
Vol.:(0123456789)

https://doi.org/10.1007/s11219-021-09568-9

1 3

Copula‑based software metrics aggregation

Maria Ulan1  · Welf Löwe1 · Morgan Ericsson1 · Anna Wingkvist1

Accepted: 8 July 2021 /
© The Author(s) 2021

Abstract
A quality model is a conceptual decomposition of an abstract notion of quality into rel-
evant, possibly conflicting characteristics and further into measurable metrics. For quality
assessment and decision making, metrics values are aggregated to characteristics and ulti-
mately to quality scores. Aggregation has often been problematic as quality models do not
provide the semantics of aggregation. This makes it hard to formally reason about metrics,
characteristics, and quality. We argue that aggregation needs to be interpretable and math-
ematically well defined in order to assess, to compare, and to improve quality. To address
this challenge, we propose a probabilistic approach to aggregation and define quality scores
based on joint distributions of absolute metrics values. To evaluate the proposed approach
and its implementation under realistic conditions, we conduct empirical studies on bug pre-
diction of ca. 5000 software classes, maintainability of ca. 15000 open-source software
systems, and on the information quality of ca. 100000 real-world technical documents. We
found that our approach is feasible, accurate, and scalable in performance.

Keywords  Quality assessment · Quantitative methods · Software metrics · Aggregation ·
Multivariate statistical methods · Probabilistic models · Copula

1  Introduction

Software quality assessment helps to improve software and its development based on quali-
tative and quantitative data. Mathematical models are generally used to explain aspects of
phenomena numerically at a statistically significant level, and quality models could serve
as mathematical models for quality assessment.

 *	 Maria Ulan
	 maria.ulan@lnu.se

	 Welf Löwe
	 welf.lowe@lnu.se

	 Morgan Ericsson
	 morgan.ericsson@lnu.se

	 Anna Wingkvist
	 anna.wingkvist@lnu.se

1	 Data‑driven Software and Information Quality Group, Centre for Data Intensive Sciences
and Applications, Linnaeus University, Växjö 351 95, Sweden

Published online: 24 August 2021

Software Quality Journal (2021) 29:863–899

http://orcid.org/0000-0002-3906-7611
http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-021-09568-9&domain=pdf

1 3

Software quality models have a hierarchical structure, where quality is defined in terms
of (sub-)characteristics and metrics in a tree-like or directed layered graph structure. For
example, software quality can be decomposed into the characteristics reliability and main-
tainability (Boehm et al., 1978; McCall et al., 1977), or into functionality, usability, reli-
ability, performance, and supportability (Grady & Caswell, 1987). Metrics refine the (sub-)
characteristics and, by definition, provide quantitative data. To get a complete picture of
(sub-) characteristics and ultimately of quality, several metrics need to be assessed and then
aggregated.

Metrics have different units, scale types (Fenton, 1994), and distributions of values,
which makes aggregation challenging. Quality assessment tools often use different sta-
tistical assumptions about the metrics distributions and their independence and aggrega-
tion often performed in an ad-hoc manner. Thus, different tools give different recommen-
dations for the same input (Lincke et al., 2008; Ericsson et al., 2013). Hence, there is a
need to define the aggregation of metrics in quality models formally, based on accepted
mathematical theories. This way, quality scores, the result of metrics aggregation, become
uniquely interpretable and provide a common basis for decision making. The interpretation
of aggregation should be aligned with intuitive reasoning, expert knowledge, and common
sense, but also based on mathematical soundness to remove uncertainty, subjectivity, and
degrees of freedom for quality assessment tool providers.

In short, the main objective of our research is to aggregate different metrics into a sin-
gle score in a mathematically sound way that makes sense. As we need to assess quality
repeatedly, the approach must also allow for an efficient and scalable implementation.

Note that this aggregation is related, but orthogonal to the task of integrating differ-
ent metric values from one level (e.g., the level of individual classes) to a higher level
(e.g., that of a package). This latter integrates metrics values of the same metric (e.g., lines
of code) of different software artifacts of the same kind (e.g., classes) to a single value
(e.g., the average) of all artifacts in a container level (e.g., a package). Instead, aggregation
defines a score of a single software artifact (e.g., a class) incorporating metrics values of
the different metrics (e.g., lines of code and cyclomatic complexity). This way it defines a
quality score that unifies different aspects of quality of an artifact, each assessed by a dif-
ferent metric, and makes the artifacts comparable. In this paper, we distinguish aggregation
(of different metrics of one artifact) from integration (of the same metric evaluated for dif-
ferent artifacts) and we only contribute to aggregation.

We suggest a probabilistic approach to quality assessment. We consider metrics as ran-
dom variables and define quality models based on joint probabilities of the events related to
the metrics. Probability distributions of multivariate random variables are generally more
complex compared to univariate distributions, since there might be nonlinear dependencies
between the random variables. Moreover, it is known that many relevant software quality
metrics cannot even be described with univariate parametric probability distribution mod-
els (Barkmann et al., 2009; Ericsson et al., 2013). Therefore, our approach does not rely
on parametric distribution models but uses numerical sample distributions instead. This
allows for accurate computation of joint probabilities based on samples. Large sample sizes
are necessary to cope with the high dimensionality of the random variable space (equal to
the number of metrics in a quality model). To this end, we suggest an implementation that
accommodates for efficient and scalable computation of joint probabilities. In summary,
the work contributes with:

	 (i)	 an accurate and mathematically sound aggregation approach, where quality scores
are based on joint probabilities.

864 Software Quality Journal (2021) 29:863–899

1 3

	 (ii)	 an efficient implementation, that is scalable in performance.

The remainder of the paper is structured as follows. We formulate basic notations in
Sect. 2, requirements for aggregation in Sect. 3, and summarize related work in Sect. 4. To
address the requirements, we introduce a probabilistic approach for aggregation in Sect. 5.
Section 6 evaluates our approach theoretically and empirically, based on Java software sys-
tems and XML technical documentations. Finally, Sect. 7 concludes the results and point
out directions for future work. As complementary material, we present the theoretical foun-
dations of the proposed approach in Appendix A, and R-scripts used in the experiments in
Appendix B.

2 � Background

2.1 � Software quality

The notion of quality is diverse, complex, and ambiguous. Some define quality as fitness
for use (Juran & Godfrey, 1999) others as conformance to requirements (Corsby, 1980).
The standards ISO/IEC 25010:2010 (ISO, 2010) and IEEE 610.12-1990 (IEEE, 1990)
define quality as a mix of both: a degree to which a product satisfies requirements, cus-
tomer and user needs, and/or expectations. Alternatively, quality is also regarded as an
ideal to put an effort to achieve (Garvin, 1984).

The way we measure software quality depends on how we define quality and what view-
point we take (Kitchenham & Pfleeger, 1996), e.g., what goals we want to achieve with
quality. Quality models are an attempt to define and quantify the notion of quality. There
are several possible quality models, depending on the different goals.

In order to control the quality of software, it needs to be operationalized. To this end,
quality models break down quality into (sub-)characteristics and then into metrics, map-
ping observations to numbers. They follow the “Factor-Criteria-Metrics” structure (McCall
et al., 1977).

For example, the ISO/IEC 25010:2011 standard (ISO, 2010) decomposes software
quality into eight quality characteristics: functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability, and portability. Each quality
characteristic is further decomposed into quality sub-characteristics. The standard assumes
that quality metrics can measure sub-characteristics. There are many metrics proposed by
the software engineering community (Chidamber & Kemerer, 1994; Henderson-Sellers,
1995; Martin, 2002). Source code metrics have a long tradition, and many of them are
validated (Basili et al., 1996). Companies quite often use their own (set of) metrics and
customized quality models (Wagner, 2013).

A quality model should also define the aggregation of numerical values from metrics to
quality. However, neither the standard nor the metrics definitions provide clear definitions
of how metrics should be aggregated, which degrades the quantification of quality to an
implementation decision. This results in considerable variations in how it is implemented
with negative effects on the repeatability and comparability of quality assessment (Lincke
et al., 2008; Ericsson et al., 2013).

A software development process is a complex and multidimensional process developing,
howsoever, the executable software product, its source code, documentation, user manuals,
specifications, databases, etc. We define a software artifact as any output of an arbitrary

865Software Quality Journal (2021) 29:863–899

1 3

stage of a software development process. Software artifacts can be changed, merged, and
modified during the development process. They are the objects of quality assessment and
control.

Software metrics provide quantitative data for quality assessment. We define a software
metric as a function mapping a software artifact to a numerical value referred to as the
metric value. Measurement is the process of applying a metric to a software artifact to get a
metric value. We avoid using the notion of measurement as a synonym for metric.

We neither aim to define (yet another notion of) quality nor (yet another set of) software
metrics. We do not make any assumptions about possible distribution laws of software
metrics. In general, their distributions laws can be approximated numerically by observing
a (representative, sufficiently large) sample of the population (Hald, 2007). We focus on
aggregation, i.e., how one can combine different software metrics into a single measure,
that preserves properties of original data with a minimum of human supervision.

2.2 � Distributions and copulas

We will treat software metrics as random variables and define here the necessary math-
ematical foundations.

The cumulative distribution function CDFX of a random variable X is the probability
that X will take a value less than or equal to x, i.e., CDFX(x) = Pr(X ≤ x) . It requires that X
is measured at least on an ordinal scale, i.e., “less than or equal” ( ≤ ) is defined on X. CDFX
defines the so-called marginal probability distribution of X.

The empirical cumulative distribution function ECDF(x) is a good approximation of
CDF(x). It can be calculated as the relative frequency of observations in the sample X̂ that
are less or equal x, i.e.,

where | ⋅ | is the size of a set.
To model several metrics, we need to discuss different random variables and their so-

called joint probability distribution instead of their individual marginal distributions. Dif-
ferent random variables might be dependent. To model their joint probability distribution,
we refer to Sklar’s theorem (Rüschendorf, 2009). It states that we can describe the joint
probability distribution of a vector of random variable (X1,… ,Xk) by their marginal prob-
ability distributions CDFi(x) = P(Xi ≤ x), i ∈ [1, k] and a copula function Cop. It allows
us to separate the modeling of the marginal distributions from the dependence structure,
which is expressed in suitable copula, i.e.,

Each CDFi(xi) is a monotonously increasing function mapping Xi to the interval [0, 1].
Without loss of generality, we can assume that each value xi ∈ Xi occurs with a probability
larger than 0. Hence, CDFi(xi) is even a strictly monotonously increasing function. As a
consequence, it is invertible for any given probability distribution of Xi , i.e., CDF−1

i
 exists

and is a function [0, 1] ↦ Xi . The distribution of Xi and CDFi(xi) uniquely defines the value
xi = CDF−1

i
(CDFi(xi)). Therefore, copula can be extracted from any joint distribution

CDF(⋅) by using the probability integral transform as follows

ECDFX(x) =
|{x̂|x̂ ∈ X̂, x̂ ≤ x}|

|X̂|
,

CDF(x1,… , xk) = Cop(CDF1(x1),… ,CDFk(xk))

866 Software Quality Journal (2021) 29:863–899

1 3

where ui = CDFi(xi).

There are several families of copulas; for details, we refer to Nelsen (2007). For exam-
ple, if joint distribution CDF(⋅) is a multivariate normal distribution, it is called a Gaussian
copula. Archimedean copulas allow to model dependence in arbitrarily high dimensions
with only one parameter to determine the strength of dependence. The simplest example
of Archimedean copula is the independence copula, applicable in the special case of inde-
pendent random variables. It is defined as a product of the marginals, i.e.,

The Levi-frailty copulas constitute yet another family (Mai & Scherer, 2009). They share
some properties with Archimedean copulas regarding construction and analytical form.
The weighted product of the marginals:1

is one example from this family.
In practice, a nonparametric copula can be calculated directly from the empirical dis-

tribution. Assume a sample of size n of k random variables (x̂ j
1
,… , x̂

j

k
), with 1 ≤ j ≤ n.

Copula observations of a vector random variable observations are denoted as a k-tuple
(û

j

1
,… , û

j

k
) = (CDF1(x̂

j

1
),… ,CDFk(x̂

j

k
)) . Then, the empirical copula is defined as follows.

where
�
 is an indicator function with:

We use the copula functions to define the aggregation of metrics, more details in Sect. 5.
To compare with the state-of-the-art probabilistic approach, we use Levi-frailty copula,
and to compare with a ground truth, we use empirical copulas, more details in Sect. 6.

