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Abstract. Kernel density estimation is a commonly used approach &siflaation. However, most of the theoretical results
for kernel methods apply to estimatiper seand not necessarily to classification. In this paper we shatwwhen estimating
the difference between two densities, the optimal smogtipiarameters armcreasingfunctions of the sample size of the
complementary group, and we provide a small simluationystudich examines the relative performance of kernel density
methods when the final goal is classification.

A relative newcomer to the classification portfolio is “bting”, and this paper proposes an algorithm for boostingnéer
density classifiers. We note that boosting is closely linteed previously proposed method of bias reduction in kereebiy
estimation and indicate how it will enjoy similar propestitor classification. We show that boosting kernel classifieduces
the bias whilst only slightly increasing the variance, wathoverall reduction in error. Numerical examples and satioths are

used to illustrate the findings, and we also suggest furttearsaof research.

Keywords: Cross-validation; Discrimination; Nonparametric Depdistimation; Simulation; Smoothing.

1. Introduction

Consider datazi,...,z,, as a realization of a random sample, and let an element ofs¢he
{fj(z),j =1,...,J} be the density associated with. Let 7;,j = 1,...,J be the classes’ prior
probabilities,i.e. 7; = P (z; € II;) wherell; denotes thejth class. Then, using Bayes’ Theorem, the
posterior probability of the observatiary being from thejth class, is:

7 fi()
Z]J:l ”jfj(x).

According to Bayes’ rule, we allocate an observation to tleswith highest posterior probability.

P(JZZ S Hj|l‘2' = I‘) =

Usually the valuesr;, 7 = 1,...,J are estimated via the respective sample relative frequetcy-

p;:‘ (© 2004Kluwer Academic Publishers. Printed in the Netherlands.
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2
nj/n with 3. n; = n, associated with each class. As a consequence, the disationi problem is
essentially that of (jointly) estimating the probabilitgrtsity functionsf; (z),j =1,...,J.

There is a wide variety of approaches to discriminatiomffgarametric, normal-theory based linear
and quadratic discrimination to neural networks; see lda&stal. (2001). A flexible method uses kernel
density estimation of;(x) (Hand, 1982). Given a random sampie, . .., X,, from an unknown density

f ., the kernel density estimator gf at the pointr € R is (see, for example, Wand & Jones, 1995, ch. 4):

flash) = 2 3" Kn (e - Xy) @
=1

where 1 is a bandwidth or smoothing parametés;, (z) = + K (%), and the functionk : R — R,

called akth-order kernel, satisfies the following condition§: K = 1 and [2/K # 0,00 only for
J=k.

The use of plain kernel density estimators has been showorowell in a wide variety of real-world
discrimination problems (see Habbewgizal., 1974; Michieet al., 1994; Hallet al., 1995; Wrightet al.,,
1995). Nevertheless, we note that in kernel-based classdicproblems we are not primarily interested
in density estimatiomer se but as a route to classification. We believe that the metlgdaal impact
of this different perspective has not yet been fully exporthough there are a few contributions; see,
for example, Hall & Wand (1988).

It is worth considering the extent to which we should adapt standard methodology of density
estimation when applied to discrimination problems. Aniobs difference is that density estimation

usually considers Mean Integrated Squared Error, denated a
MISE (f) = E/ (f(z) - f(a:))2 dz,

as a measure of the estimate’s accuracy, whereas classifipabblems are more likely to use expected
error rates. For example, many researchers avoid usinghader kernels in density estimation be-
cause: the estimate is not itself a density; and, for modeanple sizes, there is not much gain. However,
for some classification problems, at least, the first reasayimot be an obstacle.

In this paper we focus on the univariate case with two clagsged = 2; some multivariate extensions
are contained in di Marzio & Taylor (2004b). The informatiahhand is given in the bivariate dataset

(z;,Y;),1=1,...,n Itwill often be convenient to relabel the two classe® as—1, 1 and in this case

Y; : z; — {—1, 1} is an indicator of class membership. Our goal is to define gping@ : R — {—1,1},
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3
called a classification rule. If € {—1,1}, the pointz € II; will be correctly classified i (z) = 7,
misclassified if§ (x) # j. If II; and Il are connected sets, then we all we require is an estimatg of

such that:

-1 if z<x
5(93)2{

1 otherwise.

We use the above framework for the sake of simplicity, bueribtan be early generalized Jf > 2 or
more complicated partitions dR occur. Extending some of the methods to higher dimensioatss
straightforward.

Machine learning deals with automatic methods that, oraimeéd on the basis of available data,
are able to make predictions or classifications about new. ddtis subject, originating from artificial
intelligence and engineering, has many intersections stétistics. Thus, in the last decade, it has gained
a large amount of popularity among statisticians. Nowadmany prominent researchers incorporate
Machine Learning, several traditional statistical tecjueis related to classical regression and classifica-
tion, and new computational procedures, into a supersetkagstatistical learning Hastieet al. (2001)
go deeply into this taxonomyBoostingis a learning technique that has recently received a gredtode
attention from statisticians; see Friednetral. (2000), Friedman (2001) and Buihimann & Yu (2003).

