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Abstract

A bootstrap based method to construct 1−α simultaneous confidence intervals
for relative effects in the one-way layout is presented. This procedure takes
the stochastic correlation between the test statistics into account and results
in narrower simultaneous confidence intervals than the application of the Bon-
ferroni correction. Instead of using the bootstrap distribution of a maximum
statistic, the coverage of the confidence intervals for the individual comparisons
are adjusted iteratively until the overall confidence level is reached. Empiri-
cal coverage and power estimates of the introduced procedure for many-to-one
comparisons are presented and compared with asymptotic procedures based on
the multivariate normal distribution.
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1 Introduction

Consider a control treatment labeled k and test treatments labeled 1, 2, . . . , k−1
where k ≥ 3. Let {xij (1 ≤ j ≤ ni)} be a random sample of size ni from
treatment i (1 ≤ i ≤ k). We assume that the xij ’s come from a continuous
distribution Fi (1 ≤ i ≤ k). Relative effects can be used (e.g. Munzel and
Hothorn, 2001) to estimate effects between the control and test treatments

p̂ik =
1
ni

(
Rk −

nk + 1
2

)
(1 ≤ i ≤ k − 1) (1)
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where Rk denotes the mean rank of the sample xk of the pooled and ranked
samples xi and xk.

Munzel and Hothorn (2001) presented an asymptotic approach for relative
effects for two types of hypothesis. Their procedures use the multivariate nor-
mal distribution as the asymptotic distribution of a maximum statistic where
the exact critical values can be derived using the algorithm of Genz (1992).
The straightforward bootstrap version can markedly loose power in the case of
skewed and contaminated distributions as observed in their simulation study.
Here, a different approach is presented to construct simultaneous confidence in-
tervals for relative effects for comparisons of k− 1 treatments against a control.

2 Multivariate Distribution of Relative Effects

Using complete rerandomization to estimate a multivariate distribution as pro-
posed by Miller (1981) is not appropriate for single step procedures as pointed
out by Petrondas and Gabriel (1983). We use the following bootstrap algorithm
to estimate the multivariate distribution of the relative effects.

Algorithm 1

1. Let x∗i be a bootstrap sample from xi ∀ i = 1, . . . , k.

2. Calculate and store p̂∗ik ∀ i = 1, . . . , k − 1.

3. Repeat B times.

The whole scheme results in B points in a k−1 dimensional surface representing
the joint distribution of p̂∗ =

(
p̂∗1k, p̂∗2k, . . . , p̂∗(k−1)k

)
. The k − 1 dimensional

sampling cumulative distribution function is estimated by

Ĥ (t) =
1
B

B∑
b=1

{
1 if p̂

∗(b)
1k ≤ t1, . . . , p̂

∗(b)
ik ≤ ti, . . . , p̂

∗(b)
(k−1)k ≤ tk−1

0 otherwise

}
(2)

where the superscript (b) refers to the bth bootstrap replication. The esti-
mate of the cumulative distribution function Ĥik for the individual p̂∗ik (1 ≤ i ≤ k − 1)
can be derived from Ĥ(t) to be

Ĥik (ti) =
1
B

B∑
b=1

{
1 if p̂

∗(b)
1k < ∞, . . . , p̂

∗(b)
ik ≤ ti, . . . , p̂

∗(b)
(k−1)k < ∞

0 otherwise

}
. (3)

The main idea of this method is to select a k− 1 dimensional subspace with
probability 1− α from Ĥ(t) by solving the equation

P

(
t
(α

2 )
i ≤ p̂∗ik ≤ t

(1−α
2 )

i ∀ i = 1, . . . , k − 1
)

= 1− α (4)
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for t(
α
2 ) =

(
t
(α

2 )
1 , . . . , t

(α
2 )

k−1

)
and t(1−

α
2 ) =

(
t
(1−α

2 )
1 , . . . , t

(1−α
2 )

k−1

)
. By adding

up all 2k−1 corners, the equation above can be denoted as

Ĝ
(
t(

α
2 ), t(1−

α
2 )

)
=

∑
ei=t

(α
2 )

i or t
(1−α

2 )
i

(−1)z(e1,...,ek−1) Ĥ (e1, . . . , ek−1) = 1− α

(5)

where z (e1, . . . , ek−1) represents the number of ei that equal t
(1−α

2 )
i . Solving

this non-linear equation for 2 (k − 1) parameter of interest yields at least k − 1
solutions.

