a model that captures constraints between
features. The FeatureDiagram2Alloy transformation automatically generates
an Alloy model AF from any feature model F expressed in our generic feature
diagram formalism (Perrouin et al, 2008).

s ig SMS{}
s ig MMS{}
s ig VoiceCal l{}
s ig WLAN{}
s ig Bluetooth {}
s ig UMTS{}
s ig MP3{}
s ig ThreeMP{}
s ig EightMP{}
s ig Bas i cFunct ions{}
s ig Message {}
s ig Communication{}
s ig Extras{}
s ig Camera{}
s ig CellPhone {}

Listing 1 Generated Signatures for Features for the CellPhone SPL

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 11

The AF model captures all features as Alloy signatures and a set of Alloy
signatures that capture all constraints and relationships between features. This
model also declares two signatures that are specific to test generation: config-
uration that corresponds to a test configuration and that encapsulates a set
of features (listing 2); ProductConfiguration (listing 3) which will encapsulate
a set of test cases.

Example. In the Cell Phone SPL, shown in Figure 1, we have 15 features
f1, f2, ..., f15. The transformation FeatureDiagram2Alloy generates 15 signa-
tures to represent these features shown in listing 1. Signatures representing
mandatory features are preceded by the alloy keyword one stating that their
valuation is always one. Signatures representing variable features are preceded
by the alloy keyword lone (meaning zero or one).

s ig Conf igura t ion
{
f1 : one SMS, //mandatory
f2 : lone MMS, // va r i ab l e
. . .
f13 : one Extras ,
f14 : lone Camera ,
f15 : one CellPhone , //mandatory
}

Listing 2 Generated Signature for Configuration of Features for the CellPhone SPL

one sig ProductConf igurat ions
{

c on f i gu ra t i on s : set Conf igurat ion
}

Listing 3 Generated Signature for Set of Configurations

The FeatureDiagram2Alloy transformation generates Alloy facts in AF .

Example

In the listing 4 we present two generated Alloy facts corresponding to the XOR
and AND operators. These facts must be true for all configurations. The first
constraint states that if Camera (f14) is selected then the sum resulting from
the selection of children features (ThreeMP and EightMP, respectively f8 and
f9) cannot be greater than 1.

// Camera XOR Operator => ThreeMP XOR EightMP XOR
fact Inva r i an t Operato r 12
{

a l l c : Conf igu rat ion | #c . f14==1 implies ((#c . f 8 + #c . f 9)==1)
}
// CellPhone And Operator => Bas i cFunct ions AND Extras AND
fact Inva r i an t Operato r 13
{

a l l c : Conf igu rat ion | #c . f15==1 implies (#c . f10=1 and #c . f13=1)
}

Listing 4 Generated Facts for XOR and AND operators

The FeatureDiagram2Alloy transformation has been implemented as a model
transformation in the Kermeta metamodeling environement (Muller et al,
2005). Since our feature diagram formalism is generic (Perrouin et al, 2008)

12 Gilles Perrouin et al.

various kinds of feature diagrams can be automatically transformed e.g. FODA
FMs (Kang et al, 1990) or the orthogonal variability model (OVM) proposed
by Pohl et al. (Pohl et al, 2005).

3.1.2 Step 2: Generation of Tuples

In Step 2, we automatically compute the set I of all possible tuples from feature
diagram AF and the number t. The tuples enumerate all t-wise interactions
between all selections of features in AF .

Example. The 3-tuple t =< #f15 = 1,#f2 = 0,#f13 = 1 > for the value
t = 3 contains 3 features and their valuations. In the tuple we state that the
test suite must contain at least one test configuration that has features f15
(CellPhone), not f2 (MMS) but f13 (Extras).

The initial set of tuples I is the set of tuples that cover all combinations
of t features taken at a time. For example, if there are N features then the
size of I is 2NCT minus all tuples with repetitions of the same feature (e.g.
< #f15 = 1,#f15 = 1 >). In the case of the Cell Phone SPL and considering
pairwise (or 2-wise) there are 435 possible combinations of features. As there
are 15 repetitions of the same feature, we consider only 420 tuples in our set
I.

Each tuple t in I also has an Alloy predicate representation. An Alloy
predicate representation of a tuple t is t.predicate.

Example. The tuple t =< #f15 = 1,#f2 = 0,#f13 = 1 > is shown in listing
5.

pred t
{

some c : Conf i gurat ion | #c . f15=0 and #c . f2=0 and #c . f13=1
}

Listing 5 Example Tuple Predicate

3.1.3 Step 3: Detection of Valid Tuples

In this third step, we use the predicates derived from each possible tuple in
order to select the valid ones according to the feature model. We say that a
tuple is valid if it can be present in a valid instance of the feature diagram F .

Example. Consider our running example, t =< #f2 = 1,#f14 = 0 > is
not a valid tuple, as the feature f2 (MMS) required the existence of fea-
ture f14 (Camera) and hence we neglect it. On the other hand, the 3-tuple
t =< #f1 = 1,#f2 = 0,#f4 = 1 > is valid since all feature selections
hold true for F . We determine the validity of each such tuple t by solving
AF ∪ t.predicate for a scope of exactly 1. This translates to solving the Alloy
model to obtain exactly one product for which the tuple t holds true.
For the Cell Phone case study we have 420 tuples for pair-wise (t = 2) inter-
actions in the initial set I. We select 257 valid tuples in the set V .

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 13

3.1.4 Step 4: Creating and Solving Conjunctions of Multiple Tuples

Once we have a set of valid tuples, we can start generating a test suite according
to the t-wise SPL adequacy criteria. Intuitively, this consists in combining all
valid tuples from V with respect to AF in order to generate test products that
cover all t-wise interactions.

Example. For pair-wise testing in the case of CellPhone SPL this amounts
to solving a conjunction of 257 tuple predicates t1.predicate ∩ t2.predicate ∩
... ∩ t257.predicate for a certain scope.

Though the number of tuples to solve in this example is reasonable, it
changes rapidly with the value of t. For instance, computing 3-wise on the same
example, would require solving 1639 tuples instead of 257. If the number of
tuples can be evaluated quickly, the difficulty of solving them over a given alloy
model is impossible to guess á priori. As a result, depending on the number
of tuples and the “solving complexity” (driven by the number of operators
and cross-tree constraints) of the feature model, solving all these tuples at
once may fail. A pragmatic approach is to divide the solving phase in sets
that the solver can process more easily. Hence, we derived two “divide-and-
compose” strategies to break down the problem of solving a conjunction of
tuples to smaller subsets of conjunction of tuples. The strategies we present
are Binary Split and Incremental Growth. Each strategy is parameterized by
intervals of values defining the scope of research for each (sub)-conjunction
of tuples, the duration in which Alloy is authorized to solve the conjunction
as well as a strategy defining how features are picked in a tuple. We describe
these strategies in more detail below. The combination of solutions is a test
suite TS that covers all tuples.

BinarySplit

The binary split algorithm shown in Algorithm 1 is based on splitting the set
of all valid tuples V into subsets (halves) until all subsets of tuples are solvable.
We first order the set of valid tuples based on the strategy Str. The strategy
can be random or based on distance measure. In this paper, we consider a
random ordering. The Pool is set of sets of tuples. Initially, Pool contains the
entire set of valid tuples V . If each set of tuples Pool[i], 0 ≤ i ≤ Pool.size in
Pool is not solvable in the given range of scopes mnSc and mxSc or within
the maximum duration mxDur then result is False for Pool[i]. A single value
of result = False renders AllResult = False. In such a case, we select the
largest set in Pool[i] and split it into halves {H1} and {H2}. We insert the
halves {H1} and {H2} into Pool[i]. The process is repeated until all sets of
tuples in Pool can be solved given the time limits and AllResult = True. In
the worst case, halves are made with one tuple, by definition solvable.

14 Gilles Perrouin et al.

Algorithm 1 binSplit(AF , V,mnSc,mxSc,mxDur, Str)
AllResult← True

V ← order(V, Str)
Pool← {{V }}
repeat

result← False

i← 0
repeat
{result, P ool[i].solution}
← solve(AF , P ool[i],mnSc,mxSc,mxDur)
i← i+ 1
AllResult← AllResult ∧ result

until i == Pool.size

if AllResult == False then
{L} = max(Pool)
{{H1}, {H2}} = split({L}, 2)
Pool.add({H1})
Pool.add({H2})

until AllResult = false

Return Pool

IncrementalGrowth

The incremental growth is shown in Algorithm 2. In the algorithm we incre-
mentally build a set of tuples in the conjunction CT and add it to the Pool.
The select function based on a strategy Str selects a tuple in V and inserts it
into CT . The strategy Str can be random or based on a distance measure be-
tween tuples. In this paper, we consider only a random strategy for selection.
We select and remove a tuple from V and add it to CT until the conjunction
cannot be solved anymore, i.e. result = False. We remove the last tuple and
put it back into V . We include CT into Pool. In every iteration, we initialize
a new conjunction of tuples until we obtain sets of tuples in Pool that contain
all tuples initially in V or when V is empty.

