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Abstract 

In this paper we present decomposable 
priors, a family of priors over structure 
and parameters of tree belief nets for 
which Bayesian learning with complete 
observations is tractable, in the sense 
that the posterior is also decomposable 
and can be completely determined ana
lytically in polynomial time. This fol
lows from two main results: First, we 
show that factored distributions over 
spanning trees in a graph can be inte
grated in closed form. Second, we ex
amine priors over tree parameters and 
show that a set of assumptions similar 
to (Heckerman and al., 1995) constrain 
the tree parameter priors to be a com
pactly parametrized product of Dirich
let distributions. Besides allowing for 
exact Bayesian learning, these results 
permit us to formulate a new class of 
tractable latent variable models in which 
the likelihood of a data point is com
puted through an ensemble average over 
tree structures. 

1 Introduction 

In the framework of graphical models, tree dis
tributions stand out by their special computa
tional advantages. Inference and sampling from 
a tree are linear in the number of variables 
n. While it is known that for many classes of 
graphical models, as for example junction trees 
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with cliquewidth > 2, the problem of learn
ing the optimal structure is NP-hard, for trees 
this problem is solvable in only quadratic time. 
The latter result is due to [Chow and Liu, 1968) 
who present an algorithm for finding the struc
ture and parameters of the tree that best fits 
a given distribution in the Maximum Likelihood 
(ML) framework. This algorithm was general
ized to Maximum A-Posteriori (MAP) learning 
[MeiUi-Predoviciu, 1999, Heckerman et al., 1995). 

In this paper we present another remarkable prop
erty of tree graphical models: the fact that 
Bayesian learning for a certain class of priors, 
called decomposable1 priors, is also tractable. Es
sentially, decomposable priors are priors that can 
be represented as a product of factors correspond
ing to the edges of the tree. We show that if 
the prior is decomposable and we have a data 
set consisting of N complete i. i.d. observations, 
then the posterior distribution over all tree struc
tures and parameters is also decomposable, is 
expressible with a quadratic number of param
eters that can be computed exactly from data in 
O(n3 + n2 N) operations. Evaluating the poste
rior for a given tree takes then 0( n) time. The 
first two results come from the fact that, with the 
standard assumptions of likelihood equivalence, 
parameter independence and parameter modular
ity, the prior for tree parameters is constrained 
to be a product of Dirichlet distributions whose 
parameters satisfy a set of consistency relations. 
The last result, i.e. the possibility of computing 
the posterior exactly, is a consequence of the fact 

1The term decomposable prior will refer here to a prior 
over a family of graphical models. It should not be confused 
with a decomposable model which is a distribution over V. 
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that a factored distribution over tree structures 
can be integrated exactly, using a theorem from 
combinatorics called the Matrix tree theorem. 

The paper starts by defining tree distributions 
and the problem of Bayesian learning in section 
2; it presents decomposable priors over tree struc
tures and parameters in sections 3 and 4; the 
pieces of the puzzle are put together in section 
5 where Bayesian learning is described; the next 
section, 6 exploits a different set of possibilities 
opened by our tractability results: it defines a 
new model, ensembles of trees, and shows that 
it can be learned by gradient ascent in the ML 
framework; section 7 contains the final remarks. 

2 Tree distributions and the Bayesian 
learning problem 

In this section we introduce the tree model and 
the notation that will be used throughout the pa
per. Let V = { 1, .. . , n} denote the set of vari
ables of interest. Let rv be the number of values 
of variable v E V, rMAX = maxrv, Xv a partic
ular value of v, and x an assignment to all the 
variables in V. 

According to the graphical model paradigm, each 
variable is viewed as a vertex of a graph. We shall 
call a graph that has no cycles a tree2 and shall 
denote by E its edge set. If the tree is connected, 
e.g. it spans all the nodes in V,  it is called a 
spanning tree. 

Now we define a probability distribution T that is 
conformal with a tree. Let us denote by Tuv and 

Tv the marginals ofT: 

L T(x) 
x:u=xu,v=xv 

L T(x). 
x:v=xv 

Let deg v be the degree of vertex v, e.g. the num
ber of edges incident to v E V. Then, the distri
bution T is conformal with the tree (V, E) if it 
can be factored as: 

T(x) = fluvEE Tuv(x u, Xv) (1) 
fl vEV Tv(xv )degv-1 

2ln the graph theory literature, our definition corre
sponds to a forest. The connected components of a forest 
are called trees. 

