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Kernel Density Classification and Boosting: anL2 analysis
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Abstract. Kernel density estimation is a commonly used approach to classification. However, most of the theoretical results

for kernel methods apply to estimationper seand not necessarily to classification. In this paper we show that when estimating

the difference between two densities, the optimal smoothing parameters areincreasingfunctions of the sample size of the

complementary group, and we provide a small simluation study which examines the relative performance of kernel density

methods when the final goal is classification.

A relative newcomer to the classification portfolio is “boosting”, and this paper proposes an algorithm for boosting kernel

density classifiers. We note that boosting is closely linkedto a previously proposed method of bias reduction in kernel density

estimation and indicate how it will enjoy similar properties for classification. We show that boosting kernel classifiers reduces

the bias whilst only slightly increasing the variance, withan overall reduction in error. Numerical examples and simulations are

used to illustrate the findings, and we also suggest further areas of research.

Keywords: Cross-validation; Discrimination; Nonparametric Density Estimation; Simulation; Smoothing.

1. Introduction

Consider datax1, . . . , xn , as a realization of a random sample, and let an element of theset

{fj(x), j = 1, . . . , J} be the density associated withxi . Let πj , j = 1, . . . , J be the classes’ prior

probabilities,i.e. πj = P (xi ∈ Πj) whereΠj denotes thej th class. Then, using Bayes’ Theorem, the

posterior probability of the observationxi being from thej th class, is:

P (xi ∈ Πj |xi = x) =
πjfj(x)

∑J
j=1 πjfj(x)

.

According to Bayes’ rule, we allocate an observation to the class with highest posterior probability.

Usually the valuesπj, j = 1, . . . , J are estimated via the respective sample relative frequency, π̂j =

c© 2004Kluwer Academic Publishers. Printed in the Netherlands.
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nj/n with
∑

j nj = n , associated with each class. As a consequence, the discrimination problem is

essentially that of (jointly) estimating the probability density functionsfj (x) , j = 1, . . . , J .

There is a wide variety of approaches to discrimination, from parametric, normal-theory based linear

and quadratic discrimination to neural networks; see Hastie et al. (2001). A flexible method uses kernel

density estimation offj(x) (Hand, 1982). Given a random sampleX1, . . . ,Xn from an unknown density

f , the kernel density estimator off at the pointx ∈ R is (see, for example, Wand & Jones, 1995, ch. 4):

f̂(x;h) =
1

n

n∑

i=1

Kh (x − Xi) (1)

where h is a bandwidth or smoothing parameter,Kh (x) = 1
hK

(x
h

)
, and the functionK : R → R ,

called akth-order kernel, satisfies the following conditions:
∫

K = 1 and
∫

xjK 6= 0,∞ only for

j ≥ k .

The use of plain kernel density estimators has been shown to work well in a wide variety of real-world

discrimination problems (see Habbemaet al., 1974; Michieet al., 1994; Hallet al., 1995; Wrightet al.,

1995). Nevertheless, we note that in kernel-based classification problems we are not primarily interested

in density estimationper se, but as a route to classification. We believe that the methodological impact

of this different perspective has not yet been fully explored, although there are a few contributions; see,

for example, Hall & Wand (1988).

It is worth considering the extent to which we should adapt the standard methodology of density

estimation when applied to discrimination problems. An obvious difference is that density estimation

usually considers Mean Integrated Squared Error, denoted as

MISE
(
f̂
)

= E

∫ (
f(x) − f̂(x)

)2
dx,

as a measure of the estimate’s accuracy, whereas classification problems are more likely to use expected

error rates. For example, many researchers avoid using higher-order kernels in density estimation be-

cause: the estimate is not itself a density; and, for moderate sample sizes, there is not much gain. However,

for some classification problems, at least, the first reason may not be an obstacle.

In this paper we focus on the univariate case with two classes, i.e. J = 2; some multivariate extensions

are contained in di Marzio & Taylor (2004b). The informationat hand is given in the bivariate dataset

(xi, Yi) , i = 1, . . . , n It will often be convenient to relabel the two classes1, 2 as−1, 1 and in this case

Yi : xi → {−1, 1} is an indicator of class membership. Our goal is to define a mapping δ : R →{−1, 1} ,
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called a classification rule. Ifj ∈ {−1, 1} , the pointx ∈ Πj will be correctly classified ifδ (x) = j ,

misclassified ifδ (x) 6= j . If Π1 andΠ2 are connected sets, then we all we require is an estimate ofx0

such that:

δ (x) =

{
−1 if x < x0

1 otherwise.

We use the above framework for the sake of simplicity, but note it can be early generalized ifJ > 2 or

more complicated partitions ofR occur. Extending some of the methods to higher dimensions isalso

straightforward.

Machine learning deals with automatic methods that, once trained on the basis of available data,

are able to make predictions or classifications about new data. This subject, originating from artificial

intelligence and engineering, has many intersections withstatistics. Thus, in the last decade, it has gained

a large amount of popularity among statisticians. Nowadays, many prominent researchers incorporate

Machine Learning, several traditional statistical techniques related to classical regression and classifica-

tion, and new computational procedures, into a superset known asstatistical learning. Hastieet al.(2001)

go deeply into this taxonomy.Boostingis a learning technique that has recently received a great deal of

attention from statisticians; see Friedmanet al. (2000), Friedman (2001) and Bühlmann & Yu (2003).