Algorithm 2 incGrow(AF , V,mnScp,mxScp,mxDur, Str)

Pool← {}
repeat

CT ← {}
repeat

tuple← V.select(Str)
CT.add(tuple)
{result, CT.solution}
← solve(AF , CT,mnSc,mxSc,mxDur)
if result == False then

CT.remove(tuple)
V.add(tuple)

until result == False

Pool.add(CT)
until V.isEmpty

Return Pool

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 15

3.1.5 Step 5: Analysis

Once the solutions have been generated we can perform some analysis to assess
the quality of the generated test suites. In (Perrouin et al, 2010), we have
defined a set of metrics to compare our two strategies. We will reuse and
extend some of these metrics with the aim of comparing the two approaches
for t-wise generation dealt with in this paper.

3.2 Dedicated CSP Based Approach (Oster et al, 2010)

The second approach applies graph transformation, combinatorial testing, and
forward checking for the test suite generation. The goal is to apply pairwise
algorithms similar to AETG (Cohen et al, 1997) and IPO (Lei and Tai, 1998)
to feature models.

To apply combinatorial testing to feature models we either have to adapt
an existing combinatorial algorithm so that it can handle the hierarchical
structure, the different node notations, and constraints of the feature model
or we have to change the structure of the feature model so that it can be
processed using existing pairwise algorithms.

We combine both ideas: First, the structure of the feature model is changed
so that it is processable by combinatorial algorithms. This flattening translates
a feature model into a binary constraint solving problem (CSP) extracting
parameters and parameter values. The second step realizes pairwise combi-
nation by integrating a pairwise algorithm and standard constraint solving
techniques such as forward checking. A subset extraction algorithm generates
all valid pairwise combinations of features regarding cross-tree-dependencies,
the hierarchical structure, and the different feature notations in the feature
model.

3.2.1 CSP-Translation

A so-called CSP-Translation algorithm reduces the depth of the feature model
to extract parameters with corresponding values, This translation can easily
be adapted to be applied to different kinds of feature models or to an OVM
(Pohl et al, 2005).

The algorithm consists of two steps:

1. Every feature with its associated notation and dependencies is iteratively
pulled up until it is placed directly beneath the root node. Every feature
then serves as a parameter.

2. The algorithm assigns every parameter its correspondent parameter value.

Several model transformation rules control the CSP translation; they are
iteratively applied to a subtree of a feature model. A subtree always con-
sists of three levels: the grandparent node, the parent node, and the child
node. Different rules are required for the translation process depending on the

16 Gilles Perrouin et al.

notations of the involved features. We currently support four different node
notations: mandatory, optional, or, and alternative. For every possible combi-
nation of parent and child notation a separate transformation rule is required:
4 × 4 = 16 rules are needed. As examples, we depict three rules to describe
our flattening approach. For a complete description of all the rules refer to
(MoSo-PoLiTe, 2011).

Fig. 3 depicts three transformation rules: (1) pulling up a mandatory and
(2) an optional node beneath a mandatory-parent node and (3) pulling up an
alternative-group of child nodes with a parent node placed in an or -group.

…

3MP

Camera

8MP

MP3

...

3MPCamera 8MPMP3 ¬

exclude

require

require

...

SMS

Message

...

Message, SMS

MMS

MMS

A) B)

Fig. 3 Transformation rule pulling up an alternative-child with an or-parent

Fig. 3 A shows the transformation rules 1 and 2. A mandatory child node is
always included within its parent node. Thus, SMS and Message are combined
to be one feature, because it is not possible to select a configuration without
SMS when Message is selected. An optional child node (MMS) stays optional,
and is pulled up besides the parent node.

Fig. 3 B shows rule number 3. The parent or -group stays unchanged and
the alternative-group is pulled up beside the parent. Because the features
3MP and 8MP can only be chosen if Camera is selected, we have to add
require dependencies. Furthermore, an additional feature is added into the
alternative group: the ¬Camera feature which is required for the situation
that Camera is not selected. Without adding this feature either 3MP or
8MP are always selected and, therefore,Camera is always required. Selecting
¬Camera, the feature Camera is excluded, and we preserve the semantic
equivalence between both FMs.

After the first step of the translation algorithm, all features are placed
directly beneath the root node serving as parameters. Fig. 4 depicts the flat
feature model.

8MP
Basic Functions, Message,

SMS, Voice Call

Cell Phone

BluethoothWLANCommunication Extras MP3 CameraMMS 3MP ¬ CameraUMTS

exclude

require

Fig. 4 Flat Feature Model of our Case Study

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 17

Basic Functions,

Message, SMS,

Voice Call

Cell Phone

Blue-

thooth
WLAN

Commu-

nication
Extras MP3 CameraMMS ALT_F1UMTS

exclude

require

8MP

Basic

Functions,

Message, SMS,

Voice Call

BTWLANCom Extras MP3 CameraMMS 3MP
¬

Camera
UMTS ¬ MP3

¬

Camera

¬

UMTS
¬BT¬WLAN¬Com¬MMS

1: ALT_F = Additional parameter node

values

parameters

root

Fig. 5 Flat feature model with parameters and values

In the next step, we extract the corresponding values. Again different rules
are applied to extract the values of the features.

– optional: An optional feature is changed to a mandatory feature with two
child nodes. The optional feature MMS turns into a mandatory node with
an alternative child-group containing a feature MMS and ¬MMS. For
product instantiation the feature MMS is selected and one element of the
alternative group has to be chosen as well. Therefore, either the feature
MMS or the feature ¬MMS is selected.

– mandatory: Mandatory nodes stay mandatory and obtain an additional
child node with the same notation and name. (e.g. Extras)

– or: Extracting the parameter values of an or-group is the most complex
rule. Each feature of the or-group is handled like an optional feature. To
ensure that a least one element of the or-group has to be chosen within a
product, the values for not including the features within a product exclude
each other.

– alternative: An alternative group stays unchanged but we add a single
placeholder feature in-between the alternative group and the root node
representing the parameter (ALT F).

Fig. 5 shows the flat feature model of our running example including feature
values. This flat feature model exhibits the following variability:
112223242526172829310.

A valid pair is a combination of two features not violating cross-tree depen-
dencies, the hierarchical structure, and the different feature notations in the
FM (cf. lines 2-3). Then, the algorithm incrementally combines those pairs of
features to create valid test configurations (cf. lines 5-12). The algorithm starts
with the first pair and iteratively adds pairs of the remaining parameters (cf.
line 8). For each step forward checking (Haralick and Elliott, 1980) is applied
to determine whether the selected pair can be combined with remaining pairs
of parameters to create a valid test configuration (cf. line 9). If a certain pair
results in such a deadlock, another pair is selected instead (cf. line 11). The
algorithm continues until all pairwise combinations are covered by at least one
configuration and will return the list of selected configurations.

Compared to AETG and IPO we adopted the following ideas for our algo-
rithm:

– Building product by product as in AETG.

18 Gilles Perrouin et al.

P1 CellPhone B, M, S, V Extras Comm. ¬MMS ¬UMTS ¬WLAN ¬BT Camera 8MP ¬3MP MP3

P2 CellPhone B, M, S, V Extras ¬Comm. MMS ¬UMTS ¬WLAN ¬BT Camera ¬8MP 3MP MP3

P3 CellPhone B, M, S, V Extras Comm. ¬MMS UMTS WLAN ¬BT ¬Camera ¬8MP ¬3MP MP3

P4 CellPhone B, M, S, V Extras Comm. MMS UMTS WLAN BT Camera 8MP ¬3MP ¬MP3

P5 CellPhone B, M, S, V Extras ¬Comm. ¬MMS ¬UMTS ¬WLAN ¬BT Camera 8MP ¬3MP ¬MP3

P6 CellPhone B, M, S, V Extras Comm. ¬MMS ¬UMTS WLAN BT Camera ¬8MP 3MP ¬MP3

P7 CellPhone B, M, S, V Extras ¬Comm. ¬MMS ¬UMTS ¬WLAN ¬BT ¬Camera ¬8MP ¬3MP MP3

P8 CellPhone B, M, S, V Extras Comm. MMS UMTS ¬WLAN BT Camera ¬8MP 3MP ¬MP3

Fig. 6 The resulting test suite covering all valid pairs of features of the running example

– Using a list of pairs that need to be covered as in IPO.
– Using a weighting/priority function to decide which value to select within a

certain configuration similar to AETG. This function calculates the priority
of a certain value according to its occurrence within the list of pairs that
need to be covered. The value which has the most required combinations
obtains the highest priority.