Di Marzio & Taylor (2004b) have shown that boosting kernelssiifiers can lead to a reduction in
error rates for some real multivariate datasets. The maultref this paper is to explaiwhy boosting
kernel classifiers should be so successful. We firstly disssame theory on bandwidth selection for stan-
dard kernel classification, and then propose a suitablesimg@htation of boosting for the discrimination
problem. We show that boosting is effective through/anview of estimation in a neighbourhood of,.

This paper is organized as follows. Section 2 analyzes #relatd case of kernel discrimination and
deals with thgoint selection of the smoothing parameters. Section 3 intraglboesting and considers
how it may be adapted for use with kernel density discrinidmatSection 4 makes a connection between
boosting and a multiplicative bias reduction techniquevipresly proposed in kernel density estimation,
and we independently indicate why boosting should reduedids in kernel discrimination. In Section
5 we give some simulation and experimental results whiclstitate the theory, make comparisons of

boosting with simple kernel methods, and investigate the @bsome the parameter selections. A final
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4
section contains some concluding remarks, as well as a @ihgetstanding issues which may inform

future research.

2. Estimating the difference between two densities

In this section we consider the goal of estimating a diffeeslbetween two densities, sayr) = fo(x)—
fi(x). In the case thatr; = 9, this would then lead to the classifier given byz) = signg(x).
The reason for considering this is that it is similar to poegly adopted implementations of kernel
discrimination, and our objective is to indicate the effentthe choice of smoothing parameters when

we estimate thdifferencebetween two densities.

2.1. A L; RISK FUNCTION

We are interested in solutions tgx) = 0 given by 2y such thatf;(z¢) = fa(xg) = f(x0), say. For
simplicity here we suppose that = 7o = 1/2, but we do not require equal sample sizes. Suppose the
same kernel function is used to estimate botli, and fo; moreover let these standard assumptions

hold (see, for example, Wand & Jones, 1995, pp. 19-20):

(i) f}'is continuous and monotone {R-co, —M) U (M,00), M € R; [ (fj’»’)2 < 00;
(i) lim,_.h =0 and lim,_.,.nh = oo;

(i) K is bounded ands (z) = K (—x).

Starting from the usual theory (see Wand & Jones, 1995, pv@¥pbtain

2 2
Eg(z) = fa(x) — fi(x) + p2 (K) (% V() — hzl (x )) +O(h2 +h2)

2
0 {Z (njhj)_l}
j=1 j=1

and
2
Var j(x Z

where, for a real valued functioh R(t) = [ t(x)?dx pux(t) = [2%t(x)dx, and h; is the smoothing

parameter used in the estimation fx). Hence the mean squared error (MSE) of our estimate of the
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point o such thatg (xg) = 0, is:

2
MSE{g(x0)} = AMSE{gmo}—FO{E: }
where
A 2 h% " h% " ? 2 fj(xO)
AMSE {§(z0)} = p2 (K)™ 5 f2 (x0) = 5 fi' (20) +R(K) ), s 2
j=1 79"

is the asymptotic MSE, the usual large sample approximatmmsisting of the leading term in the
expanded MSE. By integrating the pointwise measure in EgugP) we obtain a global measure, the
asymptotic integrated mean squared error:

2
AW%@@%wﬂm%%EQ it ) )Y (n, ©

2 e
2.2. POINTWISE ESTIMATION

If we differentiate Equation (2) with respect tg,: = 1,2 and equate to zero we can solve to obtain:

Wt = flao)/ (Nufi(ao)? = (N0 o) Ny P 1 (o) ) @
W = Flao)/ (Naffw)® = (Naff (o) N7 £ (o) /) ©

where N; = n;u3(K)/R(K). [The solution for one of theh;s will be negative in the case that
7(x0) f4 (x0) > 0; this may give insight into a similar phenomenon noted byl l8alWand (1988).
In this case we can reduce the bias by taking a lafgeand the asymptotic solution which minimizes
the mean-squared error will need to use the next tentht)) in the Taylor series expansion.]
Note that eachh;, ; = 1,2 depends orboth sample sizes; andn,, as well asboth densities and

that they have the following relationship:

o (—naff @)\
ha = he ( n1f1 (zo) ) ©)

Note that, by inspecting the second term in the denomindtiégoation (4), whem is fixed we findh;
increaseswith ny, i.e.whenn, is fixed andny — oo, hy increases tay = {f(zo)/(N1f} (20)2}"/%,
which is the usual asymptotic formula for a single sampleatThe optimal smoothing parameters are
increasingfunctions of the sample size of the complementary group reaynscounter-intuitive at first,

but it happens in this case because the sign of the bias teddlathe sign off” (x).

kdcb4. tex; 23/12/2004; 16:34; p.5



6

2.3. GLOBAL ESTIMATION

If we use a Normal kernel and a Normal plug-in rule for seaestimation to minimize integrated mean
squared error, theh? = 407 /(3n;),j = 1,2; see, for example, Silverman (1986, p. 45). Differentigtin

Equation (3), we thus obtain the equations:

3h°n
4;51 —2h3R3my—1 = 0 7)
1
3h3n
4;52 —2W3h3ngy—1 = 0 (8)
2
where
_ D?*+3V2-6DV D

Qv exp(—5),
with D = (u1 — p2)? andV = o2 + 03.