3 Numerical Root Finding

The balanced tail probability criteria and the balanced coverage probability
as mentioned by Tu and Zhou (2000) are used to find a unique solution for
equation 4. This leads to a system of non-linear equations

P

(
t
(α

2 )
i ≤ p̂∗ik ≤ t

(1−α
2 )

i ∀ i = 1, . . . , k − 1
)

= 1− α (6)

P

(
t
(α

2 )
i ≤ p̂∗ik

)
= P

(
t
(1−α

2 )
i ≥ p̂∗ik

)
= P

(
t
(α

2 )
j ≤ p̂∗jk

)
= P

(
t
(1−α

2 )
j ≥ p̂∗jk

)
where 1 ≤ i < j ≤ k − 1.

Solving this system of non-linear equations for t(
α
2 ) and t(1−

α
2 ) results in

k − 1 lower and upper bounds of the k − 1 simultaneous bootstrap confidence
intervals.

For numerical root finding of this system of non-linear equations, the well
known bisection method for numerical root finding in single variable non-linear
equations can be applied. The bisection method uses two initial guesses αe

and αs which represent the type I errors for the k − 1 simultaneous confidence
intervals. Let αs = α and αe = α

k−1 , the Bonferroni corrected alpha level,
which is a conservative upper bound. The Bonferroni inequality is discussed in
standard text books, e.g. Hochberg and Tamhane (1987) and Hsu (1996). The
k − 1 α levels for the individual simultaneous confidence intervals are adjusted
iteratively until the specified overall 1− α level is reached.

The following algorithm shows how to get the k − 1 dimensional upper and
lower bounds for the simultaneous bootstrap confidence intervals at level 1−α.

Algorithm 2

1. Let αs = α, αe = α/ (k − 1) and αm = 1
2 (αs + αe).
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2. Get confidence limits of the k − 1 individual inferences using αs, αe and
αm as per-comparison error rates. This can be done by calculation of
lower

(
αs

2 , αe

2 , αm

2

)
and upper

(
1− αs

2 , 1− αe

2 , 1− αm

2

)
quantiles for all

k−1 relative effects p̂ik using corresponding the one-dimensional marginal
bootstrap distributions Ĥik (1 ≤ i ≤ k − 1) .

• t
(αs

2 )
i = Ĥ−1

ik

(
αs

2

)
and t

(1−αs
2 )

i = Ĥ−1
ik

(
1− αs

2

)
.

• t
(αe

2 )
i = Ĥ−1

ik

(
αe

2

)
and t

(1−αe
2 )

i = Ĥ−1
ik

(
1− αe

2

)
.

• t
(αm

2 )
i = Ĥ−1

ik

(
αm

2

)
and t

(1−αm
2 )

i = Ĥ−1
ik

(
1− αm

2

)
.

3. Calculate the experimental coverage of the k−1 comparisons under αs, αe

and αm used as per-comparison error rates for the individual inferences.

• Ps = Ĝ
(
t(

αs
2 ), t(1−

αs
2 )

)
.

• Pe = Ĝ
(
t(

αe
2 ), t(1−

αe
2 )

)
.

• Pm = Ĝ
(
t(

αm
2 ), t(1−

αm
2 )

)
.

4. If PsPm < 0, let αe = αm. If PePm < 0, let αs = αm.

5. Let αm = 1
2 (αs + αe).

6. Repeat 2 to 5 until αm lies within a chosen tolerance.

The simultaneous confidence intervals for the relative effects pik at level 1 − α
equal

pik ∈
[
t
(αm

2 )
i ; t(

1−αm
2 )

i

]
(1 ≤ i ≤ k − 1) . (7)

4 Simulations

Simulations were performed to study the behavior of the introduced method
of iterative simultaneously adjusted alpha (ISAA) in the many-to-one design.
The Behrens-Fisher type procedure with Satterthwaite t-approximation and the
Steel type procedures (Munzel and Hothorn, 2001) were used for comparison
as implemented in the R package npmc Version 1.0 (Helms and Munzel, 2001).
With the nominal experimental error rate α level being 0.05 (i.e. experimental
coverage equals 0.95) the case of k − 1 = 3 is used for simplicity.