We applied our algorithm to the presented running example. The algorithm
identified 8 test configurations which are listed in Fig. 6 covering all pairwise
interactions of features.

Furthermore, the subset extractor can handle seeds to be provided by the
user. To realize this functionality, the pairs of these seeds are extracted and
stored. When generating the set of pairs to cover, these pairs are marked as
already covered and the algorithm uses the remaining pairs.

4 Comparison Framework

In this section we introduce some measures to evaluate the quality of our
test generations approaches. These measures are inspired from earlier work
(Perrouin et al, 2010).

4.1 Performance

Concerning performance, time required for the toolset to perform the compu-
tation of a solution is the most obvious metrics. We therefore use execution
time to measure the performance of the compared toolsets and give values for
examples of the SPLOT repository in Section 5.

4.2 Test Suite Size

One of the simplest metrics to characterize generation is the number of test
configurations generated by the t-wise toolset:

Definition 1 Test Suite Size. The number of test configurations composing
it gives the size of a test suite.

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 19

As discussed in (Perrouin et al, 2010), there is a tradeoff to find between two
antagonist goals, optimality and coverage. Optimality requires the minimum
number of test configurations meeting the t-wise criteria. In the CellPhone
SPL, this can be obtained with only 8 test configurations over the 61 possible
ones induced by the feature model. Thus, having more test configurations than
absolutely necessary implies a greater testing effort but also to the benefit of
a greater coverage. This metric is also an indirect indicator of the degree of
“repetition” a given t-wise strategy may produce by splitting tuple conjunction
and composing results. This “repetition” issue is more finely captured in the
following metrics.

4.3 t-Tuple Occurrence and Frequency

The t-wise criteria states that every valid t-tuple must be present in a least
one test configuration of the test suite (exactly one being the optimum in
this respect). However, this optimum is barely achieved. There are three main
reasons for this:

– Mandatory and Common Features. The occurrence of a given tu-
ple is strongly influenced by the nature of the features composing it. A
common feature (or core feature) (Benavides et al, 2010; Mendonça et al,
2009) has to be present in all valid configurations of the feature model.
This comprises mandatory features but also their dependencies (parents,
require/exclude constraints...). Therefore a non-mandatory feature may be
always included to satisfy complex combinations of constraints and opera-
tors. Such features are therefore considered as “false-optional” (Benavides
et al, 2010). As noticed by Mendonça et al. (Mendonça et al, 2009), this
can be an undesirable design flaw. Therefore, tuples which are composed
only of common features will appear in every test configuration of the suite;
their occurrence will correspond to the size of the test suite.

– Constraints. Cross-tree constraints (such as require/exclude) by enforcing
relationships between features are likely to increase the number of times a
given tuple appears in the test configurations.

– Generation Algorithm/Strategy.The generation algorithm or the “divide-
and-compose” strategy used to incorporate tuples in test configurations
may deterministically or randomly deviates from the optimum.

These reasons motivated our will to measure by “how much” the t-wise
criteria was over met. We define two related metrics.

Definition 2 t-Tuple Occurrence. t-Tuple occurrence is the number of times
a given t-Tuple appears in a test suite.

Example. The pair < ¬3MP,MP3 > appearing three times in Figure 6 rep-
resenting a pairwise compliant test suite for the Cell Phone feature model, has
a tuple occurrence of 3. The mandatory pair < CellPhone,BasicFunctions >

has tuple occurrence of 8.

20 Gilles Perrouin et al.

We initially used this metric to assess the optimality of t-wise generation by
measuring the number of repetitions of a t-tuple in a suite. Yet, as the number
of generated products may vary depending on the algorithm or strategy used,
the raw occurrence is difficult to comment without information on the test
suite size. Furthermore, for same reason, t-tuples composed of only common
features, may be harder to detect. Hence, we take into account the number of
test configurations in this related metric:

Definition 3 t-Tuple Frequency. t-Tuple frequency is the ratio between the
t-Tuple occurrence and the size of the test suite.

Example. The pair < ¬3MP,MP3 > has a tuple frequency of 0.375 while
the mandatory pair < CellPhone,BasicFunctions > has a tuple frequency
of 1.

As a result, t-Tuple frequency is a value in the [0,1] interval. A value of
0 for a given t-tuple means that there is no occurrence of this tuple in test
suite. This cannot normally happen: we are dealing only with valid t-tuples
needing to appear at least once to meet the t-wise criteria. This can be used as
a sanity check to exhibit bugs in the t-wise generation algorithm. A value of 1
means that the t-tuple appears in all generated test configurations, implying
that the t-Tuple is comprised of common features. This also can be used as a
conformity check: If one or more t-Tuples consisting of common features has a
frequency less than 1, then test configuration generation is invalid with respect
to the feature model.

4.4 Test Configuration Similarity

The objective of this metric is to answer the question: “How similar are my
generated test configurations ?”. In fact, t-wise generation techniques rear-
range t-tuples in test configurations in different ways (as we have seen this
can be done by splitting the t-tuple subset or by incrementally constructing
them). This results in some test configurations that cover “almost the same”
product or very different ones. Furthermore, “divide-and-compose” strategies
allow by construction that identical test configurations are generated. These
points form the main motivation of proposing a similarity metric (Cartaxo
et al, 2011). A few similarity functions have been proposed in the literature in
the context of model-based testing (Cartaxo et al, 2011; Hemmati and Briand,
2010). However, to our knowledge, none has been proposed to compare test
configuration generated from a feature model. Ours is based on the Jaccard
index (Tan et al, 2006), which is devoted to the comparison of two sample
sets:

Jac(A,B) =
‖A ∩B‖

‖A ∪B‖

Here the sample sets are the sets of variants features (all features that
are not common (Benavides et al, 2010)) of the SPL. Thus, variant features

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 21

represent the possible decisions (to select a feature or not) one can make on
the feature model.

Definition 4 Test Configuration Similarity. Test Configuration Similarity is
defined between two test configurations as the Jaccard index of the number of
identical variant features (i.e. identical decisions) over the possible number of
variants features.

Hence:

Sim(tci, tcj) =
‖Tciv ∩ Tcjv‖

‖Tciv ∪ Tcjv‖

Where tci, tcj are test configurations, Tciv, T cjv sets of their variants fea-
tures.

Example. The SPL test configurations P11 and P2 illustrated Figure 6 have
5 variants features in common out of 9, this Sim(P1, P2) = 0.55.

4.5 Test Suite Similarity

After having introduced the notion test configuration similarity, we generalize
it to define test suite similarity:

Definition 5 Test Suite Similarity. Test suite similarity is the arithmetical
mean of test configuration similarities computed over the Cartesian product
of the test suite by itself.

More precisely, for any test suite ts, we have:

Simts =

∑t

i=1

∑t

j=1
Sim(tci, tcj)

t2

Where tci, tcj are test configurations, Sim(tci, tcj) their similarity and t =
‖ts‖ i.e the number of test configurations present in the test suite.

5 Experimentation

In this section, we apply the measures defined in the previous section on the
toolsets developed by the authors. In particular, we compare the Alloy-Based
Approach (with its two strategies: BinarySplit and IncrementalGrowth) with
the dedicated CSP-based approach for pairwise testing on examples present
in the SPLOT repository for feature models.

22 Gilles Perrouin et al.

5.1 Case studies validation

As we have seen, the Alloy-based approach and the dedicated CSP-based ap-
proach have different inputs and model-driven transformation chains. There-
fore, there is a risk that the source models (created by the designer either in
PureVariants for the CSP approach or using an EMF-compliant4 tool for the
t-wise approach) are not semantically equivalent and therefore, we do not gen-
erate comparable results for pairwise. To eliminate this risk, we cross-checked
our feature model implementations. Indeed, we ensured that all invalid pairs
generated by dedicated CSP-based approach are also invalid when applied on
the generated alloy model. We used pairs generated by the Alloy-based ap-
proach (Perrouin et al, 2010) with the generated test configurations from the
dedicated CSP-Based approach (Oster et al, 2010). We also inspected manu-
ally generated test configurations for the examples considered.

5.2 Experiment Design

As discussed in (Perrouin et al, 2010) and as for any solution based on Alloy,
the choice of the scope is a very important parameter to set. As we have shown,
there is an optimal value for the scope that minimizes the number of generated
test configurations and similarity. This cannot be determined in advance and
depends of the case study. The toolset automatically generates sets of test
suites in order to study the effects of random ordering of tuples (Perrouin
et al, 2010). When it was possible, we therefore generated 10 test suites for
each strategy and we report on the measures performed using “boxplot and
whiskers” to illustrate the results distribution. As the Dedicated CSP-based
approach does not have this kind of setting, varying the scope cannot be
taken into account in the comparison. One big difference between the Alloy-
Based approach (with its 2 strategies) and Dedicated CSP-based approach
(incremental pairwise) is that the latter is deterministic; it generates the same
set of test configurations. As a consequence, one test suite is sufficient to
compare the generation behavior with other strategies.