3 � Requirements for aggregation

An approach that aggregates different metrics of one artifact into a single quality score
should make sense and it should allow for an efficient and scalable implementation. This
section breaks down these objectives into the requirements of a suitable approach that we
can assess either theoretically or in experiments.

Cop(u1,… , uk) = CDF(CDF−1
1
(u1),… ,CDF−1

k
(uk)),

Cop(u1,… , uk) =

k∏

i=1

ui

Cop[��⃗�](u1,… , uk) =

k∏

i=1

u
wi

i
,

k∑

i=1

wi = 1

Cop(u1,… , uk) =
1

n

n∑

j=1

�(û
j

1
≤ u1 ∧⋯ ∧ û

j

k
≤ uk),

�(cond) =

{
1, if cond

0, otherwise

1  Note that they are parameterized with a suitable vector � of weights.

867Software Quality Journal (2021) 29:863–899

1 3

Quality models should be objective and unambiguous. Aggregation should map dif-
ferent values of different metrics to a single quality interval (Mordal et al., 2013). Each
(aggregated) metric value should be well defined, easy to understand, and should allow
for root-cause analysis (Heitlager et al., 2007).

Without loss of generality, we assume that values for aggregation are normalized to
the interval [0, 1] and that 0 (1) represents the worst (best) possible quality. We use
the ECDF for the normalization, cf. Sect. 2.2, which is mathematically well defined
and interpretable in the context of software quality metrics. Note that there is no objec-
tively correct way to normalize metrics, i.e., any normalization is based on some goals
and assumptions. However, metrics have different units, scale types, and distributions
of values, in general, and aggregation must not add “apples and oranges.” Using ECDF
for normalization solves this problem as it transforms metrics values to probabilities. In
Sect. 5.1, we discuss in detail how we normalize the metrics.

To be mathematically well defined, we require metrics aggregation to implement an
aggregation operator (Calvo et al., 2002), i.e., it should satisfy the following

Definition 1 Aggregation Operator. A function A that maps the (k-dimensional) unit
cube onto the unit interval

is called a aggregation operator if it satisfies the following properties:

A special case of an aggregation operator is the aggregation of a singleton, i.e., the unary
operator A ∶ [0, 1] ↦ [0, 1] , that is usually used to get basic statistics (e.g., min, max,
mean, standard deviation, expected value, etc.) for a single variable. In the context of soft-
ware quality, aggregation of a singleton could be used for integration, i.e., the mapping of
the values of a single metric or aggregated quality score evaluated for different software
artifacts, e.g., all classes of a package, which is not our scope here.

In the context of software quality, the boundary condition (cf. Eqs. (1) and (2)) states
that if we aggregate only the worst (best) metrics values, the aggregate represents the
worst (best) quality. The Monotonicity (cf. Eq. (3)) states that if the metrics values
increase or remain equal, then the aggregate increases or remains equal.

We refer to artifacts with a quality score of 0, i.e., the worst possible score, as outli-
ers. Considering a usually limited budget for a quality assurance, such outlier artifacts
should be inspected first, even if they are not necessarily bad in all quality aspects.

We argue that a well-written software artifact is usually good or at least acceptable
is all aspects. Conversely, software artifacts that are bad in terms of at least one and
good/acceptable in other aspects should at least to be quality reviewed. For instance, a
class that is not test-covered, but otherwise inconspicuous should still stick out. This is
way each metric get a “veto” right in our aggregation approach. In order to easily spot
software artifacts with extremely bad values in a single metric, we implement a stronger
condition than Eq. (1) forcing the aggregated quality to be poor even if only a single
metric indicates that. This poor quality cannot be evened out by better values for other
metrics.

(1)A ∶ [0, 1]k ↦ [0, 1]

(2)A(0,… , 0) = 0

(3)A(1,… , 1) = 1

(4)x1 ≤ y1, ..., xk ≤ yk ⇒ A(x1,… , xk) ≤ A(y1,… , yk)

868 Software Quality Journal (2021) 29:863–899

1 3

Equation (1’) would arguably not make sense in integration contexts. For example, if there
was one badly cloned file in a large system, the overall quality score of the whole system
should not be zero.

Metrics-based quality assessment aims at predicting a ground truth in the software arti-
facts, e.g., a class is hard to maintain or prone to contain hidden bugs. In order to make
sense, metrics aggregation should be an accurate predictor of such a ground truth.

However, the ground truth is often hard to predict regardless of the prediction method.
The maintainability of a class, for instance, can be defined as the integral effort over all
change activities cause by that class during its lifetime. It regards both (bug fixing, refac-
toring, and extending) changes and the effort in understanding the system prior to such
changes. This is obviously hard to measure objectively and even harder to predict.

Therefore, quality assessment more often than not only aims at comparing and ranking
software artifacts w.r.t. a ground truth and aggregation should support such a comparison.
Since we cannot expect to predict the ground truth based on metrics, we define accuracy as
the agreement of the ranking induced by the ground truth (e.g., the ranking of classes w.r.t.
their maintainability) with the ranking induced by the aggregated quality score (aggregat-
ing, e.g., a set of maintainability metrics).2

To practically enable comparison and to suggest meaningful rankings, we require an
aggregation also to be sensitive. The sensitivity of a set of vectors �⃗� of values is the ratio
between the number of unique aggregation outputs A(�) and the set cardinality. In the con-
text of software quality, this is the ratio between the number of different quality scores and
the number of scored software artifacts.

However, we need to discuss differences of metrics values and quality scores that make
sense. Let � and � be two vectors of metrics values of two artifacts, and � and � the respec-
tive normalized metrics values. If the artifacts are sufficiently close, i.e., || �⃗u − �⃗v||2 ≤ 𝛿 for
some small �, then decision makers cannot “sense” the difference between the correspond-
ing software artifacts and perceive them as equal in quality. Then, it is acceptable that
A(�⃗x) = A(�⃗y) . Conversely, if || �⃗u − �⃗v||2 is larger than � , we expect A(�⃗x) ≠ A(�⃗y).3 In human rea-
soning, the observed sensitivity of aggregates, i.e., the question whether A(�⃗x) is equal A(�⃗y)
or not depending on || �⃗u − �⃗v||2 , limits the suitability of an aggregation function (Dujmović,
2013). We set � relative to the number of artifacts n: a artifact is perceived equal in quality
if � = [n]−1 , where [n] rounds to the nearest power of 10. The sensitivity of an aggregation
operator A is defined as the number of artifacts that A distinguishes over the number of arti-
facts that it is expected to distinguish according the the above discussion.

We expect the computation of aggregated quality scores to perform well and to scale
when large sets of software artifacts need to be assessed, i.e., A ∈ O(n × k) for n artifacts
and k metrics.

In summary, we require an aggregation approach:

R
1 to be mathematically well defined and fulfill Eqs. (1), (2), and (3),

R
2
 to provide a mathematically sound interpretation of scores,

(5)lim
xi→0

A(x1,… , xi,… , xk) = 0,

2  The selection of a appropriate metric for measuring agreement of rankings is not trivial, but deliberately
left out of the requirements discussion here. We will come back to it in the evaluation Sect. 6.
3  We don’t distinguish the importance of metrics for calculating this distance. This would be a meaningful
generalization of the notion of sensitivity, especially, in the context of weighted copulas.

869Software Quality Journal (2021) 29:863–899

1 3

R
3 to be able to combine metrics of different scales and distributions to a single quality

score,
R
4
 to be accurate,

R
5 to have an appropriate sensitivity, and

R
6
 to have a scalable performance.

We evaluate the requirements R
1
− R

3
 theoretically in Sect. 6.1 and the requirements

R
4
− R

6
 empirically in a number of experiments described in the remainder of Sect. 6. We

do not claim that there exists a unique approach that satisfies the requirements R
1
− R

6
.

Note that Eq. 4 is a not a requirement as there might be well-defined aggregation cases,
where a “veto” does not play a crucial role to choose software artifacts for an inspection
and, e.g., a threshold for metrics can be used instead.4

To resolve possible ambiguity in R
4
 , R5 , and R

6
 , we quantify “to be accurate,” “to have

an appropriate sensitivity,” and “to have a scalable performance” as follows.

Accuracy  is the agreement of a measured value to a standard or the true value. When the
ground truth is available, we measure an agreement with the ground truth (i.e., correlation
between an approach and the ground truth). When the ground truth is not available, we
measure the agreement with the metric- and quality-goal-specific state-of-the-art approach
(i.e., correlation between two approaches). Higher agreement means higher accuracy.

Sensitivity  is the ability to distinguish as many data points as meaningful to distinguish in
the raw data. We measure the ratio between unique outputs of an approach and the number
of tuples in the raw data expected to be distinguished. An approach has the highest possible
sensitivity if this ratio equals to 1, and it has the lowest possible sensitivity if the ratio is
n−1 for n artifacts.

Scalable performance  is the ability to accommodate rising resource demand gracefully.
We analyze/measure the response time, i.e., the total computational time of an approach to
aggregate metrics values to a quality score. An approach has a reasonable performance if
the response time is analyzed to be at most linear in both number of software artifacts and
number of metrics, and measured in the range of milliseconds on today’s computers.

4 � Related work

Metrics are often defined at a method or class level, but quality assessment sometimes
requires insights at the component or system level, which also requires another type of
aggregation. The distribution of metrics values is usually skewed, so well-known methods
for this type, such as mean and median, are not representative enough. Therefore, some
effort has been directed into metrics integration based on thresholds (Heitlager et al., 2007;
Correia & Visser, 2008; Alves et al., 2011; Oliveira et al., 2014) to map source code level
metrics to software system rating. However, in some cases, such integration can show deg-
radation in software quality, while the code was actually improved (Mordal et al., 2013).
Using inequality indices, e.g., the Gini index, instead of simple thresholds reduces this

4  We do not consider such cases, since defining a thresholds should be based on both data and expert opin-
ion. The latter does not allow for metrics and quality goal agnostic aggregation.

870 Software Quality Journal (2021) 29:863–899

1 3

problem (Vasa et al., 2009; Serebrenik & Van Den Brand, 2010). Still, two very different
distributions can have the same inequality index, since it does not capture where in the
distribution the inequality occurs. In this paper, however, we do not address integration
along the structure of software artifacts, e.g., from methods, to classes, and to the system.
Instead, we suggest orthogonal aggregations along the structure of quality models, from
low-level metrics, to quality (sub-)characteristics, and to a high-level notion of quality.

Aggregation of different software metrics to a unique measure has been researched
before. Oman and Hagemeister (1994) introduced the Maintainability Index, a single-value
indicator that uses a polynomial to aggregate four quality metrics: Halstead Volume V,
Cyclomatic Complexity G, Number of lines of code LOC , and, in an improved version the
Percentage of comments CM . To define the aggregation model coefficients, they assessed
several systems in C and Pascal, using both metrics and expert ratings. Then, they applied
statistical regression analysis to find the coefficients mapping the metrics to the experts’
opinion5. The Maintainability Index aggregates averages but, since metrics distributions are
skewed, taking the average implies a significant loss of information (Vasilescu et al., 2011).
As all coefficients are negative, it is monotonically decreasing; a trivial transformation
MI� = −MI makes it satisfy Eq. (3). In general, aggregations using a weighted average do
not satisfy Eq. (4). In general, however, aggregations using a weighted average do not satisfy
Eq. (4), and if input is not normalized to a common unit and scale, they don’t satisfy R3.

There are several practical quality models that extract a single quality score out of
several metrics, in one step directly or over an intermediate aggregation to (sub-)charac-
teristics and then further to a quality score. For example, in QMOOD (Bansiya & Davis,
2002) aggregation is based on weighted linear combination; in SQUALE (Mordal-Manet
et al., 2009) aggregation is based on the combination of the values by a function; in
SQALE (Letouzey & Coq, 2010) on fixed thresholds; and in SIG (Baggen et al., 2012) on
thresholds derived from a benchmark. Such quality models, by definition, do not fulfill
requirement R1 ; they do satisfy Eq. (3) but not Eqs. (1), (4), and (2).

Wagner et al. (2015) addressed the aggregation of metrics to abstract quality character-
istics by an operationalized product hierarchical quality model QUAMOCO where aggre-
gation is based on fixed thresholds and an additional mapping to grades. QUAMOCO satis-
fies Eqs. (1), (2), and (3). Moreover, it can even satisfy Eq. (4) by choosing an appropriate
grading function. It uses the concept of utility from Multi-Attribute Utility/Value Theory
(MAUT/MAVT) (Vincke, 1992) to represent the strength of a preference a decision maker
(expert) has among software artifacts regarding a specific quality aspect (decision crite-
rion). A frequent assumption in MAUT/ MAVT is that utility functions are independent
of each other. However, it was shown in many decision problems that criteria are indeed
dependent (Carlsson & Fullér, 1995).

