
Noname manuscript No.
(will be inserted by the editor)

Influence of confirmation biases of developers on software

quality: an empirical study

Gül Çalıklı · Ayşe Başar Bener

Received: date / Accepted: date

Abstract The thought processes of people have a significant impact on software

quality, as software is designed, developed and tested by people. Cognitive biases,

which are defined as deviations of human mind from the laws of logic and mathemat-

ics, are likely to cause software defects. However, there is little empirical evidence

to date to substantiate this assertion. In this research, we focus on a specific cogni-

tive bias type called confirmation bias, which is defined as the tendency of people

to seek for evidence to verify hypotheses rather than seeking for evidence to falsify

them. Due to confirmation bias, developers might perform unit tests to make their

program work rather than to break. Hence, confirmation bias is believed to be one of

the factors that lead to increased software defect density. In this research, we present

a metric scheme to explore the impact of developers’ confirmation bias on software

defect density. In order to estimate effectiveness of our metric scheme in quantifica-

tion of confirmation bias within the context of software development, we performed

an empirical study that addressed the prediction of the defective parts of software.

In our empirical study, we used confirmation bias metrics on five datasets obtained

from two companies. Our results provide empirical evidence that human thought pro-

cesses and cognitive aspects deserve further investigation to improve decision making

in software development for effective process management and resource allocation.

Keywords Human factors · Software psychology · Defect Prediction · Confirmation

bias

G. Çalıklı

Department of Computer Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey

E-mail: gul.calikli@boun.edu.tr

A. B. Bener

Ted Rogers School of Information Technology Management, Ryerson University, M5B 2K3 Toronto,

Canada

E-mail: ayse.bener@ryerson.ca

*Manuscript
Click here to download Manuscript: calikli_bener_SWQuality2011revised.tex Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/sqjo/download.aspx?id=19846&guid=2d414ebd-7b1f-46f4-a66c-b281859ab45e&scheme=1
http://www.editorialmanager.com/sqjo/viewRCResults.aspx?pdf=1&docID=617&rev=1&fileID=19846&msid={F3B0B113-BCF8-4641-A1C6-63295F4D9D8E}


2

1 Introduction

Quality of software is often measured by the number of defects in the final product.

In [8] Boehm and Basili indicate that about 40-50% of effort in software projects

is spent for avoidable rework 80% of which is due to the 20% of the defects. Soft-

ware testing is the critical process in software development life cycle (SDLC) to

detect defects before the product is released. However, software testing is the most

resource-consuming phase of SDLC, since approximately 50% of a project schedule

is allocated to the testing phase [1], [2].

Defect predictors guide project managers for the effective allocation of resources

during the testing phase by pointing out the defect-prone parts of the software. As a

result, both increasing the efficiency of the software testing phase and delivering the

software product to the market on time become possible. Reported results in software

defect prediction literature suggest that further progress in defect prediction perfor-

mance can be achieved by increasing the content of input data that defect predictors

learn rather than using different algorithms or increasing the size of input data [17],

[15], [16]. We can group some significant work in the literature in terms of their

focus: algorithm driven approaches; data size driven approaches; and data content

driven approaches.

Algorithms: In software defect prediction, various machine-learning algorithms have

been employed by researchers. Munson and Khoshgoftaar [9] construct discrimi-

nant models by using static code metrics as independent data, where multicolinearity

among static code metrics is eliminated by Principle Component Analysis. Bullard

et. al. [3] propose a rule-based classification model for the prediction of defects in a

large legacy Telecomunication system. In [10], Classification and Regression Trees

(CART) algorithm is used to identify fault-prone modules in embedded systems. Neu-

ral networks is another machine-learning technique used by Khosgoftaar and Szabo

[56] for learning defect predictors. Regression models have also been widely used

[11] [12], [13], [14]. The model consisting of an ensemble of classifiers proposed

by Tosun et. al. [7] combines three algorithms which are Naı̈ve Bayes, Neural Net-

works and Voting Feature Intervals respectively. In his repeatable set of experiments,

Menzies et. al. [15] discovered that the Naı̈ve Bayes classifier with a log-filtering

preprocessor on the numeric data outperforms methods such as OneR and J4.8. The

results obtained by Menzies at. al. are in line with the results of the benchmark study

by Lessmann et. al. [17]. In this benchmark study, Lessmann et. al. also found no

significant difference between the performance of Naı̈ve Bayes and more complex

machine-learning algorithms.

Data Size: In order to find out whether the performance of defect predictors can be

increased by sampling methods due to the unbalanced nature of the defect data, Men-

zies et. al. [16] performed a series of experiments. They used Naı̈ve Bayes as their

algorithm, since it was useful in their previous experiments [15] as well as J4.8 which

was used in prior under-over sampling experiments [18], [19]. According to the re-

sults obtained, discarding data (i.e. undersampling) does not degrade the performance

of the learner. For J4.8 algorithm discarding data improved the median performance

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



3

from around 40% to 70%, while under-sampling outperformed over-sampling for

both J4.8 and Naı̈ve Bayes. These results are consistent with those of Drummond et.

al. [18] and Kamei et. al. [19].

Data Content: The literature also includes instances where metrics other than or in

addition to static code attributes were used for defect prediction. Jiang et. al. [20]

compared predictor performances that were learned from design metrics, static code

features and both for 13 NASA projects. Design metrics were extracted from the

requirements documents with a text miner. More accurate results were obtained by

using both design and static code metrics rather than individual use. The results ob-

tained were consistent with the results of similar experiments which were previously

conducted by Zhao. et. al. [21] for the analysis of a real time Telecommunication

system. Zimmerman and Nagappan [22] developed a metric suite that defines the

dependency of binary files from a graph-theoretic point of view. The authors used

these metrics as an input to linear and logistic regression models to predict the post-

release failures of Windows Server 2003. Zimmerman and Nagappan reported a 10%

increase in the defect prediction performance due to the inclusion of dependency

graphs as input data. Following this research, Nagappan and Ball [23], combined

dependency and churn metrics to predict post-release faults in the binary files of

Windows Server 2003. The authors concluded that they could predict post-release

failure using regression models at a statistically significant level. Tosun et. al. [24]

used network and churn metrics as well as static code metrics in order to build defect

predictors for different defect categories. According to their results, churn metrics

gave the best result for predicting all types of defects. Turhan et. al. in another study

[27] reduced the probability of false alarms by supplementing static code metrics by

their Call Graph Based Ranking (CGBR) framework.

The above-mentioned research, which aims to improve the input data content,

mainly focuses on product attributes and process attributes. However, the thought

processes of people may have a significant impact on software defect density, as

software is developed and tested by people. Therefore, it is highly likely that further

progress in defect prediction performance may be achieved by taking into account

information regarding people’s thought processes. In this paper, to identify the defect

prone parts of software, we address a specific aspect of people’s thought processes,

namely confirmation bias, which is defined as people’s tendency to seek for evidence

to verify hypotheses. Due to confirmation bias, developers might perform only the

tests that make their program work, which in turn leads to an increase in software

defect density. In the long run, our high-level research goal is to investigate how the

confirmation biases of developers influence software quality. Our research questions

we would like to investigate in this paper are:

RQ1: How can we identify measures of confirmation bias in relation to the software

development process?

RQ2: How do measures of confirmation bias perform in predicting the defect prone

parts of software?

To answer the research question RQ1, we propose a methodology to define and

extract confirmation bias metrics in relation to the software development process.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4

We also investigate the effectiveness of these metrics in the prediction of software

failure proneness, in order to answer our second research question RQ2. For this pur-

pose, we conduct an empirical analysis, where we use five datasets collected from

two of our industrial partners in the Telecommunications and Enterprise Resource

Planning (ERP) domains respectively. For each dataset, we compare the prediction

performance of confirmation bias metrics with the prediction performance of static

code metrics and churn metrics respectively as well as all combinations of these three

metric types. Our results show that by using only confirmation bias metrics, we ob-

tain defect prediction results which are as good as the results obtained from defect

predictors that are learned from only churn metrics and only static code attributes

respectively.

We can summarize the contributions of this work as follows:

1. The definition of confirmation bias within software development/testing domain.

2. A methodology to define and extract confirmation bias metrics.

3. Collection of static code, confirmation bias and churn metrics from five software

projects. One of these projects belongs to Turkey’s largest Independent Software

Vendor specialized in ERP domain, while the remaining four projects belong to

Turkey’s largest Telecommunication/GSM company.

4. An empirical study to evaluate the effectiveness of confirmation bias metrics in

software defect prediction compared to static code and churn metrics as well as

all combinations of these three metric types.

The rest of the paper is organized as follows: In Section 2, we cover existing re-

search about the effects of cognitive bias types on software engineering in addition

to a survey on people metrics that were used in software defect prediction. Section 3

contains detailed information about confirmation bias in cognitive psychology liter-

ature. In this section, we also define confirmation bias in relation with the software

development process as well as explaining the analogy between Wason’s experiments

and unit testing. In Section 4, we explain our methodology to define and extract con-

firmation bias metrics. The details related to confirmation bias metrics are given in

Section 5. In Section 6, we explain our experimental methodology and present our

experimental results. The empirical results are discussed in Section 7. Section 8 ad-

dresses the threats to validity. Finally, in Section 9 we conclude our work after point-

ing out possible future directions.

2 Related Work

The notion of cognitive biases was first introduced by Tversky and Kahneman [28].

There are various cognitive bias types such as availability, representativeness, over-

optimism, over-confidence, anchoring and adjustment, and confirmation bias. Al-

though an intensive amount of research about cognitive biases exists in the field of

cognitive psychology, interdisciplinary studies about the effects of cognitive biases in

software development life-cycle are at an immature level. In this section, we mention

existing research about the effects of some of these cognitive bias types on software

development and effort estimation. This section also includes a survey of people-

related metrics, which were used to identify defect-prone parts of software. As far as

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5

we know, our research is the first one to build a defect prediction model that learns

from metrics related to a cognitive bias type.

2.1 Effects of Cognitive Biases on Software Engineering

In [29], Stacy and MacMillian emphasize the fact that the thought processes of devel-

opers are a fundamental concern in software development. To the best of our knowl-

edge, Stacy and MacMillian are the two pioneers who recognized the potential effects

of cognitive biases on software engineering. The authors discuss how cognitive biases

might show up in software engineering activities by giving examples from several

contexts. However, this work contains no empirical investigations. The authors put

forth some ideas with explanations and potential areas that require further research.

Another study that provides empirical evidence about the existence of another

cognitive bias type (anchoring and adjustment) within the context of software de-

velopment is conducted by Parsons and Saunders [31]. Parson and Saunders per-

formed two experiments to investigate the existence of anchoring and adjustment in

software artifact reuse. The first experiment they conducted, examined the reuse of

object classes in a programming task, whereas their second experiment investigated

how anchoring and adjustment bias affected reuse of software design artifacts.

Mair and Shepperd [32] discuss how the cognitive biases of software engineers

such as over-optimism and over-confidence contaminate the results obtained by soft-

ware effort predictors, making them far from being objective. Mair and Shepperd also

emphasize that experiments on software developers in realistic settings must be con-

ducted by interdisciplinary teams consisting of cognitive psychologists and computer

scientists in order to discover de-biasing strategies. This work by Mair and Shepperd

is in the form of a preliminary research and contains no empirical investigation.

On the other hand, Jørgensen et. al empirically investigate some cognitive bias

types within the scope of software development effort estimation. According to the

empirical findings of Jørgensen[35], an increase in the effort spent on risk identifi-

cation during software development effort estimations leads to an illusion of control,

which in turn leads to more over-optimism and over-confidence. Moreover, as a result

of the cognitive bias type availability, risk scenarios which are more easily recalled

are overemphasized so that inaccurate effort estimations are made. Jørgensen also

empirically investigates how anchoring and adjustment heuristic lead to inaccurate

effort estimates [34]. Jørgensen indicates that reasonable results can be obtained only

if the reference value for the estimates (i.e. the anchor) is the typical effort of tasks of

same category or the effort of the closest analogy.

Finally, empirical evidence which supports existence of confirmation bias among

software testers is provided by Teasley et. al. in [30]. In their work, Teasley et. al

conduct laboratory experiments as well as observing software testers in their natural-

istic environment. The authors found that testers are four times more likely to choose

positive tests than to choose negative ones and that the testers are just subject to con-

firmation bias as novices. Based on the empirical findings of Teasley et. al. and the

fact that testing one’s own code triggers confirmatory behavior, we can conclude that

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6

developers also exhibit confirmatory behavior during unit testing. Therefore, in our

study we focus on the confirmation bias of developers.

2.2 People Related Metrics in Software Defect Prediction

In the literature, various people-related metrics have been used to build defect pre-

dictors, yet these are not directly related to the thought processes of people or other

cognitive aspects.

Nagappan et. al. [63] defined a metric suite to quantify the complexity of orga-

nizations consisting of many teams of software professionals working together. The

authors built a model to predict the failure proneness of Windows Vista. They com-

pared the performance of this defect predictor with the performance of models that

are learned using code churn, code complexity, code coverage, pre-release bugs, and

dependencies respectively. In terms of precision and recall values, their model out-

performed all the other models.

