
Optimizing decomposition of software architecture
for local recovery

Hasan Sözer • Bedir Tekinerdoğan • Mehmet Akşit

� Springer Science+Business Media, LLC 2011

Abstract The increasing size and complexity of software systems has led to an amplified

number of potential failures and as such makes it harder to ensure software reliability.

Since it is usually hard to prevent all the failures, fault tolerance techniques have become

more important. An essential element of fault tolerance is the recovery from failures. Local

recovery is an effective approach whereby only the erroneous parts of the system are

recovered while the other parts remain available. For achieving local recovery, the

architecture needs to be decomposed into separate units that can be recovered in isolation.

Usually, there are many different alternative ways to decompose the system into recov-

erable units. It appears that each of these decomposition alternatives performs differently

with respect to availability and performance metrics. We propose a systematic approach

dedicated to optimizing the decomposition of software architecture for local recovery. The

approach provides systematic guidelines to depict the design space of the possible

decomposition alternatives, to reduce the design space with respect to domain and

stakeholder constraints and to balance the feasible alternatives with respect to availability

and performance. The approach is supported by an integrated set of tools and illustrated for

the open-source MPlayer software.

This work has been carried out as part of the TRADER project (TRADER 2011) under the responsibility
of the Embedded Systems Institute. This project is partially supported by the Netherlands Ministry
of Economic Affairs under the Bsik program.

H. Sözer (&)
Department of Computer Science, Özyeğin University, İstanbul, Turkey
e-mail: hasan.sozer@ozyegin.edu.tr

B. Tekinerdoğan
Department of Computer Engineering, Bilkent University, Ankara, Turkey
e-mail: bedir@cs.bilkent.edu.tr

M. Akşit
Department of Computer Science, University of Twente, Enschede, The Netherlands
e-mail: aksit@cs.utwente.nl

123

Software Qual J
DOI 10.1007/s11219-011-9171-6

Keywords Software architecture design � Fault tolerance � Local recovery � Availability �
Performance

1 Introduction

The increasing size and complexity of software has led to an amplified number of potential

failures that can occur in the system. To detect and recover from the potential failures,

appropriate reliability techniques must be applied. Reliability techniques can be based on

fault prevention, fault tolerance, fault removal or fault forecasting (Avizienis et al. 2004).

Fault tolerance is a technique for ensuring the system’s reliability even if faults remain and

they get activated. Since it is usually impossible to prevent all the failures, fault tolerance

techniques have now become more important.

The size and complexity of software systems have not only led to an increased number

of potential failures but also affected the type of faults that can occur. Traditionally,

software faults and the resulting errors have been assumed to be permanent. As a result,

fault tolerance techniques have been mainly based on replication and design diversity e.g.,

recovery blocks, N-version programming (Laprie et al. 1995). We can now observe that

software systems are exposed to increasing number of so-called transient errors (Huang

and Kintala 1995). These errors are mostly triggered by peak conditions in workload and

timing issues that could not have been anticipated before. To recover from these errors,

usually restart protocols are applied that initializes the software to a consistent starting

state (Huang and Kintala 1995). In this work, we only consider crash failures caused by

transient errors, and we assume in our analysis that recovery based on restart protocols

always succeeds.

Restarting can be applied at different granularity levels of the system. Very often,

restarting is applied to the whole system whereby all the components are restarted together.

Unfortunately, this makes the system completely unavailable until it is in normal opera-

tional mode again. For increasing availability, local recovery (Candea et al. 2004b) can be

applied to only the components of the system that are affected by the corresponding error.

In this way, only the erroneous components need to be restarted and the other components

can remain available.

For achieving local recovery, the corresponding system modules need to be decomposed

into a set of isolated recoverable units (RU) that can be independently restarted. An RU

defines a unit of recovery in the system, which wraps a set of modules and isolates them

from the rest of the system. There is no (necessarily) direct mapping between an RU and a

function/service. The mapping depends on the grouping of modules, i.e., the RU decom-

position. This decomposition can be done in different ways, and each decomposition

alternative will lead to a different availability degree. Obviously, higher number of RUs

can result in a higher system availability. However, increasing the number of RUs will also

lead to a higher coupling among the isolated modules and as such introduce an additional

performance overhead. On the other hand, keeping the modules together in one RU will

increase the performance but will result in a lower availability since the failure of one

module will affect the others as well. As a result, for selecting a decomposition alternative,

we have to cope with a trade-off between availability and performance.

In this paper, we propose a dedicated approach for analyzing an existing system to

decompose its software architecture for introducing local recovery. There exist many large

and complex legacy systems that were designed without fault tolerance in mind. Usually, it

Software Qual J

123

is not feasible to develop these systems from scratch. Introducing fault tolerance to these

systems and refactoring them for local recovery also require substantial development and

maintenance effort. Therefore, it is important to analyze design alternatives beforehand.

It appears that the number of decomposition alternatives increases exponentially with

respect to the number of modules in the system. This makes it infeasible to analyze design

alternatives manually, involving the (1) derivation of possible design alternatives, (2)

evaluation of various qualities per alternative and (3) calculation of the optimal alternative.

These activities require the utilization of algorithmic optimization techniques and dedi-

cated tool support. Algorithmic solutions may become computationally extensive. Nev-

ertheless, they are still useful in practice for the following reasons: (1) state-of-the-art

multiobjective optimization techniques are able to evaluate dozens of thousands of solution

alternatives in the order of milliseconds (Meedeniya et al. 2011), (2) the complexity can be

reduced by offering tool support that allows the designers to interactively exclude alter-

natives that are considered less relevant and (3) the architects may carry out what-if

analysis by applying the techniques to selected parts of the architecture. The tool may

provide confidence and a formal basis to justify why certain architectural design decision

has been made.

In this work, our main contribution is a systematic methodology that combines several

analysis techniques to (1) depict the design space of the possible decomposition alterna-

tives, (2) reduce the design space with respect to domain and stakeholder constraints and

(3) balance the feasible alternatives with respect to availability and performance.

Throughout this process, the designer is supported by a set of analysis tools integrated in

the Arch-Studio environment (Dashofy et al. 2002). We utilize optimization techniques for

evaluating large design spaces, and we provide heuristics as a selection criterion that

evaluates the availability of the (decomposed) system. The approach is illustrated for

evaluating decomposition alternatives to introduce local recovery to the open-source media

player, called MPlayer.

The remainder of this paper is organized as follows. In Sect. 2, we define the problem

statement for selecting feasible decomposition alternatives. In Sect. 3, we present the top-

level process of our approach. Sections 4 to 8 explain the steps of the top-level process in

detail. In Sect. 9, we introduce the set of tools that support this process. In Sect. 10, we

evaluate our approach based on real-time measurements from systems that are decomposed

for local recovery. In Sect. 11, we discuss possible limitations, extensions and lessons

learned. In Sect. 12, we summarize the related work. Finally, in Sect. 13, we provide the

conclusions.

2 Problem statement

In the following subsection, we first present a case study and show an example decom-

position for introducing local recovery for a given architecture. This case study will be

used throughout the paper to illustrate our approach. Next, we will discuss the design space

for the decomposition alternatives. Finally, we will present the criteria to be considered for

selecting the optimal alternative in the design space.

2.1 Case study: MPlayer

We have applied local recovery to an open-source software, MPlayer (2010). MPlayer is a

media player, which supports many input formats, codecs and output drivers. It embodies

Software Qual J

123

approximately 700K lines of code, and it is available under the GNU General Public

License. In our case study, we have used version v1.0rc1 of this software that is complied

on Linux platform (Ubuntu version 7.04). Figure 1 presents a simplified module view

(Clements et al. 2002a) of the MPlayer software architecture with basic implementation

units and direct dependencies among them. In the following, we briefly explain the

important modules that are shown in this view.

Stream reads the input media by bytes, or blocks and provides buffering, seek and skip

functions. Demuxer demultiplexes (separates) the input to audio and video channels and

reads them from buffered packages. Mplayer connects the other modules and maintains the

synchronization of audio and video. Libmpcodecs embodies the set of available codecs.

Libvo displays video frames. Libao controls the playing of audio. Gui provides the

graphical user interface of MPlayer. Mplayer includes the main function of the application,

which initializes and coordinates all the other modules. For this reason, there is a

dependency depicted from Mplayer to each and every other module.

An error occurring in one part of the system can propagate and lead to errors in other

parts. To prevent the propagation of errors, the system should be decomposed into a set of

isolated RUs (Hunt et al. 2007; Candea et al. 2004b). For example, one possible decom-

position is to partition the system modules into 3 RUs; (1) RU AUDIO, which provides the

functionality of Libao (2) RU GUI, which encapsulates the Gui functionality, and (3) RU
MPCORE, which comprises the rest of the system. Figure 2 depicts the boundaries of these

RUs, which are overlayed on the module view of the MPlayer software architecture shown

in Fig. 1.

2.2 Design space

Figure 2 shows only one alternative decomposition for isolating the recoverable units and

as such introducing local recovery. Obviously, the partitioning can be done in many

different ways. To reason about the number of decomposition alternatives, we first need to

Fig. 1 A simplified module
view of the MPlayer software
architecture

Software Qual J

123

model the design space. In fact, the partitioning of architecture into a set of RUs can be

generalized to the well-known set partitioning problem (Harris et al. 2000). Hereby,

a partition of a set S is a collection of disjoint subsets of S whose union is S. For

example, there exists 5 alternatives to partition the set {a, b, c}. These alternative are:

{{a}, {b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}}, {{c}, {a, b}}, {{a, b, c}}. The num-

ber of ways to partition a set of n elements into k nonempty subsets is computed by the

so-called Stirling numbers of the second kind, S(n, k) (Harris et al. 2000). It is calculated

with the following recursive formula.

Sðn; kÞ ¼ k � Sðn� 1; kÞ þ Sðn� 1; k � 1Þ; n� 1 ð1Þ
The total number of ways to partition a set of n elements into arbitrary number of

nonempty sets is counted by the nth Bell number as follows.

Bn ¼
Xn

k¼1

Sðn; kÞ ð2Þ

In theory, Bn is the total number of partitions of a system with n modules. Bn grows

exponentially with n. For example, B1 = 1, B3 = 5, B4 = 15, B5 = 52, B7 = 877 (The

MPlayer case), B15 = 1.382.958.545. Therefore, searching for a feasible design alternative

becomes quickly problematic as n (i.e., the number of modules) grows.

2.3 Criteria for selecting decomposition alternatives

Each decomposition alternative in the large design space may have both pros and cons.