Some approaches try to detect dependencies between metrics in order to mitigate the
effect of assessing the same fundamental issue with different metrics. Most approaches do
not consider interference with third metrics and assume linear dependencies. If metrics are
independent, they are also linearly independent. However, the opposite is not necessarily
true. If metrics are mutually independent, they are also pairwise independent. Again, the
opposite is not necessarily true. For example, Gil and Lalouche (2017) study collinearity
and show a strong pairwise correlation between size and metrics from the Chidamber and

5  The Maintainability Index MI = 171 − 5.2 ln(V) − 0.23G − 16.2 ln(LOC) . A minor issue of MI: it
uses the logarithms and log(0) is undefined. The improved version MI = 171 − 5.2 log2(V) − 0.23G−

16.2 log2(LOC) + 50 sin(
√
2.4CM) suffers from the same problems.

871Software Quality Journal (2021) 29:863–899

1 3

Kemerer (CK) metrics suite (Chidamber & Kemerer, 1994). They study (only) linear and
pairwise dependence. Similar restrictions apply to the dependency analysis of feature selec-
tion techniques used to construct defect prediction models. The interpretation of these mod-
els relies on selected software metrics. AutoSpearman (Jiarpakdee et al., 2018) considers
collinearity and multi-collinearity to extract appropriate metrics automatically. It disregards
nonlinear dependencies. Disregarding (all or certain kinds of) dependencies between met-
rics hampers the interpretability of the aggregation results and, hence, violates requirement
R
216.2 log2(LOC) + 50 sin(

√
2.4CM) . Aggregation is defined with logistic regression or random

forests leading to classification models, which in general cannot guarantee requirement R1.
We propose a probabilistic approach to metrics aggregation, which is not unprece-

dented. Morasca (2009) suggested to consider conditional probability representations for
external software attributes, e.g., defining reliability as the probability of failures occurring
in a given time interval with a given program and in a given environment, or modifiability
as the probability that a given artifact, in a given modification environment, is modified
with a given amount of effort etc. These probabilities can only be estimated. Morasca sug-
gested to use hazard function to define a model to estimate the values. No aggregation was
suggested so the approach fails requirement R

3
.

Bakota et al. (2011) suggested a goodness function, a continuous generalization of
thresholds, and measure goodness for a software system by comparing metrics distribu-
tions of the assessed and other known systems. Aggregation is defined as a combination
of goodness values, weights, and probabilities of this comparison. The authors suggest to
aggregate at most three metrics at once to avoid the negative effect of their exponential
increase in computational costs. This violates the requirement R6 . To mitigate this prob-
lem, they use Monte Carlo randomization avoiding exponential complexity. However, then
the accuracy of their approach decreases with the number of metrics, which would violate
requirement R5 . We compare this approach with ours in more detail in Sect. 6.2.2.

The idea of aggregation presented in this paper was first described by Ulan et al. (2018).
Here, we extend it in three ways: (i) We added and motivated aggregation requirements and
assessed the state of the art against them. (ii) To compare with the state-of-the-art probabilistic
approach, we added a weighted aggregation to the original only unweighted one. (iii) We eval-
uated the practical requirements R4

− R
6 empirically in several production-scale experiments.

5 � Copula‑based approach to aggregation

In this section, we present a probabilistic approach to aggregation in order to make quality
models both formally well defined and interpretable. We present basic mathematical ideas
to make it easy to understand and to replicate the proposed approach. Theoretical founda-
tions can be found in Appendix A, and R scripts implementing the approach in Appendix
B, resp.

We assume that the view on quality and the goal of its assessment are given, along with
the relevant metrics, their contribution direction to the goal, i.e., whether high values are
indicators of good or bad quality in the given assessment context. The metrics values of
software artifacts are given as well.

We consider software quality a latent variable (Borsboom et al., 2003); it cannot be
observed directly, but is inferred from (software) metrics that measure different aspects of
quality, e.g., product or a development process. Formally, we use a mathematical model:

872 Software Quality Journal (2021) 29:863–899

1 3

A is a set of software artifacts and M is a vector of software metrics. Each metric is a func-
tion that maps from A to a subset of ℝ , e.g., a subrange of the natural numbers ℕ (counts)
or the rational numbers ℚ (ratios). ⪰ is a non-strict preference relation to compare software
artifacts with respect to their quality.

We rest on a well-known model of decision making proposed by Simon (1960) and
adapt it for multi-criteria ranking in the setting of software quality assessment. We decom-
pose the process into three steps that are detailed in the subsections below.

1:	 Calculate metrics scores by normalizing metrics so that resulting values are in the range
[0, 1] with the same direction (0 is worst, 1 best) using ECDF of the marginal distribu-
tions.

2:	 Aggregate individual metrics scores into a quality score using a copula function.
3:	 Rank software artifacts based on their quality scores.

5.1 � Calculating metrics scores

Given software metrics �1,… ,�k , we represent the assessment result for software
artifacts a1,… , an as an n by k quality matrix [mji] of metrics values. We denote by
mji, j ∈ {1, n}, i ∈ {1, k}, the quality of an artifact aj assessed with metric �i . We use
�i = [m1i,… ,mni]

T ∈ Mn
i
 to denote the i-th column of the quality matrix, which repre-

sents metrics values for all software artifacts with respect to metric �i
 , where Mi

 is the
domain of its values.

We denote by �i a metric score function. It normalizes the metrics values. As the origi-
nal metrics values mji , their corresponding normalized values sji = �i(mji) still indicate the
degree to which the software artifact aj ∈ A performs in the metric �i . The metric and
score functions have the following signatures.6

Software metrics can have different directions, i.e., large values indicate either poor or
good quality in an assessment context. Because of their symmetry, we will focus on large
values (and drop low values) to indicate higher satisfaction in this discussion.

However, software metrics might be defined such that both larger and smaller values
indicate good (bad) quality. For example, the metric instability I = Ce

Ca+Ce
 , where Ce are

outgoing dependencies and Ca incoming dependencies, indicates good quality for val-
ues close to 0 or to 1. We could transform this metric to meet with the required prop-
erty that larger values indicate good quality, for example, by a simple transformation:
I� = 2 × |I − 0.5| . While we can come up with such transformation for (arguably any) con-
crete metrics, there is no objectively correct way to deduce such a transformation for any
such metric without expert knowledge. Therefore, we assume that transformations of met-
rics into a uniform direction and an application of this transformation to the metrics values
have been done prior to normalization.

(6)Model(Quality) ∶= (A,M,ℝ,⪰)

�i ∶ A ↦ Mi

�i[�i] ∶ Mi ↦ [0, 1]

6  Note that �
i
 is parameterized with �

i
 , i.e., all observed metrics values for metric �

i
.

873Software Quality Journal (2021) 29:863–899

1 3

The performance of software artifact aj according to the metric �i is defined as the prob-
ability of finding another software artifact with metrics value smaller or equal to the given
value. We calculate such a normalized metric score using empirical cumulative distribution
function (ECDF) as follows.

where � is the indicator function with: �(cond) = 1 if cond and 0, otherwise.
The normalized metric score interpretation is the same for all metrics: the empirical

probability of finding another software artifact that performs worse than the given one and
0 indicates the worst and 1 the best performance with respect to a specific metric in the
concrete quality assessment context.

5.2 � Aggregating metrics scores

Let sji be the normalized metric score of mji calculated by Eq. (5). This metrics value, in
turn, is measured for a software artifact aj ∈ A with a metric �i . Corresponding to the
quality matrix [mji] we define a quality score matrix [sji] . All scores are in [0, 1] and have
the same interpretation and the same direction, which makes them comparable. Hence, it is
possible to aggregate them.

We define an aggregation in terms of marginal distributions and a suitable copula function
with a meaningful interpretation. It defines an aggregated quality score qj of an artifact aj.

A copula function that allows for a meaningful interpretation is the (empirical approxima-
tion of the) joint probability of the marginal scores. It can be interpreted as the probability
of an artifact performing worse than or equally good as aj in all metrics M.

The Levi-frailty copulas are another family of copula functions with a meaningful inter-
pretation. They define the quality of an artifact as the weighted geometric product of the
marginals:

assuming that it is known that the relative importance of a metric �i for a (sub-)characteristic
is known and quantified by the corresponding weight wi

.
Regardless of the copula employed, if a (sub-)characteristic c is defined as the aggrega-

tion of metrics [�1,… ,�k] , then the result of normalization and aggregation is the quality
score of c. We interpret it as a score of how good a software artifact performs in a set of
metrics, compared to other artifacts; 0 indicates bad and 1 good quality.

Note that these aggregated (sub-)characteristic quality scores are themselves metrics
by definition as they map each artifact to a subrange [0, 1] ∈ ℝ . Hence, aggregation may

(7)�i[�i](mji) = sji =
1

n

n∑

j�=1

�(mj�i ≤ mji),

(8)A(sj1,… , sjk) = qj = Cop(sj1,… , sjk)

(9)Cop(sj1,… , sjk) =
1

n

n∑

l=1

�(sl1 ≤ sj1 ∧⋯ ∧ slk ≤ sjk)

(10)Cop[�](sj1,… , sjk) =

k∏

i=1

s
wi

ji
,

k∑

i=1

wi = 1

874 Software Quality Journal (2021) 29:863–899

1 3

repeatedly be applied aggregating, e.g., metrics to sub-characteristics and these further to
characteristics and to an overall score.

5.3 � Ranking software artifacts

Once the quality scores are computed, the artifacts can be ranked simply by ordering
according to their score values. We assign the same rank to artifacts in case their aggre-
gated scores are equal (up to margin of error � = [n]−1, n = |A| , and [n] rounds to the near-
est power of 10).

A software artifact aj is better than or equally good as another artifact al , if the quality
score of aj is greater than or equal to the quality score of al.

Software artifacts with bad quality should be prioritized and inspected first; therefore,
we rank software artifacts based on their ((sub-)characteristic) quality scores in acceding
order: Software artifact with the lowest (highest) possible aggregated score will be ranked
as first (last).

In the next section, we build our approach on empirical copula to evaluate how well
it fulfills the requirements, and we build our approach on Levi-frailty copula to study the
agreement with the state-of-the-art probabilistic approach. Note that the process of aggre-
gation and ranking described above can be built on any copula function.

6 � Evaluation

In Sect. 6.1, we argue that our approach fulfills the theoretical requirements formulated
in Sect. 3, i.e., it is mathematically well defined (R

1
) , interpretable (R2

) , and to be able to
combine metrics of different scales and distributions to a single quality score (R3

).
To demonstrate that the proposed approach is valuable, it should also be shown that an

aggregate metrics based on copulas leads to accurate (R
4
) , sensitive (R

5
) , and scaling (R

6
)

assessments of quality. We evaluate empirically the fulfillment of the corresponding other
requirements.

We confirm the accuracy (R
4
) in two studies described in Sect. 6.2. We consider two

different contexts: bug prediction (with the ground truth available) and maintainability
assessment (agreement with state-of-the-art probabilistic approach as a proxy of a ground
truth). In the first study, we confirm the accuracy relative to other metric-based approaches
applied in defect prediction. We compare ours with the baseline prediction models from a
publicly available benchmark7 by D’Ambros et al. (2010). These models aggregate differ-
ent metrics to assess defect proneness on a software class level. We study whether or not
our aggregation approach leads to an accurate assessment, i.e., we rank software classes by
our aggregation results and by the predicted number of bugs for baseline approaches and
compare these rankings against a ranked list of the same classes based on the ground truth,
i.e., the observed post-release defects. In this study, we document that our aggregation is
more accurate than the baseline approaches in most cases.

(11)aj ⪰ al ⇔ qj ≥ ql

7  http://​bug.​inf.​usi.​ch

875Software Quality Journal (2021) 29:863–899

http://bug.inf.usi.ch

1 3

We choose “error-proneness” as the assessed quality in this study as it gives an objec-
tive ground truth that is relatively easy to measure. Alternative evaluations comparing
to expert-based rankings lack this objectivity. A defect prediction model is a function
mapping metric values of a software artifact to a measure of its likelihood to be defec-
tive. The baseline models are aggregation models, i.e., weighted sum aggregation opera-
tors where weights are defined by regression. We do not aim to build the best performing
defect predictor. In contrast, to illustrate the accuracy of our unsupervised aggregation, we
study whether or not our approach could improve the performance of the existing baseline
models for defect prediction, even when their weights are set using supervised regression,
which is actually unfair to the disadvantage of our approach.