Coverage probabilities and power estimations are reported for the general
unbalanced design for different sample sizes. Normal distributions, log-normal
distributions, uniform distributions and contaminated normal distributions with
10% one-sided or two-sided outliers were used. The term contam-one refers to
a N(0,1) distribution with 10% outliers taken from a N(3,1) distribution. The
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term contam-two refers to a N(0,1) distribution with 10% outliers taken from a
N(-3,1) distribution and 10% outliers taken from a N(3,1) distribution.

For each parameter setting with preselected sample sizes, 10000 simulation
runs were carried out. All-pairs power estimates in the case k − 1 = 3 for
one selected expected value profile (0, 0, δ, 0) are also reported. Within each
simulation four pseudo random samples from pre-specified distributions were
generated. For the introduced method, 5000 bootstrap replications were used.

To ensure a fair comparison between the methods, coverage and power esti-
mations were calculated on basis of the same simulation runs. All simulations
were performed in R.

4.1 Experimentalwise Coverage and All-Pairs Power

In the balanced design with variance homogeneity the coverage probabilities of
the ISAA procedure are similar to the coverage probabilities of the Behrens-
Fisher type procedure which is more liberal than the Steel type procedure.

The Steel type procedure becomes markedly liberal and conservative in the
balanced design with variance heterogeneity and in the general unbalanced de-
sign. The coverage probabilities of the Behrens-Fisher type procedure remains
nearly constant and the ISAA procedure turns out to be more liberal than the
Behrens-Fisher type procedure.

In the balanced design with variance homogeneity the ISAA procedure pro-
vides higher power than the two asymptotic procedures in case of contaminated
normal distributions. For normal, uniform and log-normal distributions, the
highest power was observed with the Behrens-Fisher type procedure where the
ISAA procedure is still more powerful than the Steel type procedure.

In the balanced design with variance heterogeneity and in the general un-
balanced design the ISAA procedure is superior to the Behrens-Fisher type
procedure in terms of power. In designs with lower variability in the control
group than in the treatment groups, the Steel type procedure has the highest
power among the three procedures considered.

4.2 Per Comparison Coverage for Individual Inferences

Standard deviations were used to measure the balance of coverage in individual
pairs while the experimental error is controlled. Both asymptotic procedures are
superior in terms of balance of coverage of individual inferences than the ISAA
procedure using standard normal (0.0007 with the Steel type procedure, 0.008
with the Behrens-Fisher type procedure and 0.0012 with the ISAA procedure)
and log-normal distributed data (0.0007 with the Steel type procedure and the
Behrens-Fisher type and 0.0012 with the ISAA procedure). In case of uniform
distributed data, the ISAA procedure turned out to be better in terms balance
of coverage in individual pairs than both asymptotic procedures (0.0014 with
the Steel type procedure, 0.0011 with the Behrens-Fisher type procedure and
0.0009 with the ISAA procedure).
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Table 1: Empirical Experimentalwise Coverage and All-Pairs Power Using a
Nominal Experimental Error Rate of 0.05

Parameter Distribution Sample ISAA Behrens- Steel type
size procedure Fisher type procedure

T C procedure
Experimental- Normal
wise coverage Std. dev.

T C
1 1 25 25 0.9436 0.9424 0.9512
1 3 25 25 0.9476 0.9522 0.9564
3 1 25 25 0.9211 0.9410 0.9154
1 1 25 50 0.9412 0.9444 0.9520
1 3 25 50 0.9503 0.9509 0.9817
3 1 25 50 0.9203 0.9407 0.8560

Uniform 25 25 0.9445 0.9438 0.9532
Log-normal 25 25 0.9423 0.9430 0.9507
contam.one 25 25 0.9432 0.9433 0.9518
contam.two 25 25 0.9444 0.9447 0.9525

All-pairs power Normal
Std. dev.
T C
1 1 25 25 0.8614 0.8676 0.8465
1 3 25 25 0.2394 0.2263 0.2232
3 1 25 25 0.2394 0.1991 0.2548
1 1 25 50 0.9419 0.9407 0.9354
1 3 25 50 0.4016 0.3998 0.2456
3 1 25 50 0.2526 0.2074 0.3676