5.3 2-wise Testing

5.3.1 Execution Times

We report execution times for examples taken in the SPLOT online repository
in Table 1 above. Figures such as > 32400000 indicate that we stopped the
Alloy-based framework from running after more than nine hours of computa-
tion, either having partial results (may not fully respect the pairwise criterion)
for the incremental growth strategy or with no result at all for the binary split

4 EMF (Budinsky et al, 2003) is an Eclipse framework dedicated to the manipulation of
models, on which we based our generic feature modeling approach (Perrouin et al, 2008)

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 23

Table 1 Execution Times for Pairwise Generation on Feature Models. Key: CP = Cell
Phone, SH = Smart Home, AG= Arcade Game, MT= Model Transformation, ES= Elec-
tronic Shopping

CP SH AG MT ES
Features 19 35 61 88 287
Possible Products 61 1048576 3.3 ∗ 109 1.65 ∗ 1013 2.26 ∗ 1049

Cross-Tree Con-
straints (%)

26 0 55 0 11

CSP-Dedicated
(ms)

0 0 32 46 797

BinarySplit (ms) 11812 11457 33954 > 32400000 > 32400000
IncGrowth (ms) 56494 1372094 13847835 > 32400000 > 32400000

strategy.

An obvious observation one can make from this table is the CSP-dedicated
approach is at least 1000 times faster than any of the strategies of the Alloy-
based solution. Furthermore, the CSP-dedicated approach execution times
grows gently with the feature model complexity while the Alloy-based strate-
gies execution times follows a steeper increasing curve. It is not that surprising
as the strategies decompose the problems in hundreds or thousands of solving
steps. Yet, what matters to the tester is that the overall computation time
may be judged unreasonable for large feature models.

As initially stated (Perrouin et al, 2010), we confirm here that the binary
split strategy is faster than the incremental growth one. However we observed
a greater stability of the incremental growth strategy that may be used when
the binary decomposition fails to give a result.

5.3.2 Test Suite Size

Table 2 below shows the number of products obtained by pairwise testing the
considered feature models.

Table 2 Test Suites Sizes Obtained for Pairwise Generation. Key: CP = Cell Phone, SH =
Smart Home, AG=Arcade Game, MT= Model Transformation, ES= Electronic Shopping

CP SH AG MT ES
CSP-Dedicated 8 40 46 92 215
BinarySplit 12 92 514 N/A N/A
IncGrowth 15 28 74 N/A N/A

In the following, we focus on our running example (Cell Phone) and a
larger feature model, the arcade game feature model.

24 Gilles Perrouin et al.

Cell Phone

Figure 7 shows the boxplots for the two approaches. For BinarySplit, the size
of the test suite varies between 12 and 20 test configurations, with an aver-
age of 15.6 and a standard deviation 2.7. Regarding incrementalGrowth, we
compute as less as 15 test configurations and as much as 18, with a mean
of 15.7 with a standard deviation of 1.5. While these two strategies are com-
parable in the number of generated test configurations, we observe a greater
stability of IncrementalGrowth with respect to BinarySplit. This confirms our
initial assumption (Perrouin et al, 2010); the incremental way is more accu-
rate in finding an extremum (whether local or global) and reproducing this
extremum while BinarySplit will be more or less “lucky” while distributing
halves of tuples. This trend is confirmed with the Dedicated CSP-based ap-
proach; it always generate 8 test configurations for the suite which is the exact
minimum for satisfying the pairwise criteria.

As we have discussed it above, BinarySplit and incrementalGrowth can
generate redundant test configurations. This fact can also be revealed by sim-
ilarity computation. IncrementalGrowth can generate as many as 4 duplicates
(with a minimum of 0) with a mean of 2.0 and a standard deviation of 1.15.
BinarySplit generates has many as 5.0 duplicates and as less as 0 with a mean
of 2.3 and a standard deviation of 1.5. The greater diversity of BinarySplit in
the generation is also confirmed here. The dedicated CSP-based approach has
reached the minimum in computing the solution “all-at-once”: there are no
redundant test configurations in the test suite.

Arcade Game

It is interesting to see whether these tendencies are confirmed for larger ex-
amples. We therefore decided to report test suite size obtained for the arcade
game feature model. However, due to important execution times (see Table 1)
it was not possible to generate set of 10 solutions for the Alloy-based strategies.
We thus adopted a “best guess” approach in which we report one solution for
each of the strategies. Since there is only one value for the size of test suite for
all CSP-based and Alloy-based toolsets, we report obtained results in Table 3.

Table 3 Test Suite Size and Duplicates for the Arcade Game Feature Model

Test Suite Size Duplicates
CSP-Dedicated 46 0
BinarySplit 514 0
IncGrowth 74 0

A first observation is that the test suite size varies in a large extent between
CSP-dedicated and Alloy-based toolsets and within strategies themselves. This

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 25

observation can be explained by the fact that the strategies need many more
steps to compute the test suite yielding more test case configurations. An-
other important observation is that on this example there is no duplicate. It
can be surprising as BinarySplit and IncGrowth strategies produce duplicates
on smaller examples and more “divide-and-compose” steps can mean more
chances of deriving redundant test case configurations. In fact, the arcade
game model allows a significant number of variants (3.3 ∗ 109) to be derived
from the model implying that the probability of twice the same test case con-
figurations decrease with the number of possible variants.

5.3.3 t-tuple Occurrence and Frequency

In the next paragraphs, we provide the computed tuple occurrences for the
Cell Phone and Arcade Game feature models.

Cell Phone

t-tuple occurrence is depicted in Figure 8. As it can be seen, the pairwise
criterion is satisfied as no t-tuple appears less than once in any test suite.
As there are more than two common features (6) there are necessarily 2-
tuples that are composed of common features. Therefore, their occurrences
correspond to the size of the generated test suite, represented in the box plot

Fig. 7 Number of Generated Test Configurations for the Cell Phone Feature Model (pair-
wise)

26 Gilles Perrouin et al.

BinarySplit IncrementalGrowth CSP

5
1
0

1
5

2
0

Fig. 8 Tuple Occurrences for the Cell Phone Feature Model (pairwise)

as outliers. As result of generating less test configurations, the dedicated CSP-
based approach has a lower number of tuple occurrences. We also observed a
remarkably stable frequency distribution. On average, a tuple is appearing in
41% of all the generated test configurations.

Arcade Game

Regarding t-tuple occurrences for the arcade game feature model shown Figure
9, the pairwise criterion is met as well as the minimal occurrence of a tuple is
1. However, due to the fact of generating more test case configurations Bina-
rySplit and IncGrowth strategies have a tendency to over meet this criterion:
the minimal occurrence of a tuple is 10 for IncGrowth and 32 for BinarySplit.
It is important to note that the frequency of apparition of a tuple is 58 % for
CSP dedicated approach and 31 % both for BinarySplit and IncGrowth. As
opposed to the Cell Phone example, the difference appears more clearly. High
frequencies are to be looked for to test the same couple of features in various
contexts which is essential for critical ones.

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 27

BinarySplit IncrementalGrowth CSP

0
10

0
20

0
30

0
40

0
50

0

Fig. 9 Tuple Occurrences for the Arcade Game Feature Model (pairwise)

5.3.4 Similarity

The last measure is similarity that we provide for our two examples.

Cell Phone

Similarity is plotted in Figure 10. What is important here are the median
values. They are the same for the “incrementally-driven” approaches (0.44 for
CSP and IncrementalGrowth) while a little bit higher for BinarySplit. Hence,
within a test suite, if diversity-based testing is an objective (Hemmati et al,
2010), testers should privilege an incremental approach to pairwise testing.

Arcade Game

Test suite similarity is depicted Figure 11. The CSP-dedicated approach tends
to produce more similar (mean=0.66 compared to 0.44 for IncGrowth or 0.52
for BinarySplit) results on average. Yet, it has to be noted that there is a
few interesting outliers in which few decisions regarding feature selection are
common. The Alloy-Based strategies are not able to reach such extremes while
they maintain a good diversity on average despite a larger set of test configu-
rations. This is made possible by the nature of the feature model. There are 43
variant features in the model which allows many more choices to pick a given
test configuration.

28 Gilles Perrouin et al.

BinarySplit IncrementalGrowth CSP

0
.2

0
.4

0
.

0
.

0

Fig. 10 Test Suite Similarity Distribution for the Cell Phone Feature Model (pairwise)

5.4 Beyond Pairwise

As mentioned in Section 3, both approaches were meant to generate tests con-
figurations for values of t ≥ 2. In the following, we report on experimentations
carried out for t = 3.