In the second study, we apply our approach to maintainability assessment and study the
agreement with the alternative probabilistic approach of Bakota et al. (2011). We collect
metrics values of classes of real-world software systems from publicly available GitHub
Java Corpus8 by Allamanis and Sutton (2013). In this study, we cannot compare to a
ground truth and only show that our results are in agreement without deciding which one is
more accurate.

We confirm sensitivity (R5
) in Sect. 6.3, again in two studies. First, we show that our

aggregation approach leads to an improved assessment sensitivity and anomaly detection
compared to the alternative probabilistic approach of Bakota et al. (2011). Second, we
apply our approach to information quality assessment of real-world technical documenta-
tions provided by our industrial partners and discuss sensitivity as a function of system size
and number of metrics.

Finally, we confirm performance scalability (R6
) in in Sect. 6.4. Using the same setup

as in the sensitivity study, we assess how scalable (the implementation of) the quality
score calculations of our approach are. We compare well to the alternative probabilistic
approach, whose authors suggest to aggregate at most three metrics at once to avoid the
negative effect of their exponential increase in computational costs.

For the empirical evaluations, we implemented all algorithms and statistical analyses
in R.9 We use the following R packages: dplyr10 for extracting and filtering the data from
given database, ggplot211 for visualization, fitdistrplus12 for calculating basic statistics and
for testing distribution laws, and copula13 to generate additional data for additional sensi-
tivity and performance tests. We calculate metrics and quality scores empirically by using
multi-thread computations and optimized algorithms from the R package Emcdf.14

The quality score calculations and all measurements were performed and analyzed on
the same computer under the same conditions. For each software class and documentation
file, we obtained quality scores using third-party software. The metrics data were collected
with the VizzMaintenance15 Eclipse plug-in for software systems, and with the Quality
Monitor16 for the technical documentations.

9  The R Project for Statistical Computing, https://​www.r-​proje​ct.​org
10  dplyr, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​dplyr
11  ggplot2, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggplo​t2
12  fitdistrplus, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​fitdi​strpl​us
13  copula, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​copula
14  Emcdf, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​Emcdf
15  VizzMaintenance, http://​www.​arisa.​se/​produ​cts.​php
16  Quality Monitor™, http://​iqm.​arisa.​se/​iqmon​itor

8  http://​groups.​inf.​ed.​ac.​uk/​cup/​javaG​ithub/

876 Software Quality Journal (2021) 29:863–899

https://www.r-project.org
https://cran.r-project.org/web/packages/dplyr
https://cran.r-project.org/web/packages/ggplot2
https://cran.r-project.org/web/packages/fitdistrplus
https://cran.r-project.org/web/packages/copula
https://cran.r-project.org/web/packages/Emcdf
http://www.arisa.se/products.php
http://iqm.arisa.se/iqmonitor
http://groups.inf.ed.ac.uk/cup/javaGithub/

1 3

6.1 � Theoretical evaluation of R1 − R
3

By definition, copulas are monotonically non-decreasing functions for each of their
variables. Hence, the boundary condition (Eqs. (1) and (2)) and monotonicity (Eq. (3))
hold. Also, by definition:

hence, the stronger condition of Eq. (4) holds. Altogether, the suggested aggregation tech-
nique is mathematically well defined and R

1
 holds.

We interpret the score of as metric as the probability that an artifact with lower
satisfaction w.r.t. this metric can be found. We interpret the aggregated quality scores
according to the copula function used. This includes but is not limited to the two copu-
las suggested here.

The unweighted aggregation of scores computed on the joint probability of the mar-
ginals considers possible statistical dependencies between metrics but assumes that
metrics are equally important. The weighted aggregation of scores considers weights to
represent different importance of metrics but assumes that metrics are statistically inde-
pendent. In the unweighted case, the quality score of an artifact is defined as the prob-
ability of another artifact existing that is strictly better in each metric. In the weighted
case, the quality score of an artifact is defined as the joint probability of independent
metric scores weighted according to the (application-specific) importance of the met-
rics. Both provide an intuitive interpretation of scores that is the same on every level of
aggregation and, hence, R

2
 holds.

Copulas allow us to aggregate different metrics with different domains, scales, and direc-
tions of impact to a single value from the [0, 1] interval as it is a probability. Hence, R

3
 holds.

We just showed that R1
− R

3 hold for any copula function, especially, for empirical and
Levi-frailty copulas that we will use in evaluation.

6.2 � Evaluation of accuracy R4

In Sect. 6.2.1, we evaluate accuracy in comparison of alternative metric-based approaches
in the context of bug prediction with a ground truth at hand. In Sect. 6.2.2, we evaluate
accuracy as alignment to an alternative probabilistic and (metric-based) approach in the
context of maintainability assessment, since there is no ground truth available.

6.2.1 � Comparison to alternative metric‑based approaches

Evaluation Method and Measures  There are many approaches to bug prediction. Some
of them rely on more than one metric; hence, aggregation is needed. We use a publicly
available benchmark (D’Ambros et al., 2010) that contains statistical data of five software
systems, several sets of metrics, and an extensive comparison of several bug prediction
approaches. We use the metrics values from this benchmark, perform aggregation, and
relate the aggregated score with a known number of post-release defects as a ground truth.
We compare other metrics-based approaches using the same set of metrics with ours. We
study whether our aggregation improves bugs prediction models in terms of accuracy, i.e.,
in terms of agreement with the ground truth.

∀i lim
ui→0

Cop(u1,… , ui,… , un) = 0,

877Software Quality Journal (2021) 29:863–899

1 3

We apply our approach for bug prediction on a software class level. More specifically, we
rank software classes according to their defect proneness (ground truth) and based on their
quality scores obtained by our and alternative approaches. The alternative approaches are
based on different sets of metrics, aggregated with generalized linear regression models.
The (different alternative) regression models are trained to map (different sets of metrics)
to the number of bugs. In other words, we compare our model of unsupervised aggregation
with models of supervised regression against the ground truth.

We apply the same measure of predictive power as used in the related study:

Correlation. We measure the Spearman’s rho correlation between rankings to assess
the ordering, relative spacing, and possible functional dependency.

Quality Model and Dataset Description The bug prediction dataset (D’Ambros et al., 2010)
consists of software class level metrics values and numbers of post-release bugs from
five open-source software systems written in Java: eclipse17 (997 classes), equinox18 (324
classes), lucene19 (691 classes), mylyn20 (1 862 classes), and pde21 (1 497 classes).

We compare metrics-based approaches using different metrics sets that require aggre-
gation (see Table 1). We consider eight MOSER metrics, since bugs might be caused
by changes (Moser et al., 2008). We also consider its subset NFIX+NR, since past
defects (Zimmermann et al., 2007) and the number of changes (Graves et al., 2000) might
be good predictors. We consider six CK metrics and eleven OO metrics. We consider both,
the combination CK+OO and CK and OO in isolation, since complex components might
be error-phone (Basili et al., 1996).

We also compare to the best performing approaches from a benchmark, called WCHU
and LDHH proposed by D’Ambros et al., who argue that source code metrics change is a
better approximation of code churn, and better describe the entropy of changes (D’Ambros
et al., 2010). These approaches use several versions of a software system to sample the his-
tory of source code metrics. The WCHU (weighted churn of source code metrics) approach
computes for each metric its churn as a sum of deltas of source code metrics values for
each consecutive pair of samples. It contains seventeen metrics, each the churn of a met-
ric from CK+OO. It uses weights to acknowledge that many small changes are more rel-
evant than a few big changes. The LDHH (linearly decayed entropy of source code metrics)
approach uses the churn to compute the entropy of source code metric changes. It contains
seventeen metrics, each the entropy of a metric change from CK+OO. It accounts for how
much a class changed.

We analyzed five open-source software systems to perform separate studies and compare
the results to observe potential differences between them. We do 50-fold cross-validation, i.e.,
for each software system, we use 90% of the classes as a training set to build the regression
models and the remaining 10% as a validation set. For our unsupervised aggregation model,
we use the same validation data (ignoring the training data) to compute ECDF for the com-
parison with supervised models. For each model and fold, we compute the Spearman correla-
tion of two rankings: the classes ordered by the actual number of bugs and by the aggregated

17  Eclipse JDT Core, https://​eclip​se.​org/​jdt/​core/, prediction release 3.4.
18  Equinox framework, https://​eclip​se.​org/​equin​ox/, prediction release 3.4
19  Apache Lucene, https://​lucene.​apache.​org/, prediction release 2.4.0
20  Mylyn, https://​eclip​se.​org/​mylyn/, prediction release 3.1
21  Eclipse PDE UI, https://​eclip​se.​org/​pde/​pde-​ui/, prediction release 3.4.1

878 Software Quality Journal (2021) 29:863–899

https://eclipse.org/jdt/core/
https://eclipse.org/equinox/
https://lucene.apache.org/
https://eclipse.org/mylyn/
https://eclipse.org/pde/pde-ui/

1 3

quality score for our approach and classes ordered by the number of predicted bugs for the
other metrics-based approaches. The reported values of Spearman’s rho are averages over
50-fold.

Summary of Results  Table 2 shows the results of the correlation of the approaches applied
for each software system. All correlations are significant at the 0.01 level, i.e., 99% confi-
dence interval and p < 0.01 . For each software system and set of metrics, we compared our
copula-based approach with the generalized linear regression approaches. For each pair-
wise comparison, the better of the two values is highlighted by a gray background, and in
boldface when there is a significant difference.

We observe that aggregation by our approach often improves the results. More specifi-
cally, aggregation using our approach performs better than the respective regression-based
approach in the majority of cases. Only in 8 out of 35 cases, the alternative metrics-based
approaches perform better. However, only two of them (highlighted in italic) show signifi-
cant differences.

Ranking based on the quality scores obtained by our approach is, in most cases, closer
to the ground truth ranking than rankings obtained by alternative metrics-based approaches
that use generalized linear regression. This lets us conclude that our approach has higher
predictive power, i.e., is more accurate than these alternatives.

6.2.2 � Comparison to an alternative probabilistic approach

Evaluation Method and Measures Bakota et al. (2011) proposed an ISO/IEC 9126 based
quality model, which also uses concepts of probability to handle the ambiguity coming
from the lack of consensus on software quality. To the best of our knowledge, it is the only
related research that investigates both the probabilistic nature of quality and aggregation of
metrics. Therefore, we study whether aggregated quality scores obtained by our approach
correlate with goodness functions obtained by this related state-of-the-art approach. The
approaches are applied to maintainability assessment under the same experimental settings.
Particularly, we use the same independent metrics and integrate metrics calculated for
classes to the system level; recall aggregation of a singleton introduced in Sect. 3.

The two approaches use the same principle assumption—the probabilistic nature
of quality—to measure software characteristics. They should agree in their results
when applied to the same settings, i.e., the same systems, quality model, metrics, and
weights Lincke et al. (2008). Indeed, both approaches use the same quality model and met-
rics, the expected value � to integrate class to system-level scores, and the same weights to
indicate the importance of a metric to quality.

In Bakota et al., weights are obtained manually from an online survey where experts
were asked about their opinions. However, since these weights are not reported, we gener-
ate synthetic weights then used in both approaches.

Approach 1 (Bakota et al., 2011). For each system S and each metric � , we integrate the
metric values of the system’s classes c to the system level using the expected value of
these values E[�(c)] = �(S) . For each metric � of a training system S0 , a goodness func-
tion g is calculated as Δi = |�(S0) − �(Si)| , where Si are the systems from the bench-
mark. Then, these goodness functions are aggregated into the given system’s goodness

879Software Quality Journal (2021) 29:863–899

1 3

by taking an integral ∫ f (y)g1(x1)… gn(xn) dx dy , where x traverses the domain of good-
ness functions, y traverses the simplex where each point represents possible weights,
and f is a density function.
Approach 2 (our approach). For each class c of a system S and for each metric � ,
we calculate the score s(c) of the metric value m(c) = �(c) using Eq. (5) based on the
ECDF derived from metric values of a training systems Si ≠ S from the benchmark.