Although it is possible to find numerical solutions of Eqoas (7) and (8) forh;,i = 1,2, we have
been unable to obtain a simple closed form. So we now give progjmnate solution which gives an
indication of the difference of globdbint estimation. As a first approximation for our joint estimatio
let h? = 40%(1 + a;)/(3n;),j = 1,2. Expanding the resulting equations in a Taylor series.jrand

considering only first order terms we then have an approxrsalution given by:

2/5
o = B2(B1 — 15n7"") ©)

(B1 = 9ni/°)(B2 = 9n?) — 36"/

2/5
ay = — 61(62—15712 ) (10)

(B1 = 9n3/) (B2 = 9n3/") — 3607 "n3”

/> and By = 870?0%71?/ 5. Given two samples, it would be quite straightforward

where3; = 870%0%723
to calculate the sample mean and variances and use the ahoetidas (9, 10) to derive a plug-in
rule more suited to discrimination problems. We note thas¢éhadjustmentsof;) do not tend to zero
as the sample sizes tend to; in fact, if n; = ny then a; do not depend on the sample size. The
largest magnitude ofy; for the casen; = ny is when D = V(5 — 10/2) = 1.838V and the ratio
max o;/ mino; ~ 1.324. The corresponding smoothing parameters will differ frdva independent
case by about 8-10%.

We conclude this section noting that being able to evaldaebtas and variance gf(z) near the

solution g(z¢) = 0 is not the final goal. All these calculations deal with a \eatidiscrepancy rather
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7
than ahorizontal discrepancy betweem, and an estimator of it, sayg, i.e. o — xo. However, in a
small simulation study we did find that the joint pointwiséesion given in Equations (4) and (5) were
close to the paifhy, h2) which minimized the misclassification rate. See Figure lafaglated example

which illustrates the sample size dependence in Equatipmiié the solutions to (7)—(8).

effect of second sample size on first smoothing parameter, n2=c n1

N
o

pointwise, independent choice
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o--

<
o

1.8

al, joint choice

hl
14 1.6

1.2

1.0

f nl=n2

0.8

-4 -2 0 2 4

log(c)

Figure 1. For n; = 50, and samples fromV (0, 4%), N(4, 1) the optimalh; (using the asymptotic equations) is shown for
various criteria, as a function of the sample size= cn: . The points show the values &fi to minimize (over pairshi, hz)

the average (over 20,000 simulations) squared efffotzo) — fg(mo))2 , wherezo = 2.243.

3. A Boosting algorithm for kernel density discrimination

A boosting algorithm (Shapire, 1990) repeatedly calls adkéearner”, which is essentially a crude
classification method)/ times to iteratively classify re-weighted data. The firsigi#ing distribution
is uniform, i.e.w; (i) = 1/n,i = 1,...,n, whilst the mth distribution {w,,, (i),i =1,...,n} with

m € [2,...,M] is determined on the basis of the classification rule, &ay; (z;), resulting from the
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8
(m—1)-th call. The final sequence of decision rulés,(z),m = 1,..., M is summarized into a single
prediction rule which should have superior standards afii@oy.

The weighting distribution is designed to associate morngoitance to currently misclassified data
through somdoss function Consequently, as the number of iterations increases #re o classify’
observations receive an increasing weight. Moreover, lsiimajority vote criterion (Freund, 1995),
such as the sign oE%Zl Om (), is commonly used to combine the ‘weak’ outputs. Finally, vate
that, at present, there is no consolidated theory aboutppisigp rule,i.e. the value of M. This does
not seem a particularly serious drawback because boostinfjen characterized by some correlation
between the training and test error.

Evidently, designing &oostedkernel classifier algorithm involves two main choices:I{g tveighting
strategy,.e. the way to ‘give importance’ to misclassified data; (ii) trersion of boosting. Other issues,
which will affect the accuracy, are: the existence of a kkeséimator and/or a bandwidth selector that
are specifically suitable for boosting.

Concerning the weighting strategy, due to its nonparamatture, kernel discrimination lends itself
to several solutions. Two obvious criteria are: (i) localtlapting the bandwidths; and (ii) locally adapting
the mass of the kernels by associating a weight to each aigervThese correspond to undersmoothing
and increasing the probability mass of kernels, respdygtif@ misclassified data.

A practical consideration can be helpful. Undersmoothiag the tendency to generate artificially
numerous partitions of the feature space, especially it, @sually happens, the data are sparse; in this
case further investigation, to define athhocbandwidth selector, is needed. Instead, varying the mass of
the kernel seems a directly applicable solution. In thig ctiee traditional kernel estimator, that gives all
observations the same mass, corresponds to the weak léarmer= 1.