The distribution itself will be called a tree when 
no confusion is possible. An equivalent represen
tation for T in terms of conditional probabilities 
is 

T(x) = II Tvlpa(v) (x v lxpa(v) ) (2) 
vEV 

where pa( v) represents the parent of v in the thus 
directed tree or the empty set if v is the root of 
a connected component. The form (2) can be ob
tained from ( 1) by choosing an arbitrary root in 
each connected component and recursively substi
tuting T;,pa(vl by Tvlpa(v) starting from the root. pa(v) 
We denote such a directed tree structure by E. 
The directed tree representation has the advan
tage of having independent parameters. The total 
number of free parameters in either representation 
lS 

L rurv - L (degv- l)r v. 
uvEE vEV 

In the forthcoming we shall use both representa
tions. Which representation we consider will be 
clear from the context in all cases of relevance. 

We now turn to the problem of learning trees 
in the Bayesian framework. In this frame
work, one assumes a prior Po(T) over the set 
Tv of all tree distributions defined on the do
main V. Learning from a dataset of complete 
and independently generated observations 1J = 

{ x1 , x2, . .. xN} means finding the posterior dis
tribution P(TID) over the set of models Tv. The 
solution to this problem is given by the well known 
Bayes' formula 

N 
P(TID) ex: Po(T) II T(xt) (3) 

t=l 

Practically however, Bayesian learning poses a 
number of significant challenges. First, one needs 
to define a distribution over the space of all mod
els to play the role of the prior. Such a distri
bution is composed of a discrete distribution over 
the set of tree structures P0(E) and a probability 
density over the continuous set of tree parameters 
P0(BIE) . Here B consists of all the parameters of 

T in some representation. 

Po(T) = Po(E)Po(BIE) (4) 

The discrete space of all tree structures over V has 
a super-exponential number of trees (order nn-2) 
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which makes defining a distribution over such a 
space a non-trivial task. Moreover, the second 
factor in the above formula requires us to define 
a prior distribution for the tree parameters for 
each possible structure E. Thus, the first practi
cal requirement is to have a tractable representa
tion for the prior. Even with a tractable represen
tation, the explicit computation of the posterior 
P(TIV) is usually intractable due to the difficulty 
of computing the normalization constant in (3) . 
Therefore common practices in Bayesian learn
ing are Maximum A-Posteriori (MAP) estimation 
and approximations of the posterior around its 
peaks. An exception from this situation are the 
so-called conjugate priors. If a given (graphical) 
model has a family of conjugate priors P then for 
Po E P the posterior is also in P. The property of 
having conjugate priors is characteristic of the ex
ponential family of distributions [DeGroot, 1975]. 
In this paper we set out to find the conjugate prior 
for the family of tree models Tv. 
According to ( 4), to define a prior over Tv one 
needs to define a prior over tree structures and 
a prior for tree parameters, given the structure. 
While it is not hard to see that for a fixed struc
ture E a tree distribution over discrete variables 
is an exponential model and thus has conjugate 
priors, realizing the same fact when E also varies 
is by far less obvious and constitutes the main 
contribution of this paper. In the next section we 
establish the core theorem that allows us to do so. 

3 Decomposable priors over tree 
structures 

A decomposable distribution P over spanning tree 
structures E depends on a set of parameters f3uv = 
f3vu � 0; f3vv = 0, U, V E V by 

1 P(E) = Z II f3uv· (5) 
uvEE 

In the above, Z is the normalization constant 

Z = L II f3uv· (6) 
E uvEE 

Note that in the distribution (6), each parameter 
f3uv can be interpreted as the weight of edge uv, 
and the probability of a structure E is the product 

of the weights of all edges in E. Although this 
distribution is expressible in a product form, it 
does not imply that the edges' occurrences in E 
are independent, since the set E as a whole is 
constrained to be a tree structure. 

This prior is simple and compactly parametrized, 
but to be completely defined one needs to evaluate 
the normalization constant Z. Using formula (6) 
is intractable, but the following theorems develop 
a practical and exact method for it. 