Di Marzio & Taylor (2004b) have shown that boosting kernel classifiers can lead to a reduction in

error rates for some real multivariate datasets. The main result of this paper is to explainwhyboosting

kernel classifiers should be so successful. We firstly discuss some theory on bandwidth selection for stan-

dard kernel classification, and then propose a suitable implementation of boosting for the discrimination

problem. We show that boosting is effective through anL2 view of estimation in a neighbourhood ofx0 .

This paper is organized as follows. Section 2 analyzes the standard case of kernel discrimination and

deals with thejoint selection of the smoothing parameters. Section 3 introduces boosting and considers

how it may be adapted for use with kernel density discrimination. Section 4 makes a connection between

boosting and a multiplicative bias reduction technique previously proposed in kernel density estimation,

and we independently indicate why boosting should reduce the bias in kernel discrimination. In Section

5 we give some simulation and experimental results which illustrate the theory, make comparisons of

boosting with simple kernel methods, and investigate the role of some the parameter selections. A final
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section contains some concluding remarks, as well as a rangeof outstanding issues which may inform

future research.

2. Estimating the difference between two densities

In this section we consider the goal of estimating a difference between two densities, sayg(x) = f2(x)−

f1(x) . In the case thatπ1 = π2 , this would then lead to the classifier given byδ(x) = sign ĝ(x) .

The reason for considering this is that it is similar to previously adopted implementations of kernel

discrimination, and our objective is to indicate the effecton the choice of smoothing parameters when

we estimate thedifferencebetween two densities.

2.1. A L2 RISK FUNCTION

We are interested in solutions tog(x) = 0 given by x0 such thatf1(x0) = f2(x0) = f(x0) , say. For

simplicity here we suppose thatπ1 = π2 = 1/2, but we do not require equal sample sizes. Suppose the

same kernel functionK is used to estimate bothf1 and f2 ; moreover let these standard assumptions

hold (see, for example, Wand & Jones, 1995, pp. 19–20):

(i) f ′′

j is continuous and monotone in(−∞,−M) ∪ (M,∞) , M ∈ R ;
∫ (

f ′′

j

)2
< ∞ ;

(ii) lim n→∞h = 0 and limn→∞nh = ∞ ;

(iii) K is bounded andK (x) = K (−x) .

Starting from the usual theory (see Wand & Jones, 1995, p. 97), we obtain

E ĝ(x) = f2(x) − f1(x) + µ2 (K)

(
h2

2

2
f ′′

2 (x) −
h2

1

2
f ′′

1 (x)

)
+ o

(
h2

1 + h2
2

)

and

Var ĝ(x) = R (K)
2∑

j=1

fj(x)

njhj
+ o





2∑

j=1

(njhj)
−1





where, for a real valued functiont, R(t) =
∫

t(x)2 dx µk(t) =
∫

xkt(x) dx , andhi is the smoothing

parameter used in the estimation offi(x) . Hence the mean squared error (MSE) of our estimate of the
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point x0 such thatg (x0) = 0, is:

MSE{ĝ(x0)} = AMSE{ĝ(x0)} + o






2∑

j=1

h4
j + (njhj)

−1






where

AMSE{ĝ(x0)} = µ2 (K)2
{

h2
2

2
f ′′

2 (x0) −
h2

1

2
f ′′

1 (x0)

}2

+ R (K)
2∑

j=1

fj(x0)

njhj
(2)

is the asymptotic MSE, the usual large sample approximationconsisting of the leading term in the

expanded MSE. By integrating the pointwise measure in Equation (2) we obtain a global measure, the

asymptotic integrated mean squared error:

AMISE {ĝ(·)} = µ2 (K)2 R

(
h2

2

2
f ′′

2 −
h2

1

2
f ′′

1

)
+ R (K)

2∑

j=1

(njhj)
−1. (3)

2.2. POINTWISE ESTIMATION

If we differentiate Equation (2) with respect tohi, i = 1, 2 and equate to zero we can solve to obtain:

h5
1 = f(x0)/

(
N1f

′′

1 (x0)
2 − (N1f

′′

1 (x0))
5/3N

−2/3
2 f ′′

2 (x0)
1/3
)

(4)

h5
2 = f(x0)/

(
N2f

′′

2 (x0)
2 − (N2f

′′

2 (x0))
5/3N

−2/3
1 f ′′

1 (x0)
1/3
)

(5)

where Nj = njµ
2
2(K)/R(K) . [The solution for one of thehj s will be negative in the case that

f ′′

1 (x0)f
′′

2 (x0) > 0; this may give insight into a similar phenomenon noted by Hall & Wand (1988).

In this case we can reduce the bias by taking a largerhj and the asymptotic solution which minimizes

the mean-squared error will need to use the next term (O(h4)) in the Taylor series expansion.]

Note that eachhj , j = 1, 2 depends onbothsample sizesn1 and n2 , as well asbothdensities and

that they have the following relationship:

h1 = h2

(
−n2f

′′

2 (x0)

n1f ′′

1 (x0)

)1/3

(6)

Note that, by inspecting the second term in the denominator of Equation (4), whenn1 is fixed we findh1

increaseswith n2 , i.e. whenn1 is fixed andn2 → ∞ , h1 increases toh1 = {f(x0)/(N1f
′′

1 (x0)
2}1/5 ,

which is the usual asymptotic formula for a single sample. That the optimal smoothing parameters are

increasingfunctions of the sample size of the complementary group may seem counter-intuitive at first,

but it happens in this case because the sign of the bias is related to the sign off ′′(x0) .
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2.3. GLOBAL ESTIMATION

If we use a Normal kernel and a Normal plug-in rule for separate estimation to minimize integrated mean

squared error, thenh5
j = 4σ5

j /(3nj), j = 1, 2; see, for example, Silverman (1986, p. 45). Differentiating

Equation (3), we thus obtain the equations:

3h5
1n1

4σ5
1

− 2h3
1h

2
2n1γ − 1 = 0 (7)

3h5
2n2

4σ5
2

− 2h2
1h

3
2n2γ − 1 = 0 (8)

where

γ =
D2 + 3V 2 − 6DV

(2V 9)1/2
exp(−

D

2V
),

with D = (µ1 − µ2)
2 andV = σ2

1 + σ2
2 .