Concerning an appropriate choice of boosting, we note thiliimplementations of boosting used
discrete decision rules, in our casg,, (z) : R — {—1,1} (Shapire, 1990; Freund & Shapire, 1996),
whilst recently Shapire & Singer (1998) and Friedn®iral. (2000) suggest more efficient continuous

mappings. In particular, Friedmaat al. (2000) propose Real AdaBoosting in which the weak classifier

yields membership probabilities, in our cagg () o pm(z € I1;) = fom(z)/ {flm(:r) + fgm(:z)},
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for a fixed clasdl; . Its loss system gives; a weight proportional to

 {min (p(z; € IIy), p(z; € Iy)) | /*
Vi= {max (p(z; € I01), p(x; € H2))}

if x; is correctly classified, and proportional ¥§~" if x; is misclassified. Besides, it is to be noted

that a continuous strong hypothesis is generated, pregettive analytical advantages of a kernel density
estimate. Because kernel methods estimate densitieseéntordlassify, Real AdaBoost seems the natural
framework for boosting kernel discrimination , whereascoige mappings do not employ the whole
information generated by a kernel discrimination, but dhly resulting sign.

Our pseudocode for Real AdaBoost kernel discriminat®oogtKDC) is given in Algorithm 1.

Algorithm 1 BoostKDC
1. Given{(z;,Y;),i=1,...,n}, initialize wy (i)=1/n, i=1,...,n.
2. Selecth;,j =1,2.
3. Form=1,..., M (the number of boosting iterations

(i) Obtain a weighted kernel estimate using

fim (@)= 3" w’zj(i)K (w ;f) forj =1,2.

i:Y,=j

(i) Calculate

b (2) = 5 108 {pm(2)/ (1~ (@)}
where p,(z) = fom(z) /(fl,m(l') + fz,m(ﬂ«"))

(i) Update:
exp (O (z;)) If Yi=1

W41 (1) = wm (i) X { _
exp (=0 (z;)) if Y;=2

4. Output

H(x _sugn{zcs }

Note thatﬂm(x) does not integrate to 1 even fot = 1, so in effect we are considering; f;(x), with
mj = n;/n, in our estimation. Note also that we do not need to renomadlie weights because we

consider the ratiggg7m(:z)/f1,m(:z) so any normalization constant will cancel.
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10

Considering the accuracy of the method we need to explorevibidittingphenomenon in boosting. A
weak learner overfits data when it concentrates too much ew aifisclassified observatioris. heavily
bases the fitting on them, being unable to correctly clagbigyn. Thus, after a valug/*, consecutive
overfitted decision rulesg -1 (x),da++2 (z) ... can worsen the performance of the final classifier. A
simple and general approach to prevent overfitting is cvatidation: M * is estimated by observing the
corresponding loss function when the boosting algorithsaisied out on a subsample.

However, if a flexible base learner is employed, we would expeall values of\/*. An illuminating
description of this phenomenon is provided by Ridgeway (200n a dataset where a ‘stump’ works
reasonably well, a more complex tree with four terminal rsodeerfits fromM = 2. Here the decision
boundary is efficiently estimated in the first step, the otsteps can only overfit misclassified data
without varying the estimated boundary, so degrading thmeige performance. In order to reduce the

risk of overfitting, a low variance base learner is suggested

... Each stage makes a small, low variance step, sequgntiaibping away at the bias.

Obviously a kernel discrimination is a flexible base learmératever its formulation is. Then, in a first
approximation we can adopt the criterion suggested by Ridg€2000) by significantly oversmoothing,
using as a bandwidth a multiple of the optimal value as obthinom classical methods.

Another regularization strategy, adopted to restrict tagawice inflation due to high values éf,
is to reduce the contribution aof,, (z) to H (x). This philosophy is proposed by Friedman (2001)
for a different boosting algorithm where the contributioheach step is reduced 4% . Observing
experimental evidence, he finds an inverse relation betwdénand the ‘Learning Rate Parameter’
(LRP), and suggests a very low LRP and a very high Friedman can't justify the good practical
performances of this strategy, considering the phenomanbe ‘mysterious’. In Real AdaBoost we can
follow this approach identifying as LRP the exponent of thelyabilities ratio in the loss function. Then,
a strategy could be to replace the valye in step 3(ii) by a valuel /T with 7' > 2. For larger values

of T the less aggressive will be the algorithm, becoming sinidatiscrete AdaBoost &8 — oc.
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4. TheFirst Boosting Step (m = 2)

In this section we firstly point out an an interesting link weén boosting kernel discrimination and
previous work on bias reduction in density estimation. Wsk was totally independent of the boosting
paradigm. Then we derive the bias of the difference estimate) = f;(z) — fo(z), involved in H (z),
at the pointzg such thatf;(zo) = f2(z0) = f(x0), and show that while it is initiallyO (h?)- biased

(standard kernel method), boosting reduces the big(td) in the special case when, = hs.

4.1. RELATIONSHIP TO PREVIOUS WORK

The final classifier output by Algorithm 1 is of the form
M M ;
. . 1 Jom ()
H(x) = S|gn{ (5m(a:)} = sign [ = log {7 .
mzzl mzzl 2 Jim ()
For M = 2 we see the decision boundary is defined by paintuch that

2
Z Im(x) =0

m=1

which is equivalent to

fir S (75) - i S (5)

wy) = <_j}($i)>l/2 Wy = <_]§1(x2-)>1/2
fi(i) fa(xi)

and fj,j = 1,2 are the initial density estimates for the two groups. Thestassification boundary can

where

be seen as the intersection points of two multiplicativengbestimators.