5.4.1 Execution Times

Table 4 details execution times for 3-wise generation on SPLOT examples.
Unsurprisingly, execution times are higher than those obtained for pairwise.
While still low for CSP-Dedicated, there are at least 10 times greater regarding
alloy-based strategies. The tendency between IncGrowth and BinarySplit are
also confirmed, BinarySplit performing much faster than IncGrowth.

Table 4 Execution Times Obtained for 3-wise Generation. Key: CP = Cell Phone, SH =
Smart Home, AG=Arcade Game, MT= Model Transformation, ES= Electronic Shopping

CP SH AG MT ES
CSP-Dedicated (ms) 0 56 83 118 2586
BinarySplit (ms) 584893 > 32400000 Fail N/A N/A
IncGrowth (ms) 4497255 Fail Fail N/A N/A

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 29

BinarySplit IncrementalGrowth CSP

0
.0

0
.2

0
.4

0
.6

0
.8

T
e
s
t

S
u
it
e
 S

im
ila

ri
ty

Fig. 11 Test Suite Similarity Distribution for the Arcade Game Feature Model (pairwise)

We also observed scalability issues from the Smart Home feature model
onwards. Issues encountered were linked to “out of memory” errors arising at
two different steps of the computation: (i) during the solving, after several
hours of computation and (ii) after the generation of valid tuples in the arcade
game case. This last problem was generated by the fact that the alloy-model
representing the whole problem was too big (the model is several hundred of
thousands lines) to be handled by the Alloy API.

5.4.2 Test Suite Size

Table 5 below shows the number of products obtained by 3-wise testing the
considered feature models.

Table 5 Test Suites Sizes Obtained for 3-wise Generation. Key: CP = Cell Phone, SH =
Smart Home, AG=Arcade Game, MT= Model Transformation, ES= Electronic Shopping

CP SH AG MT ES
CSP-Dedicated 23 61 257 643 841
BinarySplit 207 N/A N/A N/A N/A
IncGrowth 133 N/A N/A N/A N/A

30 Gilles Perrouin et al.

An higher value of t also induces greater test suite sizes. The expected
effects on test suite size of the “divide-and-compose” strategies appear clearly.
As the problem is more difficult, the decomposition proceeds with more steps
and add more test configurations to the suite. Decomposition side-effects are
also revealed by the number of generated duplicated as illustrated in Table 6.

Table 6 Test Suite Size and Duplicates for the Cell Phone Feature Model (3-wise)

Test Suite Size Duplicates
CSP-Dedicated 23 0
BinarySplit 207 156
IncGrowth 133 88

This increase in test suite size indicates that there is a tradeoff to find be-
tween the value of t and the number of possible test configurations induced by
the feature model. For example, using the alloy-based framework, even if we
remove duplicates, leading to test suites of 51 test configurations for BinaryS-
plit and 45 for IncGrowth, reduction of the test suite size is small compared to
exhaustive testing (61 possibilities). Naturally, this tradeoff heavily depends
on the t-wise generation framework used, as 3-wise testing is still valuable for
the CSP-Dedicated approach.

5.4.3 t-Tuple Occurrence and Frequency

Cell Phone

Tuple occurrence distribution for the Cell Phone feature model is depicted
Figure 12. Again the t-wise criteria is satisfied with a minimum of 5 occurrences
for IncGrowth, 7 for BinarySplit while the CSP-Dedicated approach is getting
the optimal value of 1. We also observe that there are tuples uniquely composed
of common features, which appear on all the generated test configurations.

Regarding frequency distribution, which is depicted Figure 13, as for pair-
wise we observe very similar results. On average a 3-tuple is appearing in 28%
of the generated test configurations. We explain this lower average frequency
by the fact that 3-tuples are more difficult to place in test configurations due
to dependencies and constraints.

Arcade Game

Since for 3-wise the alloy-based framework was not able to terminate compu-
tations, we only report obtained results by the CSP-Dedicated approach in
Table 7.

We observe that the CSP-dedicated approach is able to reach the optimality
regarding t-tuple occurrence (minimum 1), and that there are again 3-tuples
composed of only common features forced to appear in every test configuration.

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 31

BinarySplit IncrementalGrowth CSP

0
50

10
0

15
0

20
0

Fig. 12 t-Tuple Occurrence Distribution for the Cell Phone Feature Model (3-wise)

BinarySplit IncrementalGrowth CSP

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 13 t-Tuple Frequency Distribution for the Cell Phone Feature Model (3-wise)

32 Gilles Perrouin et al.

Table 7 t-Tuple Occurence and Frequency for the Arcade Game Feature Model (3-wise,
CSP-Dedicated)

Min Max Mean Std. Deviation
t-Tuple Occurence 1 238 52.6 39.9
t-Tuple Frequency 0.004 1 0.22 0.17

Frequency values are lower than for the Cell Phone case as we can predict it,
since there are much more possibilities (3,3*109) for the arcade game feature
model, and therefore more ways to combine tuples.

5.4.4 Test Suite Similarity

Cell Phone

Test suite similarity is depicted Figure 14. While the distribution is similar for
the CSP-Dedicated approach (Mean = 0.53 for 3-wise and 0.44 for pairwise)
both BinarySplit and IncGrowth have much higher similarity (mean= 0.90 for
IncGrowth and BinarySplit with a very small standard deviation of 0.04). The
great number of duplicates has played a major role towards the obtention of
such high similarity scores.

BinarySplit IncrementalGrowth CSP

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 14 Test Suite Similarity Distribution for the Cell Phone Feature Model (3-wise)

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 33

Arcade Game

Table 8 details results for similarity. Interestingly, the choice of 3-wise is
adapted for such feature model offering many possibilities. Indeed, similar-
ity is on average two times smaller than for the pairwise case implying that
chosen test configurations are more different, which can be regarded as an
advantage for coverage.

Table 8 Test Suite Similarity for the Arcade Game Feature Model (3-wise, CSP-Dedicated)

Min Max Mean Std. Deviation
Similarity 0 0.88 0.32 0.25

6 Synthesis

In this section we synthesize the findings of our comparison and give insights
to help the software tester choosing the approach that best suits her or his
needs.

6.1 Synthesis

Comparison of main test generation characteristics is presented Table 9.

Table 9 Test Generation Characteristics

CSP-based Alloy-based
#Number of Products + -
Generation Time + -
Determinism + -
t-wise support + +

Based on the above table, several points are worth detailing; Execution
times & Scalability, Quality of generated tests,measures and threats to validity.

6.1.1 Execution Times and Scalability

Regarding execution times, results are explicit: The dedicated CSP-based per-
forms much faster on all the examples on which it was applied to for pair-
wise and 3-wise testing. This performance is also an indicator that the CSP-
dedicated approach may scale to larger examples though we cannot provide
such evidence.
Regarding “divide-and-compose” strategies, this article provides important

34 Gilles Perrouin et al.

results since their original publication in (Perrouin et al, 2010). On the one
hand, we provided evidence that these strategies may be employed on larger
feature models than the 17 features representing the size of the original case
study that initially motivated their definition. On the other hand, the price
to pay to break complexity into pieces is rather high: this decomposition in
a smaller set of problems that are easier to solve is associated to a perfor-
mance degradation and for even larger models / higher values of t we still
encounter scalability issues. In other terms, “divide-and-compose” strategies
improved the scalability up to a certain limit, imposing a complete redesign
of the approach and questioning technological choice if we want to push this
limit further.

There is thus an important issue emerging from this comparison between a
generic solution (using Alloy) and a dedicated one (CSP). The scalability di-
mension is managed either ’a posteriori’ (Alloy-Based strategies) or ’a priori’
with a dedicated SAT solution (CSP-Dedicated approach). In ’a posteriori’
approach, the pairwise generation and the feature model are directly encoded
into the generic Alloy format: the price to pay for this apparent simplicity is
scalability. Since we do not control finely how such an Alloy specification is
translated to a SAT input, the scalability issue has to be managed ’a posteriori’
with divide-and-compose strategies. These strategies transform the scalability
issue into a set of smaller problems. The scalability issue is changed into a
performance one (each smaller problem requires a certain time to be solved).
Thus, solving the scalability issue ’a posteriori’ leads to other problems such
as performance. On the contrary, for the dedicated CSP-based approach, sig-
nificant attention has been devoted ’a priori’ to the flattening of the model in
an efficient structure. Much more effort has been spent proving that the model
flattening preserves the semantics of the input feature model, but the benefit
of such a dedicated approach is avoiding both scalability and performance is-
sues. This is certainly an important point explaining such a divergence in the
results. Given the complexity of generating pairwise tests for feature models,
instead of addressing the problem at a general level, one should delve into the
details of the encoding and solving technology (SAT, CSP, SMT...) in order
to develop ’a priori’ scalable solutions. To summarize, the main lesson learnt
from these two different approaches is that the simplicity of use of a generic ap-
proach does not compensate the efficiency of dedicated CSP-based approach.
In practice, a generic approach is useful for prototyping, to precisely define
how to solve the problem (e.g. generating pair-wise tests), but should then be
replaced by a dedicated solution.

