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Abstract

A new regularization method for regression models is proposed. The
criterion to be minimized contains a penalty term which explicitly links
strength of penalization to the correlation between predictors. As the elas-
tic net, the method encourages a grouping effect where strongly correlated
predictors tend to be in or out of the model together. A boosted version of
the penalized estimator, which is based on a new boosting method, allows
to select variables. Real world data and simulations show that the method
compares well to competing regularization techniques. In settings where
the number of predictors is smaller than the number of observations it
frequently performs better than competitors, in high dimensional settings
prediction measures favor the elastic net while accuracy of estimation and
stability of variable selection favors the newly proposed method.

Keywords: Correlation based estimator, Boosting, Variable selection, Elas-
tic net, Lasso, Penalization.

1 Introduction

We focus on the usual linear regression model

y = β0 + xTβββ + ε

where xT = (x1, . . . , xp) is a vector of covariates and ε is a noise variable with
E(ε) = 0. In particular for high dimensional predictors x, the ordinary least
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squares (OLS) estimate may not be unique. Moreover, it is not the first choice if
the aim is prediction. Alternative estimators like the ridge regression estimator
(Hoerl & Kennard (1970)) do much better and are unique for an appropriately
chosen shrinkage parameter.

Within the last decade many alternative shrinkage estimators have been pro-
posed, in particular the lasso (Tibshirani (1996)) which imposes an L1-penalty
on the regression coefficients. By using a non-convex penalty it does automatic
variable selection in contrast to the ridge regression estimator which only shrinks
the estimates towards zero. More recently, Zou & Hastie (2005) proposed the
elastic net as an alternative procedure which handles deficiencies of lasso and
ridge regression by combining the L2 and L1 penalty. One motivation Zou &
Hastie (2005) give for the elastic net is its property to include groups of variables
which are highly correlated. If variables are highly correlated, as for example gene
expression in microarray data, the lasso selects only one of the group whereas the
elastic net catches ”all the big fish”, meaning that it selects the whole group.

In this paper an alternative regularization procedure is proposed which aims
at the selection of groups of correlated variables. In the simpler version it is based
on a penalty that explicitly uses correlation between variables as weights. In the
extended version boosting techniques are used for groups of variables.

2 Penalized regression linked to correlation

Let the data be given by (yi,xi), i = 1, . . . , n, with yi denoting the response and
xi

T = (xi1, . . . , xip) denoting the predictor. For simplicity the response and the
covariates are considered as centered. Regularized estimates of the parameter
vector βββT = (β1, . . . , βp) may be obtained by minimizing the penalized least
squares criterion

PLS =
n∑

i=1

|yi − xi
Tβββ|2 + P (βββ) (1)

where P (βββ) is a specific penalty term. Common penalties are of the bridge
penalty type (Frank & Friedman (1993), Fu (1998))

P (βββ) = λ

P∑
j=1

|βj|γ, γ > 0,

where λ is a tuning parameter. For γ = 2 one obtains ridge regression (Hoerl &
Kennard (1970)), for γ = 1 the lasso (Tibshirani (1996)). Penalties with γ < 1
have also been called soft thresholding (Donoho & Johnstone (1995), Klinger
(1998)). The more recently proposed elastic net (Zou & Hastie (2005)) is based
on a combination of the ridge penalty and the lasso by using a penalty term with
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two tuning parameters λ1, λ2 given by

P (βββ) = λ1

P∑
j=1

|βj|+ λ2

P∑
j=1

β2
j .

The method inherits properties of the lasso by doing variable selection, but in
situations where ridge performs better (n > p and high correlation between pre-
dictors) it relies on the ridge type penalty. The elastic net tends to include highly
correlated predictors rather then selecting one of them.