Theorem 1 (Matrix Tree Theorem) 

[West, 1996] Let G = (V, E) be a multigraph and 
denote by auv = avu the number of undirected 
edges between vertices u and v. Then the number 
of all spanning trees ofG is given by IAuvl( -1)u+v 

the value of the determinant obtained from the fol
lowing matrix by removing row u and column v3. 

degv1 -a12 -a13 -al,n 
-a21 degv2 -a23 -a2,n 

A (7) 

-an,l -an,2 -an,3 degvn 

In the following, we shall use the simplifying no
tation below to refer to a set of real values each 
corresponding to a pair of variables in V 

a = {auv, u, v E V, uf v} (8) 

In addition, a � 0 will mean that auv � 0, auv E a 
and ab will denote { auvbuv, u, v E V, u f v} for 
a, b defined as above. By extending the Matrix 
Tree theorem to continuous valued A and letting 
the weights (3 play the role of a in (7), one can 
prove 

Theorem 2 [Jaakkola et al., 2000] Let P(E) be 
a distribution over spanning tree structures de
fined by {5,6). Then the normalization constant Z 
is equal to IQ ((3) I with Q ((3) being the first ( n- 1) 
lines and columns of the matrix Q(f3) given by: 

- - ( ) {-f3uv 1 � U < V � n Quv(f3) = Qvu f3 = 
2:::�'=1 f3v•v 1 � u = v � n 

(9) 
3Note that A as a whole is a singular matrix. 
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This shows that summing over the distribu
tion of all spanning trees, when this distribu
tion factors according to the trees' edges, can 
be done in closed form by computing the value 
of an order n - 1 determinant, operation that 
involves 0( n3) operations. The proof of the
orem 2 as well as the other proofs appear in 
[MeiHi and Jaakkola, 2000]. 

In the following it will be useful to think of Q(f3) 
and Q ({3) as functions mapping a set of parame
ters f3 each corresponding to a pair of variables in 
V into a matrix the ways described by theorem 2. 

The support graph. The factored form of the 
decomposable distribution makes it easy to test 
whether a given structure has non-zero proba
bility. If all the f3 parameters are strictly posi
tive, then every tree structure is possible. Oth
erwise, the structures that will never appear are 
the structures containing one or more zero-weight 
edges. We denote by Esup the set of edges uv 
for which f3uv > 0. The graph csup = (V, Esup) 
is called the support graph of P(E). If enough 
edges have zero weights, then csup may be discon
nected. In the following we shall assume that the 
support graph is connected, leaving the discussion 
of the general case for [Meila and Jaakkola, 2000]. 

In the remainder of this section we develop a num
ber of consequences of theorem 2. 

Computing averages under a decompos
able distribution A decomposable distribution 
is a (curved) [Murray and Rice, 1993] exponential 
model and ln Z represents its cumulant generat
ing function or partition function; many quanti
ties of interest, like averages under P(E) can be 
expressed as derivatives of the partition function. 
The next series of results exemplifies these possi
bilities. 

Lemma 3 [Jaakkola et al., 2000] Let Z be given 
by equation (6) with f3 2:: 0, Q(f3) be given by the
orem 2, Q-1 be the inverse of Q and M(f3) be a 
symmetric matrix with 0 diagonal defined by 

Mvv 0 

Then the partial derivative of Z with respect to 

f3uv is 
8Z 

{) 
= Muv ({3) JQ ({3) J. f3uv (11) 

We shall denote by < f > p the average of a 
function f under distribution P. The following 
lemma states a useful fact about averages of addi
tive functions. An additive function f(E) satisfies 

J(E) = L fuv (12) 
uvEE 

Lemma 4 [Jaakkola et al., 2000] Let P(E), Q 
and M be given by (5), theorem 2 and (10) re
spectively and f be an additive function of the 
structure E. Then the average of f under P is 

< J(E) >p L f(E)P(E) (13) 
E 

L fuvf3uvMuv(f3) (14) 
u<v 
traceQ(ff3)Q-1 (f3) (15) 