Although it is possible to find numerical solutions of Equations (7) and (8) forhi, i = 1, 2, we have

been unable to obtain a simple closed form. So we now give an approximate solution which gives an

indication of the difference of globaljoint estimation. As a first approximation for our joint estimation,

let h5
j = 4σ5

j (1 + αj)/(3nj), j = 1, 2. Expanding the resulting equations in a Taylor series inαj and

considering only first order terms we then have an approximate solution given by:

α1 = −
β2(β1 − 15n

2/5
1 )

(β1 − 9n
2/5
1 )(β2 − 9n

2/5
2 ) − 36n

2/5
1 n

2/5
2

(9)

α2 = −
β1(β2 − 15n

2/5
2 )

(β1 − 9n
2/5
1 )(β2 − 9n

2/5
2 ) − 36n

2/5
1 n

2/5
2

(10)

whereβ1 = 8γσ2
1σ

3
2n

2/5
2 andβ2 = 8γσ3

1σ
2
2n

2/5
1 . Given two samples, it would be quite straightforward

to calculate the sample mean and variances and use the above Equations (9, 10) to derive a plug-in

rule more suited to discrimination problems. We note that these adjustments (αj ) do not tend to zero

as the sample sizes tend to∞ ; in fact, if n1 = n2 then αj do not depend on the sample size. The

largest magnitude ofαj for the casen1 = n2 is when D = V (5 − 101/2) = 1.838V and the ratio

max σj/min σj ≈ 1.324. The corresponding smoothing parameters will differ from the independent

case by about 8–10%.

We conclude this section noting that being able to evaluate the bias and variance of̂g(x) near the

solution g(x0) = 0 is not the final goal. All these calculations deal with a vertical discrepancy rather
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than ahorizontaldiscrepancy betweenx0 and an estimator of it, saŷx0 , i.e.: x̂0 − x0 . However, in a

small simulation study we did find that the joint pointwise selection given in Equations (4) and (5) were

close to the pair(h1, h2) which minimized the misclassification rate. See Figure 1 fora related example

which illustrates the sample size dependence in Equation (6), and the solutions to (7)–(8).

−4 −2 0 2 4

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

effect of second sample size on first smoothing parameter, n2=c n1

log(c)

h1

pointwise, independent choice

global, independent choice

n1=n2

pointwise

joint choice

global, joint choice

Figure 1. For n1 = 50 , and samples fromN(0, 42), N(4, 1) the optimalh1 (using the asymptotic equations) is shown for

various criteria, as a function of the sample sizen2 = cn1 . The points show the values ofh1 to minimize (over pairsh1, h2)

the average (over 20,000 simulations) squared error
(
f̂1(x0) − f̂2(x0)

)2
, wherex0 = 2.243 .

3. A Boosting algorithm for kernel density discrimination

A boosting algorithm (Shapire, 1990) repeatedly calls a “weak learner”, which is essentially a crude

classification method,M times to iteratively classify re-weighted data. The first weighting distribution

is uniform, i.e.w1 (i) = 1/n, i = 1, . . . , n , whilst the m th distribution {wm (i) , i = 1, . . . , n} with

m ∈ [2, . . . ,M ] is determined on the basis of the classification rule, sayδm−1(xi) , resulting from the
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(m−1)-th call. The final sequence of decision rules,δm (x) ,m = 1, . . . ,M is summarized into a single

prediction rule which should have superior standards of accuracy.

The weighting distribution is designed to associate more importance to currently misclassified data

through someloss function. Consequently, as the number of iterations increases the ‘hard to classify’

observations receive an increasing weight. Moreover, a simple majority vote criterion (Freund, 1995),

such as the sign of
∑M

m=1 δm (x) , is commonly used to combine the ‘weak’ outputs. Finally, wenote

that, at present, there is no consolidated theory about a stopping rule,i.e. the value ofM . This does

not seem a particularly serious drawback because boosting is often characterized by some correlation

between the training and test error.

Evidently, designing aboostedkernel classifier algorithm involves two main choices: (i) the weighting

strategy,i.e. the way to ‘give importance’ to misclassified data; (ii) the version of boosting. Other issues,

which will affect the accuracy, are: the existence of a kernel estimator and/or a bandwidth selector that

are specifically suitable for boosting.

Concerning the weighting strategy, due to its nonparametric nature, kernel discrimination lends itself

to several solutions. Two obvious criteria are: (i) locallyadapting the bandwidths; and (ii) locally adapting

the mass of the kernels by associating a weight to each observation. These correspond to undersmoothing

and increasing the probability mass of kernels, respectively, for misclassified data.

A practical consideration can be helpful. Undersmoothing has the tendency to generate artificially

numerous partitions of the feature space, especially if, asit usually happens, the data are sparse; in this

case further investigation, to define anad hocbandwidth selector, is needed. Instead, varying the mass of

the kernel seems a directly applicable solution. In this case, the traditional kernel estimator, that gives all

observations the same mass, corresponds to the weak learnerfor m = 1.