Graves et. al. [36] also used metrics regarding development organization that

worked on a specific code and number of developers who made changes on that

code, as well as churn metrics for the prediction of defective modules. According

to the results obtained by the authors, the number of developers who have changed a

module did not improve the defect prediction performance. Weyuker et. al. [41] also

found that the number of developers is not a major influence to increase the defect

prediction performance.

On the other hand, Mockus et. al. [37] found that developer experience is es-

sential to predicting failures. In [38], Weyuker et.al. used developer information that

distinguishes developers who are new to a working file or who share the responsi-

bility of that file with other developers, since it is more likely that changes made

by such developers would result in faults. However, Weyuker et. al. detected no sig-

nificant contribution of this kind of developer information to the defect prediction

performance. Following this research, the authors later analyzed the effectiveness of

individual developer performance on the defect prediction performance and found

no evidence of a significant improvement in the defect prediction performance either

[39].

Social interaction between developers who have collaborated on the same file

during the same time period was modeled as social networks and it is used in defect

prediction by Meneely et. al. [40]. The model constructed for an industrial product

from Nortel was able to explain 60% of the variance of failures during the testing

phase. Pinzger et. al. [42] formed a contribution network by combining modules with

developers who contribute to those modules and defined centrality measures to quan-

tify the number of developers contributing to a specific module. The empirical anal-

ysis of the data from the Windows Vista project showed that centrality metrics can

predict software failures up to a significant extent. Bird et. al. [43] formed a network

which is a combination of module dependency and contribution networks to predict

fault prone modules. As a result, they were able to predict fault prone binary files

with greater accuracy than prior methods which use dependency networks [22] or

contribution networks [42] in isolation.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7

3 Confirmation Bias

In cognitive psychology, confirmation bias is defined as the tendency of people to

seek for evidence that could verify their hypotheses rather than seeking for evidence

that could falsify them. The term confirmation bias was first used by Peter Wason in

his rule discovery experiment [44] and later in his selection task experiment [45].

3.1 Wason’s Experiments

In order to form a confirmation bias metric suite, we prepared the interactive question

and the written question set. Based on the outcomes of these questions, we evaluated

metric values for each developer. Interactive question is Wason’s Rule Discovery Task

itself [44] and the set of written questions is based on Wason’s Selection Task [45].

In the following subsection, we briefly explain Wason’s two experiments, which he

proposed to show the existence of confirmation bias among people.

Wason’s Rule Discovery Task: In this experiment, Wason asked his subjects to dis-

cover a simple rule about triples of numbers [44]. The experimental procedure can

be explained as follows: Initially, the subjects are given a record sheet on which the

triple ”2, 4, 6” is written. The subjects are told that ”2 4 6” conforms to this rule.

In order to discover the rule, they are asked to write down triples together with the

reasons of their choice on the record sheet. After each instance, the examiner tells

whether the instance conforms to the rule or not. The subject can announce the rule

only when (s)he is highly confident. If the subject cannot discover the rule, (s)he can

continue giving instances together with reasons for his/her choice. This procedure

continues iteratively until either the subject discovers the rule or (s)he wishes to give

up. If the subject cannot discover the rule in 45 minutes, the experimenter aborts the

procedure.

Wason designed this experiment in such a way that subjects mostly showed a

tendency to focus on a set of triples that is contained inside the set of all triples

conforming to the correct rule. Due to this fact, the discovery of the correct rule was

possible only by following a hypothesis testing strategy. Once the subject sees the

triple ”2 4 6”, a set of hypotheses come to her/his mind. An ideal hypothesis testing

strategy is to start by giving examples which do not refute all hypotheses the subject

has in his/her mind at once. The examples of triples that refute more hypotheses

should be given as the subject becomes sure about the rule to be discovered. The

hypotheses in mind should be eliminated, modified and created in a strategic manner

so that the subject can come up with a single hypothesis at the end. Once the subject

is sure about the correct rule, (s)he may also give additional triple instances to verify

his/her guess.

Wason’s Selection Task: The written set of questions is based on Wason’s Selection

Task [45]. In the original task, the subject is given four cards, where each card has a

letter on one side and a number on the other side. These four cards are placed on a

table showing D, K, 4, 7 respectively. Given the rule: ”Every card that has a D on one

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



8

side has a 3 on the other side”, the subject is asked which card(s) must be turned over

to find out whether the rule is true or false.

3.2 Confirmation Bias in Relation to Software Development

Due to confirmation bias, developers may perform only the tests that make their pro-

gram work rather than break the code. This may lead to an increase in software defect

density. On the other hand, during all levels of software testing, including unit testing,

a systematic hypothesis testing procedure should be followed similar to the one fol-

lowed by a scientist making experiments in his/her laboratory. In general, scientific

inferences are based on the principle of eliminating hypotheses while provisionally

accepting the remaining ones. Therefore, similar to a scientist, a software developer

should try test scenarios starting from the ones that are less likely to fail the code

and proceeding with test scenarios that aim the code to fail. In most cases, there are

infinitely many test scenarios which require following a strategy to select the appro-

priate ones.

Hence, within the context of software development and testing, we extend the

definition of confirmation bias to include one or both of the following: 1) The ten-

dency to verify software code, 2) The incompetency to apply strategies to try to fail

software code.

Wason’s Rule Discovery Task in Relation to Unit Testing: There are similarities be-

tween Wason’s Rule Discovery task and functional (black-box) testing that are per-

formed by software developers to test functional units of their codes during unit test-

ing. This similarity is also mentioned by Teasley et. al. [64]. According to the findings

of Wason’s Rule Discovery Task, the subjects have a tendency to select many triples

(i.e. test cases) that are consistent with their hypotheses and few tests that are incon-

sistent with them. Similarly, program testers may select many test cases consistent

with the program specifications (positive tests) and a few that are inconsistent with

them (negative tests). Moreover, the state space of possible test cases is either infinite

or too large to be tested within a limited amount of time. Hence, a strategic approach

must be followed that covers both positive and negative test cases while trying to

make the code fail during testing in order to find as many defects as possible.

Wason’s Selection Task in Relation to Unit Testing: Wason’s selection task measures

the capability of the subject to use logical rules such as modus ponens and modus tol-

lens as well as his/her tendency to refute the given statement. In unit testing when cov-

ering possible scenarios, logical reasoning is required. Moreover, testing correctness

of conditional statements in the source code during white box testing also requires

logical reasoning skills. In order to explain the analogy between Wason’s Selection

Task and white box testing, we extend the example given by Stacy and MacMiilian

in [29] as follows: Suppose a developer wants to make sure that every instance of a

class named ”Controller” has been initialized throughout his/her code. Hence, in unit

testing, the developer will perform a test that can be thought as checking the validity

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



9

of the following hypothesis: ”If an instance’s class is Controller, then it has been ini-

tialized”. In that case, we can categorize parts of the code that may need to be tested

as follows:

– category #1: Parts of the code with instances of Controller that may or may not

be initialized.

– category #2: Parts of the code with instances of a class other than Controller that

may or may not be initialized.

– category #3: Parts of the code with initialized instances whose class is unknown.

– category #4: Parts of the code with uninitialized instances whose class is un-

known.

Logical expression for the hypothesis ”If an instance’s class is Controller, then

it has been initialized” would be ”if p then q”, where p stands for the phrase ”an

instance’s class is Controller” and q stands for the phrase ”it (class) has been initial-

ized”. According to modus ponens given that p is true, ”if p then q” is true only if

q is true. Therefore, one must check all instances of the class ”Controller” to guar-

antee that they have all been initialized. This means that parts of the code which fall

into category #1 must be tested. However, this is not adequate. Since ”if p then q” is

equivalent to ”if not-q then not-p”, one must also check the validity of negated form

of the hypothesis which is: ”If an instance has not been initialized, then the class of

that instance is not Controller”. According to modus tollens, given that not-q is true,

not-p must also be true. This means that every instance that has not been initialized

must be checked to find out whether the class of that instance is ”Controller” or not.

Hence, a developer must also test the parts of the code that fall into category #4. If

we transform each category of the parts of the code into logical expressions, then p

stands for category #1, not-p stands for category #2, q stands for category #3, and

finally not-q stands for category #4. Although the correct choice for testing would be

parts of the code that fall into category #1 and category #4, a developer might prefer

to test the parts of the code that fall into category #3 in addition to the parts that fall

into category #1, due to confirmation bias. To summarize, confirmation bias may lead

to incomplete unit testing of a code which in turn may lead to overlooking most of

the defects.

4 Methodology to Define and Extract Confirmation Bias Metrics

The overall methodology to define and extract confirmation bias metrics is shown in

Figure 1, where thick arrows indicate the information flow. The preparation of the

interactive question and the written question set was performed concurrently with the

creation of the initial metric suite. In order to prepare confirmation bias questions, we

performed an extensive survey in cognitive psychology literature. This survey also

helped us to initiate the confirmation bias metric suite. There is a mutual information

feedback between the preparation of questions and the metric suite update processes

since the definition of a new metric sometimes required adding new questions into the

written question set. This, in turn, often led to the introduction of more metrics. Hav-

ing prepared confirmation bias questions and a metric suite, the interactive question

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10

Fig. 1 : Methodology to define confirmation bias metrics and extract confirmation bias metric values.

and the written question set are answered by the participants (software profession-

als). During the evaluation and analysis of the answers of confirmation bias question

given by the participants, new metrics are introduced into the metric suite. Statisti-

cal analysis and feature selection techniques help to eliminate metrics that have less

significance in the measurement/quantification of confirmation bias. Our methodol-

ogy for the definition of confirmation bias metric suite is an iterative process. Hence,

this procedure is repeated for each new group of participants using confirmation bias

questions and the metric suite has been modified at the end of the previous iteration.

The extent of the changes regarding the content of the confirmation bias questions

and the metric suite were much larger during the early stages of the metric definition

process when confirmation bias questions consisting of the interactive question and

the written question set were administered to pilot participant groups. In this paper,

we present the latest version of the metric suite, for which only minor changes in the

content are likely to occur.

4.1 Preparing the Interactive Question and the Set of Written Questions

The interactive question is Wason’s Rule Discovery Task itself, whose details are ex-

plained in the previous section. The set of written questions is based on Wason’s Se-

lection Task and it consists of two parts. The first part contains abstract and thematic

questions, whereas the second part contains thematic questions on software develop-

ment and testing. Table 1 gives information about the distribution of the questions.

Abstract questions require pure logical reasoning to be answered correctly. In

our question set, there are 8 abstract questions. Compared to thematic problems, it is

easier to reason with problems that have thematic content, since real life experience

may help to answer such questions easily [46]. For written question set, we pre-

pared 7 thematic questions after having made a literature survey covering the major

thematic variants of Wason’s original selection task [47], [48], [49], [50],[51], [52],

[53], [54],[55]. In written question set, there is one abstract-thematic question. Sim-

ilar to an abstract question, an abstract-thematic question can be answered correctly

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11

Table 1 Distribution of question types in written question set

Question Type # of Questions

Part I

Abstract 7

Abstract+Thematic 1

Thematic 7

Part II

Software Development 9

by pure logical reasoning. Although such questions seem to have a thematic content,

thematic facilitation effect does not take place [46].

4.2 Administration of the Confirmation Bias Test

In order to collect confirmation bias metrics in a controlled manner, we adminis-

tered the confirmation bias test, which consists of the interactive question and the

written question set, under a predefined standard procedure. The environment where

the confirmation bias test was administered was isolated from noise and had adequate

lighting. Both Turkish and English versions of the interactive question and the written

question set were previously prepared. In this study, participants, who are software

developers, took Turkish version of the questions, since their native language is Turk-

ish. The English version of the questions was also required, as in our previous work

some of the participants were software developers from North America [59]. Partici-

pants were informed about the fact that the results of the confirmation bias test would

not be used in their company’s performance evaluations and their identity would be

kept anonymous. The goal was not to exert pressure on the participants in order not

to affect their performance. The participants were also told that there was no time

constraints for completing the questions. After the completion of both booklets, the

participants were warned not to inform other software developers and testers in their

company about the content of the questions.

Below we explain the standard procedures that are specific for the written ques-

tion set and the interactive question respectively.

Written Question Set In Wason’s studies related to his Selection Task, participants

were allowed to inspect real packs of cards before the experimenter secretly selected

four cards from the pack and placed them on a table so that only a single side of each

card was visible. However, the most recent studies in this field rely on the description

of the cards and the pictorial representations of the visible sides of the cards either

with pencil and paper or on a computer screen. These procedural differences have

made insignificant differences in the results of experiments[46].

Since it is possible to administer this part of the confirmation bias test for a group

of participants at once, we preferred to use the pen and pencil approach rather than

the traditional approach. Hence we prepared the written question set that consisted

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12

of two booklets. The first booklet included abstract, thematic-abstract and thematic

questions, while the second booklet consisted of thematic questions with software

development/testing theme. Each group of participants consisting of developers, who

took part in this research, answered the questions in the first and the second booklet

altogether in a meeting/seminar room. Before starting to read and answer the ques-

tions, the participants were told to fill in their personal information (gender, educa-

tion, experience in software development/ testing) on the form. This information was

used in our previous research where we investigated the factors affecting confirma-

tion bias as well as the effects of confirmation bias on the performance of software

developers and testers [59], [60], [61]. Afterwards, the first booklet was given to the

participants so that they started to answer the questions in the first booklet simultane-

ously.