6.1.2 Quality of Generated Tests

Going along the same considerations opposing generic versus dedicated SAT,
the CSP approach performs particularly well in minimizing test suites. Al-
though Alloy-based strategies can compete on small examples, “divide-and-
compose” strategies necessarily generate more test configurations due to the

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 35

fact that they create test suites based on a subset of all valid tuples and merge
them in a single test suite. The largest the examples are, the most likely non-
minimal test suites are produced and higher the number of duplicates is, due to
more steps required by the algorithms to terminate. Also regarding the size,
incrementally driven approaches (IncGrowth and CSP-dedicated) are doing
better that the BinarySplit. Yet, more products may also mean more interac-
tions and more chances to reveal complex or rare bugs. In that case, higher
similarity degrees can be looked at for regression testing.

Another option is to use higher order t-wise which is necessary in some sit-
uations (Kuhn et al, 2008), as we demonstrated it in the Arcade Game model
with the CSP-Dedicated approach. However, in the case of software product
lines, the number of generated test configurations can become huge: there are
already 238 products for 3-wise for the arcade game model with respect to 46
for the pairwise case. Therefore on small models it is probably more fruitful to
test exhaustively the SPL rather than using high values of interaction strength.

Determinism also influences the quality of generated tests. The CSP-Dedicated
approach behaved consistently with respect to the satisfaction of the t-wise cri-
teria. On the contrary, the Alloy-based approach is not necessarily reaching
this optimum, but generates “extreme” test suites which can be sought after
(e.g. highly similar test configurations) depending on tester needs.

6.1.3 T-wise Support

Both approaches are dealing with t-wise generation and we applied them
for pairwise and 3-wise. The method followed by the alloy-based approach
is generic and the strategies do not depend on the value of t, which can be set
at any arbitrary value. Yet, in practice we run into scalability and performance
issues for the pairwise and 3-wise cases suggesting that higher value of t may
not be practically supported. The CSP-Dedicated approach performs well on
pairwise and 3-wise but requires some adaptation for t > 3. The algorithm
executes a lot of different operations on the list of parameter/value combina-
tions and on the list containing the pairs of values that need to be covered.
The algorithm with T < 3 operates on hashmap/hashset combinations and the
algorithm handling T > 3 operates on ordinary lists. Hence, the latter thus
much slower. We are currently working on further optimizations for T > 3.

6.1.4 About measures

While we believe that measures are helpful to determine the merits and issues
of test generation approaches, we should not forget that they also witness some
specific characteristics inherent to the model under study and the coverage
criteria. For example, tuple occurrence is a good indicator of the pairwise cov-
erage criteria. Similarity measures have to be interpreted carefully. As shown

36 Gilles Perrouin et al.

by Hemmati et al. (Hemmati et al, 2011), high similarity may both be con-
sidered negatively (dissimilar test cases detect different faults) or positively
(for diagnosis purpose, similar test cases may help diagnose the location of an
error), depending on the testing context (validation or diagnosis). So, when a
test suite is said to be better that another because the generated products are
dissimilar, we implicitly consider that these products are used in a validation
context.

6.1.5 Threats to Validity

We tried to be as “fair” as possible in this extension regarding the strategies
and measures considering the original paper in which they were initially pub-
lished (Perrouin et al, 2010). Having a competing approach was fruitful in the
sense that we could verify each other implementation on the same examples.
This increases confidence in the trends initially sketched, and confirms the
applicability of the measures initially defined and generalized in this article.

We mitigated external validity threats by applying our toolsets on sev-
eral examples and detailing two in this paper. However, performance issues
of Alloy-based strategies did not allowed us to perform experiments for the
arcade game feature model as thoroughly as it was possible for the cell phone
one. However, we believe the examples chosen are representative of typical
feature models. For example, considering the SPLOT online repository statis-
tics 5 the feature models chosen are balanced with respect to the mean number
of features and constraints.

6.2 Additional Comparison Points

In the following we discuss additional points which are related to our experi-
ence using the toolsets.

6.2.1 Expressivity

Table 10 summarizes the commonalities and differences regarding feature mod-
eling support. The Alloy-based approach is more expressive in the sense that
it natively supports cardinalities, complex constraints or the possibility for a
feature to have multiple parents.

We are not claiming that this difference in the types of models the two
approaches can handle are related to their underlying technologies. It is rather
a choice derived from the generic against specific design philosophy.

5 http://www.splot-research.org/

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 37

Table 10 Expressivity Support for Input Feature Models

CSP-based Alloy-based
Cardinalities - +
Multiple parents - +
Binary constraints + +
N-ary constraints - +

6.2.2 Usability

Both approaches were designed with the same usability goal: make CIT ap-
proaches accessible to the SPL tester who is not a CSP/SAT solving special-
ist. However, as mentioned in Section 5 the Alloy-based strategies require to
set value for the Alloy scope and a timeout value to be used at each step
of the “divide-and-compose” algorithm. The CSP-dedicated approach works
fully automatically without having any parameter to set, which is better from
a usability perspective.

6.2.3 Which Approach to Choose from ?

These characteristics witness two design philosophies. If a ready to use and
predictable solution is needed for industrial purposes, then the CSP-dedicated
approach is the best choice. If an academic is more interested by evaluating
different strategies and see how the quality of the generated results evolves
with respect to some parameters, then the Alloy-based framework will provide
support for such evaluations.

7 Related Work

The work related to our research covers SPL testing approaches as well as
combinatorial testing and transformations of the feature model.

7.1 SPL Testing

Concerning test generation for PL (1), McGregor (McGregor, 2001) and Tevan-
linna (Tevanlinna et al, 2004) propose a well-structured overview of the main
challenges for testing product lines. SPL testing approaches can roughly be
divided in two categories, product-focused testing and SPL-focused testing.
The first category considers a bottom-up approach in which products derived
from feature configurations are successively tested. The second category of
approaches works top-down from the product line level to extract relevant
configurations and derive test cases from them. We cover these two categories
with a special emphasis for the latter, in which our research fits in.

38 Gilles Perrouin et al.

7.1.1 Product-focused Testing

Studying related work focusing on SPL-Testing we identified two common
practices:

“SPL-ignorant” techniques: These approaches do not take into account
commonalities and variabilities between family members to perform testing.
Rather, they consider testing each member individually in an independent
way using general testing methods. In (Tevanlinna et al, 2004) the authors
refer to this approach as product-by-product testing. However, considering the
number of derivable products of today’s SPLs, this approach is unpractical.
This expected result has been confirmed empirically (Ganesan et al, 2007).

Reuse-Techniques: Methods of this category utilize reuse-techniques to
reduce the test effort. These approaches either make use of regression testing
techniques to incrementally test products or realize the reuse of domain tests
during application testing. Reusing domain tests created during domain engi-
neering for product tests is a very popular approach especially in the model-
based testing community. A summary of model based testing approaches for
SPLs can be found in (Oster et al, 2011). Uzuncoava et al. (Uzuncaova et al,
2008) use Alloy to generate a test suite incrementally from the specification
of a product, directly modeled as alloy formulae. The interesting point in this
work is that tests are reused from one product to another in a cumulative
way. Hence, such a product-focused approach allows to perform cumulative
coverage as described in (Cohen et al, 2006). However, even when they effi-
ciently take the SPL’s features to minimize the testing effort, they do require
a particular product to start with. Our approaches do not require such an
”initial” product to generate test configurations. Yet, the CSP-dedicated ap-
proach is able to take into account already tested configurations into account
to complete them with t-wise based generation.

7.1.2 SPL-Focused Testing

Subset-Heuristics: This approach aims at reducing the effort for testing
by extracting a subset of feature combinations or products. Instead of testing
every product of the SPL, a subset for testing is created. We identified two dif-
ferent methodologies: Methods generating a subset of representative products
for testing purposes for the whole SPL, and approaches using combinatorial
testing. In (Scheidemann, 2007) the author introduces an approach generat-
ing a representative set for each requirement. The major disadvantage of this
approach is the fact that it does not scale with real-world SPLs and that the
effort to set up the representative set is enormous. In (Yoon et al, 2007) the au-
thors propose a method to generate test plans covering user-specified portions
of the huge number of possible configurations of a component-based software
system.

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 39

7.2 Combinatorial Testing

McGregor initially introduced combinatorial testing to SPLs in (McGregor,
2001). However, he neither describes how combinatorial testing may be applied
to SPLs nor how SPL-models like FMs or OVMs can be mapped onto an
appropriate representation to apply existing combinatorial testing algorithms.