In ( 15), f is an overloaded notation representing 
the set {fuv, u, v  E V} in the sense of (8). A 
similar but more obvious result holds for func
tions g(E) that are multiplicative, i.e. g(E) 
I1uvEE guv· For such functions we obtain 

IQ(f3g) J < g(E) >p = 

IQ(f3) 1 
(16) 

4 Decomposable priors over tree 
parameters 

Now we examine priors over tree parameters, 
with the goal of finding conditions under which 
the priors can be tractably represented. The 
assumptions we make are similar to those 
of [Heckerman et al., 1995] (called HGC in the 
forthcoming) and so will be some of the results. 
In addition, we will show that in the case of trees 
these assumptions are also sufficient for tractable 
representation and learning. 

In the following, without loss of generality, we 
will consider that both the directed and the undi
rected tree representation are in the probability ta
ble parametrizations, and we denote respectively 

Bv(j) 
Buv( ij) 

Bulv ( iJj) 

Tv(j) 
Tuv ( ij) 
Tulv(iJj) 

(17) 
(18) 
(19) 
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and BE = {Buv(ij) , uv E E, i = 1, ... ru, j 
1, . . .  rv}, BE {Oulv(ij) ,  vu E E, i 
1, . .. ru, j 1, . .. rv} U {Ov(j) , vroot, j 
1 . . .  r v}. We will assume by convention that if 
v E V has no parent then Bvlpa(v) = Bv and that 
pa( v) takes one value only. 

First let us keep the distribution T fixed. As 
shown in section 2 this distribution can be rep
resented either by (1) or by (2), the latter repre
sentation having a distinct form for each possible 
choice of the root(s) . These representations how
ever will assign exactly the same probability T(x) 
to an observation x, so there is no way to dis
tinguish between them from the point of view of 
the data. Thus we shall require that the corre
sponding parameter sets are also the same from 
the point of view of the prior. This leads to the 
assumption of Likelihood equivalence: 

Assumption 1 (Likelihood equivalence) 
Let T be a tree distribution having structure E, 
E a directed tree structure obtained from E and 
BE, BE the respective parameters of T .  Denote by 
I�� the magnitude of the Jacobian of the trans-BeE 

- Be-formation BE-t BE. Then Po(OE(OE)IE)IBe!l = 

Po(BEIE). 

This assumption states that in all possible 
parametrizations consistent with a given struc
ture E the prior will assign the same probabil
ity mass to any given (measurable) subset in pa
rameter space. Thus, the prior treats likelihood 
equivalent parametrizations as indistinguishable. 

Likelihood equivalence has somewhat compressed 
the space that we have to define Po on, but it 
still leaves us with the task of assigning a sepa
rate prior for each (undirected) tree structure. We 
now transform the problem into one of assigning a 
prior for each of the possible tree edges by making 
the following additional assumptions: 

Assumption 2 (Parameter independence) 
For any structure E and any vu E E, j, j' = 

1, . . . r v the parameter vectors Bulv ( . lj) and 
Bulv(. lj') are independent under Po. The param
eters Bulv (.IJ) are also independent under (Po) of 
the parameter sets Bu'lv' ( .lj') corresponding to any 
other edge in E. 

Assumption 3 (Parameter modularity) 
The prior Po(BulviE) is the same for all structures 
E that contain the edge vu. 

In other words, parameter independence states 
that the prior over parameters factors into a prod
uct over the edges; by stating in addition that the 
prior for an edge is the same for all tree structures 
that contain that edge, we have effectively re
moved the dependence on E from the parameters 
prior. From now on, we will write Po(OE) , Po(OE) 
instead of P0(0EIE) and Po(BEIE) respectively. 
We shall call a prior Po satisfying assumptions 1, 
2 and 3 a decomposable prior for tree parameters. 
If both P0(E) and P0(0) are decomposable, the 
resulting prior over tree distribution is also called 
decomposable. As we shall see next, the same as
sumptions also constrain the functional form the 
prior can have. Again we assume that csup is 
connected. 

Assumption 4 (Connectivity) The support 
graph of Po(E) is connected. 