Concerning an appropriate choice of boosting, we note that initial implementations of boosting used

discrete decision rules, in our case:δm (x) : R → {−1, 1} (Shapire, 1990; Freund & Shapire, 1996),

whilst recently Shapire & Singer (1998) and Friedmanet al. (2000) suggest more efficient continuous

mappings. In particular, Friedmanet al. (2000) propose Real AdaBoosting in which the weak classifier

yields membership probabilities, in our caseδm (x) ∝ pm(x ∈ Πj) = f̂2,m(x)/
{
f̂1,m(x) + f̂2,m(x)

}
,

kdcb4.tex; 23/12/2004; 16:34; p.8
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for a fixed classΠj . Its loss system givesxi a weight proportional to

Vi =

{
min (p(xi ∈ Π1), p(xi ∈ Π2))

max (p(xi ∈ Π1), p(xi ∈ Π2))

}1/2

if xi is correctly classified, and proportional toV −1
i if xi is misclassified. Besides, it is to be noted

that a continuous strong hypothesis is generated, preserving the analytical advantages of a kernel density

estimate. Because kernel methods estimate densities in order to classify, Real AdaBoost seems the natural

framework for boosting kernel discrimination , whereas discrete mappings do not employ the whole

information generated by a kernel discrimination, but onlythe resulting sign.

Our pseudocode for Real AdaBoost kernel discrimination (BoostKDC) is given in Algorithm 1.

Algorithm 1 BoostKDC

1. Given{(xi, Yi), i = 1, . . . , n} , initialize w1 (i) = 1/n, i = 1, . . . , n .

2. Selecthj , j = 1, 2.

3. For m = 1, . . . ,M (the number of boosting iterations)

(i) Obtain a weighted kernel estimate using

f̂j,m (x) =
∑

i:Yi=j

wm (i)

hj
K

(
x − xi

hj

)
for j = 1, 2.

(ii) Calculate

δm (x) =
1

2
log {pm(x)/(1 − pm(x))} .

where pm(x) = f̂2,m(x)
/(

f̂1,m(x) + f̂2,m(x)
)

(iii) Update:

wm+1(i) = wm(i) ×





exp (δm(xi)) if Yi = 1

exp (−δm(xi)) if Yi = 2

4. Output

H (x) = sign

{
M∑

m=1

δm (x)

}

Note thatf̂j,m(x) does not integrate to 1 even form = 1; so in effect we are consideringπjfj(x) , with

πj = nj/n , in our estimation. Note also that we do not need to renormalize the weights because we

consider the ratiôf2,m(x)/f̂1,m(x) so any normalization constant will cancel.
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Considering the accuracy of the method we need to explore theoverfittingphenomenon in boosting. A

weak learner overfits data when it concentrates too much on a few misclassified observations,i.e.heavily

bases the fitting on them, being unable to correctly classifythem. Thus, after a valueM∗ , consecutive

overfitted decision rulesδM∗+1 (x) , δM∗+2 (x) . . . can worsen the performance of the final classifier. A

simple and general approach to prevent overfitting is cross-validation: M∗ is estimated by observing the

corresponding loss function when the boosting algorithm iscarried out on a subsample.

However, if a flexible base learner is employed, we would expect small values ofM∗ . An illuminating

description of this phenomenon is provided by Ridgeway (2000): on a dataset where a ‘stump’ works

reasonably well, a more complex tree with four terminal nodes overfits fromM = 2. Here the decision

boundary is efficiently estimated in the first step, the othersteps can only overfit misclassified data

without varying the estimated boundary, so degrading the general performance. In order to reduce the

risk of overfitting, a low variance base learner is suggested, so

. . . Each stage makes a small, low variance step, sequentially chipping away at the bias.

Obviously a kernel discrimination is a flexible base learner, whatever its formulation is. Then, in a first

approximation we can adopt the criterion suggested by Ridgeway (2000) by significantly oversmoothing,

using as a bandwidth a multiple of the optimal value as obtained from classical methods.

Another regularization strategy, adopted to restrict the variance inflation due to high values ofM ,

is to reduce the contribution ofδm (x) to H (x) . This philosophy is proposed by Friedman (2001)

for a different boosting algorithm where the contribution of each step is reduced by94% . Observing

experimental evidence, he finds an inverse relation betweenM∗ and the ‘Learning Rate Parameter’

(LRP), and suggests a very low LRP and a very highM . Friedman can’t justify the good practical

performances of this strategy, considering the phenomenonto be ‘mysterious’. In Real AdaBoost we can

follow this approach identifying as LRP the exponent of the probabilities ratio in the loss function. Then,

a strategy could be to replace the value1/2 in step 3(ii) by a value1/T with T > 2. For larger values

of T the less aggressive will be the algorithm, becoming similarto discrete AdaBoost asT → ∞ .
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4. The First Boosting Step (m = 2)

In this section we firstly point out an an interesting link between boosting kernel discrimination and

previous work on bias reduction in density estimation. Thiswork was totally independent of the boosting

paradigm. Then we derive the bias of the difference estimator ĝ(x) = f̂1(x)− f̂2(x) , involved inH(x) ,

at the pointx0 such thatf1(x0) = f2(x0) = f(x0) , and show that while it is initiallyO(h2)- biased

(standard kernel method), boosting reduces the bias toO(h4) in the special case whenh1 = h2 .

4.1. RELATIONSHIP TO PREVIOUS WORK

The final classifier output by Algorithm 1 is of the form

H (x) = sign

{
M∑

m=1

δm(x)

}
= sign

[
M∑

m=1

1

2
log

{
f̂2,m(x)

f̂1,m(x)

}]
.