Uniform 25 25 0.9143 0.9234 0.9057
Log-normal 25 25 0.8648 0.8679 0.8487
contam.one 25 25 0.6950 0.6949 0.6681
contam.two 25 25 0.4967 0.4932 0.4724

T...Treatment; C....Control
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Table 2: Emperical Per-Comparison Coverage for Individual Inferences Using a
Nominal Experimental Error Rate of 0.05 and a Sample Size of 25 per Group

Distribution Comparison Coverage ISAA Behrens- Steel type
procedure Fisher type procedure

procedure
Log-normal T1 vs. C Individual 0.9773 0.9779 0.9811

Lower tail 0.4889 0.4890 0.4909
Upper tail 0.4884 0.4889 0.4902

T2 vs. C Individual 0.9796 0.9793 0.9825
Lower tail 0.4903 0.4904 0.4923
Upper tail 0.4893 0.4889 0.4902

T3 vs. C Individual 0.9785 0.9786 0.9822
Lower tail 0.4874 0.4876 0.4892
Upper tail 0.4911 0.4910 0.4930

Standard T1 vs. C Individual 0.9810 0.9804 0.9837
normal Lower tail 0.4896 0.4894 0.4912

Upper tail 0.4914 0.4910 0.4925
T2 vs. C Individual 0.9787 0.9793 0.9825

Lower tail 0.4894 0.4895 0.4914
Upper tail 0.4893 0.4898 0.4911

T3 vs. C Individual 0.9799 0.9789 0.9824
Lower tail 0.4904 0.4905 0.4917
Upper tail 0.4895 0.4884 0.4907

Uniform T1 vs. C Individual 0.9777 0.9777 0.9808
Lower tail 0.4893 0.4891 0.4907
Upper tail 0.4884 0.4886 0.4901

T2 vs. C Individual 0.9793 0.9797 0.9828
Lower tail 0.4898 0.4904 0.4918
Upper tail 0.4895 0.4893 0.4910

T3 vs. C Individual 0.9793 0.9796 0.9834
Lower tail 0.4892 0.4897 0.4913
Upper tail 0.4901 0.4899 0.4921

T...Treatment; C...Control
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5 Example

We use the data from Watson et al. (1987) discussed in Edwards and Berry
(1987) as example to illustrate the presented approach. The full data set can
be found in the appendix.

Dr. Watson studied the effects of different perfusates on the permeability
of capillary walls in cats. A measure of this called the capillary filtration co-
efficient (CFC), reflects the rate at which liquid is taken up by the tissue via
the capillaries. The four treatments (the perfusates) considered are composed
of ingredients A, B, and I in the following way

1. A
2. A + B
3. A + I
4. A + B + I.

We used the treatment with the single ingredient A as control and 100,000
bootstrap replications for the ISAA method. The results were summarized in
the following table

Table 3: Summary of Relative Effects of Different Perfusates
Comparison Relative 95% Simultaneous CI’s

effect for relative effects
A + B versus A 0.800 0.638 to 0.929
A + I versus A 0.692 0.501 to 0.863
A + B + I versus A 0.924 0.823 to 0.991
CI ... confidence interval

The probability that the capillary filtration coefficients of ingredient A were
tendentiously larger than those of the combination of ingredients A+B was
0.800 (95% CI: 0.638 to 0.929). Contrariwise, the probability that the capillary
filtration coefficients of ingredients A+B were tendentiously larger than those
of ingredient A was 1-0.800=0.200. The increased probability of tendentiously
larger capillary filtration coefficients with ingredient A than with ingredients
A+B was statistically significant at the 5% level, because the 95% confidence
interval did not contain the value 0.5. With a probability of 0.692 (95% CI: 0.501
to 0.863), the CFC’s were tendentiously larger with ingredient A than those of
the combination of ingredients A+I. This effect was statistically significant at
the 5% level, because the corresponding 95% confidence interval did not contain
the value 0.5. With a probability of 0.924 (95% CI: 0.823 to 0.991), the CFC’s
were tendentiously larger with ingredient A than those of the combination of
ingredients A+B+I. This effect was also statistically significant at the 5% level,
because the corresponding 95% confidence interval did not contain the value 0.5.
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6 Discussion

Summarizing, in case of contaminated normal distributions the ISAA procedure
is favorable if a moderate liberality can be tolerated. In addition, we did not
observe a big loss in power of our bootstrap procedure in case of skewed and
contaminated distribution as observed in the simulations of Munzel and Hothorn
(2001) using the straightforward bootstrap version of the maximum statistic.