Theorem 5 Let P(T) = P(E)P(OE) be a de
composable distribution over tree parameters, for 
which the support graph of P(E) is connected and 
P(OE) > 0 for BE > 0. Then for any tree T in 
any directed representation E, BE: 

(20) 
vEV 

i=1 
where D zs the Dirichlet distribution and 
N�u ( ij) > 0 are its parameters. The numbers 
N�v(ij) = N�u(ji) are defined for all edges uv 
with f3uv > 0 and satisfy 

ru 
L N�v(ij) N�(j) (22) 
i=1 

rv 
LN�(j) N' (23) 
j=1 

The Dirichlet prior is defined over the parameter 
space 81, . . . Or, C2:::::j Bj = 1, Bj > O, j = 1, . . . r)  of 
a distribution over a discrete set by 

1 r N'-1 D(01, • • •  0r; N{, . . .  N:) = -Z ITO/ (24) 
D j=1 
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The numbers N{, . . .  N: > 0 are the hyper
parameters of the Dirichlet prior, their sum is de
noted by N'. The normalization constant ZD has 
the form 

Tij=1 r(Nj) 
ZD = r(N') (25) 

with r being the Euler function f(p) 
fooo xP-le-xdx. 

The above line of reasoning parallels the one in 
HGC. The assumptions 1 - 3 are the special
ization for tree structures of their homonyms in 
HGC. But unlike the case of general Bayes nets, 
where the prior is in general specified by an ex
ponential number of parameters, in the case of 
tree graphical models the prior can be specified 
by a set of only O(n2rlrAx) "pairwise marginal 
counts" N�v ( ij). This is possible because in the 
space of tree structures the likelihood equivalence 
classes can be explicitly represented and the num
ber of possible parents for a variable is no larger 
than one. Therefore, not only the tree belief net 
itself, but also any decomposable distribution over 
trees can be completely defined in terms of pair
wise interactions4• 

The same properties allow us to replace a fourth 
assumption made by HGC, namely structure pos
sibility, with the weaker assumption 4. Note that 
if all f3uv > 0, then all tree structures are possi
ble, csup is connected and our theorem 5 is an 
exact rewrite of the similar result in HGC. This 
last assumption is not essential for our results. 
In [Meila and Jaakkola, 2000] we give a general 
formulation of the above theorem that dispenses 
with the connectivity assumption. 

To summarize, starting with the assumptions 1-3 
and aiming mainly at obtaining a tractable and 
consistent prior representation, we have arrived 
at the conclusion that the prior has to be a prod
uct of Dirichlet distributions. This demonstrates 
that our initial requirement is a drastic one; the 
restrictions on the prior should be understood as 
restrictions on the type of prior information about 
the model we are allowed to have. A Dirichlet 
distribution means essentially that we have only 
knowledge about the values of the parameters' 

4It is important to note that the parameters N�v(ij) 
cannot be set arbitrarily. They have to be proportional to 
the marginals of some distribution over V. 

means. This issue is further developed in HGC to 
which we refer the reader. On the computational 
side however, the advantage is enormous, since 
with the Dirichlet distribution Bayesian learning 
is possible in closed form. The next section will 
exploit exactly this property to find the posterior 
over tree distributions. 

5 Bayesian learning with 
decomposable priors 

From equations (1, 2) we know that the likelihood 
can be written as a product over tree edges. The
orem 5 proves the same thing about the decom
posable prior. It follows then that the posterior 
P(TIV) in equation (3) can also be factored over 
the edges of T. We shall see that in addition 
P(TID) is decomposable and the normalization 
constant P(V) = Zv can be computed tractably. 

We shall use the following important property of 
a Dirichlet distribution: Assume a discrete vari
able z that takes values 1 . . .  r with probabilities 
() = ( B1, . .. Br) , a prior for () that is Dirichlet with 
parameters N'(1) , . . .  N'(r) and a set Dz of N in
dependent observations for z, such that the value 
j appears N(j) times in Dz. Then, the posterior 
of the parameters () is (see e.g. [DeGroot, 1975]) 
also Dirichlet with parameters N' (j) + N (j). 
This result applies immediately to the posterior 
of a tree. Let us denote by Nuv(ij) and Nv(j) 
the sufficient statistics of the sample D, i.e. the 
number of times u = i, v = j and respectively 
v = j in D. Then, from the above and theorem 5 
we obtain 

r., 

P(TID) ex IIfiuv II II D(Bvlu(-li) ; Nuv(i.)+N�v(i.)) 