Table 1   Metrics of the bug
prediction models

Type Metric Description

MOSER NR Number of revisions
MOSER NREF Number of refactorings
MOSER NFIX Number of bug-fixings
MOSER NAUTH Number of authors who committed
MOSER LINES Lines added and removed
MOSER CHURN Code churn (sum, max, average)
MOSER CHGSET Change set size (maximum and average)
MOSER AGE Age and weighted age
CK WMC Weighted Method Count
CK DIT Depth of Inheritance Tree
CK RFC Response For Class
CK NOC Number Of Children
CK CBO Coupling Between Objects
CK LCOM Lack of Cohesion in Methods
OO FanIn Number of other classes that reference the class
OO FanOut Number of other classes referenced by the class
OO NOA Number of attributes
OO NOPA Number of public attributes
OO NOPRA Number of private attributes
OO NOAI Number of attributes inherited
OO LOC Number of lines of code
OO NOM Number of methods
OO NOPM Number of public methods
OO NOPRM Number of private methods
OO NOMI Number of methods inherited

Table 2   Spearman correlation between rankings obtained by the different approaches and the ranking from
the ground truth

Eclipse Mylyn Equinox PDE Lucene

MOSER Copula of MOSER metrics 0.323 0.365 0.284 0.269 0.534 0.573 0.165 0.211 0.238 0.267
NFIX+NR Copula of NFIX+NR 0.381 0.378 0.091 0.128 0.567 0.602 0.255 0.228 0.277 0.291
CK Copula of CK metrics 0.377 0.404 0.226 0.234 0.484 0.519 0.256 0.259 0.216 0.231
OO Copula of OO metrics 0.395 0.429 0.297 0.305 0.49 0.499 0.263 0.259 0.214 0.207
CK+OO Copula of CK+OO metrics 0.39 0.415 0.299 0.297 0.453 0.491 0.284 0.278 0.214 0.221
WCHU Copula of WCHU metrics 0.419 0.443 0.279 0.281 0.56 0.598 0.278 0.293 0.285 0.326
LDHH Copula of LDHH metrics 0.408 0.451 0.272 0.267 0.53 0.573 0.296 0.317 0.333 0.375

880 Software Quality Journal (2021) 29:863–899

1 3

For each c, we then aggregate s(c) into a quality score using the Levi-frailty copula
defined in Eq. (8). Finally, we integrate the quality scores for classes to a system
quality score as the expected value of the class quality scores.

We collect metrics values of classes of real-world software systems. We then split the
systems into training and test systems. The training systems are used to calculate the
goodness functions for Approach 1 and ECDF for Approach 2, which are applied to the
test systems. The result of both approaches is quality scores and lists of software sys-
tems from the test set ranked according to their quality scores.

We compare the approaches using the following measures:

Correlation. We measure Spearman’s correlation (Spearman, 1904) between main-
tainability scores to assess the ordering, relative spacing, and possible functional
dependency.
Agreement. We apply Bland–Altman statistics (Bland & Altman, 1999) between
the maintainability scores coming from the two approaches to see a potential
bias between the differences and to estimate an agreement interval between the
approaches.
Ranking distance. We measure the Kendall tau distance (Kendal, 1948) between the
two rankings, which counts the number of pairwise disagreements between two lists.

Quality Model and Dataset Description We applied metrics from the well-known CK met-
rics suite (Chidamber & Kemerer, 1994), which was selected based on the evidence of cor-
relating with maintainability (Riaz et al., 2009).

Because of the scalability constraints of (Bakota et al., 2011), we do not aggregate more
than three metrics at once. “Empirically we found that the approach works well enough if
the number of incoming edges is not higher than three for every aggregate node” (Bakota
et al., 2011). Therefore, we compare a very limited quality model with only three metrics.

Bakota et al. did not consider dependencies between metrics. Therefore, we selected the
three metrics from the metrics suite with the lowest pairwise correlation: DIT (Depth of
Inheritance Tree), LCOM (Lack of Cohesion in Methods), and NOC (Number of Children).

The chosen metrics, by definition, measure different aspects of quality. However, their
aggregation provides an overview on quality rather than each single metric in isolation.
Note we do not aim to define a new notion of quality. Instead, these metrics were chosen
for fair comparison of two alternative approaches.

The weights of the metrics should not have a large influence on the results of the com-
parison of aggregations one and the same quality models, as long as they are the same for the
aggregation approach and software system. As Bakota et al. (2011) did not report weights, we
generated ten random combinations of weights. While complete randomness was a choice,
we followed the quality model for maintainability used in the comparison study of Lincke
et al. (2008) and generated weights in such a way that it is more likely that LCOM has a
higher importance than DIT, which in turn is likely to get a higher importance than NOC.

We analyzed the GitHub Java Corpus (Allamanis & Sutton, 2013), a snapshot of open-
source Java systems from October 2012 that contains code from 14 807 projects across a
wide variety of domains amounting to 352 312 696 lines of code in 2 130 264 files. The
systems included in the corpus were chosen by the following criteria: (i) they are written in
Java, (ii) they are available on GitHub, and (iii) they were forked at least once.

881Software Quality Journal (2021) 29:863–899

1 3

We split the 14 807 projects 75%/25% into training and test sets.22

Summary of Results We find that under the same settings and assumptions, the
approaches produce similar quality scores.

Figure 1a shows the correlation of the quality scores of the two compared approaches
(scatter plot, bottom left), the distribution of scores of each approach (histograms top left
for Approach 1 and bottom right for Approach 2) and Spearman’s correlation coefficient
(top right).

First, we observe a strong correlation between the two approaches.
Second, we observe an agreement between the approaches. In the Bland–Altman plot,

cf. Figure 1b, each point corresponds to the average of the maintainability scores obtained
by two approaches as the x-value and the difference between these two scores as the
y-value. The horizontal (blue) line in the middle represents the mean difference between
scores and the horizontal (red) lines on the top and the bottom, the 95% confidence inter-
val (mean±1.96 Std. Dev.). The span of the confidence interval of differences is about 0.1
(with 2 the maximum possible span), which is sufficiently small to conclude that the two
approaches agree.

Third, the Kendall tau distance is 0.13185. It means that less than 14% of the system
differ between the rankings of the two approaches.

We conclude that the two probabilistic approaches agree when applied under the same
settings and assumptions. We cannot decide that either of them is more accurate as we lack
a ground truth of maintainability.

6.3 � Evaluation of sensitivity R5

In Sect. 6.3.1, we evaluate sensitivity in comparison with an alternative probabilistic and
(metric-based) approach of Bakota et al. In Sect. 6.3.2, we evaluate sensitivity of our
approach in the context of information quality assessment.

6.3.1 � Sensitivity in comparison with an alternative probabilistic approach

Evaluation Method and Measures We apply the same maintainability assessment as
described in Sect. 6.2.2. However, here we assess the sensitivity with the following
measures:

Anomaly detection. We determine the ratio between the number of detected outliers
and the total number of outliers in a sample dataset for both approaches.
Overall Sensitivity. We determine the ratio between unique scores and the population
size N for both approaches. Two scores, s1 and s2 , are deemed identical if they are suf-
ficiently close, i.e., |s1 − s2| < 𝛿 , with � = [n]−1, n = |A|, and [n] rounds to the nearest
power of 10.
Sensitivity Ratio. We determine the ratio between unique scores and the unique tuples
in the raw data for both approaches. It equals to 1 if an aggregation distinguishes as
many data points as the raw data, and it approaches 0 for aggregation to the same score
for all data points.

22  The full list of the systems and the train-test split we used in the evaluation, http://​groups.​inf.​ed.​ac.​uk/​
cup/​javaG​ithub/

882 Software Quality Journal (2021) 29:863–899

http://groups.inf.ed.ac.uk/cup/javaGithub/
http://groups.inf.ed.ac.uk/cup/javaGithub/

1 3

Quality Model and Dataset Description We use the same quality model and the same data-
set as described in Sect. 6.2.2.

Summary of Results We find that under the same settings and assumptions, our
Approach 2 outperforms the probabilistic Approach 1 in detecting anomalies, and it has
a higher sensitivity, i.e., it allows to differentiate more software systems regarding their
maintainability. In detail:

First, the anomaly detection ratios equals 71.36% for Approach 1 and 92.59% for
Approach 2.

Second, the overall sensitivity is 0.08828 for Approach 1 and 0.25196 for Approach 2,
which is almost three times larger. The latter means that every fourth system has a different
quality score.

Third, Approach 1 has a sensitivity ratio of 0.34305, Approach 2 a sensitivity ratio of
0.97909, i.e., almost all of the original sensitivity is maintained. Also, the histogram in
the upper left of Fig. 1a confirms that a single quality score dominates in Approach 1. In
contrast to that, the histogram in the lower right of Fig. 1a shows that Approach 2 can dif-
ferentiate the software systems.

We conclude that the Approach 2 is more sensitive than Approach 1. Despite the fact
that the approaches are by-and-large in agreement when applied under the same settings,
they differ in terms of sensitivity. Note it does not mean that Approach 2 is more accurate
than Approach 1.

6.3.2 � Sensitivity in information quality assessment

Evaluation Method and Measures To be applicable under realistic conditions, sensitivity
should scale to large systems. To test that, we apply our approach to information qual-
ity assessment of real-world documentations provided by our industrial partners. Here, we
assess the sensitivity when our approach is applied to documentations of growing sizes.
We aggregate 40 metrics and measure:

Overall Sensitivity as defined before.

(a) (b)

Fig. 1   Agreement of maintainability scores between the approaches

883Software Quality Journal (2021) 29:863–899

1 3

Quality Model and Dataset Description We use a real-world quality model to assess
information quality. It was customized for an industrial partner, a Swedish provider of
telecommunication backbone infrastructures. The hard- and software components of
this infrastructure are documented in operator, troubleshooting, and installation manuals
using XML-based specifications. These specifications are semi-formal, but need to follow
common guidelines. They are written in-house and by subcontractors inside Sweden and
around the globe. Hence, there is a need to effectively and efficiently check and assure the
quality of these documentations (Ericsson et al., 2012). The information quality model is
based on the 40 metrics listed in Table 3. They are used to evaluate 10 sub-characteristics:
Text Complexity, File Complexity, Hierarchy Complexity, Referential Complexity, Cloning
Issues, Anti-patterns, Language Issues, Validity Issues, Utilization, and Others.

We analyzed 91 documentations. The majority of them consisted of a set of XML docu-
ments in proprietary XML, in DITA XML, or in XHTML format. We excluded 17 docu-
mentations that used other formats (proprietary PDF structures). We assessed the metrics
for each of the remaining 74 documentation. To select similar documentations for further
analysis, we applied statistical tests to check if the metrics values come from populations
with similar distributions and, therefore, dropped another three documentations.23 The final
benchmark consisted of 238 versions of 71 XML documentations with N = 93 049 XML
documents and a dataset of 2 595 674 metrics values in total.

Based on this seed of technical documentation metric values, we generate multivari-
ate synthetic data with population sizes N = {103, 104, 105, 106} . The generated data con-
tained the same metrics with the same properties (basic statistics of metrics, metrics distri-
butions, and metrics dependencies) as observed in the seed. Generating synthetic data was
necessary in order to vary the problem size for sensitivity (and later performance) assess-
ments. To account for the possible effect of randomness and uncertainty, we generated ten
different synthetic datasets for each population size N.

Summary of Results We find that the sensitivity decreases with the number of metrics
and the sample population size increasing. It seems to approach zero for a sufficiently large
number of metrics and population sizes, cf. Fig. 2.

However, our approach allows more than one level of aggregation, as defined in hier-
archical quality models. Still, score calculation and interpretation remain the same on all
levels of aggregation. Recall the real-world quality model that aggregates 40 metrics to ten
characteristics first and then further to a single quality score (see Table 3). For this quality
model, we also assessed the sensitivity of a two-step aggregation, where scores were first
aggregated to the ten characteristic scores and then, with the same approach, to the actual
quality score.24

23  More precisely, we applied the nonparametric Kolmogorov–Smirnov (Hollander & Wolfe, 1999) and
Tukey–Duckworth (Siegel and Tukey, 1960) tests. We considered both tests because Kolmogorov–Smirnov
requires variables to be at least ordinal from the same distribution, while Tukey–Duckworth does not have
such strong assumptions. The latter only requires that there are no repeating values in the combined sam-
ple. Only documentations that passed both of the tests with the significance cutoff at 0.05 were considered
for further analysis. We admit the multiple testing problem. However, adjustment of p-values may reduce
the chance of making type I errors, but may increase the chance of making type II errors. To this end, we
decided to select documentations that passed both tests, but don’t claim statistical evidence that the metrics
values come from populations with the same distributions.
24  One might assume that a similar multi-level approach is also mitigation of the scalability issues of Bakota
et al. (2011). However, this would require expert-generated weights not only on the metrics level but also on
the level of the (sub-) characteristics.