Therefore, the selection of a particular decomposition among the feasible alternatives leads

to a trade-off. Recovery techniques impact several quality attributes of the system. In this

work, we consider two main attributes: performance and availability. Depending on the

application domain, emphasis can be put on other (possibly conflicting) quality attributes

Fig. 2 The module view of the
MPlayer software architecture
with the boundaries of 3
Recoverable units (RUs)

Software Qual J

123

as well. For example, an erroneous system might be stopped for safety, which in turn

compromises its availability (Grunske et al. 2007). In the following, we outline the basic

criteria that we consider for choosing a decomposition alternative.

• Availability: In fact, the main goal of local recovery is to keep the system available as

much as possible. The total availability of a system depends on the availability of its

individual recoverable units. Equation 3 shows the formula of availability.

Availability ¼ MTTF

MTTF+MTTR
ð3Þ

In Eq. 3, MTTF and MTTR stand for the mean time to failure and the mean time to

recover, respectively. To maximize the availability of the overall system, MTTF of RUs

must be kept high and MTTR of RUs must be kept low. The MTTF and MTTR of RUs on

their turn depend on the MTTF and MTTR values of the contained modules. As such, the

overall values of MTTF and MTTR properties of the system depend on the decomposition

alternative, that is, how we separate and isolate the modules into a set of RUs.

• Performance: Logically, the optimal availability of the system is defined by the

decomposition alternative in which all the modules in the system are separately isolated

into RUs. However, increasing the number of RUs leads to a performance overhead due

to the dependencies between the separated modules in different RUs. We distinguish

between two important types of dependencies that cause a performance overhead:

(1) function dependency and (2) data dependency.

The function dependency is the number of function calls between modules across

different RUs. For transparent recovery, these function calls must be redirected. The

redirection of calls leads to an additional performance overhead. For this reason, for

selecting a decomposition alternative, we should consider the number of function calls

among modules across different RUs.

The data dependencies are proportional to the size of the shared variables among

modules across different RUs. In previous work on local recovery (Candea et al.

2004b; Herder et al. 2007), it is assumed that the RUs do not contain shared state

variables and as such are stateless. This assumption can hold, for example, for stateless

components (Candea et al. 2004b) and stateless device drivers in (Herder et al. 2007).

However, when an existing system is decomposed into RUs, there might be shared state

variables leading to data dependencies between RUs. Obviously, the size of data

dependencies complicates the recovery and create performance overhead because the

shared data need to be kept synchronized after recovery. This makes the amount of data

dependency between RUs an important criteria for selecting RUs.

It appears that there exists an inherent trade-off between the availability and perfor-

mance criteria. On the one hand, increasing availability will require to increase the number

of RUs. On the other hand, increasing the number of RUs will introduce additional per-

formance overhead because the amount of function dependencies and data dependencies

will increase. Therefore, selecting decomposition alternatives implies basically leveraging

these two criteria.

If there are only a few alternatives, trade-off analysis can be carried out manually.

However, complex systems usually lead to a large amount of alternatives with subtle

differences that have large impact. In such a context, it is hard to manually identify the

architectural decomposition that offers the best trade-off. For this reason, we utilize

optimization techniques as part of our methodology and the related analysis tool. We

define heuristics for the selection of a decomposition alternative, where availability is

Software Qual J

123

considered as the main decomposition criterion (See Sect. 8.1). In the following, we

provide an overview of our approach that comprises systematic analysis for performance

estimation, availability evaluation and decomposition alternative selection.

3 The overall process

In this section, we define the approach that we use for selecting a decomposition alternative

with respect to local recovery requirements. Our main contribution is the systematic

methodology used for evaluating and selecting decomposition alternatives. This involves

the combination of several analysis techniques for quality estimation and optimization.

Since it is not practical to apply these techniques manually, we also provide integrated tool

support together with the methodology. In the following, we describe the overall process

and the main activities. We present an overview of our analysis tool and its main com-

ponents in Sect. 9.

3.1 The overall process

Figure 3 depicts the main activities of the overall process in a UML activity diagram.

The activities are categorized into 4 groups as follows.

• Architecture Definition: The activities of this group are about the definition of the

software architecture by specifying basic modules of the system. The given architecture

will be utilized to define the feasible decomposition alternatives that show the isolated

RUs consisting of the modules. To prepare the analysis for finding the decomposition

alternative each module in the architecture will be annotated with reliability properties.

These properties are used as an input for heuristics during the Decomposition Selection
process.

• Constraint Definition: Using the initial architecture, we can in principle define the

design space including the decomposition alternatives. As we have seen in Sect. 2.2,

the design space can easily get very large and unmanageable. In addition, not all

theoretically possible decompositions are practically possible because modules in the

initial architecture cannot be freely allocated to RUs due to domain and stakeholder

constraints. Therefore, before generating the complete design space first the constraints

will be specified. The activities of the Constraint Definition group involve the

specification of such domain and stakeholder constraints.

• Measurement: Even though some alternatives are possible after considering the domain

constraints, they might in the end still not be feasible due to the performance overhead

introduced by the particular allocation of modules to RUs. To estimate the real

performance overhead of decomposition alternatives, we need to know the amount of

function and data dependencies between the system modules for a running system. The

activities of the Measurement group deal with performing related performance

measurements from the existing running system. These measurements are utilized

during the Decomposition Selection process.

• Decomposition Selection: Based on the input of all the other groups of activities, the

activities of this group select an alternative decomposition. First, the feasible design

space is defined based on the architecture description, specified constraints and

measurements in the previous activities. Next, a set of optimization algorithms and

related heuristics are used for selecting a decomposition alternative.

Software Qual J

123

In Fig. 3, there are flows depicted from the Decomposition Selection activities back to

the Constraint Definition activities and the activity that involves the annotation of the

software architecture. As such, design decisions can be revisited in several iterations; the

designer can decide to refine the annotations and constraints to redefine the feasible design

space. Hereby, the software architecture is given as an input, and we assume that it is

correctly defined. The measurement activities are also solely based on this given archi-

tecture. For this reason, we have not considered iterations involving these activities.

In the following sections, we explain each activity of the proposed approach in detail,

using the MPlayer case study as a running example.

4 Software architecture definition

The first step Architecture Definition in Fig. 3 is composed of two activities: definition of
the software architecture and annotation of the software architecture. For describing the

software architecture, we use the module view of the system, which includes basic

implementation units and direct dependencies among them (Clements et al. 2002a). This

Fig. 3 The overall process

Software Qual J

123

activity is carried out by using the Arch-Edit tool of the Arch-Studio (Dashofy et al. 2002).

Arch-Studio specifies the software architecture with an XML-based architecture descrip-

tion language (ADL)1 called xADL (Dashofy et al. 2002). Arch-Edit is a front-end that

provides a graphical user interface for creating and modifying an architecture description.

Both the XML structure of the stored architectural description and the user interface of

Arch-Edit (i.e., the set of properties that can be specified per module) conform to the xADL

schema and as such can be used together with other XML-based tools.

In the second activity of Architecture Definition, a set of reliability properties per

module is defined to prepare the subsequent analysis. These properties are MTTF, MTTR
and Criticality. We have already explained MTTF and MTTR in Sect. 2.3. Criticality
property defines how critical the failure of a module is with respect to the overall func-

tioning of the system.

To be able to specify these properties, we have extended the existing xADL schema

with a new type of interface, i.e., reliability interface, for modules. A part of the corre-

sponding XML schema that introduces the new properties is shown in Fig. 4. The concept

of analytical interface has been borrowed from (Grassi et al. 2005), where Grassi et al.

define an extension to the xADL language to be able to specify parameters for performance

analysis. They introduce a new type of interface that comprises two types of parameters:

constructive parameter and analytic parameter. The analytic parameters are used for

analysis purposes only. In our case, we have specified the reliability interface that consists

of the three parameters MTTF, MTTR and Criticality. Using Arch-Edit, both the archi-

tecture and the properties per module can be defined. The modules together with their

parameters are provided as an input to the heuristics that are used in the Decomposition
Selection process.

Note that the values for properties MTTF, MTTR and Criticality need to be defined by

the software architect. In principle, there are three strategies that can be used to determine

these property values:

Fig. 4 xADL schema extension
for specifying analytical
parameters related to reliability

1 In principle, UML or any ADL can be used for architecture definition. We have used an XML-based ADL
for its extensibility capabilities and to be able to utilize the tool support (ArchStudio), which is also highly
extensible for integrating our own tools. There exist also other extensible ADLs (di Ruscio et al. 2010) that
could be utilized in our approach.

Software Qual J

123

• Using Fixed values: All values can be fixed to a certain value.

• What-if analysis: A range of values can be considered, where the values are varied and

their effect is observed.

• Measurement of actual values: Values can be specified based on actual measurements

from the existing running system. For example, the actual MTTF can be measured

based on historical data or execution probabilities of elements that are obtained from

scenario-based test runs (Yacoub et al. 2004).

The selection of these strategies is dependent on the available knowledge about the

domain and the analyzed system. The measurement of actual values is usually the most

accurate way to define the properties. However, this might not be possible due to lack of

historical data. In that case, either fixed values or a what-if analysis or both can be used.

In our case study, we have fixed all the Criticality values to 1.2 We have used different

values for MTTF to observe and compare its effect on various design alternatives. We have

specified MTTR values based on measurements from the existing running system. To

compute the MTTR for the modules, we have measured the average time to restart and

initialize each module of MPlayer. Table 1 shows the computed MTTR values.

5 Constraint definition

After defining the software architecture, we can start searching for the possible decom-

position alternatives that define the structure of RUs. As stated before in Sect. 2.2, not all

theoretically possible alternatives are practically possible. Moreover, system designers

should be able to define their own RUs and/or enforce restrictions on the RU decompo-

sition. For example, a set of critical functions or services might be isolated from the rest of

the system for protection. Such decisions are made based on the domain knowledge of the

designer, and constraints should be defined accordingly to steer the definition of RUs.

During the Constraint Definition activity, the constraints are defined and as such the design

space is reduced. We distinguish among the following three types of constraints:

• Deployment Constraints: An RU is a unit of recovery in the system and includes a set

of modules. In general, the number of RUs that can be defined will also be dependent

on the context of the system that can limit the number of RUs in the system. For

example, if we employ multiple operating system processes to isolate RUs from each

other, the number of processes that can be created can be limited due to operating

Table 1 Annotated MTTR val-
ues for the MPlayer case based
on measurements

Modules MTTR (ms)

Libao 480

Libmpcodecs 500

Demuxer 540

Mplayer 800

Libvo 400

Stream 400

Gui 600

2 In another study, we have worked on the derivation of Criticality values based on scenario-based analysis
(Tekinerdogan et al. 2008).

Software Qual J

123

system constraints. It might be the case that the resources are insufficient for creating a

separate process for each RU, when there are many modules and all modules are

separated from each other.

• Domain Constraints: Some modules can be required to be in the same RU, while other

modules must be separated. In the latter case, for example, an untrusted third-party

module can be required to be separated from the rest of the system. Usually, such

constraints are specified with mutex and require relations (Kang et al. 1990).