Interactive Question Each participant answered the interactive question in a separate

room and there was one examiner to guide and give feedback to each participant. Be-

fore the whole procedure started, the participants were asked whether they gave per-

mission for their voices to be recorded during the session. The goal of voice recording

was to catch every detail about the way a participant thought to discover the correct

rule. Before starting the test, detailed information was given about the procedure to

discover the correct rule.

5 Confirmation Bias Metrics

The metrics in the confirmation bias metric suite are extracted from the interactive

question and the written question set respectively. In this research, our concern is

unit testing performed by developers. We focus on functional and structural testing,

since these are the two testing techniques both of which are used by all developer

groups who took part in this research. As it is also stated by Teasley et. al. in [64],

there is a similarity between Wason’s Rule Discovery Task and functional testing.

Since the interactive question is Wason’s Rule Discovery Task itself, the hypotheses

testing behavior of the developer gives us clues about the strategies employed by the

developer to test his/her own code. On the other hand, the metrics extracted from the

written test are designed to give clues about the way a developer performs structural

testing on his/her code. Structural testing focuses on the logic of the program and its

internal structure. Moreover, we need to decide which parts of the code should be

tested. Therefore, knowledge about first order logics is required, just as it is required

to solve the questions in the written question set correctly. In Table 5, the confirmation

bias metrics used in this research are listed. Below, we give details about these metrics

and explain how they can inform us about the effectiveness of the unit tests performed

by developers. The more effective the unit testing process, the fewer defects will be

overlooked by the developers. In that sense, the confirmation bias metrics we have

defined are also related to software defect density. Therefore, we use them to build

defect predictors.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13

Table 2 Comparison of average Indelim/enum and Fnegative values of developers who announced the correct

rule on first trial with remaining developers for each dataset

Indelim/enum Fnegative

Immediate Incorrect Immediate Incorrect

Dataset Correct Rule Rule Correct Rule Rule

ERP 1.89 0.53 2.50 0.33

Telecom1 2.68 0.86 2.00 0.46

Telecom2 2.45 0.53 2.70 1.07

Telecom3 2.35 0.51 2.61 1.01

Telecom4 2.37 0.61 2.55 1.06

5.1 Interactive Question Metrics

Total Number of Rule Announcements (NA): As one of the outcomes of his rule

discovery task [44], Wason presents distribution of the participants with respect to the

total number of rule announcements made. We defined the metric NA to measure the

total number of rules announced by a participant throughout the interactive question

session.

Duration to Solve Interactive Question (TI): As a performance metric, we de-

fined the metric TI , which measures total time duration for the interactive question

session. Due to the similarity between unit testing and the interactive question, which

is Wason’s Rule Discovery Task itself, a developer who finds the correct rule in a rea-

sonably short time is also very likely to perform effective unit testing. In commercial

software development projects, it is crucial to perform effective testing at all levels in

a reasonably short time to meet the release deadlines. However, by referring to only

TI , one cannot make a deduction if a participant employed an effective hypotheses

testing strategy when (s)he is solving the interactive question. Therefore, we intro-

duce additional metrics that are described below in this section. These metrics have

been designed to contain information about developer’s hypotheses testing behav-

ior which in turn gives clues about the strategy the developer employs while testing

his/her own code. Some of these metrics also include time in their formulation, and

time is always measured in minutes.

Eliminative/Enumerative Index (Indelim/enum): The eliminative/enumerative in-

dex (Indelim/enum) was introduced by Wason to evaluate the results of his rule dis-

covery task [44] with the aim of determining the proportion of the total number of

instances that are incompatible with reasons to those that are compatible. In [44],

Wason concluded that participants who announced the correct rule on first trial had

higher Indelim/enum values compared to the rest of the participants. Our results were

also in line with Wason’s findings. Developers who took part in this research and

who announced the correct rule on the first trial, had an average Indelim/enum value of

2.43; whereas this value was 0.75 for the rest of the developers. Kruskal-Wallis test

results for the significance of the difference between average Indelim/enum values is

(χ2 = 15.42, p = 8.62E-5). The comparison of the average Indelim/enum value of de-

velopers who announced the correct rule on first trial and those who made incorrect

rule announcement(s) is given in Table 2 for each dataset that is used in this research.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



14

The value of the eliminative/enumerative index being lower than 1 implies that

participants are more inclined to use triples of numbers (i.e. test cases) that are com-

patible with their hypotheses. Our participants are developers, and as we mentioned

previously, there is a similarity between software testing and Wason’s Rule Discovery

Task [64]. Hence, developers with Indelim/enum values lower than 1 are more likely to

be inclined to select positive test cases to verify their code. Some flaws in a program

such as logical errors can be discovered by positive test cases. However, other flaws

will not be discovered unless test cases, which aim to fail the code, are also used.

As a result, effective unit testing would not be possible leading to an increase in the

amount of defects overlooked during unit testing.

Frequency of Negative Instances (Fnegative): Wason also classifies the results he

obtained according to the frequency of negative instances given by the participants

(Fnegative). According to the definition by Wason, negative instances are triples of

numbers which are incompatible with the correct rule to be discovered. Wason found

that the mean frequency of negative instances given by the participants who discov-

ered the correct rule at first announcement is significantly higher than that of the

participants who found the correct rule after the announcement of an incorrect rule.

Among developers who took part in this empirical study, the average Fnegative value

of 2.31 belongs to those who announced the correct rule on the first trial. On the

other hand, for developers who announced an incorrect rule, this value is equal to

0.81. According to Kruskal-Wallis test, the statistical significance of this difference

is χ2 = 10.59, p = 0.0011. The results obtained within each dataset are in line with

this cumulative result as shown in Table 2.

Wason obtained a highly significant correlation between Indelim/enum and Fnegative.

We also obtained a Spearman correlation of 0.70 (p = 0.9193E-5) for developers who

took part in our research. On the other hand, these two are not entirely the same,

since negative instances don’t necessarily imply an eliminative behavior. Negative

instances might, on the other hand, help to identify the boundaries of the set of all

instances that are compatible with the correct rule to be discovered. Similarly, during

software testing some test cases may help to identify the missing parts of the software

specifications. The more complete the specifications are, the higher the quality of the

testing is. For this reason, in addition to Indelim/enum, we also include Fnegative in our

confirmation bias metric suite.

Immediate Rule Announcements (FIR and avgLIR): When the interactive ques-

tion was presented to the pilot group, we observed that 17.24% of the participants

made immediate rule announcements. However, announcing consecutive rules with-

out giving any instances in between is not part of the protocol. This was explained

to each participant before they started to solve the interactive question. Immediate

rule announcements were also observed among participants consisting of develop-

ers and testers both in this research and previous ones [59], [60], [61]. Immediate

rule announcements are an indication of a participant’s inadequate hypotheses testing

strategies. As a result of such announcements, participants cannot come up with a

single rule at the end by eliminating alternative hypotheses in their minds. Equiva-

lence partitioning is a non-exhaustive functional testing technique that is applied to

each functional unit mostly together with boundary testing. In equivalence partition-

ing, a set of dimensions of input data are identified for each functional unit, and a

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



15

set of equivalence classes are identified for each dimension. A developer who makes

immediate rule announcements when solving the interactive question is very likely

to fail to identify all dimensions of input data to be tested in the functional unit test-

ing. Moreover, (s)he will probably fail to properly determine equivalence classes for

each dimension. In order to quantify the extent of immediate rule announcements,

we defined two metrics, which are immediate rule announcement frequency (FIR)

and average length of immediate rule announcements (avgLIR) respectively. FIR is

the frequency of occurrences where each occurrence corresponds to a series of im-

mediate rule announcements without giving any instances in between. The number of

consecutive rule announcements within each rule announcement series may change.

Moreover, we also need to discriminate participants who make more consecutive rule

announcements within each immediate rule announcement series. This is due to the

fact that the increase in the number of consecutive rule announcements implies an

increase in the number of alternative hypotheses that the participant was unable to

eliminate. avgLIR is the average number of rule announcements made within each

series of consecutive rule announcements.

Total Number of Instances Given Per Unit Time (Instances/Time): Another

metric is the number of instances given per unit time (Instances/Time). When solv-

ing the interactive question, some participants showed a tendency to guess the cor-

rect rule without giving any triple of numbers as instances. As a result, there were

long pauses with no interaction between the participant and the experimenter. Such

participants usually gave instances only after the experimenter reminded them to do

so several times during the interactive question session. Therefore, the value of the

metric Instances/Time for such participants was low compared to the rest of the

participants. Developers having significantly low Instances/Time metric values are

likely to have less tendency to make strategic unit tests. Instead, they have the ten-

dency to consider their code ready for the testing phase, after having performed unit

tests with a couple of randomly selected input data. On the other hand, a high value

for the metric Instances/Time does not necessarily imply the existence of an ideal

hypotheses testing strategy employed by the participant to solve the interactive ques-

tion. Moreover, a developer having high Instances/Time metric value as an outcome

of the interactive question does not necessarily follow a strategy when performing

unit tests on his/her code. For instance, more than one instance may have been given

for a reason for choice (i.e. to test an alternative hypothesis). This corresponds to

selecting more than one test case from an equivalence class.

Total Number of Unique Reasons Given Per Unit Time (UnqReasons/Time): On

the other hand, the basic assumption of equivalence partitioning is that if the program

functions correctly for one test case selected from an equivalence class, then it will

function correctly for any test case from that equivalence class. Therefore, we also

included the metric UnqReasons/Time into our metric suite. This metric measures

the total number of unique reasons stated by a participant for the instances (s)he

gives while solving the interactive question.

Total Number of Rules Announced Per Unit Time (Rules/Time): Unlike the

metric Instances/Time, an increase in the value of the metric which measures the

total number of rules announced per unit time Rules/Time is not only an indication

of the lack of a hypothesis testing strategy to find the correct rule in the interactive

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



16

question. A developer having a high Rules/Time value as the outcome of the inter-

active question has the tendency to deliver his/her code to the testing phase without

making adequate unit testing. For such a developer, the compilation of his/her code

shall be enough. In other words, high Rules/Time is a result of the developer’s rush

to solve the interactive question correctly, mostly without checking the correctness of

the alternative hypotheses in his/her mind by giving instances.

Total Number of Unique Rules Announced Per Unit Time (UnqRules/Time):

Among the groups of participants who solved the interactive question, we observed

that some participants repeated or reformulated some of the rules (s)he already had

announced. Participants exhibiting such behavior while solving the interactive ques-

tion, are the ones who do not take into account the feedback given by the experi-

menter. In order to discriminate these developers from the rest, we included UnqRules/
Time, which measures the unique rules announced per unit time into our confirmation

bias metric suite.

5.2 Written Question Set Metrics

In order to quantify the extent of a participant’s logical reasoning skills within the

context of hypotheses testing, we introduced metrics extracted from the outcomes of

the written question set into our confirmation bias metric suite as shown in Table 5.

Below, we explain the confirmation bias metrics that are extracted from the answers

developers gave to written questions.

Portion of Correctly Answered Questions: SABS and ST h measure the portion of

the correctly answered abstract and thematic questions respectively. A participant

who has a low SABS and a high STh metric value compensates the lack of his/her

logical reasoning skills with the thematic facilitation effects such as daily life experi-

ence or memory queuing. SSW is the ratio of the correctly answered questions having

software development and testing theme to the total number of such questions. We

included SSW into our confirmation bias metric suite in order to find out whether the

lack of logical reasoning skills can be compensated through knowledge in software

development and testing.

Duration to Solve Written Questions: TT h+ABS is the total time it takes a partici-

pant to solve the first part of the written question set, while TSW measures the time it

takes a participant to solve the second part of the question set consisting of questions

with software development/testing theme.

Insight Metrics: Among our participants, we observed that the majority selected

the cards whose visible faces have symbols or words matching the ones in the rule.

The information processing model proposed by Johnson-Laird and Wason [65] classi-

fies the participant’s performance on Wason’s Selection Task as ”no insight”, ”partial

insight” and ”complete insight” based on the kinds of systematic errors they make.

According to the results obtained by both Matarasso Roth [66] and Evans and Lynch

[67], participants performing at the level of ”no insight” focus on cards mentioned

in the rule whose validity is tested. The selection of cards by a participant with ”no

insight” might be due to the participant’s tendency to verify the rule, or (s)he might

just match the symbols or words on the cards with those mentioned in the rule. On

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17

Table 3 Distribution of insights within each developer group

Abstract Questions Thematic Questions

Developer Dataset # No Partial Complete No Partial Complete

Group # Insight Insight Insight Insight Insight Insight

1 ERP 26.14% 21.43% 7.14% 7.14% 0.00% 90.43%

2 Telecom1 28.57% 12.86% 21.43% 10.00% 2.86% 77.14%

3 Telecom1 31.14% 4.29% 15.57% 10.29 % 5.43% 74.29%

4 Telecom3 31.43% 4.71% 14.29% 10.43% 5.71% 73.29%

5 Telecom4 31.14% 4.14% 14.29% 9.29% 5.00% 74.00%

the other hand, participants performing at the level of ”partial insight” or ”complete

insight” consider what symbols or words occur at the back of each card. In other

words, such participants perform a systematic combinatorial analysis of the cards.