For M = 2 we see the decision boundary is defined by pointsx such that

2∑

m=1

δm(x) = 0

which is equivalent to

f̃1(x)
∑

w1K

(
x − xi

h1

)
= f̃2(x)

∑
w2K

(
x − xi

h2

)

where

w1 =

(
f̃2(xi)

f̃1(xi)

)1/2

w2 =

(
f̃1(xi)

f̃2(xi)

)1/2

and f̃j, j = 1, 2 are the initial density estimates for the two groups. Thus the classification boundary can

be seen as the intersection points of two multiplicative kernel estimators.

Note that this is very similar to the variable-kernel density estimator of Joneset al. (1995):

f̂ (x) = f̂b (x)
1

n

n∑

i=1

f̂−1
b (xi)

1

h
K

(
x − xi

h

)
, (11)

where f̂b is the classical estimator with the bandwidthb . We can see that Equation (11) is simply the

product of an initial estimate, and a (re-)weighted kernel estimate, with the weights depending on the

first estimate. This is of the same form as the boosted classifier at m = 2. The idea behind (11) is that
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the leading bias in̂fb (x) should cancel with the leading bias in̂f(xi) and their paper showed that this

was an effective method of nonparametric density estimation. In its simplest form,b = h . A recent

semiparametric modification of this method was proposed by Joneset al. (1999).

Di Marzio & Taylor (2004a) showed that kernel densityestimatescould be directly boosted by defin-

ing a loss function in terms of a leave-one-out estimate (seeSilverman, 1986, p. 49), and they established

a link between this version of boosting and the bias-reduction technique of Joneset al. (1995).

4.2. BOOSTING REDUCES THEBIAS

In order to gain some insights into the behaviour of boostingwe consider a population version: this

corresponds to the situation in which there is an infinite amount of data, but the smoothing parameter is

bounded away from 0. We examine the weights and classifiers for learners which are “weak” in the sense

that our estimate off(x) is given by:

f̂j,m (x) ∝

∫
1

hj
K

(
x − y

hj

)
wj,m(y)fj(y)dy for j = 1, 2.

The first approximation in the Taylor series expansion (which we use for the initial estimate, whenm =

1) is

f̂(x) = f(x) + h2f ′′(x)/2 (12)

for someh > 0. So the initial classifier then uses

δ1(x) ∝
1

2

{
log f̂2,1(x) − log f̂1,1(x)

}

=
1

2

[
log

{
f2(x)

f1(x)

}
+

h2
2f

′′

2 (x)

2f2(x)
−

h2
1f

′′

1 (x)

2f1(x)
+ O(h4

1) + O(h4
2)

]
.

Thus atx0 we have a bias given by:

∆1(ĝ(x0)) =
h2

2f
′′

2 (x0) − h2
1f

′′

1 (x0)

4f(x0)
. (13)

which is of orderO(h2) .

We then obtain, form = 2

f̂1,2 (x) ∝

∫
1

h1
K

(
x − y

h1

)(
f̂2,1(y)

f̂1,1(y)

)1/2

f1(y)dy (14)

f̂2,2 (x) ∝

∫
1

h2
K

(
x − y

h2

)(
f̂1,1(y)

f̂2,1(y)

)1/2

f2(y)dy (15)
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By substituting Equation (12) into Equations (14) and (15),expanding in a Taylor series and making the

change of variable we eventually obtain an approximation upto terms of orderh2
i , i = 1, 2:

f̂1,2 (x) = (f1(x)f2(x))1/2

[
1 +

{
f ′′

2 (x)

4f2(x)
+

f ′

1(x)f ′

2(x)

4f1(x)f2(x)
−

(f ′

2(x))2

8f2
2 (x)

−
(f ′

1(x))2

8f2
1 (x)

}
h2

1

+
f ′′

2 (x)

4f2(x)
h2

2

]

f̂2,2 (x) = (f1(x)f2(x))1/2

[
1 +

{
f ′′

1 (x)

4f1(x)
+

f ′

2(x)f ′

1(x)

4f1(x)f2(x)
−

(f ′

1(x))2

8f2
1 (x)

−
(f ′

2(x))2

8f2
2 (x)

}
h2

2

+
f ′′

1 (x)

4f1(x)
h2

1

]
.

From this we can compute up to terms of orderh3
j , j = 1, 2:

δ2(x) =
1

2

[
+

(h2
1 − h2

2)

8

{
f ′

1(x)

f1(x)
−

f ′

2(x)

f2(x)

}2

+
(h2

2 + h2
1)

4

{
f ′′

1 (x)

f1(x)
−

f ′′

2 (x)

f2(x)

}]

which gives an updated classifier which usesδ1(x) + δ2(x) . Thus atx0 we have bias given by

∆2(ĝ(x0)) =
∆1(ĝ(x0))

2
+

h2
2f

′′

1 (x0) − h2
1f

′′

2 (x0)

8f(x0)
+ (h2

1 − h2
2)

(
f ′

1(x0) − f ′

2(x0)

4f(x0)

)2

If we now seth1 = h2 we see that∆2(ĝ(x0)) = O(h4) so boosting gives bias reduction. That boosting

reduces the bias comes as no surprise, but it is somewhat counter-intuitive that the bias reduction is

enhanced by taking equal smoothing parameters.

Simple closed form expressions for the variance have eludedus, but we believe that, in common with

other applications of boosting, the variance will increaserather slowly withM .