• Performance Feasibility Constraints: As explained in Sect. 2.2, each decomposition

alternative introduces a performance overhead due to function and data dependencies.

Usually, there are thresholds for the acceptable amounts of these dependencies based

on the available resources. The decomposition alternatives that exceed these thresholds

are infeasible because of the performance overhead they introduce and as such must be

eliminated.

6 Generation of design alternatives

The first activity in Decomposition Selection is to compute the size of the feasible

design space based on the architecture description and the specified domain constraints.

To this aim, the set of modules that are required to be together (based on the requires
relations defined among the domain constraints) are grouped. In the rest of the activity,

these groups of modules are treated as single modules. Then, based on the number of

resulting modules and the deployment constraints (i.e., the number of RUs), Stirling
numbers of the second kind (Sect. 2.2) is used for calculating the size of the reduced

design space.

Next, restricted growth (RG) strings (Ruskey 2003) are used for generating the design

alternatives. A RG string s of length n specifies the partitioning of n elements, where

s[i] defines the partition that ith element belongs to. For the MPlayer case, for instance, we

can represent all possible decompositions with an RG string of length 7. The RG string

0000000 refers to the decomposition where all modules are placed in a single RU. Assume

that the elements in the string correspond to the modules Mplayer, Gui, Libao, Lib-
mpcodecs, Demuxer, Stream and Libvo, respectively. Then, the RG string 0120000 defines

the decomposition that is shown in Fig. 2. Hereby, there are 3 RUs in total, enumerated as

0, 1 and 2. The modules Mplayer, Libmpcodecs, Demuxer, Stream and Libvo are placed in

RU 0. The modules Gui and Libao are placed in RUs 1 and 2, respectively. A recursive

lexicographic algorithm generates all valid RG strings for a given number of elements and

partitions (Ruskey 1993).

During the generation process of decomposition alternatives, the alternatives that vio-

late mutex relations (defined among the domain constraints) are eliminated. These are the

alternatives, where two modules that must be separated are placed in the same RU. For the

MPlayer case, there exist a total of 877 decomposition alternatives. The deployment and

domain constraints that we have defined (See Fig. 13) reduced the number of alternatives

down to 20.

7 Function and data dependency measurements from the existing system

The Measurement process follows the Architecture Definition (See Fig. 3) and the Con-
straint Definition processes. Using the domain constraints, the design space can already be

Software Qual J

123

generated. However, if performance feasibility constraints have been defined, then we can

further reduce the design space. For this, we need to perform measurements from the

existing running system. These measurements heavily depend on the usage scenarios and

the inputs that are provided to the system. In our case study, we have performed the

measurements for the video-playing scenario, which is a common usage scenario for a

media player application. Elicitation of a representative set of usage scenarios is out of the

scope of this paper. We refer to the related techniques in Sect. 11.

Based on the measurements, it can be decided whether design alternatives meet the

performance feasibility constraints and as such are selected in the feasible set of alter-

natives. The Measurement process involves two activities for analyzing two different types

of dependencies related to performance overhead: function dependencies and data
dependencies. In the following subsections, we explain these activities in detail.

7.1 Function dependency analysis

Function calls among modules across different RUs impose an additional performance

overhead due to the redirection of calls by RUs. In function dependency analysis, for each

decomposition alternative, we analyze the frequency of function calls between the modules

in different RUs. The overhead of a decomposition is calculated based on the ratio of the

delayed calls to the total number of calls in the system.

Function dependency analysis is performed by first deriving the so-called module

dependency graph (MDG) (Mitchell and Mancoridis 2006) of the program. MDG is a

graph, where each node represents a C object file and edges represent the function

dependencies between these files. Figure 5, for example, shows a partial snapshot of the

generated MDG for MPlayer.3

After the MDG is created, it is stored in a database and queried for estimating the

function dependency overhead. The estimation is performed based on the following

equation.

fd ¼

P
RUx

P
RUy^
ðx 6¼yÞ

callsðx! yÞ � tOV D

P
f calls(f)� time(f)

� 100 ð4Þ

In Eq. 4, the denominator sums for all functions, the number of times a function is

called multiplied by the time spent for that function. In the numerator, the number of times

a function is called between different RUs is summed. The final result is multiplied by the

overhead that is introduced per such function call (tOV D). In our case study, where we

isolate RUs with separate processes, the overhead is related to the interprocess commu-

nication.4 For this reason, we use a measured worst-case overhead, 100 ms as tOV D.

To calculate the function dependency overhead, we need to calculate the sum of

function dependencies between all the modules that are part of different RUs. Consider, for

example, the RU decomposition that is shown in Fig. 2. Hereby, the Gui and Libao

3 The graphical representation of MDG is provided only for illustration purposes. This representation can be
too complicated for manual interpretation, and as such, it is not exposed to the user. The module dependency
data is stored in a database, and it is processed by a tool.
4 In our implementation, we have used sockets for communication. The performance overhead is introduced
mainly due to the marshalling of exchanged messages.

Software Qual J

123

modules are encapsulated in separate RUs and separated from all the other modules of the

system. The other modules in the system are allocated to a third RU, RU MPCORE. For

calculating the function dependency overhead of this example decomposition, we need to

calculate the sum of function dependencies between the Gui module and all the other

modules plus the function dependencies between the Libao module and all the other

modules. In the following, Algorithm 1 shows the pseudo-code for counting the number of

function calls between different RUs.

For the example decomposition shown in Fig. 2, the function dependency overhead was

calculated as 5.4%. This makes the decomposition a feasible alternative with respect to the

function dependency overhead constraints, where the threshold was specified as 15% for

the case study. The calculation of the overhead by our tools (Sect. 9.3) took less than

100 ms for this example decomposition. In general, the time it takes for the calculation

Algorithm 1 Calculate the amount of function dependencies between the selected recoverable units (RUs)

Fig. 5 A partial snapshot of the generated module dependency graph (MDG) of MPlayer together with the
boundaries of the Gui module with the modules Mplayer, Libao and Libvo

Software Qual J

123

depends on the number of modules and the particular decomposition. The worst-case

asymptotic complexity of Algorithm 1 is O(n2) with respect to the number of modules.

7.2 Data dependency analysis

Data dependency analysis is performed by instrumenting the program and identifying

memory addresses that are shared by multiple modules at run time (the tool support for

performing this identification is explained in Sect. 9.4). This information leads to the total

number and size of data dependencies between the modules of the system. Table 2 shows

the results for the MPlayer case.

In Table 2, we see per pair of modules, the number of common memory locations

accessed (i.e., count) and the total size of the shared memory. This table is stored in a

database and queried for each RU decomposition alternative to estimate the data depen-

dency size. The size of the data dependency is calculated simply by summing up the shared

data size between the modules of the selected RUs. This calculation is depicted in the

following equation.

dd ¼
X

RUx

X

RUy^
ðx 6¼yÞ

X

m2x

X

k2y

memsize(m,k) ð5Þ

For the example decomposition shown in Fig. 2, the data dependency size is approxi-

mately 5 KB. It took less than 100 ms to calculate this by our tools (Sect. 9.4). The

decomposition also turns out to be a feasible alternative with respect to the data depen-

dency size constraints, where the threshold was specified as 10 KB for the case study.

Table 2 Measured data depen-
dencies between the modules of
the MPlayer

Module 1 Module 2 Count Size (bytes)

Gui Libao 64 256

Gui Libmpcodecs 360 1329

Gui Libvo 591 2217

Gui Demuxer 47 188

Gui MPlayer 36 144

Gui Stream 242 914

Libao Libmpcodecs 78 328

Libao Libvo 63 268

Libao Demuxer 3 12

Libao Mplayer 43 172

Libao Stream 54 232

Libmpcodecs Libvo 332 1344

Libmpcodecs Demuxer 29 116

Libmpcodecs Mplayer 101 408

Libmpcodecs Stream 201 812

Libvo Demuxer 53 212

Libvo Mplayer 76 304

Libvo Stream 246 995

Demuxer Mplayer 0 0

Demuxer Stream 23 92

Mplayer Stream 28 116

Software Qual J

123

7.3 Depicting function and data dependency analysis results

Using the deployment and domain constraints, we have seen that for the MPlayer case, the

total number of 877 decomposition alternatives was reduced to 20. For each of these

alternatives we can now follow, the approach of the previous two subsections to calculate

the function dependency and data dependency values. Figure 6 shows the plot for the 20

decomposition alternatives that remain after applying the deployment and domain con-

straints. Hereby, the decomposition alternatives are listed along the x-axis. The y-axis on

the left-hand side is used for showing the function dependency overheads of these alter-

natives. The y-axis on the right-hand side is used for showing the data dependency sizes of

the decomposition alternatives. Using these results, the software architect can already have

a first view on the feasible alternatives. The final selection of the alternatives will be

explained in the next section.

8 Trade-off analysis and optimization

After the software architecture is described, design constraints are defined and the nec-

essary measurements are performed on the system, the final set of decomposition alter-

natives can be selected as defined by the last group of activities (See Fig. 3). Using the

domain constraints, we have seen that for the MPlayer case 20 alternatives were possible.

This set of alternatives is further evaluated with respect to the performance feasibility

constraints based on the defined thresholds and the measurements performed on the run-

ning system. For the MPlayer case, we have set the function dependency overhead

threshold to 15% and the data dependency size threshold to 10.0 KB. It appears that after

the application of performance feasibility constraints, only 6 alternatives are left in the

feasible design space as listed in Fig. 7. Hereby, RUs are defined in the straight brackets

‘[’ and ‘]’. For example, the alternative # 1 represents the alternative as defined in Fig. 2.

Figure 8 shows the function dependency overhead and data dependency size for the 6

 0

 5

 10

 15

 20

 25

 0 5 10 15 20
 4

 5

 6

 7

 8

 9

 10

F
un

ct
io

n
D

ep
en

de
nc

y
O

ve
rh

ea
d

(%
)

D
at

a
D

ep
en

de
nc

y
S

iz
e

(K
B

)

RU Decomposition Alternatives

Analysis Results For the Decomposition Alternatives

Function Dependency Overhead (%)

Data Dependency Size (KB)

Fig. 6 Function dependency overhead and data dependency sizes for decomposition alternatives after
domain constraints are applied

Software Qual J

123

feasible decomposition alternatives. Hereby, we can see that the alternative # 4 has the

highest value for the function dependency overhead. This is because this alternative

corresponds to the decomposition, where the two highly coupled modules Libvo and

Libmpcodecs are separated from each other. We can see that this alternative has also a

distinctively high data dependency size. This is because this decomposition alternative

separates the modules Gui, Libvo and Libmpcodecs from each other. As can be seen in

Table 2, the size of data that is shared between these modules is the highest among all.