The difference between these two performance levels is that the participants having

”partial insight” select all cards that could either verify or falsify the rule, whereas

the participants with ”complete insight” select only the cards that have the potential

to falsify the rule. Depending on whether the selection task in the written question

set is abstract, thematic or thematic-abstract performance of a participant may vary

[46]. According to the findings of experiments in cognitive psychology, participants

usually perform poorly on abstract questions [46],[65]. This finding is also supported

by our empirical results. Table 3 shows that for each project, answers given by the

majority of the developers to abstract questions can be categorized as ”no insight”.

On the other hand, the performance of developers on thematic questions is higher as

shown in Table 3. When a statement is supposed to be tested for its validity and that

statement has a theme consisting of experiences/familiarity from real life settings,

then these factors may help the subject to find the correct answer. However, when the

statement is purely abstract, one can answer that question by mere logical reasoning.

We introduced three metrics in order to determine participants’ performance for

both abstract and thematic question types in the written question set. Confirmation

bias metrics ABSCompleteInsight , ABSPartialInsight and ABSNoInsight measure the number

of abstract questions that are answered with ”complete insight”, ”partial insight” and

”no insight” respectively. In other words, these metrics give us information about

the number of abstract questions that are answered by selecting cards with the sym-

bols that match the ones in the rule as well as the number of questions answered

through a systematic combinatorial analysis of the cards. Similar metrics are defined

to identify participants’ performance on thematic questions that are T hCompleteInsight ,

T hPartialInsight and ThNoInsight respectively. In the written question set, there is only

one thematic-abstract question. Hence, instead of defining three separate metrics tak-

ing continuous values, we defined a single metric T hABSInsight that can take one of

the three categorical values ”Complete Insight”, ”Partial Insight” and ”No Insight”

respectively. We also defined derived insight metrics, which are given in Table 5.

Falsifier, Verifier and Matcher Categorization: Although insight metrics we de-

fined give information about the existence of a systematic analysis of the cards, the

distinction between verification, falsification and matching tendencies are not clear

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18

Table 4 Reich and Ruth’s categorization of response tendencies for the selection task

Question Rule Chosen Response

Type Rule Formulation Cards Tendency

Type I ”If a card has a D on one side, then it has if p, then q 3 (not-q) Falsifier

a 7 on its other side.”

Type II ”If a card has a D on one side, then it does if p, then not-q 3 (not-q) Verifier

not have a 7 on its other side.”

Type III ”If a card does not have a D on one side, if not-p, then q D (p) Matcher

then it has a 7 on its other side.”

Type III ”If a card does not have a D on one side, if not-p, then q 3 (not-q) Falsifier

then it has a 7 on its other side.”

Type IV ”If a card does not have a D on one side, if not-p, then not-q D (p) Matcher

then it does not have a 7 on its other side.”

Type IV ”If a card does not have a D on one side, if not-p, then not-q 3 (not-q) Verifier

then it does not have a 7 on its other side.”

enough. Reich and Ruth [57] propose an alternative approach to the assessment of

falsification, verification and matching tendencies in isolation from one another. For

this purpose, they ask four questions to their subjects. In each question, the symbols

on the cards and the symbols in the rule are the same. However, the rule whose valid-

ity to be tested is in one of the following forms: ”if p, then q”, ”if p, then not-q”, ”if

not p, then q” and ”if not p, then not q”. Reich and Ruth labels these four questions

as TypeI, TypeII, TypeIII and TypeIV questions respectively. The response given to

TypeI and TypeII questions help to identify tendencies for falsification and verifica-

tion respectively. The responses to TypeIII and TypeIV questions are also indications

of the existence of falsification and verification tendencies respectively. However, the

responses given to these two questions may also hint the existence of a matching ten-

dency. Based on the response tendencies given to these four questions, we defined six

metrics, which are NFalsi f ier, NVeri f ier , NMatcher , and NNone respectively. For instance,

NFalsi f ier measures the total number of questions answered with falsifying tendency.

The definitions of the rest of the metrics are given in Table 5.

6 Empirical Study

6.1 Datasets

In this study, we used datasets from five different projects as shown in Table 6. In

order to build the defect prediction model, we took into account only the source code

files whose development activities can be traced through the version control system.

Only these active source code files were tested by the testing teams. Therefore, project

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19

Table 5 List of confirmation bias metrics

Interactive Test Metrics

Metric Explanation

NA Number of rule announcements

TI Duration of interactive question session (in minutes)

Indelim/enum Eliminative/enumerative index by Wason

Fnegative Frequency of negative instances

FIR Immediate rule announcement frequency

avgLIR Average length of immediate rule announcements

Instances/Time Number of instances given per unit time

UnqReasons/Time Number of unique reasons given per unit time

Rules/Time Number of rules announced per unit time

UnqRules/Time Number of unique rules announced per unit time

Written Test Metrics

Metric Explanation

SAbs Score in abstract questions

ST h Score in thematic questions

SSW Score in the second part of the written question set

TT h+Abs Time it takes to answer the first part of the written question set

TSW Time it takes to answer the second part of the written question set

ABSCompleteInsight Number of abstract questions answered with complete insight

ABSPartialInsight Number of abstract questions answered with partial insight

ABSNoInsight Number of abstract questions answered with no insight

ThCompleteInsight Number of thematic questions answered with complete insight

ThPartialInsight Number of thematic questions answered with partial insight

ThNoInsight Number of thematic questions answered with no insight

NFalsi f ier Total number of answers with only falsifying tendency

NVeri f ier Total number of answers with only verifying tendency

NMatcher Total number of answers with only verifying tendency

NNone Total number of answers with no defined tendency

Table 6 Properties of datasets

Dataset # of active files Defect rate # of developers

ERP 3199 0.07 6

Telecom1 826 0.11 9

Telecom2 1481 0.03 4

Telecom3 284 0.02 7

Telecom4 63 0.05 17

managers needed guidance about defect-prone parts of these files to efficiently allo-

cate their testing resources within tight release deadlines. In Table 6, the total number

of maintained/developed files, file types and defect rates are listed for each dataset.

The defect rate is the ratio of the number of defective files to the number of active

files.

Dataset ERP belongs to a project group that consists of 6 developers who are em-

ployees of the largest ISV (Independent Software Vendor) in Turkey. The software

developed by this project group is an enterprise resource planning (ERP) software.

The snapshot of the software that was retrieved from the version management sys-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



20

tem comes from March 2011, and it consists of 3199 java files. The remaining four

datasets come from the largest wireless telecom operator (GSM) company in Turkey.

Dataset Telecom1 consists of four versions of a software product that is used to launch

new campaigns. On average, 545 java files exist in a single version. They make mod-

ifications in 206 files per version on average. The rest of the datasets come from the

billing and charging system. Among these three projects, the Telecom2 dataset is rel-

atively a new one, and it consists of java and JSP files. The modification and updates

involve all existing source code files in the project as well as the creation of new

files. Therefore, dataset Telecom2 includes all source code files of the correspond-

ing project. On the other hand, dataset Telecom3 consists of source code files of the

revenue collection system. This software package has been developed and maintained

since the inception of the GSM company in 1994. On average, there are 1092 java and

JSP files in a single version of this software package. However, maintenance, devel-

opment and software testing activities take place only for 284 files. Dataset Telecom4

is extracted from the database transactions system. It is as old as the revenue collec-

tion system and consists of PL/SQL files. Similar to Telecom3, only the files that are

maintained and created are taken into account in the defect prediction analysis.

Dataset ERP consists of the single release of a software product; therefore, we did

not use any merging process on the data that the defect prediction model would be

using to learn and test from. On the other hand, datasets Telecom1 and Telecom2 are

obtained by merging the files in four releases of the software. The remaining datasets

Telecom3 and Telecom4 are obtained by merging files that come from two releases

of corresponding software products. During the merging process, file entries with

identical file names are assumed to be different files if and only if corresponding static

code metrics are different (i.e. the said file is considered to be modified). Otherwise,

such a file is included in the list only once.

6.2 Metric Extraction Process

We performed defect prediction analysis at the granularity level of ’file’, since defect

data was not available at the granularity level of ’method’. We used the Prest tool to

extract static code metrics at ’file’ level [58]. The list of the static code metrics that

are used in this research are given in Table 7.

We parsed the log files that come from version control systems to extract the churn

metrics. Table 8 consists of the list of churn metrics we used as input data to the de-

fect prediction model. The log file for the first dataset contains file commit activities

starting from the beginning of July 2007 till the end of February 2011. On the other

hand, the log file for the second dataset covers file commit activities starting from the

beginning of September 2001 till the end of December 2009. A single log file was

retrieved for the third, fourth and fifth datasets covering commit activities starting

from the beginning of December 2007 till the end of July 2011. We evaluated the

outcomes of the interactive question and written question set to extract confirmation

bias metrics. The details about the confirmation bias metric suite that is used to feed

the defect prediction model are briefly explained in Section 4. In order to calculate

the confirmation bias metrics corresponding to each file, we consolidated confirma-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



21

tion bias metrics from individual developers into developer groups. We looked into

individual files in each version and we marked the developers who created and/or

modified that file before the code freeze date (i.e. dates when the development phase

for that release is over and the testing phase starts) are the ones who are responsible

for any defects found in that file. We made this match because some of the previously

introduced defects may be overlooked during the testing phase of earlier versions due

to defect propagation. Again, we looked into individual files in each file to examine

the file commit information in the version control systems by taking code freeze dates

into account. As a result, we formed a group of developers who are responsible for a

particular file.

We used three different operators to calculate minimum and maximum values of

the metrics of developers who committed code to the same source file. Assuming that

Adi represents the ith confirmation bias metric value of dth developer, d ∈ G j means

that dth developer is among the group of developers who created and/or modified jth

source file, and finally, S
op
ji represents the resulting ith confirmation bias metric value

of jth source file when operator op is applied. op can be one of the operators min or

max which are used to find minimum and maximum values of the ith confirmation bias

metric respectively. We can formulize the definition for the min and max operators as

follows:

Smax
ji = max(Adi|∀d ∈ G j) (1)

Smin
ji = min(Adi|∀d ∈ G j) (2)

6.3 Defect Matching

All datasets except for the first one were obtained from two project groups within the

large scale Telecommunications company. As mentioned previously, the first dataset

comes from an ERP software project developed by the ISV company. In order to

match the defects in the first dataset, we had to understand the work flow followed by

the ISV in their software development lifecycle. The company uses an issue manage-

ment system. Each issue is stored in this system with a unique issue code. Issues can

be a new feature, a regular project item or a defect that needs to be fixed. We managed

to match the issue items that were labeled as defects with source code files. As per

the company’s software development policy, developers must write the correspond-

ing unique issue code as a comment before they commit file(s) to the version control

system. Therefore, it was possible to match the file committed to the version man-

agement system with the corresponding issue item in the issue management system.

Figure 2 shows the methodology we followed to extract the list of the defective files.

The company provided us with the list of issues extracted from the issue management

system. We formed a ”final issue list” by taking into account only issue entries with a

request type of defect and issue status of different than canceled. An issue of request

type defect and of status canceled corresponds to defects whose existence we can not

verify. These defects have no impact on the customer versions of the software. We

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



22

Table 7 List of static code metrics used in experiments

Attribute Description

McCabe Metrics

Cyclomatic Complexity v(G) number of linearly independent paths

Cyclomatic Density vd(G) the ratio of the filess cyclomatic complexity to its length

Decision Density dd(G) condition/decision

Essential Complexity ev(G) the degree to which a file contains unstructured constructs

Essential Density ed(G) (ev(G)−1)/(v(G)−1)
Maintenance Severity ev(G)/v(G)

Lines Of Code Metrics

Unique Operands Count n1

Unique Operators Count n2

Total Operands Count N1

Total Operators Count N2

Lines Of Code (LOC) source lines of code

Branch Count number of branches

Conditional Count number of conditionals

Decision Count number of decision points

Halstead Metrics

Level (L) (2/n1)/(n2/N2)
Difficulty (D) 1/L

Length (N) N1 +N2

Volume (V) N ∗ log(n)
Programming Effort (E) D∗V

Programming Time (T) E/18

Table 8 List of churn metrics used in experiments

Attribute Description

commits number of commits made for a file

committers number of committers who committed a file

commitsLast number of commits made for a file since last release

committersLast number of developers who committed a file since last release

rmlLast number of removed lines from a file since last release

alLast number of added lines to a file since last release

rml number of removed lines from a file

al number of added lines to a file

topDevPercent percentage of top developers who committed a file

mined the commit log file in the version control system to get a commit history file.