The extension of this results for all-pairwise comparisons is still to be studied.
The asymptotic properties of the ISAA procedure presented and the generaliza-
tion of these properties for the class of U-statistics are also subject to further
research.

Acknowledgement: The authors are grateful to Werner Engl, Ph. D. of
the Department of Biostatistics, Baxter AG, for his criticism of this note. We
also would like to thank the Statistics and Computing for publishing this article
and giving helpful comments during the process of writing it.
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Appendix

Function in R for many-to-one-comaprisons of relative effects in the one-way
layout using the ISAA method.

######################################################################
# Program name: releff.R
# Last modification Date: 2005-07-01
# Author: Martin J. Wolfsegger & Thomas Jaki
# Program Version: 0.1
# R Version: >=2.0.0
#
# Notes: function to calculate simultaneous confidence intervals for
# relative effects for many-to-one comparisons in the one-way
# layout by resampling with iteratively adjusted alpha
#
# Input:
#
# x ... a numeric vector of responses
# g ... a vector encoded as factor containing the class-levels;
# the lowest factor level will be used as control for
# many-to-one comparisons
# nsample ... number of bootstrap replications; default=1E4
# alpha ... nominal experimental error rate; default=0.05
# tol ... absolute error tolerance for numerical root finding;
# default=1E-6
#
# Output:
#
# list containing of
# estimate ... data frame of relative effects
# conf.int ... data frame of simultaneous confidence intervals for
# relative effects
#
# Version history: Inital release
######################################################################

# start of function
releff <- function(x, g, nsample=1E4, alpha=0.05, tol=1E-6){

# function to select lower and upper bounds by ISAA method
"subspace" <- function (G, alpha, tol) {

# multivariate cumulative distribution function
"CDFMult" <- function(G, border) {

m <- ncol(G)
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sim <- nrow(G)
for (i in 1:m) {G <- subset(G, G[, i] <= border[i])}
return(nrow(G)/sim)

}

# function to identify 2^m corners of m dimensional interval
"corners" <- function(lb, ub) {

m <- length(lb)
limit <- matrix(nrow = 2^m, ncol = m)
index <- 2^m
for (i in 1:m) {

value <- lb[i]
index <- index/2
count <- 1
for (j in 1:(2^m)) {

if (count == index + 1) {
ifelse(value == lb[i],

value <- ub[i],
value <- lb[i])

count <- 1
}
limit[j, i] <- value
count <- count + 1

}
}
return(limit)

}

# function to identify algebraic sign for adding up 2^m corners
"sign" <- function(limit, lb) {return((-1)^sum(lb == limit))}

# function to calculate probability of m dimensional interval
"interval" <- function(G, lb, ub) {

m <- ncol(G)
limit <- corners(lb = lb, ub = ub)
prob <- 0
for (i in 1:(2^m)) {

prob <- prob + sign(limit = limit[i, ], lb = lb) *
CDFMult(G = G, border = limit[i, ])

}
return(prob)

}

# define objects
G <- as.data.frame(G)
m <- ncol(G)
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alpha.s <- alpha/2
alpha.e <- alpha/(2 * m)
alpha.m <- (alpha.s + alpha.e)/2
alpha.h <- alpha.m + 1
lb <- list(e = array(1:m), s = array(1:m), m = array(1:m))
ub <- list(e = array(1:m), s = array(1:m), m = array(1:m))