As described in Sect. 2.3, the selection of a particular decomposition alternative leads to

a trade-off, where we consider two main attributes: performance and availability. In the

following subsections, we focus on this trade-off. On one hand, we want to keep avail-

ability as high as possible. On the other hand, we want to keep function and data

dependencies as low as possible to keep the performance overhead low.

8.1 Availability estimation

Since the main goal of local recovery is to maximize the system availability, we need to

evaluate and compare the feasible decomposition alternatives based on availability as well.

If the reduced design space is small enough, we can estimate the availability for each

decomposition alternative by means of analytic models (Boudali et al. 2009) and select an

alternative accordingly. If the design space is too large for this, we can use optimization

techniques as explained in the following subsection.

Fig. 7 The feasible
decomposition alternatives with
respect to the specified
constraints

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6
 4

 5

 6

 7

 8

 9

 10

F
un

ct
io

n
D

ep
en

de
nc

y
O

ve
rh

ea
d

(%
)

D
at

a
D

ep
en

de
nc

y
S

iz
e

(K
B

)
RU Decomposition Alternatives

Analysis Results For the Decomposition Alternatives

Function Dependency Overhead (%)

Data Dependency Size (KB)

Fig. 8 Function dependency overhead and data dependency sizes for 6 decomposition alternatives

Software Qual J

123

We have adopted the following objective function to estimate the gain in availability

that can be achieved by an RU decomposition.

MTTRRUx
¼
X

m2RUx

MTTRm ð6Þ

1=MTTFRUx
¼
X

m2RUx

1=MTTFm ð7Þ

CriticalityRUx
¼
X

m2RUx

Criticalitym ð8Þ

objective function = min:
X

RURUx

CriticalityRUx
�MTTRRUx

MTTFRUx

ð9Þ

In Eqs. 6 and 7, we calculate for each RU the MTTR and MTTF, respectively. The

calculation of MTTR for an RU is based on the assumption that all the modules comprised

by an RU are recovered sequentially. That is why, the MTTR for an RU is simply the

addition of MTTR values of the modules that are comprised by the corresponding RU. The

calculation of MTTF for an RU is based on the assumption that the failure probability

follows an exponential distribution with rate k = 1/MTTF. If X1, X2; . . . and Xn are

independent exponentially distributed random variables with rates k1; k2; . . . and kn,

respectively, then minðX1;X2; . . .;XnÞ is also exponentially distributed with rate k1 þ k2 þ
. . .þ kn (Ross 2007). As a result, the failure rate of an RU (1/MTTFRU_x) is equal to the

sum of failure rates of the modules that are comprised by the corresponding RU. In Eq. 8,

we calculate the criticality of an RU by simply summing up the criticality values of the

modules that are comprised by the RU. Equation 9 shows the objective function that is

utilized by the optimization algorithms. As explained in Sect. 3.3, to maximize the

availability, MTTR of the system must be kept as low as possible and MTTF of the system

must be as high as possible. As a heuristic based on this fact, the objective function is to

minimize the MTTR/MTTF ratio in total for all RUs, which are weighted based on the

criticality values of RUs.

The objective function we define in Eq. 9 is actually a heuristic for the selection of a

decomposition alternative. In this paper, we have defined a heuristic, where availability is

considered as the main decomposition criterion. Note that this can be changed according to

the designers’ concerns and trade-off decisions. The defined heuristic is used as an input

for the applied optimization technique(s) as described in the following subsection.

8.2 Optimization approaches

The selection of a decomposition alternative considering multiple quality attributes (in this

case, availability and performance) requires us to solve a multicriteria optimization

problem. We can benefit from several approaches (Grunske et al. 2007) to make the

necessary trade-off decisions and optimize the selection of a decomposition alternative

based on the analysis results as shown in Fig. 6. First, the designer must select an opti-

mization strategy and technique based on the quality requirements and the size of the

feasible design space.

One approach as an optimization strategy would be to reduce the problem to a single-

objective function. This can be achieved by optimizing with respect to one quality factor

while keeping the other quality factors as constraints. Another common multiobjective

optimization approach forms a single-objective function from linearly weighted criteria

Software Qual J

123

(Athon and Papalambros 1996). The third option is to use multiple objectives at the same

time and use pareto-optimization if quality criteria are considered to be equally important.

The optimization technique to be utilized is mainly determined by the size of the

feasible design space. If there are not too many modules and/or constraints are able to

prune the design space extensively, the designer can directly use exhaustive search.

Otherwise, if the design space is large, local search (e.g., hill-climbing algorithm) and

approximation techniques must be utilized. In the latter case, it is possible to end up in a

suboptimal but still an acceptable solution with respect to requirements. If the selected

decomposition is not satisfactory, the granularity of the module decomposition or provided

constraints can be revisited to decrease the size of the design space for tractability.

In the following, we provide examples for the application of two different approaches.

(1) single-objective function (i.e., maximize availability such that function and data

dependencies are below a certain threshold) optimized with exhaustive search or hill-

climbing algorithm and (2) multiobjective pareto-optimization (i.e., maximize availability

while minimizing function dependencies and data dependencies).

Single-objective optimization. The objective function introduced in Eq. 9 is adopted

for single-objective optimization. We have considered two optimization techniques:

exhaustive search and hill-climbing algorithm. In the case of exhaustive search, all the

alternatives are evaluated and compared with each other based on the objective function. If

the design space is too large for exhaustive search, hill-climbing algorithm can be utilized

to search the design space faster but ending up with possibly a suboptimal result with

respect to the objective function.

Hill-climbing algorithm starts with a random (potentially bad) solution to the problem.

It sequentially makes small changes to the solution, each time improving it a little bit. At

some point, the algorithm arrives at a point where it cannot see any improvement anymore,

at which point the algorithm terminates. In our approach, solution alternatives (possible

partitions) and iterations over these are defined based on the hill-climbing algorithm

proposed by Mitchell and Mancoridis (2006). Hereby, our algorithm starts from the worst

decomposition with respect to availability, where all modules of the system are placed in a

single RU. Then, it systematically generates a set of neighbor decompositions by moving

modules between RUs.5 A decomposition NP is defined as a neighbor decomposition of

P if NP is exactly the same as P except that a single module of an RU in P is in a different

RU in NP. During the generation process, a new RU can be created by moving a module to

a new RU. It is also possible to remove an RU when its only module is moved into another

RU. The algorithm generates neighbor decompositions of a decomposition by systemati-

cally manipulating the corresponding RG string. For example, consider the set of RG

strings of length 7, where the elements in the string correspond to the modules Mplayer,

Gui, Libao, Libmpcodecs, Demuxer, Stream and Libvo, respectively. Then, the decom-

position { [Libmpcodecs, Libvo] [Mplayer] [Gui] [Demuxer] [Libao] [Stream] } is rep-

resented by the RG string 1240350. By incrementing or decrementing one element in this

string, we end up with the RG strings 1241350, 1242350, 1243350, 1244350, 1245350,

1246350, 1240340, 1240351, 1240352, 1240353, 1240354, 1240355 and 1240356, which

correspond to the decompositions shown in Fig. 9, respectively.

For the MPlayer case, the optimal decomposition (ignoring the deployment and domain

constraints) based on the heuristic-based objective function (Eq. 9) is { [Mplayer] [Gui]

[Libao] [Libmpcodecs, Libvo] [Demuxer] [Stream] }. It took 89 seconds to find this

decomposition with exhaustive search. The hill-climbing algorithm terminated on the same

5 Each RU is a partition in the parlance of (Mitchell and Mancoridis 2006).

Software Qual J

123

machine in 8 seconds with the same result. A total of 76 design alternatives had to be

evaluated and compared by the hill-climbing algorithm, instead of 877 alternatives in the

case of exhaustive search.

Multi-objective optimization. In some cases, multiple quality criteria can be treated to

be equally important. As a result, there might not be a single optimal solution, but a set of

Pareto-optimal (Pareto 1896) solutions instead. In this case, a design alternative can be

selected in two steps: first by identifying and evaluating the Pareto-optimal alternatives and

then selecting a particular alternative among these alternatives. There have been different

techniques used for such a multiobjective optimization approach. For example, evolu-

tionary strategies have been applied to solve multiobjective optimization problems in the

context of architecture design (Aleti et al. 2009). In Fig. 10, we can see the feasible

decomposition alternatives plotted with the corresponding values for 1/availability (the

reciprocal of the objective function presented in Eq. 9), function dependency and data

dependency, all of which must be minimized. The local recovery design alternative with 3

RUs i.e., MPCORE, AUDIO and GUI (Fig. 2) happens to be one of the Pareto-optimal

decompositions. The corresponding 1/availability, function dependency and data depen-

dency values are 3.53, 5.39 and 5.86, respectively. One of the other example Pareto-

optimal decompositions shown in Fig. 10 has the minimal 1/availability (3.11, 18.48,

9.03). The other decomposition has the minimal function and data dependency values

(8.07, 3.43, 4.86).

9 Tool support

Our approach requires the utilization of various analysis techniques including control/data

flow analysis and optimization. It is not feasible to manually apply and integrate these

techniques for large-scale systems with many decomposition alternatives. Therefore, we

believe that it is important to provide tool support for such a process; however, it is not

possible (and usually not desirable) to fully automate all the activities. The designer should

be able to steer the process by providing domain knowledge, certain design choices and

Fig. 9 The neighbor decompositions of the decomposition { [Libmpcodecs, Libvo] [Mplayer] [Gui]
[Demuxer] [Libao] [Stream] }

Software Qual J

123

trade-off decisions. Therefore, we have developed an analysis tool to be used by the

designer interactively. This tool, called Recovery Designer,6 consists of several subtools

each of which automate different parts of the process. Table 3 summarizes the level of

automation provided for each group of activities depicted in Fig. 3.

The specification of the software architecture and its annotation regarding reliability

properties are manual activities (though graphical editors are used for this purpose). The

annotated architecture description is provided as an input to Recovery Designer. Similarly,

the specification of constraints is also a manual activity; however, Recovery Designer
checks the specified constraints for inconsistencies, and it provides immediate feedback

about the achieved design space reduction. All the measurement activities are automati-

cally performed, and charts are generated to present the measurement results. Recovery
Designer implements a set of optimization algorithms. Hence, the selection of decompo-

sition is also automated; however, the designer can influence the outcome by changing the

constraints and the objective function that are provided as inputs to the optimization

algorithms. As a default objective function, we have defined a heuristic for decomposition

selection, where availability is considered as the main decomposition criterion (Eq. 9). In

brief, the designer defines/updates the annotated architecture description, a set of con-

straints and (optionally) the objective function, which are provided as an input to the

analysis tool.