The format of each commit log entry is shown in Figure 2. We, then, found the names

of source files for each issue in the list and marked them as defective.

The second dataset comes from the project group with whom we have been doing

collaborative research [26]. This project group provided us with a list of the source

files that they found to have bugs during the testing phase of each release. However,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



23

Fig. 2 Defect matching procedure of a file for the last dataset

the third, fourth and fifth datasets come from project groups with whom we have not

worked before. They provided us with a list of file commit activities to fix defects. We

were told that the second group labels its final release of the product under one single

release number although the final product is composed of many releases. We were

also a given release calendar that contains the code freeze and production release

dates of each release. The release calendar also included information about the defect

detection and defect fix dates for each defect. We considered that a file comes from a

specific release if and only if the date when that defect is detected and/or fixed is later

than the code freeze date and earlier than the production release date. As a result, we

were able to match each file with a specific release number, in addition to labeling

defective files for each release.

6.4 The Relationship Between Confirmation Bias Metrics and Defect Rate

In section 5, we made claims about the correlation between developers’ lack of fal-

sifying behavior in confirmation bias test and their tendency to validate their code

during unit testing. In order to justify our claims, we made an empirical analysis

where we used pre-release defect rates of developer groups as a measure of devel-

opers’ confirmatory behaviors during unit testing. This empirical analysis was also

essential to choose the appropriate confirmation bias metrics as an input for defect

prediction models. The basic steps of our empirical analysis can be summarized as

follows:

1. Formation of Developer Groups: For each project, we analyzed the log file ob-

tained from the version control management system. Since the majority of the

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



24

files were committed by more than one developer, we decided to focus on devel-

oper groups who created and/or updated a certain set of files rather than individual

developers.

2. Estimation of Developer Groups’ Confirmation Bias Metric Values: Since the per-

formance of a group or system is determined by its weakest component [80] ,

we selected the metric value that is the indication of the highest confirmation

bias level (i.e. highest tendency for verification) in a given developer group. For

instance, a low eliminative/enumerative index (Indelim/enum) value is among the

indications of high confirmation bias. Therefore, to estimate Indelim/enum for a

developer group, we use min operator. On the other hand, to estimate NA metric

value for a developer group, we use max operator, since high NA metric value is

an indication of high confirmation bias.

3. Estimation of Defect Rate for Each Developer Group: We defined the defect rate

for each developer group as the ratio of the total number of defected files cre-

ated/updated by that group to the total number of files that group created/updated.

We can formulate the defect rate dri for ith developer group, where Ni
de f ectiveFiles

and Ni
allFiles stand for number of defective files and number of all files, as follows:

dri = Ni
de f ectiveFiles/Ni

allFiles (3)

4. Estimation of the Correlation Between Developer Groups’ Confirmation Bias

Metrics and Defect Rate: We calculated the Pearson Product Moment Correlation

between the confirmation bias metrics of each developer group and the defect rate

of the same group. Significant correlation results are given in Tables 10 and 11.

These tables also include information about whether min or max operator is used

to calculate the value of that metric for any developer group.

The results shown in Table 10 and Table 11 verify what we have claimed in sec-

tion 5. Although the magnitude of the correlation values ranges between 0.10 and

0.50 for p values smaller than the significance level 0.05, these correlation results

are quite significant in the field of behavioral sciences. In order to make an empirical

analysis in the field of behavioral sciences, one needs to move from theoretical con-

structs such as hypothetically strong relationships to their operational realizations in

measurement. The guidelines of magnitude of Pearson correlation for the behavioral

sciences given by Cohen in [74] [75] are as follows:

– ρ = 0.10− 0.23 is small effect size,

– ρ = 0.24− 0.36 is medium effect size, and

– ρ = 0.37− larger is large effect size.

The power values of one tailed t test (i.e. the probability of rejecting the null

hypothesis, H0 : ρ = 0 ) for the significance criterion of α = 0.05 are listed in Table

9 for n = 120 samples.

Interpretation of the Results As shown in Table 10, we could not find any correlation

between metric TI and defect rate. This result is in line with our claim about TI in

Section 5.1, as duration to solve interactive question does not alone give much in-

formation about the existence of a hypotheses testing strategy. According to Cohen

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



25

Table 9 Conventional definitions of effect size offered by Cohen

ρ Power Value

0.10 0.29

0.20 0.71

0.30 0.96

0.40 ≥ 0.995

0.50 ≥ 0.995

Table 10 Results for the Pearson correlation between developer groups’ interactive question metrics and

defect rate

Metric Name min/max ρ pval

operator ?

NA max + 0.2092 0.0003

Indelim/enum min – 0.2547 1.1E-05

TI max + 0.0396 0.5014

Fnegative min – 0.3546 4.8E-10

FIR max + 0.1252 0.0327

avgLIR max + 0.5297 1.9E-22

Instances/Time min – 0.2389 3.8E-05

UnqReasons/Time min – 0.2355 5E-05

Rules/Time max – 0.4493 7.2E-16

UniqueRules/Time max – 0.4510 5.5E-16

Table 11 Results for the Pearson correlation between developer groups’ written question set metrics and

defect rate

Metric Name min/max ρ pval

operator ?

SABS min – 0.2371 4.4E-5

ST h min + 0.0536 0.3622

SSW min + 0.0367 0.5332

TT hABS max – 0.1396 0.0172

TSW max + 0.1553 0.0172

AbsCompleteInsight min – 0.1280 0.0290

AbsPartialInsight max + 0.3572 3.5E-10

AbsNoInsight max + 0.5364 4.4E-23

ThCompleteInsight min – 0.2851 7.7E-7

ThPartialInsight max + 0.1128 0.0545

ThNoInsight max + 0.1342 0.0220

NFalsi f ier min – 0.0935 0.8738

NVeri f ier max + 0.3742 4.2E-11

NMatcher max + 0.1749 0.0027

NNone max + 0.1852 0.0015

[75], the degree of correlation between FIR and defect rate is low; whereas the degree

of correlation between avgLIR and defect rate is high. Non-zero values for these two

metrics are indications of the fact that a developer is unable to determine equivalence

classes properly during unit testing. However, compared to FIR, avgLIR is more in-

formative, since high avgLIR value implies an increase in the number of alternative

hypotheses that a developer is unable to eliminate due to his/her poor hypothesis test-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



26

ing strategy. The degree of correlation between defect rate and NA is low. NA is an

indication of whether developer succeeds in solving the interactive question (i.e. finds

the correct rule on the first trial). However, this metric does not explain the hypothe-

ses testing strategy employed by the developer. The degree of the correlation between

the defect rate and Indelim/enum is medium which is a meaningful result. One cannot

expect a decrease in defect rate for very high Indelim/enum values, since mere elimina-

tive behavior does not help us to find the correct rule. While solving the interactive

question, one must start with instances that conform to the alternative hypotheses

(s)he has in his/her mind [79]. Similarly, during unit testing a developer may start

with positive tests and evaluates the code executions, and then, (s)he must switch to

negative test scenarios. The high frequency of negative instances Fnegative may help to

identify the boundaries of instances that conform to the correct rule when solving the

interactive question. However, Fnegative is a direct indicator of neither verifying nor

falsifying tendency. Therefore, a medium degree of correlation between defect rate

and Fnegative is acceptable. Our correlation results regarding metrics Instances/Time

and UnqReasons/Time are also in line with our claims in Section 5. Although very

low values of these two metrics imply a lack of unit testing strategy, high values do

not necessarily imply an existence of a strategy in testing. A high level of correlation

between defect rate and Rules/Time as well as the UniqueRules/Time support our

claims in Section 5 since an increase in the number of announced rules directly imply

a lack of testing strategy when solving the interactive question.

Table 11 summarizes the correlation results for written question set metrics. The

degree of correlation between defect rate and SABS is close to medium, but we could

not find statistically significant correlation values for STh and SSW . Since daily life

experiences and domain knowledge such as software engineering may help, the ma-

jority of developers answered the thematic questions correctly. Therefore, the score

in thematic questions and the score in questions with software development/testing

theme were not discriminative enough for developer groups with high and low defect

rates. In order to test the validity of our claim, we also defined a derived metric to

quantify the ratio of the score in thematic questions to the score in abstract questions:

(1+ STh)/(1+ SABS). We added 1 to the denominator to avoid division by zero and

1 to the numerator to obtain values greater than zero. The correlation between de-

fect rate and the derived metric (1+STh)/(1+SABS) is ρ =+0.4655 p = 4.7E−17.

According to Cohen [75], the degree of this correlation is large. We found a nega-

tive correlation with the defect rate and the duration to solve the general part of the

written test TT hAbs. Developers who had a matching or verifying tendency answered

the questions more quickly compared to developers with a falsifying tendency. More-

over, developers who could not even be categorized as matcher or verifier were the

ones who answered these questions the fastest. However, there is a positive correla-

tion between defect rate and TSW , which also makes sense as expertise in software

development/testing domain helps developers to answer questions correctly. In other

words, abstract reasoning skills are not crucial to succeed in the second part of the

written question set. When we examine insight metrics, we realize that insight met-

rics that are extracted from abstract questions are much more powerful indicators

of defect rate. With an exception of the metric NFalsi f ier, the results on the metrics

that were categorized based on Reich and Ruth [57] are in line with our claims

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



27

Fig. 3 Pseudocode for construction of the defect prediction model

in Section 5. On the other hand, the correlation value between the derived metric

(1+NFalsi f ier)/(1+NVeri f ier) and defect rate is ρ = −0.2280 p = 8.7E − 5. This

implies that as the number of questions answered with falsifying tendency increase

with respect to the number of questions that are answered with verifying tendency,

the defect rate decreases. According to Cohen, the degree of this correlation is low

but close to medium.

6.5 Construction of the Prediction Model

In this study, we used the Naı̈ve Bayes algorithm since it combines signals coming

from different attributes [15]. In software defect prediction studies, it is also empiri-

cally shown that the performance of the Naı̈ve Bayes is amongst the top algorithms

[17]. As shown in Table 6, datasets are imbalanced. In other words, the number of

defective files is far less than the number of defect-free files. Therefore, we use the

under-sampling method, which is the most suitable sampling method for our datasets

[16]. The pseudocode of the prediction model is given in Figure 3. In order to over-

come ordering effects, we shuffled the data 10 times, and 10-fold cross validation was

used for each ordering configuration of input data. In other words, for each ordering

configuration, we create 10 stratified bins: 9 of these 10 bins are used as training sets,

and the last one is used as the test set [62]. As a result, during each experiment, the

Naı̈ve Bayes algorithm with under-sampling is executed 10*10=100 times for each

dataset.

6.6 Performance Measures

In order to evaluate the performance of the defect prediction models that are built

by using different metric suite combinations, we used well-known performance mea-

sures that are a probability of detection, false-alarm rate and balance [15].

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



28

Probability of Detection (pd): Pd measures how good a predictor is in finding de-

fective modules, where modules can be files, methods or packages depending on the

granularity level. In the ideal case, we expect a predictor to catch all defective mod-

ules, which in turn, implies that pd is equal to 1.

Probability of False Alarms (p f ): P f measures false alarm rates, when the predictor

classifies defect-free modules as defective. In the ideal case, we expect a predictor to

classify none of the defect-free modules as defective. In other words, the value of p f

is equal to 0.

Balance (bal): In practice, the ideal case where a defect predictor has a high prob-

ability of detecting defective modules and a low probability of false alarm is very

rare. Therefore, we try to balance the pd and p f values. The notion of balance is

formulized as the Euclidean distance from the sweet spot (pd = 1 and p f = 0) nor-

malized by the maximum possible distance to this spot. It is desirable that predictor

performance is close to the sweet spot as much as possible.

bal = 1−
√

(1− pd)2 +(0− p f )2

√
2

(4)

Pd and p f values are calculated using the Confusion Matrix that is given in Table

12. In the confusion matrix, TP is the number of correctly classified defective mod-

ules; FP is the number of non defective modules that are classified to be defective;

FN is the number of defective modules that are classified to be non-defective; and

finally, TN is the number of correctly classified non-defective modules. The formu-

lations for pd and p f in terms of confusion matrix values is given below:

pd = T P/(TP+FN) (5)

p f = FP/(FP+TN) (6)

Table 12 Confusion matrix TP:True Positives, FN:False Negatives, FP:False Positives, TN:True Nega-

tives

Predicted

Actual Case Defected Not-defected

Defected TP FN

Not-defected FP TN

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



29

6.7 Results of the Empirical Study

In this section, we discuss the performance results of the defect prediction models

that are constructed by taking all seven combinations of static code, confirmation

bias and churn metrics using the datasets ERP, Telecom1, Telecom2, Telecom3 and

Telecom4 respectively. Pd, p f and balance values, which are listed in Tables 9-13,

are the average performance values of these defect predictors.