Note that this is very similar to the variable-kernel densitimator of Jonest al. (1995):

r — Xy

Foy=f@) 3 Yt K (557). (1)

Wherefb is the classical estimator with the bandwidthWe can see that Equation (11) is simply the
product of an initial estimate, and a (re-)weighted kerrstineate, with the weights depending on the

first estimate. This is of the same form as the boosted classifin = 2. The idea behind (11) is that
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12
the leading bias infb (z) should cancel with the leading bias ﬁ(mi) and their paper showed that this
was an effective method of nonparametric density estimatio its simplest formb = h. A recent
semiparametric modification of this method was proposedbgset al. (1999).

Di Marzio & Taylor (2004a) showed that kernel densistimatesould be directly boosted by defin-
ing a loss function in terms of a leave-one-out estimate &lgerman, 1986, p. 49), and they established

a link between this version of boosting and the bias-redadichnique of Jonest al. (1995).

4.2. BOOSTING REDUCES THEBIAS

In order to gain some insights into the behaviour of boostiggconsider a population version: this
corresponds to the situation in which there is an infinite amof data, but the smoothing parameter is
bounded away from 0. We examine the weights and classifietedmers which are “weak” in the sense

that our estimate of (z) is given by:
~ 1 T—y .
fjm () o /;K (h—> wjm(y)fi(y)dy forj=1,2.
J J
The first approximation in the Taylor series expansion (Whie use for the initial estimate, when =
1)is

fl@) = f(2) + h*f"(x)/2 (12)

for someh > 0. So the initial classifier then uses

() o 5 {108 fon(e) ~log fra(a)}

L[ [ R@) L RBEE@ BHE 0n L o
‘2Pg{ﬁmﬁ*'wx@ 2wy oM FOM)

Thus atzy we have a bias given by:

h3 f4 (z0) — hi f1 (x0)

which is of orderO(h?).
We then obtain, form = 2
2 1 z—y\ [ foa(y) 2
fm@WX/EK(hl>(n@> Fiw)dy (14
2 1 z—y\ [ fiay) 2
jﬂ@wX/EK(h2>(ﬁ@> Falw)iy (15
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13
By substituting Equation (12) into Equations (14) and (Expanding in a Taylor series and making the

change of variable we eventually obtain an approximatiotouprms of orde?,i = 1,2:

ar ") F (e ()2 I(2))2
1+{2() fil@)fa(z) — (f3()) (fl())}h%

fio (@) = (fi(@)fa(x))"/? + _ _

Afp(x)  Afi(z)fo(z)  8f3(z)  8ff(x)

5 () o

4f2(33)h2}

1+{ V() | f@)fil) (i) (fé(m))2}h§

+

8

Fo2 (@) = (fi(x)fala))'/?

th(z) T h@hE) | 8 | 8

1(x) o
4f1 (ﬂf)hl} '

+

From this we can compute up to terms of ordbégj =1,2:

/ / 2 " "
5y(z) = %l+<h%gh%>{f1<x> fg(:v)} +<h31h%>{ () fz(:v)}}

Ni(z)  folz) H@)  folz)

which gives an updated classifier which usegr) + d2(x). Thus atxy we have bias given by

A1(9(x0))
2

h3 1 (w0) — hifs (o)

8f(wo)

+

/ / 2
As(G(20)) = fi(zo) — fg(:vo))

+ (b~ h3) ( 4f(zo)

If we now seth; = hy we see that\,(§(zo)) = O(h?) so boosting gives bias reduction. That boosting
reduces the bias comes as no surprise, but it is somewhatecontuitive that the bias reduction is
enhanced by taking equal smoothing parameters.

Simple closed form expressions for the variance have eludedut we believe that, in common with

other applications of boosting, the variance will increest@er slowly with M .

5. Numerical and Simulation Experiments

We will not address the issue of automatic bandwidth selecior kernel classification. Even in the
regular (non-boosting) situation, this is not straightfard. Cross-validation could be a possible solution
to finding good pairs(h1, he), but in our simple experiments, the surface often has lodgainma, in
which the loss, given by the number misclassified obsematis a discrete function. However, it is worth
reiterating that the automatic or data-based choices ob#rmg parameter that have been developed for

density estimation (Jones & Signorini, 1997) are unlikelypé optimal in the classification setting.
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Our case studies consist of four simple discrimination |gnmis. The models are: two gaussian cases,
with equal or different variance (M1, M2); a limited suppodse (M3) and a heavy-tailed case (M4). In
particular: M1:= N (0,4%), N (4,12), M2 := N (0,3%), N (4,3%), M3 := N (4,1?) ,exp (2) and
M4 := N (4,1%) ,t(2).

As our loss function we will consider the root mean squaredref the estimatotiy =  : fi(z) =

fg(&?), calculated onB samples with equally sized groups (with = ns):

B (A 2y1/2
RMSE(io)Z{szl(xo’b x(’)} .