Recovery Designer is fully integrated in Arch-Studio (Dashofy et al. 2002), which is an

open-source software and systems architecture development environment based on the

Eclipse open development platform. It originally includes a set of tools for specifying and

analyzing software architectures. We have used the meta-modeling facilities of ArchStudio

Table 3 The level of automa-
tion for the main activities of the
process

Activities Level of automation

Architecture definition Manual

Constraint definition Semi-automatic

Measurement Fully automatic

Decomposition selection Semi-automatic

Fig. 10 Pareto-optimal decompositions with respect to availability and interdependencies (values are
normalized)

6 The tool is available online at http://srl.ozyegin.edu.tr/tools/ard/.

Software Qual J

123

http://srl.ozyegin.edu.tr/tools/ard/

to extend the tool and integrate Recovery Designer with the provided default set of tools. A

snapshot of the extended Arch-Studio can be seen in Fig. 11 in which Recovery Designer is

activated. The architecture of Recovery Designer is shown in Fig. 12. The tool boundary is

defined by the large rectangle with dotted lines. The tool itself consists of 5 subtools;

Constraint Evaluator, Design Alternative Generator, Function Dependency Analyzer,

Data Dependency Analyzer and Optimizer. Further, it uses 4 external tools Arch-Edit,
GNU-gprof, Valgrind and gnuplot.

In the following subsections, we explain different components of the analysis tool in

detail.

9.1 Constraint evaluator

Constraint Evaluator gets as input the architecture description that is created with the

Arch-Edit tool. We can see a snapshot of the Constraint Evaluator in Fig. 13. The user

interface consists of three parts: Deployment Constraints, Domain Constraints and

Performance Feasibility Constraints, each corresponding to a type of constraint to be

Fig. 11 A snapshot of the arch-studio recovery designer

Software Qual J

123

specified. In the Deployment Constraints part, we specify the limits for the number of RUs.

In Fig. 13, the minimum and maximum number of RUs are specified as 1 and 7 (i.e., the

total number of modules), respectively, which means that there is no limitation to the

number of RUs. In the Domain Constraints part, we specify requires/mutex relations. For

each of these relations, Constraint Evaluator provides two lists that include the name of the

modules of the system. When a module is selected from the first list, the second list is

updated, where the modules that are related are selected (initially, there are no selected

elements). The second list can be modified by multiple (de)selection to change the rela-

tionships. For example, in Fig. 13, it has been specified that Demuxer must be in the same

RU as Stream and Libmpcodecs, whereas Gui must be in a separate RU than Mplayer,

Libao and Libvo. Constraint Evaluator can also automatically check whether there are any

conflicts between the specified requires and mutex relations (i.e., two modules must be kept

together and separated at the same time).

In the Performance Feasibility Constraints part, we specify thresholds for the amount of

function and data dependencies between the separated modules. The specified constraints

are used to eliminate alternatives that exceed the given threshold values. Evaluation of the

constraints requires measurements to be performed from the running system. However, if

there is no existing system available and we cannot perform the necessary measurements,

we can skip the analysis of the performance feasibility constraints. Arch-Studio Recovery
Designer provides an option to enable/disable the performance feasibility analysis. In case

this analysis is disabled, the design space will be evaluated based on only the deployment

Fig. 12 Arch-studio recovery
designer analysis tool
architecture

Software Qual J

123

constraints and domain constraints so that it is still possible to generate the decomposition

alternatives and depict the reduced design space.

9.2 Design alternative generator

Design Alternative Generator computes the size of the feasible design space based on the

architecture description and the specified domain constraints (as explained in Sect. 6) Note

that this information is provided to the user already during the Constraint Definition
process (See the GUI of the Constraint Evaluator tool in Fig. 13). Then, it generates the set

of decomposition alternatives using the restricted growth (RG) strings (Ruskey 2003) and

eliminates alternatives that violate any constraints. The generated design alternatives are

provided to the Function Dependency Analyzer, Data Dependency Analyzer and Optimizer
tools.

Design Alternative Generator also generates charts corresponding to the generated

design spaces, and it uses gnuplot to depict them (e.g., Fig. 6). The generated charts show

the function dependency overhead and the data dependency size for each decomposition

alternative as calculated by the Function Dependency Analyzer and Data Dependency
Analyzer tools, respectively.

Fig. 13 Specification of design constraints

Software Qual J

123

9.3 Function dependency analyzer

Function Dependency Analyzer tool performs function dependency analysis based on the

inputs from the Design Alternative Generator and GNU gprof tools (See Fig. 12). As

shown in Fig. 14, the Function Dependency Analyzer tool itself is composed of three main

components: (1) Module Function Dependency Extractor (2) Function Dependency
Database and (3) Function Dependency Query Generator.

Module Function Dependency Extractor uses the GNU gprof tool to obtain the function

call graph of the system. GNU gprof also collects statistics about the frequency of per-

formed function calls and the execution time of functions. Once the function call profile is

available, Module Function Dependency Extractor uses an additional GNU tool called

GNU nm (provides the symbol table of a C object file) to relate the function names to the C

object files. As a result, Module Function Dependency Extractor creates the corresponding

MDG.

To be able to query the function dependencies between the system modules, we need to

relate the set of nodes in the MDG to the system modules. Module Function Dependency
Extractor uses the package structure of the source code to identify the module that a C

object file belongs to. This is also reflected to the prefixes of the nodes of the MDG. For

example, each file that belongs to the Gui module has ‘‘Gui’’ as the prefix. Module
Function Dependency Extractor exploits the full path of the C object file, which reveals its

prefix (e.g., ‘‘./Gui*’’) and the corresponding module. For the MPlayer case, the set of

packages that corresponds to the provided module view (Fig. 1) was processed.

After the MDG is created, it is stored in the Function Dependency Database, which is a

relational database. Once the MDG is created and stored, Function Dependency Analyzer
becomes ready to calculate the function dependency overhead for a particular selection of

RUs defined by the Design Alternative Generator. For each alternative, Function

Fig. 14 Function dependency
analysis

Software Qual J

123

Dependency Query Generator accesses the Function Dependency Database and auto-

matically creates and executes queries to estimate the function dependency overhead

(Eq. 4). An example query is shown in Fig. 15, where the number of calls from the module

Gui to the module Libao is queried.

9.4 Data dependency analyzer

Data Dependency Analyzer is responsible for providing information regarding the data

dependencies among the software modules. It is composed of three main components:

(1) Module Data Dependency Extractor (2) Data Dependency Database and (3) Data
Dependency Query Generator (See Fig. 16).

Module Data Dependency Extractor uses the Valgrind tool to obtain the data access

profile of the system. Valgrind (Nethercote and Seward 2007) is a dynamic binary

instrumentation framework, which enables the development of dynamic binary analysis

tools. Such tools perform analysis at run time at the level of machine code. Valgrind
provides a core system that can instrument and run the code, plus an environment for

writing tools that plug into the core system (Nethercote and Seward 2007). A Valgrind tool

Fig. 15 The generated SQL query for calculating the number of calls from the module Gui to the module
Libao

Fig. 16 Data dependency analysis

Software Qual J

123

is basically composed of this core system plus the plug-in tool that is incorporated to the

core system. We use Valgrind to obtain the data access profile of the system. To do this, we

have written a plug-in tool for Valgrind, namely the Data Access Instrumentor (DAI),

which records the addresses and sizes of the memory locations that are accessed by the

system. A sample of this data access profile output can be seen in Fig. 17.

In Fig. 17, we can see the addresses and sizes of memory locations that have been

accessed. In line 7 for instance, we can see that there was a memory access at address

bea1d4a8 of size 4 from the file ‘‘audio_out.c’’. DAI outputs the full paths of the files,

where a memory access was performed. The full path information is used for identifying

the corresponding module. The related parts of the file paths are underlined in Fig. 17. For

example, in line 9, we can see that the file ‘‘aclib_template.c’’ belongs to the Libvo module.

From this data access profile, we can also observe that the same memory locations can be

accessed by different modules. Based on this, we can identify the data dependencies. For

instance, Fig. 17 shows a memory address bea97498 that is accessed by both the Gui and

the Mplayer modules as highlighted in lines 2 and 6, respectively. The output of DAI is

used by the Module Data Dependency Extractor to search for all such memory addresses

that are shared by multiple modules. The output of the Module Data Dependency Extractor
is the total number and size of data dependencies between the modules of the system. This

information is stored in the Data Dependency Database.

Once the data dependencies are stored, Data Dependency Analyzer becomes ready to

calculate the data dependency size for a particular selection of RUs defined by the Design
Alternative Generator. Data Dependency Query Generator accesses the Data Dependency
Database, creates and executes queries for each RU decomposition alternative to estimate

the data dependency size. The querying process is very similar to the querying of function

dependencies as explained in Sect. 9.3. The only difference is that the information being

queried is data size instead of the number of function calls.

9.5 Optimizer

The Optimizer tool of Arch-Studio Recovery Designer implements two single-objective

optimization techniques: exhaustive search and hill-climbing algorithm. In the case of

exhaustive search, all the decomposition alternatives are compared with each other based

on the objective function (Eq. 9). The hill-climbing algorithm is implemented as described

in Sect. 8.2. Optimizer receives the set of generated design alternatives from Design
Alternative Generator and outputs a decomposition alternative that is selected as the result

of optimization.

Fig. 17 A sample output of Valgrind ? Data Access Instrumentor

Software Qual J

123

10 Evaluation

The utilization of analysis and optimization techniques helps us to analyze, compare and

select a decomposition among many alternatives. The main goal of decomposing the

software architecture is to introduce local recovery and as such increase the system

availability. To evaluate the increase in availability and the viability of the heuristics used

for optimization, we have performed real-time measurements from systems that are

decomposed for local recovery. We have also collected actual performance data to evaluate

our metrics regarding the performance overhead. In this section, we briefly explain the

implementation issues, how the measurements are performed and the results of our

assessments.

10.1 Implementation of local recovery

Introducing local recovery to a software system, while preserving the existing decompo-

sition, is not trivial and requires a substantial development and maintenance effort. To

reduce this effort, we have implemented a framework, FLORA (Sozer et al. 2009), for

supporting the decomposition and implementation of software architecture for local

recovery. FLORA comprises interprocess communication (IPC) utilities, serialization/

de-serialization primitives, error detection and diagnosis mechanisms, an RU wrapper

template, a recovery manager that coordinates recovery actions and a connector that

mediates and controls the communication among RUs. Each RU (a set of modules as

defined by an RU wrapper template) is assigned to a separate process. All the function calls

among the modules that are part of different RUs are captured by FLORA. These calls are

marshaled and forwarded to the corresponding RUs through IPC using domain sockets.

The framework has been implemented in the C language on a Linux platform.