5. Numerical and Simulation Experiments

We will not address the issue of automatic bandwidth selection for kernel classification. Even in the

regular (non-boosting) situation, this is not straightforward. Cross-validation could be a possible solution

to finding good pairs(h1, h2) , but in our simple experiments, the surface often has local minima, in

which the loss, given by the number misclassified observations, is a discrete function. However, it is worth

reiterating that the automatic or data-based choices of smoothing parameter that have been developed for

density estimation (Jones & Signorini, 1997) are unlikely to be optimal in the classification setting.
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Our case studies consist of four simple discrimination problems. The models are: two gaussian cases,

with equal or different variance (M1, M2); a limited supportcase (M3) and a heavy-tailed case (M4). In

particular: M1 := N
(
0, 42

)
, N

(
4, 12

)
, M2 := N

(
0, 32

)
, N

(
4, 32

)
, M3 := N

(
4, 12

)
, exp (2) and

M4 := N
(
4, 12

)
, t (2) .

As our loss function we will consider the root mean squared error of the estimator̂x0 = x : f̂1(x) =

f̂2(x) , calculated onB samples with equally sized groups (withn1 = n2 ):

R̂MSE(x̂0) =

{∑B
b=1 (x̂0,b − x0)

2

B

}1/2

.

The reasons for focussing on̂x0 are twofold. Firstly, the above risk criterion allows us to examine the

behaviour of the two contributions: namely the bias and variance of the estimator̂x0 . Secondly, it re-

enforces the fact that the source of inflated error rates is due to poor estimation of the decision boundaries.

Connections betweenx0 and the error rate are further explored in Friedman (1997).

The secondary solutions forx0 , where they existed, contribute very little to the error rate, and

so were simply ignored for simplicity. Note that in some cases the secondary solution was such that

f ′′

1 (x0)f
′′

2 (x0) > 0 which requires special attention; see Equation (13) and thediscussion in Section 2.2.

A further potential problem is that, particularly for smallchoice ofh , we could get multiple solutions to

f̂1(x) = f̂2(x) in the vicinity of x0 . However, for the values ofh considered here, this never occurred

in any of our simulations.

In our simulation studies two main aspects are explored. In subsection 5.1 we consider using separate

estimation, a simple benchmark for kernel density discrimination. Obviously, a discrimination based on

independent estimations usesJ independent estimates which leads to a partition ofR generated on the

basis of thex0 s as defined above. The performance of a number of current estimators are compared. Here

the end is threefold: firstly investigating if there is an estimator that behaves better than others in classifi-

cation (as opposed to density estimation); secondly, to establish whether the bias-reduction properties of

higher-order bias kernel methods transfer to the estimation of x0 ; thirdly, benchmark accuracy values are

established for the subsequent analysis. Figure 2 shows therelationship between the intersection point

and the error rate for the models used in the simulations. It appears that the intersection point will give

more sensitivity in assessing the performance of our methods. In subsections 5.2–5.3 we investigate the

performance of theBoostKDC algorithm. In subsection 5.2 we numerically investigate the empirical
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Figure 2. Relationship between the error rate and the estimate ofx0 for the four models considered.

behaviour to check what we formally found forM = 2. In subsection 5.3 the consequences of various

tuning choices of parameters, such as the bandwidths and thenumber of iterations to be carried out, are

explored.

5.1. SEPARATE ESTIMATION

We have compared the performances of five estimators: the linear discriminant (LD) the classic kernel

estimator (CK) given by Equation (1), two adaptive estimators: the algorithms by Abramson (1982) (AB)

and Joneset al. (1995) (JLN), and finally the jackknifed higher order kernel (HO). JLN was discussed in

Section 4; a brief description of AB and HO follows.

Consider the general formulation

f̂ (x) =
1

n

n∑

i=1

1

h (xi)
K

(
x − xi

h (xi)

)
,

where there is a different bandwidth for every sample element. Due to verified practical performance and

some optimal analytic properties, a good choice is to takeh (xi) proportional tof̃ (xi)
−1/2 , wheref̃ is

a pilot estimator off (Abramson, 1982). This estimator has been closely studied and some theoretical

drawbacks have been found (Terrell & Scott, 1992; Hall & Turlach, 1999); however Abramson’s solution

is still very appealing for its simplicity and effectiveness. A higher order kernel estimator uses a kernel

with order k > 2. Sincek is the order of bias, there are obvious theoretical reasons to usek > 2.
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Concerning the order of the kernel, there is general agreement that good improvements can often be

obtained withk = 4. One of the principal reasons why they do not have a greater usage in practice

is because they take negative values, so the resultant estimate is not itself a density. In a discrimination

setting, this defect is not particularly serious, because we are not primarily interested in a density estimate.

In fact, our goal is to determine whetherf1(x) > f2(x) for given x . However, other drawbacks, such

as a difficult choice of bandwidth and the poor enhancements for reasonably sized samples (Marron &

Wand, 1992; Jones & Signorini, 1997), could be still valid ina discrimination framework. Following

Jones & Signorini (1997), we consider the generalized-jackknife estimator given by

f̂ (x) =
1

n

n∑

i=1

1

h
K(4)

(
x − xi

h

)
,

with

K(4) (u) =

(
µ4 (K) − µ2 (K)u2

)
K (u)(

µ4 (K) − µ2 (K)2
)

whereµj (K) =
∫

xjK(x) dx .

Concerning the implementation details, we have used two step versions of AB and JLN. This is

because in both cases the second step effects the major bias deletion, while the residual bias is slowly

reduced across the successive steps at the expense of a significant variance inflation. Moreover we have

used a normalized version of JLN.