(26) 
Hence, P(TID) is also a decomposable distribu
tion over tree structures, and its parameters are 
available directly from the parameters of the prior 
and the sufficient statistics of the sample. It re
mains to show how to compute the normalization 
constant in (3). For this, we will first keep the 
structure E fixed and integrate over the param
eters ()E in some directed structure E obtained 
from E. 

j P(TID)dBFJ = (27) 
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ru f 
cxiif3uv 

II_ II 

D(Bviu(-li) ; Nuv(i.) + N�v(i.))dBviu 
uvEE uvEE t=l 

r(N') rv r(N�(j) )  
f(N' + N) }J }]_ f(Nv(j) + N�(j) ) 

. II (.1 
IIru 

IIrv r(Nuv(ij) + N�v(ij)) tJuv f(N' (. ") )  uvEE i=l j=l uv ZJ 

This quantity represents the marginal posterior 
P(EID); as required by likelihood equivalence, it 
is the same no matter how E is obtained from E. 
Note also that P(EID) decomposes into a product 
over the edges in E preceded by a factor indepen
dent of E. We define the weights Wuv as 

W. = ft ft f(Nuv(ij) + N�v(ij)) (2S) uv 
i=lj=l f(N�v(ij) )  

Now we can apply theorem 2 to the weights (3W 
obtaining 

Zv = L P(EID) = IQ((JW)I (29) 
E 

This completely defines the posterior distribution 
P(TID). The posterior probability of any tree 
distribution T can be now computed analytically 
based on equations (26) and (29) while (27) and 
(29) give the posterior of any tree structure E. 
Note that the weights Wuv are never 0, so that 
the support graph of the posterior distribution 
coincides with the a sup of the prior. 

To compute the posterior representation from the 
data set we need O(n2rttAxN) operations to ob
tain the sufficient statistics and to evaluate the 
edge weights Wuv and an additional O(n3) to 
evaluate the normalization constant Zv for a to
tal of O(n2rttAxN + n3) operations. Computing 
the posterior of a tree (or tree structure) is now 
O(nrMAx) . 
Furthermore, to perform Bayesian averaging in 
computing the probability of a new data point x 
one has to evaluate 

P(xiD) = 1 T(x)P(TID)dT (30) 

Just as before, we can first integrate the above ex
pression over the parameters for a fixed structure 

E and them perform a summation over structures. 
The former step yields 

1 
II 

Tvipa(v)(xvlxpa(v))P(BEID)dBE (31) 
vEV 

N' � N II [N;a(v)(Xpa(v)) + Npa(v)(Xpa(v)) ) · vEV 

Wuv (x) 

Again, we note that the result includes a struc
ture independent factor w0(x) and a product of 
factors corresponding to the tree edges Wuv ( x) . 
Also, we note that the final result is invariant to 
the particular orientation E of E. Summing now 
over tree structures is a mere exercise; we get 

P(xiD) = 
"'"""' wo(x) II w z- f3uvWuv(x) 
E 1J uvEE 
wo(x) IQ(f3w(x)) I 

IQ(f3W)I (32) 

The averaging involves computing the edge 
weights w(x) and evaluating a determinant, so 
that the total computation is 0( n3) , a relatively 
large value compared to the O(n) demands of the 
ML and MAP tree likelihood. 

The result generalizes readily to the Bayesian av
eraging of the probability of a set of more than 
one independent observations. 

6 Ensembles of trees 

In this section we consider a new probability 
model, called ensembles of tre es that naturally 
extends the tree graphical model. To best de
scribe this model, imagine that a tree distribu
tion is defined in two steps: first a set of param
eters B and second the structure E. Because E 
is not known at the time when we choose B, we 
need to specify a parameter set that is sufficiently 
large, so that for any E we can afterwards extract 
from B the actual set of parameters BE. This can 
be done easily via the same idea that allowed us 
to define a decomposable prior in section 4; we 
choose B = {Buv(ij) ,  u, v E V, i = 1, . . .  ru, j = 
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1, ... rv} U {Bv(j), v E V, j = 1, . . .  rv} such that 

r,. 