By means of FLORA, we have introduced local recovery to MPlayer for 3 different

decomposition alternatives: (1) global recovery, where all the modules are placed in a

single RU ({ [Mplayer, Libmpcodecs, Libvo, Demuxer, Stream, Gui, Libao] }) (2) local

recovery with two RUs, where the module Gui is isolated from the rest of the modules

({ [Mplayer, Libmpcodecs, Libvo, Demuxer, Stream, Libao] [Gui] }) (3) local recovery

with three RUs, where the module Gui, Libao and the rest of the modules are isolated from

each other ({ [Mplayer, Libmpcodecs, Libvo, Demuxer, Stream] [Libao] [Gui] }) as shown

in Fig. 18. Note that the 2nd and the 3rd implementations correspond to the decomposition

alternatives # 0 and # 1 in Fig. 7, respectively. We have selected these decomposition

alternatives because they have the lowest function dependency overhead and data

dependency size.

The 3rd decomposition alternative was also shown in Fig. 2. Figure 18 shows the

recovery view (Sozer and Tekinerdogan 2008) of the architecture of MPlayer after it is

decomposed with FLORA according to this decomposition alternative. Hereby, we can see

three recoverable units, RU MPCORE, RU GUI and RU AUDIO. RU AUDIO provides the

functionality of Libao. RU GUI encapsulates the Gui functionality. RU MPCORE com-

prises the rest of the system. The components Connector and Recovery Manager are

introduced by FLORA. Each RU can detect deadlock errors.7 Recovery Manager can

detect fatal errors.8 All error notifications are sent to Connector, which comprises the

7 An RU detects if an expected response to a message is not received within a period of time.
8 The Recovery Manager is the parent process of all RUs and receives and handles a signal when a child
process is dead.

Software Qual J

123

diagnosis facility. Diagnosis information is conveyed to Recovery Manager, which kills a

set of RUs and/or restarts a dead RU. Messages that are sent from RUs to Connector are

stored (i.e., queued) by RUs in case the destination RU is not available and they are

forwarded when the RU becomes operational again.

10.2 Evaluation of availability

To be able to measure the availability achieved with the implementations of 3 decom-

position alternatives, we have modified each module so that they fail with a specified

failure rate (assuming an exponential distribution with mean MTTF). After a module is

initialized, it creates a thread that is periodically activated every second to inject errors.

The operation of the thread is shown in Algorithm 2.

The error injection thread first records the initialization time (Line 1). Then, each time it

is activated, the thread calculates the time elapsed since the initialization (Line 3). The

MTTF value of the corresponding module and the elapsed time is used for calculating the

probability of error occurrence (Line 4). In Line 5, random() returns, from a uniform

distribution, a sample value r 2 ½0; 1�. This value is compared to the calculated probability

to decide whether or not to inject an error (Line 6). Possibly, an error is injected by

Fig. 18 The implementation of local recovery for the decomposition { [Mplayer, Libmpcodecs, Libvo,
Demuxer, Stream] [Gui] [Libao] }

Software Qual J

123

basically creating a fatal error with an illegal memory operation. This error crashes the

process, on which the module is running (Line 7).

The Recovery Manager component of FLORA logs the initialization and failure times

of RUs to a file during the execution of the system. For each of the implemented alter-

natives, we have let the system run for 5 h. Then, we have processed the log files to

calculate the times, when the core system module Mplayer has been down. We have

calculated the availability of the system based on the total time that the system has been

running (5 h). For the error injection, first we have used the same MTTF values (1,800 s)

for all the modules. Then, to amplify the effect of decomposition on availability, we have

assigned 60 and 30 s to the MTTF values of Libao and Gui modules, respectively. Table 4

lists the results for the three decomposition alternatives and for the two sets of MTTF

values used.

In Table 4, the 1st column lists the decomposition alternatives. The first part of the table

(2nd and 3rd columns) presents the results for test runs, where MTTF values of all the

modules are specified as 1,800 s. The second part (4th and 5th columns) presents the

results for test runs, where the MTTF values for the modules Libao and Gui are specified as

60 and 30 s, respectively. The 2nd and 4th columns show the measured availability of the

RU that comprises the Mplayer module. The 3rd and 5th columns show the MTTR/MTTF
ratio of this RU, which is used as a part of the cost function in Eq. 9. The cost function,

which based on MTTR/MTTF ratios, reflects the lack of availability of a design alternative,

and as such, it is tried to be minimized. Based on the measured availabilities, we have seen

that the alternatives were ordered correctly with respect to the heuristic cost function used

for optimization. As such, our approach can be used for accurately analyzing, comparing

and selecting decomposition alternatives for local recovery.

Algorithm 2 Periodically activated thread for error injection

Table 4 Comparison of the measured availability with the heuristic function values

Decomposition
alternative

all MTTF = 1800 s MTTFLibao = 60 s, MTTFGui = 30 s,
all other MTTF = 1800 s

RUMPCORE

Availability
MTTR/
MTTF

RUMPCORE

Availability
MTTR/
MTTF

all in 1 RU 97.57 14.47 83.59 196.31

Gui, the rest 97.58 10.80 93.25 62.99

Gui, Libao, the rest 97.75 7.33 97.75 7.33

Software Qual J

123

10.3 Evaluation of performance overhead

One of the main characteristics of recovery-oriented architectures is the isolation of

(faulty) components (Patterson et al. 2002). Isolation is necessary, and the overhead

introduced by our approach, like in many recoverable systems, is mainly due to isolation of

modules in separate processes. For instance, FLORA marshals and transfers all the

function calls among the isolated modules through IPC. For this reason, we queried

function dependencies among the isolated modules and used this to define a metric (Eq. 4)

for estimating the performance overhead.

To evaluate the accuracy of our estimations, we have collected measurements from the

implementations of 3 decomposition alternatives. For each of these systems, we have

calculated the average time elapsed for frame processing during a video-playing scenario.

We have compared the obtained measurements with our estimations. Table 5 presents the

results.

As it can be seen in the table, the estimations based on function dependencies closely

reflect the measurements of actual performance overhead obtained from the implementa-

tions. As such, our metric that is defined in terms of function dependencies can be used for

comparing and selecting decomposition alternatives.

11 Discussion

We have introduced a systematic approach to analyze the decomposition of the software

architecture of an existing system to introduce local recovery. The overall process starts

with the architecture definition. Hereby, we have used the module view of the architecture

for analysis. We could also use the component and connector views or the allocation views

(Clements et al. 2002a) to take run-time or deployment elements into account. In our

approach, the basic abstraction mechanism is the recoverable unit (RU), which can include

a set of architectural modules. When we would apply the approach to, for example, the

component and connector view, the recoverable unit would not include modules but

components and/or connectors instead. Similarly, recoverable units might include nodes

when we adapt the allocation view of the architecture. In principle, the concept of RU is

agnostic to the type of the architectural element and as such can be applied to multiple

views.

For defining the decomposition alternatives, an important step is the specification of

constraints. The more and the better we can specify the corresponding constraints, the more

we can reduce the design space of decomposition alternatives. In this work, we have

specified deployment constraints (number of possible RUs), domain constraints and fea-

sibility constraints (performance overhead thresholds). The domain constraints are speci-

fied with binary requires and mutex relations. This has shown to be practical for designers

who are not experts in defining complicated formal constraints. Nevertheless, we are going

Table 5 Comparison of mea-
sured performance overhead with
function dependencies

Decomposition
alternative

Function
dependency (%)

Performance
overhead (%)

all in 1 RU 0.0 0.03

Gui, the rest 3.44 3.59

Gui, Libao, the rest 5.39 5.90

Software Qual J

123

to perform further research to improve the expressiveness power of the constraint speci-

fication. For this, we are considering to explore possibilities based on first-order logic. We

are aware of the fact that in certain cases, the evaluation of the logical expressions and

checking for conflicts can become NP-complete (e.g., the satisfiability problem). However,

we will explore the workarounds and simplifications that might keep the approach feasible

and practical.

To evaluate the performance feasibility constraints, one of the main activities in the

overall process involves the analysis of function and data dependencies in the existing

system. For this, we have applied dynamic analysis, in which we run the existing system

and collect its function call and data access profile. We could successfully derive the

amount of function dependency and the size of shared data among the modules and use this

in the evaluation of the decomposition alternatives. In this case, dynamic analysis appeared

to be essential, and we could not derive the required information using static analysis
techniques. The reason for this is twofold. First of all, static analysis techniques do not

scale up for data analysis, especially when it comes to performing expensive operations

like pointer analysis. We have experienced this when we first tried to use existing static

analysis tools (Necula et al. 2002; Teitelbaum 2000) for the MPlayer case. Secondly, the

frequency and execution times of function calls can inherently not be measured using static

analysis techniques.

During the dynamic analysis, the frequency of calls, execution times of functions and

the data access profile can vary depending on the usage scenario and the inputs that are

provided to the system. In our case study, we have performed the measurements for the

video-playing scenario, which is a common usage scenario for a media player applica-

tion. In principle, it is possible to take different types of usage scenarios into account.

The results obtained from several system runs are statistically combined by the tools

(Fenlason and Stallman 2000). The analysis process will remain the same although the

input profile data can be different. However, experiments (de Visser 2008) and case

studies with real users need to be performed to obtain a representative set of usage

scenarios for a system.

Due to software evolution, the defined decomposition for recoverability might need to

be redefined. This might also require the dynamic configurability of the system. However,

our focus in this work is on systems, which do not evolve rapidly concerning the software

architecture (e.g., TV systems). Furthermore, in case we consider the decomposition for

recovery, we can state that this is mainly influenced by reliability, availability and related

properties of software modules like MTTF and MTTR. These properties are usually stable,

and they are unlikely to change quickly with evolution. In TV systems, for instance, the

streaming platform has always been relatively very reliable, whereas the faults in the

application layer (e.g., teletext, epg) have caused the majority of failures (Tekinerdogan

et al. 2008).

In our approach, we have considered two quality attributes: availability and perfor-

mance. However, the approach itself is generic and extensible for consideration of other

perspectives and quality attributes. For example, constraints can be defined to eliminate

decomposition alternatives that are deemed to be precarious from the maintenance or

evolution perspective. For integrating such a different/additional quality attribute (e.g.,

maintainability), i) means should be provided to make quantitative estimations regarding

this quality and ii) these estimations should be used in the optimization approach, either as

a constraint or as an additional dimension in a pareto-optimization.

Software Qual J

123

12 Related work

Candea et al. introduced the microreboot (Candea et al. 2004b) approach, where local

recovery is applied to increase the availability of Java-based Internet systems. Microreboot

aims at recovering from errors by restarting a minimal subset of components of the system.