We have used the simple normal scale ruleh = 1.06σ̂n−1/5 for two reasons. From a population point

of view, we have almost always unimodal symmetric populations, the only exception being the exponen-

tial population that, however, is not particularly concentrated near the boundary. From the estimator’s

point of view, AB and JLN, because of their iterative nature,are robust to the bandwidth selection step,

moreover, higher order kernel theory is not particularly developed for bandwidth selection. We use small

sample sizes to indicate the effectiveness of the asymptotic arguments with real datasets.

The bias, s.d. and RMSE of thêx0 ’s for ni = 50, i = 1, 2, andB = 500 are reported in Table I.

In problem M1 theO(h4)-biased estimators perform drastically better than CK. A large bias reduction

(around 90%) is obtained without a variance inflation. AB andJLN exhibit very similar accuracy values,

while HO reduces the bias more modestly (around 51%) but exhibits the smallest variance. In the estima-

tion of problem M2 there is not a bias problem, but AB is a little more stable than the other estimators,

note that JLN has the smallest bias and the biggest variance.As expected, LD gives the smallest RMSE
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Table I. Accuracy values for 5 separate estimations ofx0 such that f1(x0) = f2(x0) with

ni = 50, i = 1, 2 . The models for thefi are: M1 N
(
0, 42

)
, N
(
4, 12

)
, M2 N

(
0, 32

)
, N
(
4, 32

)
,

M3 : N
(
4, 12

)
, exp (2) and M4 N

(
4, 12

)
, t (2)

M1 M2

LD CK HO AB JLN LD CK HO AB JLN

bias –.1943 –.1630 –.0793 –.0174 .0161.0315 .0033 .0073 .0101 .0011

s.d. .3055 .2354 .2332 .2346 .2390.3116 .5443 .5349 .5183 .5457

RMSE .3620 .2863 .2463 .2353 .2396.3132 .5443 .5350 .5184 .5457

M3 M4

LD CK HO AB JLN LD CK HO AB JLN

bias .4570 .0148 .0553 .0713 .0865.0685 .0899 .1355 .1069 .1184

s.d. .1598 .1603 .1583 .1686 .1736.2471 .1718 .1812 .1854 .1909

RMSE .4841 .1610 .1677 .1831 .1940.2564 .1939 .2263 .2140 .2246

since it is optimal for such distributions. Curiously, in problem M3 and M4 CK gives the best results. In

problem M3, AB and JLN perform so poorly because their pilot estimation isO(h) biased near zero,

HO performs similarly to CK. In problem M4, due to the sparseness of the data in the tails of thet

distribution, larger sample sizes are required in order to make effective the properties ofO(h4)-biased

estimators. However, it should be noted that in the models M3and M4 there is a nearly symmetric pattern

in a wide neighbourhood ofx0 . Obviously LD performs very poorly when the population variances are

quite different.

5.2. TWO BOOSTING ITERATIONS

In this subsection we have implementedBoostKDC using the standard kernel density estimator, given

by Equation (1), and the normal scale rule to selecth = 1.06σ̂n−1/5 . This very simple automatic choice,

which is well-known to oversmooth, should make clear the effect of boosting and should satisfy the

requirements of a “weak learner” especially since the normal scale rule tends to oversmooth for non-
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normal data. Our objective was to observe the reduction in bias, theoretically derived in Section 4.2,

and to confirm that a common smoothing parameter (h1 = h2 = h) was asymptotically superior to

separate smoothing parameters. So two bandwidth selectionstrategies were adopted: theseparateand

thecommonstrategy. TwoBoostKDC estimators result: one using separate bandwidths, with first step a

classical kernel (CK), and second step referred to as 2KBs ; a second estimator where the same bandwidth

hKB = (h1 × h2)
1/2 is employed to estimate bothf1 and f2 (1KBc and 2KBc). We have chosen the

selectorhKB for its simplicity and because it will again weaken the learner by oversmoothing. However,

in the light of theory of Section 4 we note that the bandwidth selection task should not be crucial for

2KBc , provided that the unique bandwidth employed is able to control the effects of higher order bias

terms. Actually, we observed numerical evidence to supportthis hypothesis.

The numerical experiment consists of the estimation of models M1–M4 and the three sample sizes:

50, 100, and 500. The accuracy values of CK, 2KBs , 1KBc and 2KBc are contained in Table II.

Table II. Bias of (i) the classical estimator (CK) and the second boosting step ofBoostKDC

with separate (2KBs ) bandwidths and (ii) common bandwidth selection with one (1KB c ) and

two iterations (2KBc ) of BoostKDC. Different sample sizes for each of models M1–M4.

M1 M2

nj CK 2KBs 1KBc 2KBc CK 2KBs 1KBc 2KBc

50 −.1630 −.1103 −.3973 −.1588 .0003 −.0084 .0062 .0014

100 −.1040 −.0530 −.3057 −.0948 −.0219 −.0358 −.0174 −.0268

200 −.0904 −.0469 −.2437 −.0646 .0165 .0154 .0261 .0164

500 −.0651 −.0265 −.1756 −.0323 .0252 .0275 .0263 .0285

M3 M4

nj CK 2KBs 1KBc 2KBc CK 2KBs 1KBc 2KBc

50 .0152 −.0306 −.0408 .0044 .0899 −.0359 −.0583 .0001

100 .0027 −.0351 −.0500 −.0082 .0888 −.0374 −.0609 −.0017

200 .0033 −.0248 −.0417 −.0039 .0921 −.0224 −.0518 .0041

500 .0058 −.0135 −.0291 .0009 .0873 −.0232 −.0469 −.0020
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We expect that data from Problem M1 generate heavily biased estimates becausef1 and f2 exhibit

quite different curvatures nearx0 . However, in correspondence of each sample size our boosting algo-

rithms are clearly less biased than CK. Comparing boosting algorithms, we note that 2KBc increases its

accuracy values faster than 2KBs asn increases. Specifically, comparing the bias magnitudes atn = 50,

we have−80% for 2KBc and−75% for 2KBs ; while for theSD respectively−65% versus−59% .