B

The reasons for focussing aky are twofold. Firstly, the above risk criterion allows us t@mine the
behaviour of the two contributions: namely the bias andavare of the estimatof,. Secondly, it re-
enforces the fact that the source of inflated error ratesdga@poor estimation of the decision boundaries.
Connections between, and the error rate are further explored in Friedman (1997).

The secondary solutions fary, where they existed, contribute very little to the erroreraand
so were simply ignored for simplicity. Note that in some ca#ige secondary solution was such that

7 (x0) f4 (x0) > 0 which requires special attention; see Equation (13) andigwssion in Section 2.2.
A further potential problem is that, particularly for smelfioice ofh, we could get multiple solutions to
fi(z) = fo(x) in the vicinity of z,. However, for the values of considered here, this never occurred
in any of our simulations.

In our simulation studies two main aspects are exploreduthsaction 5.1 we consider using separate
estimation, a simple benchmark for kernel density disaration. Obviously, a discrimination based on
independent estimations usésindependent estimates which leads to a partitioiRajenerated on the
basis of ther( s as defined above. The performance of a number of curremtagstis are compared. Here
the end is threefold: firstly investigating if there is arirsitor that behaves better than others in classifi-
cation (as opposed to density estimation); secondly, abésh whether the bias-reduction properties of
higher-order bias kernel methods transfer to the estimatia: ; thirdly, benchmark accuracy values are
established for the subsequent analysis. Figure 2 show=ldieonship between the intersection point
and the error rate for the models used in the simulationggears that the intersection point will give
more sensitivity in assessing the performance of our methodsubsections 5.2-5.3 we investigate the

performance of théoostKDC algorithm. In subsection 5.2 we numerically investigate émpirical
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population error rate related to boundary estimate
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Figure 2. Relationship between the error rate and the estimatg dbr the four models considered.

behaviour to check what we formally found fad = 2. In subsection 5.3 the consequences of various
tuning choices of parameters, such as the bandwidths antuthber of iterations to be carried out, are

explored.

5.1. SEPARATE ESTIMATION

We have compared the performances of five estimators: tharlidiscriminant (LD) the classic kernel
estimator (CK) given by Equation (1), two adaptive estimstthe algorithms by Abramson (1982) (AB)
and Jonest al. (1995) (JLN), and finally the jackknifed higher order kerti¢O). JLN was discussed in
Section 4; a brief description of AB and HO follows.

Consider the general formulation

fla)= %; h(lxi)K <3}7L(—;)2) ’

where there is a different bandwidth for every sample eléni2une to verified practical performance and

some optimal analytic properties, a good choice is to take;) proportional tof(a:z-)_l/Q, where f is

a pilot estimator off (Abramson, 1982). This estimator has been closely studiddsame theoretical
drawbacks have been found (Terrell & Scott, 1992; Hall & &ah, 1999); however Abramson’s solution
is still very appealing for its simplicity and effectiverse®A higher order kernel estimator uses a kernel

with order &k > 2. Sincek is the order of bias, there are obvious theoretical reasonsd k > 2.
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Concerning the order of the kernel, there is general agreethat good improvements can often be
obtained withk = 4. One of the principal reasons why they do not have a greasgeus practice

is because they take negative values, so the resultantagstismnot itself a density. In a discrimination

setting, this defect is not particularly serious, becausarg not primarily interested in a density estimate.
In fact, our goal is to determine whethgy(z) > fa(z) for given z. However, other drawbacks, such
as a difficult choice of bandwidth and the poor enhancememtsefisonably sized samples (Marron &
Wand, 1992; Jones & Signorini, 1997), could be still validaimiscrimination framework. Following

Jones & Signorini (1997), we consider the generalizedkait& estimator given by

Fla) = g%f% (x;:)

with
W) = (14 (K) = pa (K) u?) K (u)
Koo ) (M4 (K) — p2 (K)?

whereu; (K) = [2/K(z) dx.

Concerning the implementation details, we have used two wtesions of AB and JLN. This is
because in both cases the second step effects the majoreiédi®m, while the residual bias is slowly
reduced across the successive steps at the expense offeaigniariance inflation. Moreover we have
used a normalized version of JLN.

We have used the simple normal scale rhle- 1.065n~ /> for two reasons. From a population point
of view, we have almost always unimodal symmetric poputestjdhe only exception being the exponen-
tial population that, however, is not particularly concateéd near the boundary. From the estimator’s
point of view, AB and JLN, because of their iterative natwaes robust to the bandwidth selection step,
moreover, higher order kernel theory is not particularlyedeped for bandwidth selection. We use small
sample sizes to indicate the effectiveness of the asynomajuments with real datasets.