Progressively larger subsets of components are restarted as long as the recovery is not

successful. To employ microreboot, a system has to meet a set of architectural require-

ments i.e., crash-only design (Candea et al. 2004b), where components are isolated from

each other and their state information is kept in stable repositories. Unfortunately, designs

of many existing systems do not have these properties. Such systems have to be decom-

posed to support isolation, and until now, the decisions on how to decompose an existing

system have been based on qualitative analysis (Candea et al. 2004a).

In (Herder et al. 2007), device drivers are executed on separate processes at user space

to increase the failure resilience of an operating system. In case of a driver failure, the

corresponding process can be restarted without affecting the operating system. The design

of the operating system must support isolation between the core operating system and its

extensions to enable such a recovery with limited re-engineering effort (Herder et al.

2007). In this work, we focus on software systems, in which isolation is not supported by

the existing design.

Microrebooting has also been investigated in the context of service-oriented architec-

tures. In (White et al. 2009), application containers are exploited for independent rebooting

and each time the corresponding subsystem is restarted with a new service composition for

recovery. The alternative set of composable services are specified with a feature diagram.

Hereby, subsystems are already defined as possible compositions of loosely coupled ser-

vices. Therefore, decomposing/partitioning the system for microrebooting is not necessary.

In cluster computing paradigm, a problem is split into smaller tasks, which are pro-

cessed by a collection of interconnected, stand-alone computing resources. This paradigm

has been mainly used for achieving better performance and throughput. Recently, the

distribution of computation has also been studied for recoverability and high-availability

(Nguyen et al. 2001; Santos et al. 2008). Fault isolation, dynamic redundancy and run-time

configuration are the basic principles employed by these studies. There have been efforts to

provide middleware support for fault tolerance by employing these principles. Fault Tol-

erant CORBA (Object Management Group 2001) is a result of these efforts, enabling the

distribution of application software processing. More recently, the Service Availability

Forum established standards (Jokiaho et al. 2003) for providing high availability mid-

dleware. Standard interfaces are defined to utilize reusable tools for automatic failure

detection and automatic reconfiguration. To be able to utilize such tools and middleware

support in general, the designer should first decide on the architecture decomposition of the

existing system for recoverability and determine the units of recovery (e.g., clusters) before

deploying the system on such enabling platforms. In this work, our basic assumption is that

we have an existing system that was designed without recovery in mind. Hence, there is no

built-in configuration mechanism/possibility, and as such, the goal is to refactor this system

for error containment. There exist such legacy systems with millions lines of code

(implemented as a one single unit), and it is not feasible to develop these systems from

scratch. If a system is being designed with recovery in mind from the beginning, the

approach could be different.

To model and analyze architectural decomposition alternatives, several architecture

approaches have been proposed in the literature. For modeling software architectures, there

is now an increasing agreement that software architecture should be represented using

Software Qual J

123

multiple, different views. Hereby, an architectural view is defined as a representation of a

set of system elements and relations associated with them to support a particular concern

(Clements et al. 2002a). Having multiple views helps to separate the concerns and as such

support the modeling, understanding, communication and analysis of the software archi-

tecture from the perspective of different concerns of various stakeholders. In addition to

architectural views, architectural tactics (Bachman et al. 2003) and architectural patterns

(Buschmann et al. 1996) are utilized to ensure that the architecture meets the required

quality concerns. In the last decade, the software engineering community has witnessed the

proposal of an increasing number of architectural patterns that are also applied in practice.

Certainly, architectural modeling approaches support the design of architecture for quality.

We have applied and enhanced existing view-based approaches to model each individual

decomposition alternative (Sozer and Tekinerdogan 2008). Unfortunately, the modeling

approaches by themselves lack explicit support for selecting feasible alternatives in the

large design space.

For analyzing software architectures, broad number of architecture analysis approaches

has been introduced in the last two decades (Clements et al. 2002b; Dobrica and Niemela

2002; Gokhale 2007). These architecture analysis approaches usually either perform static

analysis of formal architectural models (Medvidovic and Taylor 2000) or utilize scenario-

based approaches as described in (Dobrica and Niemela 2002). The goal of these

approaches is to assess whether or not a given software architecture design satisfies the

desired quality requirements. In alignment with this, more recently, several architecture

analysis approaches have focused on identifying the trade-offs of different quality concerns

for a given architecture. For example, architectural analysis methods like ATAM

(Clements et al. 2002b) consider the impact of design alternatives on different quality

attributes and discover conflicting attributes leading to trade-offs. The architecture analysis

approaches in the literature help to identify the risks, sensitivity points and trade-offs in the

architecture. These are general-purpose approaches, which are not dedicated to a particular

decomposition issue or a specific set of qualities. In this paper, we have proposed a

dedicated analysis approach that is required for optimizing the decomposition of archi-

tecture for local recovery in particular. Moreover, trade-off analysis techniques such as

ATAM (Clements et al. 2002b) are based on informal reasoning, and they are carried out

manually. It is difficult to carry out trade-off analysis in such a way, especially for complex

systems, because subtle differences that have large impact cannot be easily considered, and

due to large amount of alternatives, one cannot easily identify the architectural decom-

position that offers the best trade-off. For this reason, we believe that it is important to

provide integrated tool support for quality estimation (e.g., via dynamic control/data flow

analysis) and optimization.

Clustering/partitioning techniques have been applied in many different disciplines like

civil engineering (Alexander 1964). The basic design principle of clustering is isolation of

components from each other and as such achieving high cohesion and low coupling

(Heyliger 1994). In software engineering, clustering has been mainly utilized for reverse

engineering (Mitchell and Mancoridis 2006; Davey and Burd 2000; Anquetil et al. 1999;

Wiggerts 1997) by creating views of the structure of complex, large-scale software sys-

tems. Here, the assumption is that there exist high coupling among highly related modules.

Clustering techniques have also been used for forward engineering. For example, in (Lung

et al. 2007), requirements are clustered to create a conceptual architecture in early design

phases. The interdependencies between requirements are identified based on their attributes

as described in the requirements document. The use of clustering in this work is mainly

aligned with the software clustering techniques (Wiggerts 1997) utilized for reverse

Software Qual J

123

engineering. In this domain, the term entity describe elements being grouped together.

Features denote the attributes of these entities. A clustering algorithm is applied to group

entities together based on a similarity measurement. A (possible) clustering generated as

the outcome is called a partition. Files, functions or procedures of a program can be

considered as entities for software clustering. References/calls to variables/functions of

other entities or its naming convention are usually treated as the features of an entity

(Davey and Burd 2000; Anquetil et al. 1999). Similarity measurement is mainly defined

based on the degree of coupling between the compared entities (Anquetil et al. 1999;

Mitchell and Mancoridis 2006). Several optimization techniques are utilized for the

clustering algorithm, ranging from hill-climbing algorithms to genetic algorithms (Mitchell

and Mancoridis 2006). The resulting partitions infer the modules, packages, subsystems or

components of the software architecture that is tried to be retrieved by reverse engineering.

In the parlance of this terminology, entities are software modules in our approach. Software

modules as documented in the architecture description, and they correspond to files and

folders in the file system. Features of an entity include (1) the deployment constraints

(requires/mutex relations with respect to other entities), (2) the (function and data)

dependencies to other entities and (3) the reliability properties (MTTF, MTTR, criticality).

Instead of a similarity measurement, we define a heuristic as an estimation of availability

for a particular clustering alternative (Eq. 9). This heuristic is used as an objective function

for our clustering algorithm, while the deployment constraints and the dependencies among

entities are used for eliminating infeasible clustering alternatives. We consider various

optimization techniques to be applicable as the clustering algorithm 8.2; however, the main

algorithm we use in this work is an application of the hill-climbing approach. This

algorithm is very similar to and inspired from (Mitchell and Mancoridis 2006). Although

the clustering algorithm is similar, note that the goals and the end results are different in

our approach. In general, the only quality attribute considered by software clustering

approaches is modularity (Mitchell and Mancoridis 2006). In our approach, the main focus

is on availability, and each partition defines a recoverable unit.

13 Conclusion

Local recovery is an effective approach for recovering from errors, in which the erroneous

parts of a system are recovered while the other parts of the system are operational. One of

the requirements for introducing local recovery to a system is isolation. To prevent the

propagation of errors, a software architecture must be decomposed into a set of isolated

recoverable units. There exist many alternatives to decompose a software architecture for

local recovery. Each alternative has an impact on availability and performance of the

system.

In this paper, we have proposed a systematic approach for analyzing an existing system

to decompose its software architecture to introduce local recovery. The approach provides

systematic guidelines to depict the alternative space of the possible decomposition alter-

natives, reduce the alternative space with respect to domain and stakeholder constraints

and balance the feasible alternatives with respect to availability and performance. We have

provided the complete integrated tool set, which supports the whole process of decom-

position optimization. Each tool automates a particular step of the process and it can be

utilized for other types of analysis and evaluation as well.

We have illustrated our approach by introducing local recovery to the open-source

media player, called MPlayer. We have seen that the impact of decomposition alternatives

Software Qual J

123

can be easily observed, which are based on actual measurements regarding the isolated

modules and their interaction. We have implemented local recovery for three decompo-

sition alternatives to measure the actual availability achieved. Based on the measured

availabilities, we have seen that the alternatives were ordered correctly with respect to the

heuristic cost function used for optimization.

Acknowledgments We acknowledge the feedback from the discussions with our TRADER project
(TRADER, 2011) partners from NXP Research, NXP Semiconductors, TASS, Philips Consumer Elec-
tronics, Design Technology Institute, Embedded Systems Institute, IMEC, Leiden University and Delft
University of Technology. We thank the anonymous reviewers for their feedback to improve this paper.

References

Aleti, A., Björnander, S., Grunske, L., & Meedeniya, I. (2009). Archeopterix: An extendable tool for
architecture optimization of aadl models. In Proceedings of the ICSE 2009 workshop on model-based
methodologies for pervasive and embedded software (MOMPES), Vancouver, Canada, pp. 61–71.

Alexander, C. (1964). Notes on the synthesis of form. Harvard Cambridge, MA: University Press.
Anquetil, N., Fourrier, C., & Lethbridge, T. (1999). Experiments with clustering as a software remodu-

larization method. In Proceedings of the 6th working conference on reverse engineering (WCRE),
IEEE Computer Society, pp. 235–245.

Athon, T., & Papalambros, P. (1996). A note on weighted criteria methods for compromise solutions in
multi-objective optimization. Engineering Optimization, 27(2), 155–176.

Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of
dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1),
11–33.

Bachman, F., Bass, L., & Klein, M. (2003). Deriving architectural tactics: A step toward methodical
architectural design. Tech. Rep. CMU/SEI-2003-TR-004, SEI, Pittsburgh, PA, USA.

Boudali, H., Sozer, H., & Stoelinga, M. (2009). Architectural availability analysis of software decompo-
sition for local recovery. In Proceedings of the third IEEE international conference on secure software
integration and reliability improvement, Shanghai, China, pp. 14–22.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-oriented software
architecture, a system of patterns. Wiley.