884 Software Quality Journal (2021) 29:863–899

1 3

Table 3   Metrics of the information quality model

Sub-characteristic Metric Description

Text Complexity N_ TextSize Text size
Text Complexity N_ SentenceSize Sentence size
Text Complexity R_ StepListFrac Fraction of item list advices
File Complexity N_ XMLSize Number of all XML nodes
Hierarchy Complexity N_ SubSectionDepth Subsection depth
Hierarchy Complexity N_ SubSectionWidth Subsection width
Referential Complexity N_ InternalReferences Number of all internal References
Referential Complexity N_ ExternalReferences Number of all external References
Referential Complexity N_ CrossReferences Number of all references
Referential Complexity N_ CrossPackReferences Number of all cross package references
Referential Complexity N_ InEdgeCount Number of incoming references
Referential Complexity N_ OutEdgeCount Number of outgoing references
Cloning Issues R_ XMLUniqueness XML uniqueness
Cloning Issues R_ XMLSimilarity XML similarity to other documents
Cloning Issues R_ TextUniqueness Text uniqueness
Cloning Issues R_ TextSimilarity Text similarity to other documents
Cloning Issues N_ TextSimilar Number of text-similar documents
Anti-patterns R_ Stability Central document
Anti-patterns N_ Isolated Number of isolated documents
Anti-patterns N_ BackRefs Number of cyclic references
Anti-patterns N_ BrokenRefs Number of broken references
Anti-patterns N_ PointAbstraction Number of sections with one subsection
Anti-patterns R_ RevOverTime Change frequency
Language Issues N_ LanguageChecks Lack of language checks
Language Issues N_ GrammarIssues Number of all grammar issues
Language Issues N_ SpellingIssues Number of all spelling issues
Language Issues N_ StyleIssues Number of all style issues
Language Issues N_ TerminologyIssues Number of all terminology issues
Validity Issues N_ CorrectedXMLissues Number of all corrected XML issues
Validity Issues N_ OtherXMLissues Number of all other XML issues
Validity Issues N_ MissingInfo Missing/erroneous information tags
Utilization N_ absVisitTime Visit time
Utilization N_ absVisitors Number of visitors
Utilization N_ absVisits Number of visits
Utilization R_avgClicksPerVisit Number of clicks per visit
Utilization R_avgClicksPerVisitor Number of clicks per visitors
Utilization N_absClicks Number of clicks
Others B_ nonRecommended Non-recommended document type
Others B_ unresolvedImpr Unresolved improvement suggestions
Others B_ unresolvedTR Unresolved errors in TR documents

885Software Quality Journal (2021) 29:863–899

1 3

Both aggregations decline in sensitivity when the population grows. The two-step
approach, however, is able to maintain a good level of sensitivity even for very large popu-
lation sizes, cf. Fig. 3.

We find that our approach has an appropriate sensitivity even when aggregating a large
number of metrics and large population sizes.

6.4 � Evaluation of scalable performance R6

Evaluation Method and Measures For performance evaluation, we use the same real-world
information quality scenario as described in Sect. 6.3. Here, we assess the scalable perfor-
mance, i.e., we measure:

Response time in milliseconds of the quality score calculation for a single artifact.

For each data point, we measured performance ten times (for ten different synthetic data-
sets) and take the median.

Our approach is based on a numerical computation of sample probabilities. Hence, we
expect a decline in performance with growing sample population sizes. Still, while adding
more metrics and artifacts, the performance should remain acceptable.

Quality Model and Dataset Description We use the same quality model and the same
multivariate synthetic dataset as described in Sect. 6.3.

Fig. 2   Sensitivity

886 Software Quality Journal (2021) 29:863–899

1 3

Summary of Results The performance graphs, displayed in Fig. 4, show the number of
metrics to aggregate and the response times. We use multi-thread computations (7 hard-
ware threads), but even a single-threaded implementation (at most a factor of 7 slower)

Fig. 3   Sensitivity (two-step approach versa 40 metrics at once)

Fig. 4   Performance in sec.

887Software Quality Journal (2021) 29:863–899

1 3

was efficient and scalable in performance. While the response time of a score calcula-
tion increases with the number of metrics and the sample population size, as expected, it
remains in the range of a few milliseconds. This is considered acceptable.

We conclude that our approach has a scalable performance when applied to large numbers
of software artifacts and metrics.

6.5 � Discussion

Accuracy We tested different supervised approaches to bug prediction against our aggre-
gation trained using unsupervised learning. Given a set of metrics, the models suggest an
overall ranking of potentially buggy classes. Our unsupervised approach often outperforms
the rankings suggested by alternative metrics-based approaches based on generalized linear
regression (supervised learning).

While it turns out that our (unsupervised) aggregation approach is quite competitive
with (supervised) approaches in defect prediction, it is not our claim to replace supervised
approaches, in general. However, it showed that this unsupervised aggregation might be
considered as a suitable alternative when ground truth data are lacking.

Moreover, we found that our approach provides quality results that are similar to an
alternative probabilistic approach, in correlation, agreement, and ranking distance. Alto-
gether, we may claim that R4 holds.

Sensitivity Our aggregation approach outperforms the alternative probabilistic approach
in terms of sensitivity, both in detecting anomalies and in differentiating the quality of soft-
ware artifact.

In general, we found that the proposed aggregation is sensitive for moderate numbers of
metrics, i.e., it provides sufficiently many different scores. However, for large numbers of
metrics, the aggregated scores approach zero. In that case, our approach allows to aggre-
gate metrics to sub-characteristics, and then to quality scores, which maintains a high sen-
sitivity even for large population sizes. If needed, aggregation can be done in even more
than two steps to increase sensitivity. Altogether, we may claim that R5 holds.

Performance Finally, we found that our approach admits implementations with scalable
performance, i.e., R6 holds.

6.6 � Threats to validity and limitations

Our experimental findings are generalizable, and we have high confidence that other
researchers, given the same experimental setup, would come to the same conclusions. We
discuss possible threats to validity and limitations and describe how we try to mitigate
them.

External Validity. We have compared the approaches on the same open-source software
systems. However, open-source and industrial development might differ greatly. We mini-
mized this threat by also using data provided by our industrial partners when comparison
was not necessary.

A second threat concerns the statistical conclusions. It is important to have a representa-
tive population to be able to interpret metrics-based assessments (Kitchenham et al., 1995).
Bernoulli’s theorema aureum, the “golden theorem,” states that after sufficient many trials,
the observed relative frequency (empirical probability) of an outcome does not differ from
the outcome probability (theoretical probability) with a high degree of certainty (Hald, 2007).

888 Software Quality Journal (2021) 29:863–899

1 3

The open-source software systems in our experiments are large enough to draw statistically
meaningful conclusions regarding accuracy when a ground truth was available in the defect
prediction scenario. However, they are not large enough to make general conclusions when
comparing with alternative probabilistic approach.

The selection of a large dataset from technical documentation projects for information
quality assessment aims experimental evaluations on representative and sufficiently large
sample sizes. We generated the samples with the same metrics and the same properties
(basic statistics of metrics, metrics distributions, and metrics dependencies) as observed
in the real-world projects. There is no reason why the evaluation should be different in
software projects and documentations implemented in different information representation
languages. However, we cannot exclude this thread to validity.

Internal validity Experiments are clearly defined to make them reproducible. The
GitHub Java Corpus and the Bug Prediction Dataset were chosen to replicate the proposed
experiments. Metrics data extraction, collection, and analysis can be repeated yielding the
same results. Metrics tool selection has an impact on the metric values and the interpre-
tation (Lincke et al., 2008). Therefore, we assessed all software and information quality
metrics with the same tool, resp., described in peer-reviewed publications. For the software
metrics, the VizzAnalyzer tool and its architecture are described in (Strein et al., 2007).
For technical documentation metrics, the Quality Monitor tool and its architecture are
described in (Ericsson et al., 2012).

Limitations. We do not judge metrics values or scores. For instance, we do not discuss
any thresholds for low, moderate, high, and very high quality, resp. Instead, metrics and
quality scores are probabilities, which make aggregation results for all levels to be in the
same interval [0, 1]. This mapping provides a unified understanding and allows to rank
artifacts. We could, e.g., highlight “bad/good” software artifacts for every aggregation level
by applying a typical approach to set quantiles as thresholds (Alves et al., 2010).

We apply a two-step aggregation approach on the quality model structure provided by
our industrial partners. It improves the sensitivity compared to an aggregation of forty met-
rics at once. However, the two-step aggregation approach is not associative, i.e., the final
result depends on the choice of grouping. This might be considered a limitation.

For our approach, we require that quality scores reveal extreme values, cf. Eq. (4), but
require only (1) for R1 . However, Eq. (4) makes our aggregation approach sensitive to arti-
facts that have extremely bad values for one metric even if they have the best values for
others. We do not bother to easily spot artifacts that are extremely good in one metric. We
do not aim at fining Pareto-optimal (maximal or minimal) solutions either.25

7 � Conclusion and future work

Humans are overwhelmed with too many different aspects of artifacts, e.g., too many met-
rics or sub-characteristics, hence, the need for aggregation. On the other hand, humans
might distrust aggregated scores that come without meaningful interpretation. For a given
software artifact, our aggregated quality score corresponds to the probability of find-
ing another artifact with worse or equal overall quality, which gives a simple and clear

25  We could drop the requirement (4) for our approach and use copulas to estimate (non-) convex Pareto
fronts (Binois et al., 2015).

889Software Quality Journal (2021) 29:863–899

1 3

interpretation. This was confirmed by our industrial partners, especially, when we visual-
ized the quality scores. They became understandable and interpretable even for managers
without strong technical or mathematical background.

Our probabilistic approach to the aggregation of metrics based on copulas meets the fol-
lowing requirements: It is mathematically well defined (R1

) , it provides a clear interpreta-
tion of scores (R

2
) , it allows to combine different metrics with different units, scales, and

distributions (R3
) , it is accurate (R

4
) and sensitive (R

5
) , and it allows for implementations

with scalable assessment performance (R
6
).

We proved R1
,R

3 , argued for R
2
 , and confirmed R

4
 , R

5
 , and R6 experimentally. There-

fore, we conducted an empirical study on Bug prediction of ca. 5 000 software classes,
on Maintainability assessment of ca. 15 000 open-source software systems, and on Infor-
mation Quality assessment of ca. 100 000 real-world technical documents. These studies
also showed that our approach is well applicable under realistic conditions. In short, our
approach is not only theoretically sound, it is also accurate, sensitive, identifies anoma-
lies, and scales in performance, whereas compared approaches lack one or several of these
properties.

Our general aggregation approach can improve prediction models. For instance, based
on the same set of metrics, our unsupervised aggregation almost always outperforms the
supervised regression approaches. Moreover, our approach agrees with the alternative
probabilistic approach (Bakota et al., 2011) that was specifically designed for maintainabil-
ity assessment. In contrast to this probabilistic approach, our approach differentiates more
artifacts, detects more outliers, and scales in performance.

From a larger perspective, the suggested approach closes a gap in reliable and repro-
ducible quality assessment uncovered in (Ericsson et al., 2013). Due to different aggrega-
tions, the same quality model and the same metrics for assessing the same software sys-
tem or technical documentation could still lead to different assessment results and even
to different interpretations. Using our general, well-defined, interpretable, sensitive, and
scalable aggregation approach by default would turn the quality-model- and metric-based
assessment of software and information quality into a deterministic, and hence, reliable
and reproducible process.

The suggested aggregation approach is subject to parameterization: The weights of the
metrics can be adjusted manually to the quality goal. Alternatively, weights can also be
completely derived from metrics data (Ulan et al., 2021), which would remove subjective
decisions from the aggregation approach.

In this paper, we formulated several requirements for aggregation to be appropriate.
These requirements include mathematical soundness, in which the “veto power” of each
single metric may or may not be included. This decision, in turn, would allow or exclude
certain alternative aggregation approaches, such as an aggregation based on the (weighted)
average of metrics values. In the future, we plan to complement these requirements with
a public benchmark suite to allow for an objective quantitative comparison of aggrega-
tion approaches. This benchmark suite can then also be used to compare our probabilis-
tic approach to the state-of-the-art probabilistic approach of Bakota et al. (2011) against a
common objective ground truth, which the present study is lacking.