The bias, s.d. and RMSE of thig,’s for n; = 50, i« = 1,2, and B = 500 are reported in Table I.
In problem M1 theO(h*)-biased estimators perform drastically better than CK.rédabias reduction
(around 90%) is obtained without a variance inflation. AB dhl exhibit very similar accuracy values,
while HO reduces the bias more modestly (around 51%) bubégltihe smallest variance. In the estima-
tion of problem M2 there is not a bias problem, but AB is aditthore stable than the other estimators,

note that JLN has the smallest bias and the biggest vari&scexpected, LD gives the smallest RMSE
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Table I. Accuracy values for 5 separate estimationsaef such that fi(zo) = fa(zo) with
n; = 50,4 = 1,2. The models for thef; are:M1 N (0,4%),N (4,1*), M2 N (0,3%), N (4,3?),
M3: N (4,1%),exp(2) andM4 N (4,1%) ,¢(2)

M1 M2

LD CK HO AB JLN LD CK HO AB JLN

bias | —1943 -1630 -.0793 -.0174 .01610315 .0033 .0073 .0101 .0011

sd. .3055 .2354 .2332 2346 .2390.3116 .5443 5349 5183 .5457

RMSE | .3620 .2863 .2463 2353  .2396.3132 .5443 5350 .5184 5457

M3 M4

LD CK HO AB JLN LD CK HO AB JLN

bias 4570 .0148 .0553 .0713 .0865.0685 .0899 .1355 .1069 .1184

s.d. .1598 .1603 .1583 1686  .1736.2471 .1718 .1812 .1854 .1909

RMSE | .4841 .1610 1677 1831  .1940.2564 .1939 .2263 .2140 .2246

since it is optimal for such distributions. Curiously, iropfem M3 and M4 CK gives the best results. In
problem M3, AB and JLN perform so poorly because their piltireation isO(h) biased near zero,
HO performs similarly to CK. In problem M4, due to the spaessnof the data in the tails of the
distribution, larger sample sizes are required in order é&bareffective the properties @#(h*)-biased
estimators. However, it should be noted that in the modelsaimMBM4 there is a nearly symmetric pattern
in a wide neighbourhood of,. Obviously LD performs very poorly when the population eages are

quite different.

5.2. Two BOOSTINGITERATIONS

In this subsection we have implement®dostKDC using the standard kernel density estimator, given
by Equation (1), and the normal scale rule to seleet 1.066n /. This very simple automatic choice,
which is well-known to oversmooth, should make clear theafbf boosting and should satisfy the

requirements of a “weak learner” especially since the nbisoale rule tends to oversmooth for non-
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normal data. Our objective was to observe the reduction as, theoretically derived in Section 4.2,
and to confirm that a common smoothing parametar € h, = h) was asymptotically superior to
separate smoothing parameters. So two bandwidth selesttiategies were adopted: theparateand
thecommorstrategy. TwdBoostKDC estimators result: one using separate bandwidths, withstiep a
classical kernel (CK), and second step referred to as€2kBecond estimator where the same bandwidth
hxkp = (h1 X h2)1/2 is employed to estimate botfy and f; (1KBc¢ and 2KBc). We have chosen the
selectorh i p for its simplicity and because it will again weaken the legifoy oversmoothing. However,
in the light of theory of Section 4 we note that the bandwidtlestion task should not be crucial for
2KB¢, provided that the unique bandwidth employed is able torobthe effects of higher order bias
terms. Actually, we observed numerical evidence to suph@thypothesis.

The numerical experiment consists of the estimation of nsobE—M4 and the three sample sizes:

50, 100, and 500. The accuracy values of CK, 2KBKB ¢ and 2KBc are contained in Table II.

Table II. Bias of (i) the classical estimator (CK) and thea®t boosting step dBoostKDC
with separate (2KB) bandwidths and (iij) common bandwidth selection with on€E%) and

two iterations (2KB:) of BoostKDC. Different sample sizes for each of models M1-M4.

M1 M2

n; CK 2KBs 1KBc 2KBc CK 2KBs 1KBc 2KBc

50 | —.1630 —.1103 —.3973 —.1588 .0003 —.0084 .0062 .0014
100 | —.1040 —.0530 —.3057 —.0948 | —.0219 —.0358 —.0174 —.0268
200 | —.0904 —.0469 —.2437 —.0646 .0165 .0154 .0261 .0164
500 | —.0651 —.0265 —.1756 —.0323 .0252 .0275 .0263 .0285
M3 M4

n; CK 2KBs 1KBc 2KBc CK 2KBs 1KBc 2KBc

50 0152  —.0306 —.0408 .0044 .0899 —.0359 —.0583 .0001

100 .0027 —.0351 —.0500 —.0082 .0888 —.0374 —.0609 —.0017

200 .0033 —.0248 —.0417 —.0039 .0921 —.0224 —.0518 .0041

500 0058 —.0135 —.0291 .0009 0873 —.0232 —.0469 —.0020
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We expect that data from Problem M1 generate heavily biaseth&es becausg, and f, exhibit
quite different curvatures neary. However, in correspondence of each sample size our bgosijo-
rithms are clearly less biased than CK. Comparing boostiggrighms, we note that 2KBincreases its
accuracy values faster than 2KBisn increases. Specifically, comparing the bias magnitudes-at0,
we have—80% for 2KB ¢ and —75% for 2KB s; while for the sp respectively—65% versus—59%.