Candea, G., Cutler, J., & Fox, A. (2004). Improving availability with recursive micro-reboots: A soft-state
system case study. Performance Evaluation, 56(1-4), 213–248.

Candea, G., Kawamoto, S., Fujiki, Y., Friedman, G., & Fox, A. (2004b). Microreboot: A technique for cheap
recovery. In Proceedings of the 6th symposium on operating systems design and implementation
(OSDI), San Francisco, CA, USA, pp. 31–44.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., & Stafford, J. (2002a).
Documenting software architectures: Views and beyond. Boston, MA: Addison-Wesley.

Clements, P., Kazman, R., & Klein, M. (2002b). Evaluating software architectures: Methods and case
studies. Boston: Addison-Wesley.

Patterson, D. et al. (2002). Recovery oriented computing (ROC): Motivation, definition, techniques, and
case studies. Technical Report UCB/CSD-02-1175, University of California, Berkeley.

Dashofy, E., van der Hoek, A., & Taylor, R. (2002). An infrastructure for the rapid development of XML-
based architecture description languages. In Proceedings of the 22rd international conference on
software engineering (ICSE), ACM, Orlando, FL, USA, pp. 266–276.

Davey, J., & Burd, E. (2000). Evaluating the suitability of data clustering for software remodularization. In
Proceedings of the 7th working conference on reverse engineering (WCRE). IEEE Computer Society,
pp. 268–278.

Dobrica, L., & Niemela, E. (2002). A survey on software architecture analysis methods. IEEE Transactions
on Software Engineering, 28(7), 638–654.

Fenlason, J., & Stallman, R. (2000). GNU gprof: The GNU profiler. Free Software Foundation,
http://www.gnu.org.

Gokhale, S. (2007). Architecture-based software reliability analysis: Overview and limitations. IEEE
Transactions on Dependable and Secure Computing, 4(1), 32–40.

Grassi, V., Mirandola, R., & Sabetta, A. (2005). An XML-based language to support performance and
reliability modeling and analysis in software architectures. In R. Reussner, J. Mayer, J. Stafford,

Software Qual J

123

http://www.gnu.org

S. Overhage, S. Becker, & P. Schroeder (Eds.), QoSA/SOQUA, Springer, Lecture Notes in Computer
Science, Vol. 3712, pp. 71–87.

Grunske, L., Lindsay, P., Bondarev, E., Papadopoulos, Y., & Parker, D. (2007). An outline of an archi-
tecture-based method for optimizing dependability attributes of software-intensive systems. In R. de
Lemos, C. Gacek, & A. B. Romanovsky (Eds.), Architecting dependable systems IV (pp. 188–209).
Berlin: Springer.

Harris, J., Hirst, J., & Mossinghoff, M. (2000). Combinatorics and graph theory. New York: Springer.
Herder, J., Bos, H., Gras, B., Homburg, P., & Tanenbaum, A. (2007). Failure resilience for device drivers. In

Proceedings of the 37th annual IEEE/IFIP international conference on dependable systems and net-
works (DSN). Edinburgh, UK, pp. 41–50.

Heyliger, G. (1994). Coupling. In J. Marciniak (Ed.), Encyclopedia of software engineering (pp. 220–228).
Wiley.

Huang, Y., & Kintala, C. (1995). Software fault tolerance in the application layer. In M. R. Lyu (Ed.),
Software fault tolerance, chapter 10 (pp. 231–248). New York: Wiley

Hunt, G., Aiken, M., Fhndrich, M., Hawblitzel, C., Hodson, O., Larus, J., Levi, S., Steensgaard, B., Tarditi,
D., & Wobber, T. (2007). Sealing OS processes to improve dependability and safety. SIGOPS
Operating Systems Review, 41(3), 341–354.

Jokiaho, T., Herrmann, F., Penkler, D., & Moser, L. (2003). The service availability forum application
interface specification. RTC Magazine, 12(6), 52–58.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. (1990). Feature-oriented domain analysis (FODA)
feasibility study. Tech. Rep. CMU/SEI-90-TR-21, SEI.

Laprie, J. C., Arlat, J., Beounes, C., & Kanoun, K. (1995). Architectural issues in software fault tolerance. In
M. R. Lyu (Ed.), Software fault tolerance, chapter 3 (pp. 47–80). Cichester: Wiley.

Lung, C. H., Xu, X., & Zaman, M. (2007). Software architecture decomposition using attributes. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 17, 599–613.

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison framework for software archi-
tecture description languages. IEEE Transactions on Software Engineering, 26(1), 70–93.

Meedeniya, I., Buhnova, B., Aleti, A., & Grunske L. (2011). Reliability-driven deployment optimization for
embedded systems. Journal of Systems and Software, 84(5), 835–846.

Mitchell, B. S., & Mancoridis, S. (2006). On the automatic modularization of software systems using the
bunch tool. IEEE Transactions on Software Engineering, 32(3), 193–208.

MPlayer (2010). MPlayer official website. http://www.mplayerhq.hu/. Accessed 31 Mar 2011.
Necula, G., McPeak, S., Rahul, S., & Weimer, W. (2002). CIL: Intermediate language and tools for analysis

and transformation of C programs. In Proceedings of the conference on compiler construction,
pp. 213–228.

Nethercote, N., & Seward, J. (2007). Valgrind: a framework for heavyweight dynamic binary instrumen-
tation. SIGPLAN Notices, 42(6), 89–100.

Nguyen, G., Hluchý, L., Tran, V., & Kotocova, M. (2001). DDG task recovery for cluster computing. In
Proceedings of the 4th international conference on parallel processing and applied mathematics,
Springer, Naleczow, Poland, Lecture Notes in Computer Science, Vol. 2328, pp. 369–378.

Object Management Group (2001) Fault tolerant CORBA. Tech. Rep. OMG Document formal/2001-09-29,
Object Management Group.

Pareto, V. (1896). Cours D’ economie politique. Lausanne, Switzerland: F. Rouge
Ross, S. (2007). Introduction to probability models. San Diego: Elsevier Inc.
di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., & Pierantonio, A. (2010). Developing next

generation ADLs through MDE techniques. In Proceedings of the 32nd international conference on
software engineering (ICSE), Cape Town, South Africa, pp. 85–94.

Ruskey, F. (1993). Simple combinatorial gray codes constructed by reversing sublists. In Proceedings of the
4th international symposium on algorithms and computation (ISAAC), Springer, Lecture Notes in
Computer Science, Vol. 762, pp. 201–208.

Ruskey, F. (2003). Combinatorial generation. University of Victoria, Victoria, BC, Canada, manuscript
CSC-425/520

Santos, G., Duarte, A., Rexachs, D., & Luque, E. (2008). Increasing the performability of computer clusters
using RADIC II. In Proceedings of the third international conference on availability, reliability and
security, IEEE Computer Society, pp. 653–658.

Sozer, H., & Tekinerdogan, B. (2008). Introducing recovery style for modeling and analyzing system
recovery. In Proceedings of the 7th working IEEE/IFIP conference on software architecture (WICSA).
Vancouver, BC, Canada, pp. 167–176.

Sozer, H., Tekinerdogan, B., & Aksit, M. (2009). FLORA: A framework for decomposing software
architecture to introduce local recovery. Software: Practice and Experience, 39(10), 869–889.

Software Qual J

123

http://www.mplayerhq.hu/

Teitelbaum, T. (2000). Codesurfer. SIGSOFT Software Engineering Notes, 25(1), 99.
Tekinerdogan, B., Sozer, H., & Aksit, M. (2008). Software architecture reliability analysis using failure

scenarios. Journal of Systems and Software, 81(4), 558–575.
TRADER (2011). Trader project, ESI. http://www.esi.nl/projects/trader. Accessed 31-March-2011.
de Visser, I. (2008). Analyzing user perceived failure severity in consumer electronics products. PhD thesis,

Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
White, J., Doughtery, B., Strowd, H., & Schmidt, D. (2009). Creating self-healing service compositions with

feature models and microrebooting. International Journal of Business Process Integration and Man-
agement, 4, 35–46.

Wiggerts, T. (1997). Using clustering algorithms in legacy systems remodularization. In Proceedings of the
4th Working Conference on Reverse Engineering (WCRE), IEEE Computer Society, pp. 33–43.

Yacoub, S., Cukic, B., & Ammar, H. (2004). A scenario-based reliability analysis approach for component-
based software. IEEE Transactions on Reliability, 53(14), 465–480.

Author Biographies

Hasan Sözer received his B.Sc. and M.Sc. degrees in computer
engineering from Bilkent University, Turkey, in 2002 and 2004,
respectively. He received his Ph.D. degree in 2009 from the University
of Twente, The Netherlands. From 2002 until 2005, he worked as a
software engineer at Aselsan Inc. in Turkey. From 2009 until 2011, he
worked as a post-doctoral researcher at the University of Twente. He is
currently an assistant professor at Özyegin University.

Bedir Tekinerdoğan received his MSc degree in Computer Science in
1994, and a PhD degree in Computer Science in 2000, both from the
University of Twente, The Netherlands. From September 2003 until
September 2008 he served as an assistant professor at University of
Twente. Currently he is an assistant professor at Bilkent University in
Turkey.

Software Qual J

123

http://www.esi.nl/projects/trader

Mehmet Akşit holds an M.Sc. degree from Eindhoven University of
Technology and a Ph.D. degree from the University of Twente. Cur-
rently, he is working as a full professor at the Department of Computer
Science, University of Twente and affiliated with the institute Centre
for Telematics and Information Technology. He worked for Océ
Nederland from 1981–1982 and 1983–1987. As a visiting scientist, in
1989 he was at the IBM T. J. Watson Research Laboratory, New York,
in 1993 at the University of Tokyo, and in 1994 at the New Jersey
Institute of Technology. He is currently the head of the Software
Engineering chair at the University of Twente.

Software Qual J

123

	Optimizing decomposition of software architecture for local recovery
	Abstract
	Introduction
	Problem statement
	Case study: MPlayer
	Design space
	Criteria for selecting decomposition alternatives

	The overall process
	The overall process

	Software architecture definition
	Constraint definition
	Generation of design alternatives
	Function and data dependency measurements from the existing system
	Function dependency analysis
	Data dependency analysis
	Depicting function and data dependency analysis results

	Trade-off analysis and optimization
	Availability estimation
	Optimization approaches

	Tool support
	Constraint evaluator
	Design alternative generator
	Function dependency analyzer
	Data dependency analyzer
	Optimizer

	Evaluation
	Implementation of local recovery
	Evaluation of availability
	Evaluation of performance overhead

	Discussion
	Related work
	Conclusion
	Acknowledgments
	References