Table 13 Experiment results for dataset ERP

Metric Types

Confirmation Bias Static Code Churn pd pf balance

- + - 0.72 0.29 0.69

+ - - 0.91 0.31 0.74

- - + 0.81 0.38 0.66

+ + - 0.93 0.30 0.76

- + + 0.71 0.15 0.74

+ - + 0.77 0.27 0.69

+ + + 0.93 0.32 0.74

The performance results for the dataset ERP are summarized in Table 13. The

probability of the detection (pd) of the defect predictor that is built using only confir-

mation bias metrics is higher than the pd value of the predictor that is built using only

static code metrics. According to the results of the Kruskal-Wallis test, the statisti-

cal significance of this difference is χ
2 = 52.84, p = 3.62E-8. However, there is no

statistically significant difference between false alarm rates (χ2 = 0.36, p = 0.55) or

between balance values (χ2 = 2.84, p = 0.092). On the other hand, the defect predic-

tion model that is learned using only confirmation bias metrics has lower false alarm

rates (p f ) and higher balance values (bal) when compared to the model that take only

churn metrics as input. The Kruskal-Wallis test results indicating the statistically sig-

nificant difference in p f values are χ2 = 62.70, p = 0.0060; whereas the results for

the difference in bal values are χ2 = 15.29, p = 9.23E-5. When both static code and

churn metrics are used, no statistically significant difference is observed between the

average balance value of the resulting defect predictor and the balance value of the

predictor built using only confirmation bias metrics (χ2 = 0.85, p = 0.3563). Using

both static code and confirmation bias metrics leads to a significantly higher balance

value compared to the balance value obtained from the individual usage of static code

metrics (χ2 = 27.26, p = 1.78E-7). Supplementing churn metrics with confirmation

bias metrics to learn the defect predictors also resulted in an improvement in de-

fect prediction performance. The average balance value of the defect predictor that is

constructed using only confirmation bias metrics is 0.66, and this value increases to

0.69 as a result of the inclusion of confirmation bias metrics. The difference between

these two prediction performance values is significantly different as indicated by the

Kruskal-Wallis test, χ2 = 4.17, p = 0.0412. However, using confirmation bias metrics

in addition to static code and churn metrics did not result in a significant difference in

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



30

defect prediction performance compared to using both static code and churn metrics

(χ2 = 0.04, p = 0.8468).

Table 14 Experiment results for dataset Telecom1

Metric Types

Confirmation Bias Static Code Churn pd pf balance

- + - 0.60 0.41 0.58

+ - - 0.66 0.38 0.62

- - + 0.49 0.30 0.55

+ + - 0.67 0.33 0.67

- + + 0.57 0.32 0.61

+ - + 0.60 0.26 0.62

+ + + 0.62 0.28 0.66

The defect prediction performance results obtained for the dataset Telecom1 are

in line with the results obtained for dataset ERP. As it can be seen from Table 14,

the individual usage of confirmation bias metrics leads to defect prediction perfor-

mance (balance= 0.62) which is higher than the performance obtained by individual

usage of static code metrics (balance = 0.58) and churn metrics (balance = 0.55).

According to the Kruskal-Wallis test, the statistical significance of these differences

are (χ2 = 21.35, p = 3.82E-6) and (χ2 = 54.42, p = 1.62E-8) respectively. There

is no significant difference between the balance value of the defect predictor that is

learned using both static code and churn metrics and the balance value that is obtained

by using only confirmation bias metrics (χ2 = 0.36, p = 0.55). The defect prediction

performance result obtained for this dataset by using both static code and confirma-

tion bias metrics is also significantly higher than the prediction performance results

(i.e. balance values) obtained from the individual usage of static code (χ2 = 127.13,

p = 1.74E-29) and confirmation bias metrics respectively (χ2 = 28.01, p = 1.21E-2).

The introduction of churn metrics in addition to confirmation bias metrics does not

lead to a significant improvement in defect prediction performance. The Spearman

correlation between churn metrics and 15.67% of confirmation bias metrics is higher

than or equal to 0.50. The correlation between 6.72% of confirmation bias metrics

with static code metrics is greater than or equal to 0.50. The highest Spearman corre-

lation between churn and confirmation bias metrics is 0.58, p = 1.21E-75; whereas the

corresponding value between static code and confirmation bias metrics is −0.53, p =

7.90E-62. Using static code, confirmation bias and churn metrics altogether result in

an average balance value that is far better than the average balance values obtained

from the individual usage of these three metrics types. Moreover, the resulting de-

fect predictor outperforms the defect predictor which is learned from static code and

churn metrics as well as exceeding the performance of the prediction model which is

learned from confirmation bias and churn metrics. However, the highest defect pre-

diction performance is obtained by using static code and confirmation bias metrics.

Unlike the results obtained for the datasets ERP and Telecom1, , the individual

usage of confirmation bias metrics for dataset Telecom2 resulted in average defect

prediction performance (balance= 0.61) which is lower than those of the defect pre-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



31

Table 15 Experiment results for dataset Telecom2

Metric Types

Confirmation Bias Static Code Churn pd pf balance

- + - 0.63 0.33 0.63

+ - - 0.60 0.35 0.61

- - + 0.70 0.32 0.64

+ + - 0.69 0.29 0.69

- + + 0.68 0.26 0.68

+ - + 0.64 0.35 0.62

+ + + 0.70 0.32 0.67

dictors, which are learned by the individual usage of static code (balance = 0.63).

According to the Kruskal-Wallis test, the difference is significant: χ2 = 11.71, p =

0.0006. However, no significant difference is detected between the defect prediction

performance value obtained by using only churn metrics and the performance value

obtained by using only confirmation bias metrics (χ2 = 1.4, p = 0.2368). Moreover,

the defect prediction model that is learned by using both static code and churn met-

rics outperformed (balance = 0.68) all three prediction models that are learned from

the individual use of static code, confirmation bias and churn metrics respectively

(χ2 = 110.48, p = 7.69E-26). Using both static code and confirmation bias metrics

also led to higher average defect prediction performance compared to the perfor-

mance results obtained from individual usage of static code metrics (χ2 = 21.97, p

= 2.77E-6). However, using confirmation bias metrics in addition to churn metrics

gave a lower defect prediction performance result compared to the performance re-

sult obtained by using churn metrics only (χ2 = 34.83, p =3.6E-9). This is due to

the high correlation between the churn and confirmation bias metrics. The Spear-

man correlation between churn metrics and 56.72% of confirmation bias metrics is

higher than or equal to 0.70. The Spearman correlation between churn metrics and

23.12% of confirmation bias metrics is higher than or equal to 0.85. Moreover, the

maximum Spearman correlation value is 0.94, p = 0. In contrast, the highest Spear-

man correlation value between static code and confirmation bias metrics is 0,37, p

= 2.81E-49. Therefore, the defect prediction performance improves significantly by

supplementing the static code metrics with confirmation bias metrics, compared to

the performance values obtained by using static code and confirmation bias metrics

separately.

The experiment results for dataset Telecom3 are shown in Table 16. Using only

confirmation bias metrics results in a better defect prediction performance than using

churn metrics only (χ2 = 9.2, p = 0.0024). On the other hand, the improved perfor-

mance results are obtained by individual usage of static code metrics compared to the

results obtained from individual usage of confirmation bias metrics (χ2 = 13.31, p

= 0.0003). Supplementing static code metrics with confirmation bias metrics leads to

a defect prediction performance that is significantly lower than the performance ob-

tained by using static code metrics only (χ2 = 6.13, p = 0.0133). This is due to the ex-

istence of the correlation between confirmation bias metrics and static code metrics.

The Spearman correlation between 17.91% of confirmation bias metrics and static

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



32

Table 16 Experiment results for dataset Telecom3

Metric Types

Confirmation Bias Static Code Churn pd pf balance

- + - 0.83 0.12 0.81

+ - - 0.90 0.23 0.78

- - + 0.75 0.24 0.67

+ + - 0.87 0.20 0.78

- + + 0.85 0.14 0.81

+ - + 0.87 0.24 0.76

+ + + 0.87 0.25 0.75

code metrics is greater than or equal to 0.45. The maximum estimated Spearman cor-

relation is 0.50, p = 1.49E-19 whereas the correlation between cyclomatic complexity

and churn metric rml (i.e. total number of removed lines) is ρ = 0.67, p = 0.0054.

The correlation between Halstead length and churn metric al (i.e. total number of

added lines) is ρ = 0.85, p = 0.0231. Consequently, there is an improvement in the

prediction performance when churn metrics are used with static code metrics. How-

ever, these results are not higher than the performance of the prediction model which

is built using only static code metrics. Similarly, the Spearman correlation between

26.87% of confirmation bias metrics and churn metrics is higher than or equal to 0.45.

The maximum Spearman correlation is ρ = 0.60, p = 0.0077. Hence, supplementing

static code metrics with confirmation bias metrics leads to a degradation in prediction

performance. As a result of the correlation among static code, confirmation bias and

churn metrics , when metrics from all three metric types are used together to learn a

defect prediction model, a degradation in defect prediction performance is observed.

Table 17 Experiment results for dataset Telecom4

Metric Types

Confirmation Bias Static Code Churn pd pf balance

- + - 0.91 0.08 0.88

+ - - 0.93 0.15 0.85

- - + 0.90 0.11 0.86

+ + - 0.93 0.21 0.81

- + + 0.83 0.04 0.85

+ - + 0.94 0.11 0.88

+ + + 0.94 0.10 0.89

Table 17 summarizes the experiment results for dataset Telecom4. The defect pre-

dictor that is built by using only static code metrics outperforms the prediction model

that is built by using confirmation bias metrics only (χ2 = 13.31, p = 0.0003). The

performance of the latter defect prediction model is also outperformed by the model

that is built by using churn metrics only (χ2 = 9.2, p = 0.0024). Both of these re-

sults are in line with the corresponding results of dataset Telecom2. Supplementing

static code metrics with confirmation bias metrics leads to a degradation in the de-

fect prediction performance (χ2 = 18.43, p = 1.76E-5). The Spearman correlation

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33

between 11.19 % of confirmation bias metrics and static code metrics is higher than

or equal to 0.45, while the average Spearman correlation is 0.32. On the other hand,

supplementing churn metrics with confirmation bias metrics does not cause a signif-

icant improvement in the defect prediction performance (χ2 = 0.37, p = 0.544). The

Spearman correlation between 18.66 % of confirmation bias metrics and churn met-

rics is greater than or equal to 0.45, while the average Spearman correlation is 0.40.

For similar reasons, the introduction of confirmation bias metrics to the metric set of

static code and churn metrics does not lead to a statistically significant improvement

in the defect prediction performance (χ2 = 0.11, p = 0.7455).

We can summarize the experiment results for all five datasets as follows:

– The performance of defect prediction models built by using only confirmation

bias metrics is comparable with the performance of the defect prediction models

that use static code metrics and churn metrics.

– Any combination of static code, churn and confirmation bias metrics may not lead

to an increase in the defect prediction performance. A possible explanation is that

the combination of metrics may not correspond to an increase in information

content since there is as a high correlation between any two of the static code,

confirmation bias and churn metrics. Our purpose in this research was not to

find a better defect prediction model; we rather wanted to understand the impact

of people-related attributes in determining the defect proneness of the software

product. Many aspects of people as social actors or individuals may be measured.

In this research, we focused only on the thought process of people since it was a

mature research area in psychology. We built defect prediction models to validate

our research questions. Our empirical results show us that the thought processes

of people have a significant impact on the defect proneness of software since the

defect prediction model built by using confirmation bias metrics gives as good

results as other metrics sets in all datasets. The next section discusses in more

detail the purpose of this research and its contributions.

7 Discussions

The first goal of this research was to identify the measures of confirmation bias in

relation to software development process. We prepared a confirmation bias test that

consists of an interactive question and a written question set. As mentioned previ-

ously, we used a collection of questions that were proposed by cognitive psycholo-

gists to prove the existence of confirmation bias among people [44], [45], [54], [53],

[55], [47], [48], [49], [50], [51], [52]. Confirmation bias is a cognitive bias type, and

cognitive biases are defined as the deviations of the mind from the laws of logic and

mathematics. Hence, confirmation bias and intelligence as well as abstract/logical

reasoning skills may be correlated. Moreover, abstract questions in the written ques-

tion set require logical reasoning skills in addition to the tendency to refute hypothe-

ses. A relation between intelligence and performance on Wason’s Selection Task has

been found by Valentine as a result of an experiment she conducted on 38 subjects

[76]. However, there are no concrete results in the literature that can be generalized,

and some findings are contradictory. Wason uses undergraduate psychology students

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



34

as subjects in his famous experiment Wason’s Rule Discovery Task. While interpret-

ing his findings, he does not explain that the success of 6 subjects out of 29 is based

on intelligence. On the other hand, only less than 10% of the doctoral scientists who

took part in Griggs and Ransdell’s experiment, that is a variation of Wason’s original

Selection Task, could give the correct answer [77]. Jackson and Griggs [78]repli-

cated Wason’s Selection Task on mathematicians and they found that only slightly

more than 50% gave the correct answer. One potential future work may be to inves-

tigate the extent of the correlation between confirmation bias test results and IQ test

results.

The second goal of this paper was to investigate how well these measures per-

form in predicting defect prone parts of software. We found that defect prediction

models that use only confirmation bias metrics as input are able to predict 60-93% of

the files with defects, and these models report low false alarm rates at the same time.