In problem M4, because of the presence of a heavily tailetlildigion, the bias of CK does not
decrease for large samples, boosting shows an even morednabiity to reduce it. Here 2K8is
substantially unbiased, while 2KBis decidedly less biased than CK, in fact the bias ratioQate@ for
n = 50 and0.27 for n = 500. Moreover, forn = 500 2KB ¢ appears more stable than CK.

Concerning models M2 and M3, in the previous section we eeskthe substantial unbiasedness of
CKfor n = 50 because of the perfect or approximate symmetry exhibitadnge As a consequence, we
expect our boosting will not help. Anyway, for this latteasen M2 and M3 constitute a good benchmark
in order to measure the overfitting of our two-step algorghm

Overall, comparing Tables | and Il, we can see that boostwes chave a bias-reduction property
which, in some cases, mimics those of the higher-order keme¢hods. On the whole, if boosting CK
works well, then the use of a common bandwidth seems prdér&inally, an impressive feature of

BoostKDC is that it appears robust to non-regular shapes of the piquoga

5.3. MOREBOOSTINGITERATIONS

In this subsection we explore the performance of boostingnumore than two iterations are carried
out. According to the boosting principles we expect anahiirogressive bias reduction and a modest
variance inflation. We expect that after a number of steps tiance and bias will start to increase and
from around there we will observe overfitting.

Our objective is to explore the way in which the optimal cleoaf smoothing parameter varies as
the number of iterations increases, and to investigate hawynboosting iterations are effective. As
noted, boosting cannot work for problem M2 since the distidns are symmetric and so there is no
bias. In this equal variance Normal setting a linear disgrént o = (27 + #2)/2 is optimal and this

could be approximately achieved by using very lafgeSo we present results for M1, M3 and M4. For
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each distribution we simulate 500 samples with= ns = 50 and for common smoothing parameters
(h1 = hs) in an appropriate range we calculatg for m = 1,2,.... Based on these 500 numbers we
then estimate the bias and variance which would be achi@rezhth combination ofr and h. Results
for data model M1 are shown in Figure 3, in which we show theariance trade-off. We can see that
the bias continues to reduce by boosting for 4 iterationsarerrand then a larger value bfcan be used
to reduce the variance. In terms of RMSE, there is little iompment beyond 7 iterations, after which

these values are almost entirely dominated by the variamogonent. The RMSE results for models M3

M1 Boosting: Bias vs m, h M1 Boosting: SDvs m, h
o
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Figure 3. Effect of number of boosting iterations and the smoothingpeeter on bias and variance of estimationcef L eft:
Bias; Right: Standard deviation form = 1,...,13 as a function ofh. The points, which are shown on both panels, are the

optimal (overh) root mean squared error values for each choicewof

and M4 are shown in Figure 4 and the behaviour is somewhalesimieach: as the number of boosting
iterations increases the optimal choice of smoothing patanalso increases. Whereas for model M1 the
RMSE corresponding to this optimal choice of h continueddordase slowly up ta» = 13 iterations,

for models M3 and M4 the optimal choices of werem = 2 andm = 5, respectively.
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M3 Boosting: RMSE vs m,h M4 Boosting: RMSE vs m,h
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Figure 4. Effect of number of boosting iterations and the smoothintapeter on the root mean squared error (RMSE) of

estimation ofz, . Points show minima for eacld . L eft: Model M3; Right: Model M4 as a function of..

6. Conclusions

The goal of this paper was to consider some theoretical tspad solutions in kernel density discrim-
ination. Concerning the algorithifBoostKDC, we have demonstrated the utility of boosting in kernel
density classification both theoretically and for finite gé&s. However, obtaining explicit formulae for
the variance has proved elusive, and it is not theoreticddisr the way in which the bias reduction works
for more than two steps.

In many situations, the intersection poing will not be unique, and, since the estimation at such
xo is critical, adaptive smoothing parameters are likely tdfgrgen much better than global smoothing
parameters. In particular, jf{’(zo) f5 (zo) > 0 then a much larger smoothing parameter is required; see
Equation (13). In practical applications, it would be neeeg to obtain a rule to enable an appropriate
data-based choice of smoothing parameéteand a regularization technique (appropriate choicé/of
should also be a matter for concern. In general, it appeatgtie larger the choice a¥/, the larger is
the optimal smoothing parameter.

A further issue which requires more investigation is therbew Rate Parametdr/T' (= 1/2 in step

3(ii)) of our boosting algorithm. We have usdd = 2, but a larger value makes the learning process
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slower, reducing the overfitting phenomenon. In fact, valoET" a little larger than2 often generate
much more efficient estimates. A further method to amekoraterfitting would be to use shrinkage
(Buhlman & Yu, 2003). A final methodological point is estahing if the use of boosting weights
{wim,i =1,...,n,m = 1,..., M} could be incorporated into the calculation of the bandwidth
achieving a step-adaptive bandwidth.

The simple nature oBoostKDC allows a straightforward extension to the multidimensiorese
which is examined by Di Marzio & Taylor (2004b) who show théeefiveness of boosting in reducing

the error rate on both simulated and real data.

Acknowledgement: We are grateful to two anonymous referees for detailed atpdfut€omments that
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