Cohen et al. use the OVM approach to model the variable and common
parts of the SPL which are mapped onto a relational model. This relational
model serves as a semantic basis for defining coverage criteria for the SPL
under test (Cohen et al, 2006). Furthermore, Cohen et al. describe the devel-
opment of combinatorial interaction testing (CIT) achieving a desired level
of coverage. (Kuhn et al, 2004) led to the definition of pairwise testing, and
then, its generalization to t-wise testing. Cohen et. al. have applied CIT to
systematically select configurations/products (Cohen et al, 2006) that should
be tested. They consider various algorithms in order to compute configurations
that satisfy pair-wise and t-wise criteria (Cohen et al, 2007).

Our two implementations regarding combinatorial testing differ in the fol-
lowing ways:

– (t-wise:) goes along the same lines but deals with scalability of the test
generation, noting that CIT+SAT approaches do not scale directly with
real-case feature diagrams, such as the AspectOPTIMA SPL example.

– CSP-based: combines graph transformation, a well-known pairwise algo-
rithm associated with forward checking, to generate a set of products
achieving 100% pairwise interaction coverage in the whole SPL on the
basis of the corresponding FM. The reason for choosing a CSP approach
for pairwise testing is that we want to apply this approach to the FMT
approach that utilizes large ranges of values. Especially for such problems,
a CSP-based approach seems to be a natural choice (Bennaceur, 2004;
Westphal and Wölfl, 2009).

7.3 Feature Model Translation

Since both approaches are based on feature modeling, we provide related work
to our translation algorithms.

7.3.1 Cartesian Flattening

In (White et al, 2009) the authors realize a Cartesian Flattening of FMs,
which is a similar to our flattening algorithm. There, the motivation is to
translate the FM into a knapsack problem which is then used to generate
highly optimal architectural variants/products of the SPL. There are some
significant differences to our flattening approaches: In (White et al, 2009)
cardinality groups (or-groups in our approach) are translated into an XOR
(alternative-group in our approach) with a maximum number boundary.

40 Gilles Perrouin et al.

For testing purposes all valid feature combinations need to be identified.
We lose semantic equivalence between the original FM and the flat FM if we
use a boundary, limiting the maximum number of combinations. In (White
et al, 2009) a different rule for flattening an alternative-group beneath an
alternative parent node is presented. Fig. 15 shows an abstract example used
in (White et al, 2009).

K

N O

L

G G

K L N O ¬L

G

K LN LO

MoSo-PoLiTe

FlatteningCartesian Flattening

exclude

require

Fig. 15 Comparison of the flattening approaches of an alternative parent with alternative
child elements

In the Cartesian flattening approach, the features N and O are merged
with its parent node. Let us now assume that the parent feature L is required
by some other feature X. The feature X would then require L,N xor L,O. As
you can imagine, this dependency relation cannot be captured using a binary
constraint such as the ones we support in our subset extraction algorithm.
Because of distinct needs, White et al. apply different transformation rules to
prepare the FM for their algorithms. This approach offers additional evidence
that it is possible to change the structure of the FM to apply well-known algo-
rithms for different purposes. Unfortunately, due to fact that not all rules keep
semantic equivalence we cannot apply this method for our t-wise approaches.

7.3.2 Feature Model into Alloy

We choose a model driven technique to automatically map a feature diagram
into an Alloy input format. The user of the approach can thus manipulate di-
rectly feature diagrams and transform them directly in Alloy. A formalization
for feature models in Alloy can be found in (R. Gheyi and Borba., 2006), but is
not dedicated to testing, and feature diagrams have to be written by hand. Our
work focuses on testing the SPL as whole rather than individual products. In-
deed, these techniques of SPL testing are complementary; our approaches focus
on automated selection of products, which can then be individually tested.

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 41

8 Conclusion

As software product line engineering is taking momentum in software engi-
neering, testing software product lines is of growing importance. A particular
problem in SPL testing is the number of test cases to consider, which increases
exponentially with the number of feature the SPL owns. In this article, we fo-
cus on reducing the number of test cases in a product line context. In particular
we compared two approaches (CSP-dedicated, Alloy-based) for test cases re-
duction both based on t-wise interaction testing.

At first sight, both approaches are functionally equivalent from the t-Wise
testing perspective, since they provide the same guarantee in terms of pairwise
interaction coverage: they ensure that all valid pairs of features with regard to
the feature model notation, dependencies, and hierarchy are tested together.
Furthermore, both approaches have the main advantage that the test suite
consists of configurations that can be tested using well-known single system
test methods from the software engineering community. In order to make the
comparison possible, we provide a set of metrics, capturing the number of gen-
erated test configurations (the test effort) and the similarity degrees between
these test configurations.

However, while functionally equivalent, comparing the different philoso-
phies using these metrics, some major differences were identified. Compared
to Alloy-based strategies, the CSP-Dedicated philosophy:

– is deterministic and more stable, and finds a better/smaller solution
– Is focused on pairwise and 3-wise interaction testing, but could be adapted

to higher interaction strengths. The Alloy-based testing approach is inde-
pendent of the value of t.

– currently only supports binary constraints between features. Thus n-ary
constraints cannot be solved by the dedicated CSP approach. This is a
drawback compared to a more generic toolset, like Alloy offers.

– is much faster, especially on large/highly-constrained feature models. While
pragmatic, Alloy-based strategies, failed to produce quality results in due
time. Several improvements could be envisioned such as conversion of the
feature model in Alloy or the usage of atomic sets (Benavides et al, 2010).
Yet issues that emerged from the comparison are severe enough to require
redesigning this Alloy-based approach from the start.

This work opens two main research perspectives. First, we would like to
extend our comparison approach and metrics in a full-fledged evaluation frame-
work to assess various CIT-based solutions for SPL testing. We are convinced
that detailed evaluation of these techniques is key to gain confidence in CIT-
based approaches and toolsets and therefore help such toolsets permeate SPL
testing practice.
Second, we outlined two strategies to deal with scalability: one working a priori
by optimizing the feature model and its flattening, and the other a posteri-
ori by providing “divide-and-compose” strategies decomposing the problem in

42 Gilles Perrouin et al.

smaller solvable problems. Although such strategies can significantly degrade
the quality of generated results, they may be the last option if a priori opti-
mization failed. We would like to investigate the combination of a priori and
a posteriori philosophies on very large feature models such as the linux kernel
(Berger et al, 2010) with more than 6000 features or with additional elements,
such as attributes or priorities.

Acknowledgements

The authors would like to thank Professor Andy Schürr for his valuable com-
ments on the paper. This research was partly funded by the NAPLES project
funded by the Walloon Region (Belgium).

References

Batory D, Benavides D, Ruiz-Cortés A (2006) Automated analysis of feature
models: Challenges ahead. Communications of the ACM December

Batory DS (2005) Feature models, grammars, and propositional formulas. In:
SPLC, pp 7–20

Benavides D, Segura S, Ruiz-Cortés A (2010) Automated analysis of feature
models 20 years later: A literature review. Information Systems 35(6):615 –
636

Bennaceur H (2004) A Comparison between SAT and CSP Techniques. Con-
straints 9(2):123–138

Berger T, She S, Lotufo R, Wasowski A, Czarnecki K (2010) Variability mod-
eling in the real: a perspective from the operating systems domain. In: Pro-
ceedings of the IEEE/ACM international conference on Automated software
engineering, ACM, New York, NY, USA, ASE ’10, pp 73–82

Bryce R, Colbourn C (2009) A density-based greedy algorithm for higher
strength covering arrays. Software Testing, Verification and Reliability
19(1):37–53

Bryce RC, Colbourn CJ (2006) Prioritized interaction testing for pair-wise
coverage with seeding and constraints. Information and Software Technology
48(10):960 – 970, advances in Model-based Testing

Budinsky F, Steinberg D, Merks E, Ellersick R, Grose T (2003) Eclipse Mod-
eling Framework. The Eclipse Series, Addison Wesley Professional

Calvagna A, Gargantini A (2008) A logic-based approach to combinatorial
testing with constraints. In: Beckert B, Hähnle R (eds) Tests and Proofs,
Springer Berlin / Heidelberg, Lecture Notes in Computer Science, vol 4966,
pp 66–83

Calvagna A, Gargantini A (2009) Combining satisfiability solving and heuris-
tics to constrained combinatorial interaction testing. In: Intl. Conference on
Tests and Proofs, Springer-Verlag, Berlin, Heidelberg, pp 27–42

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 43

Cartaxo EG, Machado PDL, Neto FGO (2011) On the use of a similarity func-
tion for test case selection in the context of model-based testing. Software
Testing, Verification & Reliability 21:75–100

Classen A, Heymans P, Schobbens P (2008) What’s in a feature: A require-
ments engineering perspective. In: Proceedings of the Theory and practice
of software, 11th international conference on Fundamental approaches to
software engineering, Springer-Verlag, pp 16–30