However, in some cases, factors other than confirmation bias might be the cause of

software defects. These factors can be related to human aspects as well as factors that

are directly related to the development process such as development methodologies,

company culture, or frequency of software releases. Among human aspects, one can

consider other cognitive bias types such as representativeness, availability, adjustment

and anchoring. Moreover, widely studied concepts such as attention, memory, moti-

vation, personality, and social cognition are likely to affect software defect density.

Interaction among software professionals during the software development process is

also very likely to affect software defect density [40], [42], [43], [22]. Since, devel-

opers are the ones who implement and test code, static code metrics are reflections

of human aspects, as well as other factors that are directly related to the software de-

velopment process. In some situations, it is possible that other human aspects may be

more effective in the introduction of defects. Therefore, another area of future work

would be to analyze up to what extent these human aspects effect software defect

density.

This paper also serves for a high level goal that is to investigate the effect of

confirmation bias on software defect density, and hence on software quality. We did

a preliminary analysis to find the correlation between defect rate and confirmation

bias metrics for each developer group. This gave us some clues about the influence

of developers’ confirmation bias on software defect rate, while it also guided us to

select the appropriate metrics as input to defect prediction models. However, in order

to gain more insight about the influence of developers’ confirmation bias on software

defect density, we need to do the following:

1. Identify a single metric to measure the confirmation bias level of developers, and

2. Analyze developers individually instead of analyzing developer groups.

We need a single confirmation bias metric to further analyze the relationship be-

tween the confirmation bias level of a developer and defect density. However, defining

a set of confirmation bias metrics was a prerequisite for the formation of a single con-

firmation bias metric. This is the next step in our research program. As it is indicated

by Cook et. al. [73], the construct validity of an empirical research requires each con-

struct to be operationalized in a multiple manner. In order to avoid underrepresenting

the effect of construct ”confirmation bias” and to eliminate irrelevancies in the cause-

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



35

and-effect relationship between confirmation bias and defect rate, we used alternative

measures of confirmation bias. The metrics we introduced in this paper are based on

the quantitative and qualitative results of Wason’s experiments about the existence of

confirmation bias among people. These metrics also come from other significant ex-

periments that have been conducted over the last sixty years in cognitive psychology

literature. Further investigation of the relation between developers’ confirmation bias

and defect density also requires information about defects introduced by each de-

veloper so that we can perform individual-based analyses in addition to group-based

analyses. Moreover, monitoring developers while they are performing unit testing on

a piece of code that they have implemented and gaining insight about the types of

defects they introduce, might be also be valuable.

8 Threats to Validity

Our study consists of two main parts: The first part of our study consists of the def-

inition and extraction of confirmation bias metrics, and the second part includes an

empirical analysis that consists of building defect prediction models using static code,

churn and confirmation bias metrics. We address threats to validity for each part of

our study in the form of two separate subsections.

8.1 Threats to Validity for Definition and Extraction of Confirmation Bias Metrics

In order to avoid mono-method bias that is one of the threats to construct validity,

we used more than a single version of a confirmation bias measure. In other words,

we defined a set of confirmation bias metrics. In order to form our confirmation bias

metrics set, we made an extensive survey in cognitive psychology literature cover-

ing significant studies that have been conducted since the first introduction of the

term ”confirmation bias” by Wason in 1960 [44]. Moreover, we defined confirmation

bias in relation to the software development life cycle. Since our metric definition

and extraction methodology is iterative, we were able to improve the content of our

metrics set through pilot study as well as datasets collected during our related previ-

ous research [59], [60], [61]. As a result, we were able to demonstrate that multiple

measures of key constructs behave as we theoretically expect them to.

Another threat to construct validity is the interaction of different treatments. Be-

fore the administration of confirmation bias test to participants groups, we ensured

that none of the participants were involved simultaneously in several other programs

designed to have similar effects.

Evaluation apprehension is a social threat to construct validity. Many people are

anxious about being evaluated. Moreover, some people are even phobic about testing

and measurement situations. Participants may perform poorly due to their apprehen-

sion, and they may feel psychologically pressured. In order to avoid such problems,

we informed the participants before the tests started that the questions they are about

to solve do not aim to measure IQ or any related capability. Participants were also

told that results would not be used in their performance evaluations and their identity

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



36

would be kept anonymous. Moreover, participants were told that there was no time

constraint for completing the questions.

Another social threat to construct validity is the expectancies of the researcher.

There are many ways a researcher may bias the results of a study. Hence, the out-

comes of both the written question set and the interactive question were indepen-

dently evaluated by two researchers, one of whom was not actively involved in the

study. The said researcher was given a tutorial about how to evaluate the confirma-

tion bias metrics from the outcomes of the written question set and the interactive

question. However, in order not to induce a bias, she was not told about what the

desired answers to the questions were. The inter-rater reliability was found to be high

for the evaluation of each confirmation bias metric. The average value for Cohen’s

kappa was 0.92. During the administration of the confirmation bias test, explanations

given to the participants before they started solving the questions did not include any

clue about the ideal responses. Moreover, while the participants were solving the in-

teractive question, an independent researcher attended the session in order to observe

whether the researcher in charge influenced the response of the participants as a re-

sult of his/her gestures or facial expressions. The dialogues, that took place while

the interactive question is being solved were also recorded. These recordings were

later examined to find out whether the researcher in charge gave any clues to the par-

ticipants about the expected result. The parts of the datasets, that were found to be

influenced by the expectancies of the researcher were excluded from the empirical

investigation.

In order to avoid internal threats to validity, we set the test dates for all project

groups for a time when the workload of the developers was not intense. No event took

place in between the confirmation bias tests that could influence the performance of

the subjects in any of the groups. The members of the developer group corresponding

to the first dataset within a week the confirmation bias test, consisting of the written

question set and the interactive question. The remaining developer groups took the

confirmation bias test in one day. As a result, we managed to create similar condi-

tions for each member within a project group when administering the confirmation

bias test. Our methodology would not have been reliable if we had tested one group

member when his/her workload and time pressure were intense while testing another

member of the same group under much more favorable and relaxed conditions. An-

other attempt to avoid internal validity was to administer the confirmation bias test in

environments that were isolated from distraction factors such as noise.

To avoid external validity, we collected data from two different companies spe-

cialized in two different software development domains. We also selected different

projects within a single company. In the short run, our goal is to expand our dataset to

contain data from companies that are located in different countries, specialized in dif-

ferent domains and practicing various development methodologies. We are planning

to use an in-house built automated web-based tool.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



37

8.2 Threats to Validity for the Defect Prediction Study

We consider three major threats to the validity of our experiments: construct, internal

and external. To avoid the construct validity threats in terms of measurement artifacts,

we used three popular performance measures in software defect prediction research:

the probability of detection (pd), the probability of false alarm rates (pf) and balance

values (bal). In order to avoid internal validity threats, we shuffled data 10 times and

used 10-fold cross validation for each ordering configuration of the input data to over-

come ordering effects. Moreover, during undersampling, we shuffled each portion of

the dataset, which is used as an input to the Naı̈ve Bayes algorithm, 10 times. As a

result, the Naı̈ve Bayes algorithm with undersampling was executed 100 times for

each dataset during each experiment.

In order to externally validate our results, we used datasets from 5 developer

groups. 4 datasets come from a Telecommunication company, and 1 dataset comes

from an ISV specialized in Enterprise Resource Planning (ERP) domain. Hence, our

datasets cover two different software development domains. Moreover, we were able

to collect datasets from two different project groups within the Telecommunications

company. One project group develops software that is responsible for launching GSM

tariff campaigns to its customers. Dataset Telecom1 has been extracted from this

software, and it mainly consists of user interfaces. The remaining projects mainly

consist of database transactions, and there is no direct interaction with the customer

via user interfaces.

For statistical validity, we used the Kruskal-Wallis test to interpret our experi-

mental results. The Kruskal-Wallis test is an alternative to the single factor ANOVA

test that uses data from independent measures design. However, ANOVA assumes

that data is normally distributed. On the other hand, the Kruskal-Wallis test solely

requires that data be rank ordered. Since our data was not normally distributed, it was

more appropriate to use the Kruskal-Wallis test.

9 Conclusion and Future Work

The overall aim of our research program is to explore the impact of cognitive biases

in the development and testing of software, and it addresses two critical areas: (1)

the prediction of the defective parts of the software, and (2) determining the right

person to test the defective parts of the software. Software defect prediction models

have tackled the problem of which parts of the software are likely to be defective to

help managers effectively allocate resources during the testing phase of the product.

However, these models only take into consideration the product (e.g., lines of code,

code complexity, etc.) and process- (e.g., change history of code) related attributes

of SDLC. Currently, there are very few attempts to understand the human aspects of

defect detection, and and few ultimately recommend the best person to be assigned

a specific task. Every phase of the SDLC requires analytical problem solving skills.

Moreover, using everyday life heuristics instead of laws of logic and mathematics

may influence the quality of the software product in an undesirable manner. This re-

search aims to understand how the human mind works in solving problems.Therefore,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



38

in this paper, we have investigated the effect of the thought processes of people on

software quality in terms of defect density. Since the thought processes of people

cover a wide range of aspects, we have focused on confirmation bias that is believed

to be one of the factors that lead to increased software defect density. In this paper, we

defined a metric scheme to quantify confirmation bias within the context of software

development and testing. In order to validate how well our proposed metric scheme

identifies the effect of developers’ confirmation bias on software quality, we con-

ducted experiments by constructing defect prediction models. We used confirmation

bias metrics as input to defect prediction models that we extensively investigated in

our past research [7], [26], [70], [71], [72].

In our empirical study, we used five datasets obtained from two industrial part-

ners, which are from the telecommunications and ERP domains respectively. We

compared predictors built using confirmation bias metrics with predictors built us-

ing static code and churn metrics. In the overall, the improvement in defect predic-

tion performance as a result of using confirmation bias metrics was not significant.

However, we can explain the importance of the results we obtained as follows: Static

code metrics included all major metrics from the source code based on program flow

and the readability of the code [69] [68]. The churn metrics set contains extensive

information about the changes in source code during the implementation phase. We

extracted a significant portion of information regarding code change history from ver-

sion control systems. On the other hand, confirmation bias metrics represent only a

single aspect about the thought processes of people. Despite this, our empirical find-

ings showed that using only confirmation bias metrics to learn defect predictors re-

veals comparable performance results. In cognitive psychology, the causes of biases

have been extensively investigated in various domains over the past three decades.

There is extensive amount of findings in the field of cognitive psychology that can

be employed to form a metric suite covering developers’ cognitive aspects that may

have a significant effect on software defect density. To summarize, we believe that

the thought processes of people deserve further attention.

The objective of this research in the long run is to help software development

managers make specific resource allocation decisions by considering metrics related

to the thought processes of people. Such a metric scheme will help managers to de-

termine the right person to test the defective parts of the software. As a result, the

guidance of metrics related to the thought processes of people may decrease the un-

certainty in Human Resource (HR) related decisions to a significant extent.

As future work, we aim to collect data from larger software development groups

within different companies located in different countries. The collection of data from

different contexts would be possible once we complete the implementation of our

web-based tool. The said tool will be available for both other researchers and practi-

tioners. Practitioners may also use the tool to assess employee performance, design

training programs based on their assessment score, and hire new employees.

Acknowledgements We would like to thank Turkcell A. Ş. and; Turgay Ayta ç and Ayhan Inal from Logo

Business Solutions for their support in sharing data.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



39

References

1. Harrold, M., Testing: a roadmap. Proceedings of the Conference on the Future of Software Engineering,

61-72, (2000)

2. Tahat, L. H., Vaysburg, B., Korel, B. and Bader, A., Requirement based automated black-box test

generation. Proceedings of the 25th Annual Int. Computer Software and Applications Conference, 489-

495, (2001)

3. Bullard, L. A, and Gao, K., An application of a rule-based model in software quality classification,

Proceedings of the 6th International Conference on Machine Learning and Applications, pp.204-210,

2007.

4. Nagappan, N., Toward a software testing and reliability early warning metric suite. Proceedings of 26th

Int. Conference on Software Engineering Conference, (2004)

5. Khoshgoftaar, T. M., Van Hulse, J. and Napolitano, A., Supervised neural network modeling: an empir-

ical investigation into learning from imbalanced data with labeling errors. IEEE Transactions on Neural

Networks, 21(5), 813-830, (2010)

6. Khoshgoftaar, T. M., Building decision tree software quality classification models using genetic pro-

gramming.Proceedings of the Genetic and Evolutionary Computation Conference, (2003)

7. Tosun, A., Turhan, B. and Bener, A., Ensemble of software defect predictors: a case study. Proceedings

of 2nd International Symposium on Empirical Software Engineering and Measurement, (2008)

8. Boehm, B. and Basili, V. R., Software defect reduction top 10 list. IEEE Software, pp.135-137, (2001)

9. Munson, J. C. and Khoshgoftaar, T. M., Detection of fault prone programs, IEEE Transactions on

Software Engineering, (18)5, pp.423-433, (1992)

10. Khoshgoftaar, T. M. and Allen, E. B., Predicting fault-prone software modules in embedded systems

with classification trees, Proceedings of the 4th IEEE International Symposium on High-Assurance Sys-

tems Engineering,(1999)

11. Nagappan, N., Toward a software testing and reliability early warning metric suite, Proceedings of the

26th International Conference on Software Engineering, pp. 60-62, (2004)

12. Bell, R. M., Ostrand, T. J. and Weyuker, E. J., Looking for bugs in all the right places, Proceedings of

the 2006 International Symposium on Software Testing and Analysis, pp.61-71, (2006)

13. Ostrand, T. J. and Weyuker, and Bell, R. M., Where the bugs are, Proceedings of the 2004 ACM

SIGSOFT International Symposium on Software Testing and Analysis,pp. 86-96, (2004)

14. Ostrand, T. J. and Weyuker, and Bell, R. M., Automating algorithms for the identification of fault

prone files, Proceedings of the 2007 International Symposium on Software Testing and Analysis, pp.