L Buv(ij) Bv(j) V u E V (33) 
i=l 

1 Vv E V 

Now, changing the notation of equation (1) to em
phasize the dependence on B and E, and rearrang
ing the factors, we write the tree distribution as 

The ensemble of trees R(x) is a weighted average 
of all the possible tree distributions sharing the 
same parameters B. To ensure tractability, the 
weights will represent a decomposable distribu
tion over structures as in (5). Again, we assume 
that only spanning trees are possible. 

R(x) = L P(E)T(xiB, E) 
E 

If we use the notations 

Wuv(x) 

wo(x) 

Buv(xu, Xv) 
Bu ( Xu){)v ( Xv) 
IJ 

Bv(xv) 
vEV 

(35) 

(36) 

(37) 

for the edge dependent and respectively edge inde
pendent factors in (34) then, by theorem 2, R(x) 
has an alternative, tractable form 

IQ(w,6)1 R(x) = wo(x) 
IQ(,B)I (38) 

The ensemble of trees can be seen as a mix
ture model whose components are the trees over 
V parametrized by B. The weighted averaging 
corresponds then to the presence of a hidden 
variable z taking as many values as there are 
structures, each with probability Pr[ z = E] = 
P(E). Therefore, the generalized EM algorithm 
[Dempster et al., 1977] can be considered as a 
possibility for learning the parameters. We shall 
not pursue this issue here for lack of space, but 
we will mention the following: the E step of the 
algorithm is tractable and straightforward given 

equation (35); the M-step however cannot be per
formed exactly and it is not known if the expres
sion to be maximized has a unique local maxi
mum. 

But if we assume a set of complete observations D 
as before, the likelihood of this data set, denoted 
by R(D), can be optimized w.r.t. the parame
ters B and ,6 by gradient ascent. We shall denote 
by Muv (,6) and Muv (,6w(xt)) respectively the val
ues in equation (10) that correspond to Q(,6) and 
Q(,Bw(xt)). Using lemma 3 we obtain 

8 log R(D) 
8,6uv 

8 log R(V) 
8Buv ( ij) 

8 log R(D) 
{j()v (j) 

t Wuv(xt)Muv(xt) - N Muv(,6)(39) 
t=l IQ(,Bw(xt)) l 

Bu(��:(j)t:xtEt=
�uv(xt) (40) 

(}v�j) t:EY -v�V 
Wvv1(x)Mvv1(xt)] 

(41) 

Note that the parameters B need to satisfy (33) 
and therefore we will need to perform a con
strained maximization of R(D) using e.g. La
grange multipliers and that this method will 
converge to only a local optimum of the log
likelihood. 

7 Discussion 

This paper has presented decomposable priors, a 
class of priors over tree structures and parame
ters that makes exact Bayesian learning tractable. 
A decomposable prior is expressed as a product 
of factors corresponding to the tree's edges. The 
same edge contributes the same amount in ev
ery tree structure that includes it. This property 
allows (1) representing the prior by order n2 pa
rameters and (2) using the Matrix tree theorem 
to integrate the prior in closed form. 

It is remarkable that for trees, the stan
dard assumptions of HGC are sufficient to 
ensure tractability. In fact, these assump
tions are no stronger than the assumptions of 
functional independence implicit in the original 
Chow and Liu algorithm [Chow and Liu, 1968, 
MeiU1-Predoviciu, 1999]. 
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But it is worth highlighting again that these as
sumptions are restrictive, in the sense of drasti
cally limiting the type of prior knowledge that 
can be used efficiently in the Bayesian learning of 
trees. Knowledge that violates assumptions 1-3 is 
e.g. knowledge that two edges are more likely to 
appear simultaneously than separately in a tree 
structure, or knowledge that two edges have the 
same parameters. This problem is not specific to 
trees, but to Bayes nets in general. Therefore, 
a worthwhile area of future research is discover
ing tractable methods to deal with such type of 
knowledge in the case of tree structures or in the 
case of general Bayes nets. 

We have also introduced ensembles of trees as a 
tractable extension to the tree model. Ensembles 
of trees can be learned in the ML framework. Ex
ploring the properties of the new model and of 
the learning algorithm itself are areas of continu
ing research. 
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