Clements P, Northrop L (2001a) Software Product Lines: Practices and Pat-
terns. Addison Wesley, Reading, MA, USA

Clements P, Northrop L (2001b) Software product lines: practices and pat-
terns. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

Cohen DM, Dalal SR, Fredman ML, Patton GC (1997) The AETG System:
an approach to testing based on combinatorial design. IEEE Trans Softw
Eng 23(7):437–444

Cohen M, Dwyer M, Shi J (2007) Interaction testing of highly-configurable sys-
tems in the presence of constraints. In: International Symposium on Software
Testing and Analysis, vol 4961/2008, pp 129–139

Cohen MB, Dwyer MB, Shi J (2006) Coverage and adequacy in software prod-
uct line testing. In: ROSATEA@ISSTA, pp 53–63

Czarnecki K, Antkiewicz M (2005) Mapping Features to Models: A Template
Approach based on Superimposed Variants. In: Generative programming
and component engineering (GPCE), Springer-Verlag, LNCS, vol 3676, pp
422–437

Czarnecki K, Wasowski A (2007) Feature diagrams and logics: There and back
again. In: 11th Software Product Line Conference, IEEE Computer Society,
Kyoto, Japan, pp 23–34

Czarnecki K, Helsen S, Eisenecker U (2005) Formalizing Cardinality-based
Feature Models and their Specialization. Software Process Improvement and
Practice 10(1):7–29

Ganesan D, Knodel J, Kolb R, Haury U, Meier G (2007) Comparing costs and
benefits of different test strategies for a software product line: A study from
testo ag. In: 11th Internataional Software Product Line Conference, IEEE
Computer Society, Los Alamitos, CA, USA, pp 74–83

Griss ML, Favaro J, d’ Alessandro M (1998) Integrating Feature Modeling with
the RSEB. In: Fifth International Conference on Software Reuse, Washing-
ton, DC, USA, pp 76–85

Haralick R, Elliott G (1980) Increasing tree search efficiency for constraint
satisfaction problems. Artificial intelligence 14(3):263–313

Hemmati H, Briand L (2010) An industrial investigation of similarity measures
for model-based test case selection. In: International Symposium on Software
Reliability Engineering (ISSRE), IEEE Computer Society, Los Alamitos,
CA, USA, pp 141–150

Hemmati H, Arcuri A, Briand L (2010) Reducing the cost of model-based
testing through test case diversity. In: 22nd IFIP International Conference
on Testing Software and Systems (ICTSS) - formerly TestCom/FATES, vol
6435/2010, pp 63–78

44 Gilles Perrouin et al.

Hemmati H, Arcuri A, Briand L (2011) Empirical investigation of the effects of
test suite properties on similarity-based test case selection. In: 4th Interna-
tional Conference on Software Testing, Verification and Validation (ICST),
Berlin, Germany, pp 327–336

Jackson D (2006) Software Abstractions: Logic, Language, and Analysis. MIT
Press

Kang K, Cohen S, Hess J, Novak W, Peterson S (1990) Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-
21, Software Engineering Institute

Kang KC, Kim S, Lee J, Kim K, Shin E, Huh M (1998) FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures. Ann
Softw Eng 5:143–168

Kuhn DR, Wallace DR, Gallo AM (2004) Software fault interactions and im-
plications for software testing. IEEE Trans Softw Eng 30(6):418–421

Kuhn R, Lei Y, Kacker R (2008) Practical combinatorial testing: Beyond pair-
wise. IT Professional 10:19–23, DOI http://doi.ieeecomputersociety.org/10.
1109/MITP.2008.54

Lei Y, Tai K (1998) In-parameter-order: a test generation strategy for pairwise
testing. In: IEEE High Assurance Systems Engineering Symp., pp 254–261

Lei Y, Kacker R, Kuhn D, Okun V, Lawrence J (2008) IPOG/IPOG-D: effi-
cient test generation for multi-way combinatorial testing. Software Testing,
Verification and Reliability 18(3):125–148

Mahajan YS, Z Fu SM (2004) Zchaff2004: An efficient sat solver. In: SAT 2004,
pp 360–375

McGregor J (2001) Testing a software product line. Tech. Rep. ESC-TR-2001-
022, CMU/SEI

Mendonca M, Branco M, Cowan D (2009) SPLOT: software product lines on-
line tools. In: Proceeding of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and applications, ACM,
pp 761–762

Mendonça M, Wasowski A, Czarnecki K (2009) Sat-based analysis of feature
models is easy. In: 13th International Software Product Line Conference
(SPLC), San Francisco, CA, USA, pp 231–240

Metzger A, Pohl K, Heymans P, Schobbens PY, Saval G (2007) Disambiguat-
ing the documentation of variability in software product lines: A separation
of concerns, formalization and automated analysis. In: IEEE Conference on
Requirements Engineering, IEEE Computer Society, Delhi, India, pp 243–
253

Monasson R, Zecchina R, Kirkpatrick S, Selman B, Troyansky L (1999) De-
termining computational complexity from characteristic phase transitions.
Nature 400(6740):133–137

MoSo-PoLiTe (2011) http://www.sharq.tu-darmstadt.de/projects/mosopolite/.
Accessed 8th April 2011

Muller PA, Fleurey F, Jézéquel JM (2005) Weaving Executability into Object-
Oriented Meta-Languages. In: MODELS/UML, Springer

Pairwise Testing for Software Product Lines: Comparison of Two Approaches 45

Niklas Een, Niklas Sorensson (2005) MiniSat: A SAT Solver with Conflict-
Clause Minimization, Poster. In: SAT 2005

Oster S, Markert F, Ritter P (2010) Automated incremental pairwise testing
of software product lines. In: Bosch J, Lee J (eds) SPLC, Springer, Lecture
Notes in Computer Science, vol 6287, pp 196–210

Oster S, Wübbeke A, Engels G, Schürr A (2011) Model-Based Software Prod-
uct Lines Testing Survey. In: Zander J, Schieferdecker I, Mosterman P (eds)
Model-based Testing for Embedded Systems, CRC Press/Taylor&Francis,
to appear on September 9th, 2011

Perrouin G, Klein J, Guelfi N, Jézéquel JM (2008) Reconciling automation
and flexibility in product derivation. In: SPLC, IEEE Computer Society,
Limerick, Ireland, pp 339–348

Perrouin G, Sen S, Klein J, Baudry B, le Traon Y (2010) Automated and
scalable t-wise test case generation strategies for software product lines. In:
International Conference on Software Testing, Verification, and Validation
(ICST), IEEE Computer Society, Paris, France, pp 459–468

Phadke M (1995) Quality engineering using robust design. Prentice Hall PTR
Upper Saddle River, NJ, USA

Pohl K, Böckle G, van der Linden FJ (2005) Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer-Verlag New York,
Inc., Secaucus, NJ, USA

R Gheyi TM, Borba P (2006) A theory for feature models in alloy. In: First
Alloy Workshop, pp 71–80

Scheidemann K (2007) Verifying families of system configurations. Doctoral
Thesis TU Munich

Schobbens P, Heymans P, Trigaux J, Bontemps Y (2007) Generic semantics
of feature diagrams. Computer Networks 51(2):456–479

Schobbens PY, Heymans P, Trigaux JC, Bontemps Y (2006) Feature Dia-
grams: A Survey and A Formal Semantics. In: Requirements Engineering,
IEEE International Conference on, pp 139–148

Tan P, Steinbach M, Kumar V, et al (2006) Introduction to data mining.
Pearson Addison Wesley Boston

Tevanlinna A, Taina J, Kauppinen R (2004) Product family testing: a survey.
SIGSOFT Softw Eng Notes 29(2):12–12

Torlak E, Jackson D (2007) Kodkod: A relational model finder. In: Tools and
Algorithms for Construction and Analysis of Systems, vol 4424/2007, pp
632–647

Uzuncaova E, Garcia D, Khurshid S, Batory D (2008) Testing software product
lines using incremental test generation. In: ISSRE, IEEE Computer Society,
pp 249–258

Westphal M, Wölfl S (2009) Qualitative csp, finite csp, and sat: comparing
methods for qualitative constraint-based reasoning. In: IJCAI’09: Proceed-
ings of the 21st international jont conference on Artifical intelligence, Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 628–633

White J, Dougherty B, Schmidt DC (2009) Selecting highly optimal architec-
tural feature sets with filtered cartesian flattening. Journal of Systems and

46 Gilles Perrouin et al.

Software 82(8):1268 – 1284
Yoon I, Sussman A, Memon A, Porter A (2007) Direct-dependency-based soft-
ware compatibility testing. In: ASE, Atlanta, Georgia, USA, pp 409–412

Ziadi T, Jézéquel JM (2006) Product Line Engineering with the UML: Deriving
Products. In: Families Research Book, Springer