While we showed that our approach has an appropriate sensitivity, the assessment meas-
ure for sensitivity was based on an unweighted distance of the normalized metrics scores. If
aggregation uses weights, improved sensitivity score will use the same weights in the dis-
tance measure for defining distinguishable artifacts. On the same note, sensitivity may not
tell the entire story as different values could be concentrated around the uninteresting scores
close to 1 or, vice versa, around the relevant scores close to 0. In this paper, we did not study

890 Software Quality Journal (2021) 29:863–899

1 3

the spread of the score distribution. However, we observe in Fig. 1a that the scores of our
approach 2 are widely spread, whereas they flock around 1 for the alternative approach.
Future work will consider the spread or score distributions, e.g., using the Gini index.

Also, we plan to complement our aggregation approach with the integration of metrics
at different software component levels from method level to class, package, and system
level. Moreover, we plan to extend our approach to copulas considering both dependencies
and weights at the same time. Future work will also investigate how to derive the impor-
tance weights from metric observations using unsupervised and supervise machine learn-
ing approaches.

Appendix A: probabilistic nature of quality

In this appendix, we present the theoretical foundations of proposed approach described in
Sect. 5. We discuss the probabilistic nature of quality and show how metrics quality scores
can be expressed and aggregated.

Note that randomness is a function of what is known (Crutchfield & Feldman, 2003).
Once a software system is known, metrics become constants. For an unknown software
system, they are uncertain but can be described with probability distributions.

We exemplify all the theoretical concepts on one of the top 10 most popular program-
ming languages, Java. To illustrate some basic ideas, as an example we use well-known
and widely used software metric LOC. Note that it is just an example, proposed approach
can be applied to any programming language and the context when aggregation of metrics
makes sense.

The probabilistic nature of quality

Reasoning problems are often better understood from a probabilistic point of view (Oaksford
& Chater, 2009). Quality, the degree to which software artifacts fit their use and conform to
requirements, can be expressed using probabilities.

The process of developing a software system that implements a specific, well-defined
functionality is a random process, since the exact outcome of the software artifacts, i.e.,
the system decomposition into classes and methods and their implementation, cannot be
predicted with certainty. The result depends, among other things, on the non-functional
requirements, constraints in the development process, and the preferences and talents of the
developers.

Probability spaces can model random processes. By definition, a probability space is a
triple (Ω,Σ,P) with

1.	 the sample space Ω , a non-empty set of possible outcomes,
2.	 the events Σ ⊆ 2Ω , a set of subsets of the sample space, and
3.	 the probability measure P ∶ Σ → [0, 1] assigning probabilities to events.

The pair (Ω,Σ) is called a measurable space. Each execution of a random process delivers
an outcome � ∈ Ω . All events in Σ that contain � are said to have occurred. The probabil-
ity of an event E is the relative frequency of any of its outcomes, i.e., the ratio between the
occurrence of � ∈ E and the occurrence of any outcome � ∈ Ω.

891Software Quality Journal (2021) 29:863–899

1 3

For sake of mathematical correctness, it should be noted that:

4.	 The events Σ form a �-algebra:

(a)	 Ω ∈ Σ,
(b)	 Σ is closed under complement,
(c)	 Σ is closed under countable unions.

5.	 The probability measure is countably additive, P(�) = 0 and P(Ω) = 1.

Illustration 1  The outcome of the random process of developing a software system (in
Java) can be modeled as a sample space that is the set of all subsets of syntactically cor-
rect Java classes. To keep the example simple, we only consider the development of a sin-
gle class and define the sample space Ω as the set of all syntactically correct Java classes.
We assume that such a process is incomplete if it does not produce a syntactically correct
class. Singleton sets of individual classes {�} and the set all classes Ω are events in Σ .
Because of 4b), all sets Ω − {�} for each class � and the empty set ∅ are in Σ , as well. It is
trivial to see that the probability of the event Ω occurring is P(Ω) = 1 . Recall that an event
E ∈ Σ occurs if the outcome � ∈ E . Since any process execution delivers a class � ∈ Ω
as an outcome, P(Ω) = 1 . The probability of any other event occurring, i.e., a specific
class being delivered, is next to impossible to define. Therefore, we do not aim to reason
about individual classes and instead choose to map the original measurable space, i.e., the
sample space and the sigma-algebra, to another, more abstract measurable space using
software metrics.

A function � ∶ Ω → O that maps between two measurable spaces (Ω,Σ) → (O, S) is
called measurable function if the pre-image of an event A under � is in Σ for every A ∈ S .
The function is called a metric if O is numerical, i.e., O ⊆ ℝ . For metrics, O is often a sub-
range of the natural numbers ℕ (counts) or the rational numbers ℚ (ratios). For all events
A ∈ S of the target measurable space, the event E = {� ∈ Ω ∶ �(�) ∈ A} must be in Σ . The
notation Pr(X ∈ A) is a commonly used shorthand for P(E) = P({� ∈ Ω ∶ �(�) ∈ A}).

A random variable is a measurable function from a set of possible outcomes to a meas-
urable space, so we can consider software metrics as random variables. In quality models,
several metrics are aggregated, e.g., to sub-characteristics and characteristics. Hence, these
(sub-)characteristics consisting of several metrics are multivariate random variables, or so-
called random vectors.

Illustration 2  The number of lines of code, LOC , in a Java class � defined in a file is the num-
ber of newline characters in this file. The function LOC ∶ Ω → ℕ+ is a metric since the set of
positive numbers ℕ+ is numerical and LOC defines a mapping between the measurable spaces
(Ω,Σ) and (ℕ+, S) . If we want to reason about classes of the same size, we can model the set of
events S to contain singleton sets {n} for each possible number n ∈ ℕ+ of LOC and ℕ+ itself.
Again, because of 4b), all sets ℕ+ − {n} for each possible number n of LOC and the empty set
∅ are in S. Finally, since the pre-image of every event A under LOC must also be in Σ , all sets
of classes Ωn with the same number n of LOC and their complements Ω − Ωn are in Σ.

A probability space (Ω,Σ,P) and a measurable function � induce another probabil-
ity space (O, S, Pr). While it might be difficult to analytically or empirically model the

892 Software Quality Journal (2021) 29:863–899

1 3

probability measures P, it is easier to reason about (O, S, Pr) and to determine the prob-
ability measures Pr empirically, especially if � is a metric.

Illustration 3  It is hard and of low relevance to determine the probability of a software
development process having a certain class � as its outcome, i.e., P(�� ∈ {�}) = P(�� = �) .
It is easier and more meaningful to determine the probability of this process leading to a
class with a certain size n, i.e., Pr(LOC(��) ∈ {n}) = Pr(LOC(��) = n).

A set of metrics quantifies each quality characteristic of a software artifact. For each
software artifact and metric �i ∈ {�1 … ,�n} , we denote the possible metric value of
applying the metric to the given artifact by �i(artifact) . We use the shorthand mi to express
�i(artifact).

Metrics scores and aggregation

Metrics scores

The algebraic structure of the set of real numbers ℝ allows to define basic statistics, e.g.,
variance, expected value, and distribution of a random variable. In general, the probability
density function (PDF) and its corresponding cumulative distribution function (CDF) pro-
vide a statistical overview of the distribution of numerical (metric) values. Note that for a
given random variable, there is a unique CDF but more than one valid PDF.

The cumulative distribution function CDF� of a measurable function � ∶ Ω → O is the
function given by:

If the sample space can be disregarded:

Illustration 4  The cumulative distribution function CDFLOC of LOC maps each class
� ∈ Ω to the probability that the outcome of the software development process described
in Illustration 1 is a class �� ∈ Ω with LOC(��) ≤ LOC(�) , cf. Eqs. (10) and (11). How-
ever, we are often only interested in CDFLOC(n) , i.e., the probability that the outcome of
this software development process is a class �� ∈ Ω with LOC(��) ≤ n , cf. Eqs. (12)–(13).

We denote the i-th metrics value obtained for j-th software artifact by mj

i
 , where

i ∈ {1,… , |metrics|} and j ∈ {1,… , |artifacts|}.
For each metric �i ∈ � , we define a quality score Si corresponding to the probability of

finding, for a given artifact, another artifact with worse or equal quality. We denote the i-th
score value obtained for j-th software artifact by s j

i
. For metric �i , where small values are

indicators of bad quality, this is the probability of observing a �i
 value less than or equal

to mj

i
 . In this case, the score of mj

i
 is the CDF�

i

(m
j

i
) . For metric �i , where large values are

indicators of bad quality, it is the probability observing a �i
 value greater than or equal

(12)
CDF� ∶ Ω → [0, 1]

CDF�(�) =P({�
� ∈ Ω ∶ �(��) ≤ �(�)}).

(13)
CDF� ∶ O → [0, 1]

CDF�(m) =Pr(� ≤ m) = Pr(� ∈ {o ∈ O ∶ o ≤ m})

893Software Quality Journal (2021) 29:863–899

1 3

to mj

i
 . In this case, the score of mj

i
 is a complementary cumulative distribution function

CCDF�
i

(m
j

i
) = 1 − CDF�

i

(m
j

i
)

This way, the interpretation of aggregation is the same on all aggregation levels, regard-
less of whether the aggregated values are metrics or aggregates. Recall that on all levels
low scores are considered bad and large scores good.

Scores are special metrics that can also be understood as random variables. We denote the
random score variable Si corresponding to the random variable �i

 from a concrete score
value s j

i
 corresponding to a concrete metrics value mj

i
 as defined by Eq. (14).

Illustration 5  Direction of the contribution of a metric to (a certain notion of) quality
depends on the quality view and the goal. For example, low degrees of documentation
of public APIs are considered bad for maintainability and, hence, we use CDF for scor-
ing LOC metric. In contrast, low values of LOC are considered good for maintainability;
hence, we use CCDF for scoring.

Aggregation

Let a (sub-)characteristic c be an aggregation of metric random variables [�1,… ,�k] with
corresponding score random variables [S1,… , Sk] . An aggregated score value sc can now
be defined as joint CDF for a given vector of corresponding score values s1,… sk:

Again, aggregated scores are special scores and, special scores are metrics and random
variables.

Copula representation of a joint probability distribution allows the marginal distribu-
tions to be modeled separately from the dependence structure, i.e., dependencies are
introduced by an appropriate copula function (Nelsen, 2007). Applying Sklar’s theo-
rem (Rüschendorf, 2009), an aggregation of scores of a (sub-)characteristic c is a specific
copula function Cop.

Appendix B: R scripts

In this appendix, we present R scripts needed to implement proposed approach described
in Sect. 5.

Calculating the Scores (cf. Eq. (5))

Unweighted and Weighted Aggregation (cf. Eqs. (7), (8))

(14)s
j

i
=

{
Pr(�

i
≤ m

j

i
), if low values are bad for �

i

Pr(�
i
≥ m

j

i
), otherwise

(15)sc(s1,… , sk) =CDF[S1,…,Sk]
(s1,… , sk) = Pr(S1 ≤ s1,… , Sk ≤ sk)

(16)sc(s1,… , sk) = Cop(s1,… , sk)

894 Software Quality Journal (2021) 29:863–899

1 3

Ranking (cf. Eq. (9))

Acknowledgements  The authors thank Ericsson and Sigma Technology for providing real-world datasets
and Softwerk for providing access to their Quality Monitor. The research was supported by The Knowledge
Foundation within the project “Software technology for self-adaptive systems” (ref. number 20150088).
We thank the anonymous reviewers whose comments and suggestions helped us improve and clarify the
research onto paper.

895Software Quality Journal (2021) 29:863–899

1 3

Funding  Open access funding provided by Linnaeus University.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allamanis, M., & Sutton, C. (2013). Mining source code repositories at massive scale using language modeling.
In Proceedings of the 10th Working Conference on Mining Software Repositories, IEEE Press, pp. 207–216.

Alves, T. L., Correia, J. P., & Visser, J. (2011). Benchmark-based aggregation of metrics to ratings. In 2011
Joint Conference of the 21st International Workshop on Software Measurement and the 6th Interna-
tional Conference on Software Process and Product Measurement, IEEE, pp. 20–29.

Alves, T. L., Ypma, C., & Visser, J. (2010). Deriving metric thresholds from benchmark data. In 2010 IEEE
International Conference on Software Maintenance, IEEE, pp. 1–10.

Baggen, R., Correia, J. P., Schill, K., & Visser, J. (2012). Standardized code quality benchmarking for
improving software maintainability. Software Quality Journal, 20(2), 287–307.

Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., & Gyimóthy, T. (2011). A probabilistic software quality
model. In 2011 27th IEEE International Conference on Software Maintenance (ICSM), IEEE, pp. 243–252.

Bansiya, J., & Davis, C. G. (2002). A hierarchical model for object-oriented design quality assessment.
IEEE Transactions on Software Engineering, 28(1), 4–17.

Barkmann, H., Lincke, R., & Löwe, W. (2009). Quantitative evaluation of software quality metrics in open-source
projects. In 23rd International Conference on Advanced Information Networking and Applications, AINA
2009, Workshops Proceedings, Bradford, United Kingdom, May 26-29, 2009, pp. 1067–1072.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software Engineering, 22(10), 751–761.

Binois, M., Rullière, D., & Roustant, O. (2015). On the estimation of pareto fronts from the point of
view of copula theory. Information Sciences, 324, 270–285.

Bland, J. M., & Altman, D. (1999). Measuring agreement in method comparison studies. Statistical
Methods in Medical Research, 8(2), 135–160.

Boehm, B. W., Brown, J. R., & Kaspar, H. (1978). Characteristics of software quality. North-Holland.
Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2003). The theoretical status of latent variables.

Psychological Review, 110(2), 203.
Calvo, T., Kolesárová, A., Komorníková, M., & Mesiar, R. (2002). Aggregation operators: properties,

classes and construction methods. In Aggregation operators. Springer, pp. 3–104.
Carlsson, C., & Fullér, R. (1995). Multiple criteria decision making: the case for interdependence. Computers

and Operations Research, 22(3), 251–260.
Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transac-

tions on Software Engineering, 20(6), 476–493.
Correia, J. P., & Visser, J. (2008). Certification of technical quality of software products. In Proc. of the

Int’l Workshop on Foundations and Techniques for Open Source Software Certification, pp. 35–51.
Crosby, P. (1980). Quality is free: The art of making quality certain. Signet.
Crutchfield, J. P., & Feldman, D. P. (2003). Regularities unseen, randomness observed: Levels of entropy

convergence. Chaos: An Interdisciplinary Journal of Nonlinear Science 13, 1, 25–54.
D’Ambros, M., Lanza, M., & Robbes, R. (2010). An extensive comparison of bug prediction approaches. In

2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), IEEE, pp. 31–41.
Dujmović, J. (2013). Aggregation operators and observable properties of human reasoning. In Aggregation

Functions in Theory and in Practise. Springer, pp. 5–16.

896 Software Quality Journal (2021) 29:863–899

http://creativecommons.org/licenses/by/4.0/

1 3

Ericsson, M., Löwe, W., Olsson, T., Toll, D., & Wingkvist, A. (2013). A study of the effect of data normalization
on software and information quality assessment. In 20th Asia-Pacific Software Engineering Conf., APSEC
2013, Ratchathewi, Bangkok, Thailand, December 2-5, 2013 - Volume 2, pp. 55–60.

Ericsson, M., Wingkvist, A., & Löwe, W. (2012). The design and implementation of a software infra-
structure for iq assessment. International Journal of Information Quality, 3(1), 49–70.

Fenton, N. (1994). Software measurement: A necessary scientific basis. IEEE Transactions on Software
Engineering, 20(3), 199–206.

Garvin, D. (1984). What does product quality really mean? Sloan Management Review, 25, 25–45.
Gil, Y., & Lalouche, G. (2017). On the correlation between size and metric validity. Empirical Software

Engineering, 22(5), 2585–2611.
Grady, R. B., & Caswell, D. L. (1987). Software metrics: establishing a company-wide program. Prentice Hall.
Graves, T. L., Karr, A. F., Marron, J. S., & Siy, H. (2000). Predicting fault incidence using software

change history. IEEE Transactions on Software Engineering, 26(7), 653–661.
Hald, A. (2007). James bernoulli’s law of large numbers for the binomial, 1713, and its generalization. A

History of Parametric Statistical Inference from Bernoulli to Fisher, 1713–1935, 11–15.
Heitlager, I., Kuipers, T., & Visser, J. (2007). A practical model for measuring maintainability. In 6th

international conference on the quality of information and communications technology (QUATIC
2007), IEEE, pp. 30–39.

Henderson-Sellers, B. (1995). Object-oriented metrics: measures of complexity. Prentice-Hall, Inc.
Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods. Wiley-Interscience.
IEEE. (1990). Ieee std 610.12-1990, standard glossary of software engineering terminology.
ISO/IEC. (2010). Iso/iec 25010 system and software quality models. Technical Report.
Jiarpakdee, J., Tantithamthavorn, C., & Treude, C. (2018). Autospearman: Automatically mitigating

correlated metrics for interpreting defect models. In Proceeding of the International Conference on
Software Maintenance and Evolution (ICSME), pp. 92–103.

Juran, J., & Godfrey, A. B. (1999). Quality handbook. Republished McGraw-Hill, 173–178.
Kendall, M. (1948). Rank correlation methods. Griffin.
Kitchenham, B., & Pfleeger, S. L. (1996). Software quality: the elusive target [special issues section]. IEEE

Software, 13(1), 12–21.
Kitchenham, B., Pfleeger, S. L., & Fenton, N. (1995). Towards a framework for software measurement validation.

IEEE Transactions on Software Engineering, 21(12), 929–944.
Letouzey, J.-L., & Coq, T. (2010). The sqale analysis model: An analysis model compliant with the repre-

sentation condition for assessing the quality of software source code. In 2010 Second International
Conference on Advances in System Testing and Validation Lifecycle, IEEE, pp. 43–48.

Lincke, R., Lundberg, J., & Löwe, W. (2008). Comparing software metrics tools. In Proc. of Int. Symp. on
Software Testing and Analysis, ISSTA ’08, ACM, pp. 131–142.

Mai, J.-F., & Scherer, M. (2009). Lévy-frailty copulas. Journal of Multivariate Analysis, 100(7), 1567–1585.
Martin, R. C. (2002). Agile software development: principles, patterns, and practices. Prentice Hall.
McCall, J. A., Richards, P. K., & Walters, G. F. (1977). Factors in software quality. volume i. concepts and

definitions of software quality. Technical Report. GENERAL ELECTRIC CO SUNNYVALE CA.
Morasca, S. (2009). A probability-based approach for measuring external attributes of software artifacts.

In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and
Measurement, IEEE Computer Society, pp. 44–55.

Mordal, K., Anquetil, N., Laval, J., Serebrenik, A., Vasilescu, B., & Ducasse, S. (2013). Software quality
metrics aggregation in industry. Journal of Software: Evolution and Process, 25(10), 1117–1135.

Mordal-Manet, K., Balmas, F., Denier, S., Ducasse, S., Wertz, H., Laval, J., Bellingard, F., & Vaillergues,
P. (2009). The squale model; a practice-based industrial quality model. In 2009 IEEE Int. Conf. on
Software Maintenance (ICSM), pp. 531–534.

Moser, R., Pedrycz, W., & Succi, G. (2008). A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction. In Proceedings of the 30th International Conference on
Software Engineering, pp. 181–190.

Nelsen, R. B. (2007). An introduction to copulas. Springer Science & Business Media.
Oaksford, M., & Chater, N. (2009). Précis of bayesian rationality: The probabilistic approach to human

reasoning. Behavioral and Brain Sciences, 32(1), 69–84.
Oliveira, P., Lima, F. P., Valente, M. T., & Serebrenik, A. (2014). Rttool: A tool for extracting relative thresh-

olds for source code metrics. In 2014 IEEE International Conference on Software Maintenance and
Evolution, IEEE, pp. 629–632.

Oman, P., & Hagemeister, J. (1994). Construction and testing of polynomials predicting software maintainability.
Journal of Systems and Software, 24(3), 251–266.

897Software Quality Journal (2021) 29:863–899

1 3

Riaz, M., Mendes, E., & Tempero, E. (2009). A systematic review of software maintainability prediction and metrics.
In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement,
IEEE Computer Society, pp. 367–377.

Rüschendorf, L. (2009). On the distributional transform, sklar’s theorem, and the empirical copula process.
Journal of Statistical Planning and Inference, 139(11), 3921–3927.

Serebrenik, A., & van den Brand, M. (2010). Theil index for aggregation of software metrics values. In 2010
IEEE International Conference on Software Maintenance, IEEE, pp. 1–9.

Siegel, S., & Tukey, J. (1960). A nonparametric sum of ranks procedure for relative spread in unpaired
samples. Journal of the American Statistical Association, 55(291), 429–445.

Simon, H. (1960). The new science of management decision. Harper & Brothers.
Spearman, C. (1904). General intelligence, objectively determined and measured. The American Journal of

Psychology, 15(2), 201–292.
Strein, D., Lincke, R., Lundberg, J., & Löwe, W. (2007). An extensible meta-model for program analysis.

IEEE Transactions on Software Engineering, 9, 592–607.
Ulan, M., Löwe, W., Ericsson, M., & Wingkvist, A. (2018). Introducing quality models based on joint prob-

abilities. In Proceedings of the 40th International Conference on Software Engineering: Companion
Proceeedings, ACM, pp. 216–217.

Ulan, M., Löwe, W., Ericsson, M., & Wingkvist, A. (2021). Weighted software quality scoring and its application
to defect prediction. Empirical Software Engineering, Accepted for publication.

Vasa, R., Lumpe, M., Branch, P., & Nierstrasz, O. (2009). Comparative analysis of evolving software systems
using the gini coefficient. In 2009 IEEE International Conference on Software Maintenance, IEEE,
pp. 179–188.

Vasilescu, B., Serebrenik, A., & Van den Brand, M. (2011). By no means: A study on aggregating software
metrics. In Proceedings of the 2nd International Workshop on Emerging Trends in Software Metrics,
ACM, pp. 23–26.

Vincke, P. (1992). Multicriteria decision-aid. John Wiley & Sons.
Wagner, S. (2013). Software product quality control. Springer.
Wagner, S., Goeb, A., Heinemann, L., Kläs, M., Lampasona, C., Lochmann, K., et al. (2015). Operationalised

product quality models and assessment: The quamoco approach. Information and Software Technology,
62, 101–123.

Zimmermann, T., Premraj, R., & Zeller, A. (2007). Predicting defects for eclipse. In Third International
Workshop on Predictor Models in Software Engineering (PROMISE’07: ICSE Workshops 2007),
IEEE, pp. 9–9.

Maria Ulan  is a doctoral student at the Department of Computer Science
and Media Technology of Linnaeus University, Sweden. Her main focus
is on multi-criteria software quality scoring and software metrics
aggregation.

898 Software Quality Journal (2021) 29:863–899

1 3

Prof. Dr. Welf Löwe  holds the chair in software technology at Linnaeus
University in Växjö (Sweden) since 2002. Before, he studied at TU
Dresden (Germany), received a PhD from TH Karlsruhe (Germany),
was a postdoc at ICSE Berkeley (CA, USA), and assistant professor at
TH Karlsruhe. He is interested in technology for software construction,
analysis, optimization, and runtime support. He is also co-founder of
Softwerk, Aimo, and DueDive

Dr. Morgan Ericsson  is an Associate Professor of Computer Science at
Linnaeus University. His main research interests include software
quality and metrics, empirical software engineering, and data mining
for software engineering data.

Dr. Anna Wingkvist   is an Associate Professor in Computer Science at
Linnaeus University, Sweden. Her academic background is in information
systems development, methodological and research methods reasoning,
and project management. Since completing her PhD in 2009, her scientific
interest and publications are mainly in the information quality domain. In
2011, she was awarded a Marie Curie Fellowship research grant.

899Software Quality Journal (2021) 29:863–899

	Copula-based software metrics aggregation
	Abstract
	1 Introduction
	2 Background
	2.1 Software quality
	2.2 Distributions and copulas

	3 Requirements for aggregation
	4 Related work
	5 Copula-based approach to aggregation
	5.1 Calculating metrics scores
	5.2 Aggregating metrics scores
	5.3 Ranking software artifacts

	6 Evaluation
	6.1 Theoretical evaluation of
	6.2 Evaluation of accuracy
	6.2.1 Comparison to alternative metric-based approaches
	6.2.2 Comparison to an alternative probabilistic approach

	6.3 Evaluation of sensitivity
	6.3.1 Sensitivity in comparison with an alternative probabilistic approach
	6.3.2 Sensitivity in information quality assessment

	6.4 Evaluation of scalable performance
	6.5 Discussion
	6.6 Threats to validity and limitations

	7 Conclusion and future work
	Acknowledgements
	References