# iterative root finding
while (abs(alpha.h - alpha.m) > tol) {

alpha.h <- alpha.m
for (i in 1:m) {

lb$e[i] <- as.real(quantile(G[, i], alpha.e))
lb$s[i] <- as.real(quantile(G[, i], alpha.s))
lb$m[i] <- as.real(quantile(G[, i], alpha.m))
ub$e[i] <- as.real(quantile(G[, i], 1 - alpha.e))
ub$s[i] <- as.real(quantile(G[, i], 1 - alpha.s))
ub$m[i] <- as.real(quantile(G[, i], 1 - alpha.m))

}
P.e <- interval(G = G, lb = lb$e, ub = ub$e) - (1 - alpha)
P.s <- interval(G = G, lb = lb$s, ub = ub$s) - (1 - alpha)
P.m <- interval(G = G, lb = lb$m, ub = ub$m) - (1 - alpha)
if (P.s * P.m < 0) {alpha.e <- alpha.m}
if (P.e * P.m < 0) {alpha.s <- alpha.m}
alpha.m <- (alpha.s + alpha.e)/2

}
return(list(lb = lb$m, ub = ub$m))

}

# function to calculate relative effects
"effects" <- function(x, n){

m <- length(x)-n
x <- rank(x)
return(1/m*(mean(x[(m+1):(n+m)])-1/2*(n+1)))

}

# define ojects
k <- nlevels(g)
varnames <- levels(g)
rnames <- paste(varnames[2:k], "-", varnames[1], sep = "")
ssizes <- as.vector(tapply(x, g, length))
G <- matrix(nrow=nsample, ncol=k-1)

# calculate relative effects
observed <- tapply(x, g, sample, replace=FALSE)
observed <- lapply(observed[2:k], append, observed[[1]])
estimate <- as.matrix(sapply(observed, effects, ssizes[1]))
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# generate joint bootstrap distribution of relative effects
for (i in 1:nsample){

bootsamp <- tapply(x, g, sample, replace=TRUE)
bootsamp <- lapply(bootsamp[2:k], append, bootsamp[[1]])
G[i,] <- sapply(bootsamp, effects, ssizes[1])

}

# get bounds
bounds <- subspace(G, alpha=alpha, tol=tol)

# define output objects
conf.int <- data.frame(lower=as.matrix(bounds$lb),

upper=as.matrix(bounds$ub))
estimate <- data.frame(estimate)
rownames(conf.int) <- rnames
rownames(estimate) <- rnames
return(list(estimate=estimate, conf.int=conf.int))

}
# end of function

## example from Watson et al. (1987)
cfc <- c(0.0156, 0.0118, 0.0130, 0.0082, 0.0209, 0.0222, 0.0158, 0.0119,

0.0126, 0.0200, 0.0195, 0.0185, 0.0123, 0.0162, 0.0144, 0.0100,
0.0143, 0.0277, 0.0116, 0.0342, 0.0200, 0.0219, 0.0195, 0.0178,
0.0181, 0.0177, 0.0088, 0.0089, 0.0094, 0.0100, 0.0104, 0.0105,
0.0106, 0.0106, 0.0107, 0.0110, 0.0112, 0.0113, 0.0118, 0.0119,
0.0130, 0.0132, 0.0140, 0.0140, 0.0141, 0.0145, 0.0146, 0.0148,
0.0150, 0.0191, 0.0100, 0.0102, 0.0109, 0.0115, 0.0118, 0.0120,
0.0124, 0.0124, 0.0129, 0.0131, 0.0132, 0.0135, 0.0140, 0.0144,
0.0151, 0.0154, 0.0155, 0.0162, 0.0197, 0.0211, 0.0061, 0.0063,
0.0070, 0.0073, 0.0075, 0.0078, 0.0081, 0.0081, 0.0086, 0.0086,
0.0086, 0.0087, 0.0088, 0.0091, 0.0092, 0.0093, 0.0099, 0.0100,
0.0102, 0.0102, 0.0106, 0.0108, 0.0108, 0.0109, 0.0109, 0.0109,
0.0111, 0.0115, 0.0116, 0.0125, 0.0135, 0.0140, 0.0148)

trt <- as.factor(c(rep(1,26), rep(2,24), rep(3,20), rep(4,33)))

# set seed for bootstrap resampling
set.seed(12345)

# function call and output
res <- releff(x=cfc, g=trt, nsample=1E5)
print(round(res$estimate, 3))
print(round(res$conf.int, 3))
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