In problem M4, because of the presence of a heavily tailed distribution, the bias of CK does not

decrease for large samples, boosting shows an even more marked ability to reduce it. Here 2KBc is

substantially unbiased, while 2KBs is decidedly less biased than CK, in fact the bias ratios are0.40 for

n = 50 and0.27 for n = 500. Moreover, forn = 500 2KBc appears more stable than CK.

Concerning models M2 and M3, in the previous section we observed the substantial unbiasedness of

CK for n = 50 because of the perfect or approximate symmetry exhibited near x0 . As a consequence, we

expect our boosting will not help. Anyway, for this latter reason M2 and M3 constitute a good benchmark

in order to measure the overfitting of our two-step algorithms.

Overall, comparing Tables I and II, we can see that boosting does have a bias-reduction property

which, in some cases, mimics those of the higher-order kernel methods. On the whole, if boosting CK

works well, then the use of a common bandwidth seems preferable. Finally, an impressive feature of

BoostKDC is that it appears robust to non-regular shapes of the populations.

5.3. MORE BOOSTING ITERATIONS

In this subsection we explore the performance of boosting when more than two iterations are carried

out. According to the boosting principles we expect an initial progressive bias reduction and a modest

variance inflation. We expect that after a number of steps both variance and bias will start to increase and

from around there we will observe overfitting.

Our objective is to explore the way in which the optimal choice of smoothing parameter varies as

the number of iterations increases, and to investigate how many boosting iterations are effective. As

noted, boosting cannot work for problem M2 since the distributions are symmetric and so there is no

bias. In this equal variance Normal setting a linear discriminant x̂0 = (x̄1 + x̄2)/2 is optimal and this

could be approximately achieved by using very largeh . So we present results for M1, M3 and M4. For
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each distribution we simulate 500 samples withn1 = n2 = 50 and for common smoothing parameters

(h1 = h2 ) in an appropriate range we calculatex̂0 for m = 1, 2, . . . . Based on these 500 numbers we

then estimate the bias and variance which would be achieved for each combination ofm andh . Results

for data model M1 are shown in Figure 3, in which we show the bias-variance trade-off. We can see that

the bias continues to reduce by boosting for 4 iterations or more, and then a larger value ofh can be used

to reduce the variance. In terms of RMSE, there is little improvement beyond 7 iterations, after which

these values are almost entirely dominated by the variance component. The RMSE results for models M3
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Figure 3. Effect of number of boosting iterations and the smoothing parameter on bias and variance of estimation ofx0 . Left:

Bias;Right: Standard deviation form = 1, . . . , 13 as a function ofh . The points, which are shown on both panels, are the

optimal (overh ) root mean squared error values for each choice ofm .

and M4 are shown in Figure 4 and the behaviour is somewhat similar in each: as the number of boosting

iterations increases the optimal choice of smoothing parameter also increases. Whereas for model M1 the

RMSE corresponding to this optimal choice of h continued to decrease slowly up tom = 13 iterations,

for models M3 and M4 the optimal choices ofm werem = 2 andm = 5, respectively.
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estimation ofx0 . Points show minima for eachM . Left: Model M3; Right: Model M4 as a function ofh .

6. Conclusions

The goal of this paper was to consider some theoretical aspects and solutions in kernel density discrim-

ination. Concerning the algorithmBoostKDC, we have demonstrated the utility of boosting in kernel

density classification both theoretically and for finite samples. However, obtaining explicit formulae for

the variance has proved elusive, and it is not theoreticallyclear the way in which the bias reduction works

for more than two steps.

In many situations, the intersection pointx0 will not be unique, and, since the estimation at such

x0 is critical, adaptive smoothing parameters are likely to perform much better than global smoothing

parameters. In particular, iff ′′

1 (x0)f
′′

2 (x0) > 0 then a much larger smoothing parameter is required; see

Equation (13). In practical applications, it would be necessary to obtain a rule to enable an appropriate

data-based choice of smoothing parameterh and a regularization technique (appropriate choice ofM )

should also be a matter for concern. In general, it appears that the larger the choice ofM , the larger is

the optimal smoothing parameter.

A further issue which requires more investigation is the Learning Rate Parameter1/T (= 1/2 in step

3(ii)) of our boosting algorithm. We have usedT = 2, but a larger value makes the learning process
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slower, reducing the overfitting phenomenon. In fact, values of T a little larger than2 often generate

much more efficient estimates. A further method to ameliorate overfitting would be to use shrinkage

(Bühlman & Yu, 2003). A final methodological point is establishing if the use of boosting weights

{wi,m, i = 1, . . . , n,m = 1, . . . ,M} could be incorporated into the calculation of the bandwidth, so

achieving a step-adaptive bandwidth.

The simple nature ofBoostKDC allows a straightforward extension to the multidimensional case

which is examined by Di Marzio & Taylor (2004b) who show the effectiveness of boosting in reducing

the error rate on both simulated and real data.

Acknowledgement: We are grateful to two anonymous referees for detailed and helpful comments that

led to significant improvements in this paper.
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