219-227, (2007)

15. Menzies, T. Z., Hihn, C. J. and Lum, K., Data mining static code attributes to learn defect predictors.

IEEE Transactions on Software Engineering, 33(1): 2-13 (2007)

16. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., and Jiang, Y., Implications of ceiling effects

in defect predictors, Proceedings of the 3rd Workshop on Predictive Models in Software Engineering,

pp.47-54,(2008)

17. Lessmann, S., Baesens, B., Mues, C., and Pietsch, S., Benchmarking classification models for soft-

ware defect prediction: a proposed framework and novel findings. IEEE Transactions on Software Engi-

neering,34(4): 485-496, (2008)

18. Drummond, C. and Holte, R. C., C4.5, Class imbalance and cost sensitivity: why under-sampling

beats over-sampling, Proceedings of 2nd Workshop on Learning from Imbalanced Datasets, (2003)

19. Kamei, Y., Monden, A., Matsumoto, T. and Matsumoto, K., The effects of over and under-sampling

on fault prone module detection, Proceedings of the 1st International Symposium on Empirical Software

Engineering and Measurement, pp.196-204, (2007)

20. Jiang, Y., Cuki, B., Menzies, T. and Bartlow, N., Comparing design and code metrics for software

quality prediction, Proceedings of the 4th International Workshop on Predictor Models in Software En-

gineering, (2008)

21. Zhao, M., Wohlin, C., Ohlsson, N. and Xie, M., A comparison between software design and code met-

rics for the prediction of software fault content, Information and Software Technology,(40)14, pp.801-

809, (1998)

22. Zimmerman, T. and Nagappan, N., Predicting subsystem failures using dependency graph complexi-

ties, Proceedings of the 18th IEEE International Symposium on Software Reliability, pp. 227-236, (2007)

23. Nagappan, N. and Ball, T., Using software dependencies and churn metrics to predict field failures:

an empirical case study, Proceedings of the 1st International Symposium on Empirical Software Engi-

neering and Measurement, pp.364-373, (2007)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



40

24. Misirli-Tosun, A., Caglayan, B., Mirasky, A., Bener, A., and Ruffolo, N., Different strokes for dif-

ferent folks: a case study on software metrics for different defect categories, Proceedings of the 2nd

Workshop on Emerging Trends in Software Metrics, pp. 45-51, (2011)

25. Nagappan, N. and Ball, T., Using software dependencies and churn metrics to predict fied failures,

Proceedings of the 1st Symposium on Empirical Software Engineering and Measurement, pp.364-373,

(2007)

26. Tosun, A., Turhan, B. and Bener, A., Practical considerations in deploying AI for defect prediction: a

case study within the Turkish Telecommunication industry. Proceedings of 5th International Conference

on Predictor Models in Software Engineering, (2009)

27. Turhan, B., Kocak, G. and Bener, A., Software defect prediction using call graph based ranking

(CGBR) framework., Proceedings of. 34th International EUROMICRO Software Engineering and Ad-

vanced Applications Conference, (2008)

28. Kahneman D., Slovic P., and Tversky, A., Judgment Under Uncertainty: Heuristics and Biases. Cam-

bridge University Press, New York, (1982)

29. Stacy, W. and MacMillan, J., Cognitive bias in software engineering, Communication of the ACM,

(38)6, (1995)

30. Teasley, B., Leventhal, L. M., and Rohlman, S., Positive test bias in software engineering profes-

sionals: What is right and what’s wrong. Proceedings of the 5th Workshop on Empirical Studies of

Programmers,(1993)

31. Parsons, J., and Saunders, C., Cognitive heuristics in software engineering: applying and extending

anchoring and adjustment to artifact reuse, IEEE Transactions on Software Engineering, 30(12), pp.

873-888, (2004)

32. Mair, C. and M. Shepperd, Human judgment and software metrics: vision for the future, Proceedings

of the 2nd International Workshop on Emerging Trends in Software Metrics, (2011)

33. Jørgensen, M., Identification of more risks can lead to increased over-optimism of and over-confidence

in software development effort estimates, Journal of Information and Software Technology, (52)5,

pp.506-516, (2010)

34. Jørgensen, M., Estimation on software development work effort: evidence on expert judgment and

formal models, International Journal of Forecasting, 23(3), pp. 449-462, (2007).

35. Jørgensen, M., The effects of request formats on judgment-based effort estimation, Journal of Systems

and Software, (83)1, pp. 29-36, (2010).

36. Graves, T. L., Karr, A. F.,Marron, J. S., and Siy, Harvey, Predicting fault incidence using software

change history, IEEE Transactions on Software Engineering, (26)7, pp.653-661, (2000)

37. Mockus, A. and Weiss, D. M., Predicting risk of software changes, Bell Labs Technical Journal,

pp.169-180, (2000)

38. Weyuker, E.J., Ostrand, T. J. and Bell,R. M., Using developer information as a factor for fault pre-

diction, Proceedings of the 1st International Workshop on Predictor Models in Software Engineering,

pp.1-7, (2007)

39. Ostrand, T., J., Weyuker, E. J. and Bell, R. M., Programmer-based fault prediction, Proceedings of the

3rd Workshop on Predictor Models in Software Engineering, pp.1-7, (2010)

40. Meneely, A., Williams, L, Snipes, W., and Osborne, J., Predicting failures with developer networks

and social network analysis, Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pp.13-23, (2008)

41. Weyuker, E. J., Ostrand, T. J. and Bell, R. M., Do too many cooks spoil the broth? Using the number

of developers to enhance defect prediction models, Journal of Empirical Software Engineering, 13, pp.

539-559, (2008)

42. Pinzger, M., Nagappan, N. and Murphy,B., Can developer-module networks predict failures?, Pro-

ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering,

pp. 13-23, (2008)

43. Bird, C., Nagappan, N., Gall, H., Murphy, B. and Devanbu, P., Putting it all together: Using socio-

technical networks to predict failures, Proceedings of the 17th International Symposium on Software

Reliability Engineering, (2009)

44. Wason, P. C., 1960. On the failure to eliminate hypotheses in a conceptual task, Quarterly Journal of

Experimental Psychology, 12, pp.129-140, (1960)

45. Wason, P. C. 1968. Reasoning about a rule, Quarterly Journal of Experimental Psychology, 20, pp:

273-28, (1968)

46. Evans, J. St. B. T., Newstead, S. E. and Byrne, R. M., Human reasoning: the psychology of deduction.

Lawrence Erlbaum Associates Ltd., East Sussex, U.K. (1993)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



41

47. Cox, J. R. and Griggs, R. A., The effects of experience on performance in Wasons selection task,

Memory and Cognition, 10, pp.496-502 (1982)

48. Griggs, R. A. and Cox, J. R., The elusive thematic materials effect in Wasons selection task, British

Journal of Psychology, 73, pp.407-420 (1982)

49. Cheng, P. W. and Holyoak, K. J., Pragmatic reasoning schemas, Cognitive Psychology, 17, pp.391-

416, (1985)

50. Cosmides, L., The logic of social exchange: Has natural selection shaped how humans reason? Studies

with Wason’s selection task, Cognition, 31, pp.187-276, (1989)

51. Manktelow, K. I. and Over, D. E., Inference and understanding: A philosophical and psychological

perspective, (1990)

52. P. C. Wason and Shapiro, D., Natural and Contrived Experience in a Reasoning Problem, Quarterly

Journal of Experimental Psychology, 23, pp.63-71, (1971)

53. Manktelow, K. I. and Evans, J. St. B. T., Facilitation of reasoning by realism: Effect or non-effect?,

British Journal of Psychology, 70, pp.477-488, (1979)

54. Johnson-Laird, P.N. and Tridgell, J. M., When negation is easier than affirmation, Quarterly Journal

of Experimental Psychology, 24, pp.87-91, (1972)

55. Griggs, R.A., The role of problem content in the selection task and in the THOG problem, Thinking

and reasoning: psychological approaches. Routledge and Kegan Paul London, (1983).

56. Khoshgoftaar, T. M. and Szabo, R. M., Using neural networks to predict software faults during testing,

IEEE Transactions on Reliability, 45, pp.456462, (1996)

57. Reich, S.and Ruth, P., Wason’s selection task: verification, falsification and matching, British Journal

of Psychology, 73, pp.395-405, (1982)

58. Kocaguneli, E., Tosun, A., Bener, A., Turhan, B., and Caglayan, B., Prest: an intelligent software

metrics extraction, analysis and defect prediction tool, Proceedings of 21st International Conference on

Software Engineering and Knowledge Engineering, pp.637-642, (2009)

59. Calikli, G., Bener, A., and Arslan, B., An analysis of the effects of company culture, education and

experience on confirmation bias levels of software developers and testers. Proceedings of 32nd Interna-

tional Conference on Software Engineering, (2010)

60. Calikli, G., Arslan, B., and Bener, A., Confirmation bias in software development and testing: an

analysis of the effects of company size, experience and reasoning skills. Proceedings of the 22nd Annual

Psychology of Programming Interest Group Workshop, (2010)

61. Calikli, G. and Bener, A., Empirical analyses factors affecting confirmation bias and the effects of

confirmation bias on software developer/tester performance. Proceedings of 5th International Workshop

on Predictor Models in Software Engineering, (2010)

62. Hall, M. A. and Holmes, G. , Benchmarking attribute selection for discrete class data mining. IEEE

Transactions on Knowledge and Data Engineering, 15, pp.1437-1447, (2003)

63. Nagappan, N., Murphy, B. and Basili, V. R., The influence of organizational structure on software

quaity: an empirical case study, Proceedings of the 30th International Conference on Software Engineer-

ing, pp.521-530,(2008)

64. Teasley, B. F., Leventhal, L. M., Mynatt, C. R. and Rohlman D. S., Why software testing is sometimes

ineffective: two applied studies of positive test strategy. Journal of Applied Psychology, 79, 1, pp.142-

155, (1994)

65. Johnson-Laird, P.N. and Wason, P. C., A theoretical analysis of insight into a reasoning task, Cognitive

Psychology, 1, pp.134-148, (1970)

66. Mataraso-Roth, E., Facilitating insight in a reasoning task, British Journal of Psychology, 70, pp.265-

271, (1979)

67. Evans,J.,St.,B.,T. and Lynch, J.,S., Matching bias in the selection task, British Journal of Psychology,

64, pp.391-397, (1973)

68. McCabe, T., A complexity measure, IEEE Transactions on Software Engineering, 2, pp.308-320,

(1976)

69. Halstead, M., Elements of software science, Elsevier, (1977)

70. Turhan, B. and Bener, A., A multivariate analysis of static code attributes for defect prediction, Pro-

ceedings of the 7th International Conference on Quality Software, pp. 231-237, (2007)

71. Turhan, B. and Bener, A., Weighted static code attributes for software defect prediction, Proceedings

of the 20th International Conference on Software Engineering and Knowledge Engineering, pp.143-148,

(2008)

72. Turhan, B., Bener, A. and Menzies, T., Nearest neighbor sampling for cross company defect predic-

tors, Proceedings of the 1st International Workshop on Defects in Large Software Systems, (2008)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



42

73. Cook, T.D. and Campbell, D.T. Quasi-experimentation: design and analysis issues for field settings.

Houghton Mifflin, Boston, (1979)

74. Cohen, J., A power primer, Psychology Bulletin, 112:1, pp. 155-159, (1992)

75. Cohen, J. Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates Pub-

lishers, Hillsdale, New Jersey, (1988)

76. Valentine, E. R., Performance on two reasoning tasks in relation to intelligence, divergence and inter-

ference proneness. British Journal of Educational Psychology, 45, pp. 198-205, (1975)

77. Griggs, R. A. and Ransdell, S. E., Scientists and the selection task. Social Studies of Science, 16,

pp.319-330, (1986)

78. Jackson, S. L. and Griggs, R. A., Education and the selection task. Bulletin of Psychometric Society,

26, pp. 327-330.

79. Poletiek, F. Hypothesis-Testing Behaviour. Psychology Press, East Sussex, UK (2001)

80. Ye, MaoLiang, Does gradualism build coordination? Evidence from laboratory experiments. Job Mar-

ket Paper, (2011)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