2.1 The correlation based estimator

The method proposed here utilizes the correlation between predictors explicitly
in the penalty term. Coefficients which correspond to pairs of covariates are
weighted according to their marginal correlation. The correlation based penalty
is given by

Pc(βββ) = λ

p−1∑
i=1

∑
j>i

{
(βi − βj)

2

1− %ij

+
(βi + βj)

2

1 + %ij

}

= 2λ

p−1∑
i=1

∑
j>i

β2
i − 2%ijβiβj + β2

j

1− %2
ij

(2)

where %ij denotes the (empirical) correlation between the ith and the jth predic-
tor. It is designed in a way so that for strong positive correlation (%ij → 1) the
first term becomes dominant having the effect that estimates for βi, βj are similar

(β̂i ≈ β̂j). For strong negative correlation (%ij → −1) the second term becomes

dominant and β̂i will be close to −β̂j. The effect is grouping, highly correlated

effects show comparable values of estimates (|β̂i| ≈ |β̂j|) with the sign being de-
termined by positive or negative correlation. If the predictors are uncorrelated
(%ij = 0) one obtains (up to a constant) the ridge penalty Pc(βββ) ∝ λ

∑
β2

i . Con-
sequently, for weakly correlated data the performance is quite close to the ridge
regression estimator. Therefore, as in the elastic net ridge regression is a limiting
case.

A nice feature of the penalty (2) is that it may be given as a simple quadratic
form which allows to give the resulting estimator in closed form. One obtains

Pc(βββ) = λβββTWβββ

where W is a matrix that is determined by the correlations %ij, i, j = 1, . . . , p
(for details on W see next section). For %2

ij 6= 1, λ > 0, an explicit solution
to the penalized least squares problem (1) is obtained by the correlation based
estimator

β̂̂β̂βc = (XTX + λW)−1XTy, (3)
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where XT = (x1, . . . ,xn) is the design matrix and y collects the responses, yT =
(y1, . . . , yn).

2.2 Structure of the penalty

The grouping effect strongly depends on the convexity of the penalty term. The
correlation based penalty may be seen as a combination of two penalties, Pc(βββ) =
Pc,1(βββ) + Pc,2(βββ) where

Pc,1(βββ) = λ
∑

i

∑
j>i

(βi − βj)
2

1− %ij

,

Pc,2(βββ) = λ
∑

i

∑
j>i

(βi + βj)
2

1 + %ij

.

The first term becomes influential for positively correlated predictors whereas the
latter term is influential for negatively correlated predictors. Neither Pc,1(.) nor
Pc,2(.) is strictly convex. But (for λ > 0 and %2

ij 6= 1 if i 6= j) the combination

Pc(β) is strictly convex. A nice consequence is that the estimate β̂ĉβĉβc exists and is
unique.

Proposition 1:
Assume that λ > 0 and %2

ij 6= 1 for i 6= j. Then one obtains

(1) Pc(βββ) is strictly convex.

(2) The estimate β̂̂β̂βc exists and is unique.

(3) Pc(βββ) may be given as a quadratic form Pc(βββ) = λβββTWβββ where W = (wij)
is determined by

wij =

{
2
∑

s6=i
1

1−%2
is
, i = j,

−2
%ij

1−%2
ij
, i 6= j

(4)

(for proof see Appendix). Thus for λ > 0 the correlation based estimate shares
the property of existence and uniqueness with the ridge estimator. In contrast,
the lasso estimate does not necessarily have a unique solution.

Figure 1 shows the two-dimensional contour plots for selected values of %.
The constraint region for the ridge penalty is the disk β2

1 + β2
2 ≤ c, for the

Lasso one obtains the diamond |β1| + |β2| ≤ c. Since the diamond has distinct
corners, if a solution occurs at a corner then one parameter βj is equal to zero.
It is seen that contours for ridge and Lasso are highly symmetric, x1 = 0 is an
axis of symmetry as well as x2 = 0. In contrast, the constrained region for the
correlation based estimator is an ellipsoid which becomes narrower with increasing
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Figure 1: Top panel: Two-dimensional contour plots of penalized least squares

with % = 0 (solid line), LASSO penalty (dashed line) and elastic net with α = 0.5
(dotted line). Mid panel: Two-dimensional contour plots of correlation based

penalty for three amounts of positive correlation: % = 0.5 (solid line), % = 0.8
(dashed line), and % = 0.99 (dotted line). Bottom panel: Two-dimensional con-

tour plots of correlation based penalty for three amounts of negative correlation:

% = −0.5 (solid line), % = −0.8 (dashed line), and % = −0.99 (dotted line)

correlation. Spectral decomposition of Pc(β) yields eigenvectors (1, 1) and (1,−1)
with corresponding eigenvalues λ/(1− %) and λ/(1 + %). Thus for % > 0 the first
eigenvalue becomes dominant while for % < 0 it is the second eigenvalue that
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determines the orientation of the ellipsoid. When computing the penalized least
squares criterion the effect is that for % > 0 estimates are preferred for which the
components β̂1, β̂2 are similar, for % < 0 similarity of β̂1 and −β̂2 is preferred.
This may be seen from the contour plots, since for % > 0 the increase in Pc(β) is
slower when moving into the direction of the first eigenvector (1, 1) than into the
orthogonal direction (1,−1). For % < 0 the eigenvalue corresponding to (1,−1)
is larger and therefore parameter values where β1 is close to −β2 are preferred.
Thus the use of penalty Pc implies shrinkage with the strength of shrinkage being
determined by λ, but shrinkage differs from ridge shrinkage which occurs for the
special case %ij = 0.

2.3 Grouping effect: the extreme case

A regression method exhibits the grouping effect if the regression coefficients of a
group of highly correlated variables tend to be equal (up to a change of sign). For
the generic penalization method (1) it has been shown that for identical covariate
vectors xi = xj one obtains β̂i = β̂j, if P (βββ) is strictly convex (see Lemma 2 of
Zou & Hastie (2005)). However, for the correlation based estimator

β̂̂β̂βc = arg min
βββ
|y −Xβββ|2 + Pc(βββ) (5)

the explicit solution β̂̂β̂βc = (XTX+Pc(βββ))−1XTy is available only for not perfectly
correlated predictors. If xi = xj the correlation based penalty is no longer strictly
convex and Lemma 2 of Zou & Hastie (2005) does not apply. However, although
for %2

ij → 1 the penalty Pc(βββ) deteriorates, the estimate may be defined as the
limit. With βc(λ, {%ij}) denoting the solution of (5) one defines for %2

ij = 1 the
correlation based estimator by

β̂̂β̂βc(λ, {%ij}) = lim
%̃2

ij→1
βββc(λ, {%̃ij})

where the limit is taken for %̃ij → 1 if xi = xj and %̃ij → −1 if xi = −xj. For all
practical purposes we found %̃ij = 0.98 to work well as a substitute for the limit
estimate. For illustration the special case p = 2 is considered more closely. One
obtains Pc(βββ) = λβββTWβββ = λβββTDT

2 D2βββ where

D2 =

(
1/
√

1− % −1/
√

1− %
1/
√

1 + % 1/
√

1 + %

)
,

W =
2

1− %2

(
1 −%

−% 1

)
.

For the limiting case %2
2 → 1 the inverse may be computed explicitly. One
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obtains

lim
%→1

(XTX + λW)−1 =
1

2(2 + λ)

(
1 1
1 1

)
,

lim
%→−1

(XTX + λW)−1 =
1

2λ

(
1 −1

−1 1

)
.

It is directly seen that in the limit one obtains β̂1 = β̂2 for % = 1 and β̂1 = −β̂2

for % = −1.
Moreover, in the special case p = 2 the eigenvalues of XTX and W are the
same and it may be derived that, given the ordinary least squares estimate β̂̂β̂βOLS

exists, the correlation based estimator is a shrinked version β̂̂β̂βc = γβ̂̂β̂βOLS where
γ = (1− %2)/(1− %2 + 2λ). If % 6= 0 this is different from ridge regression where
shrinkage is with respect to the orthonormal basis which spans the column space
of X (e.g. Hastie, Tibshirani & Friedman (2001), Section 3).

3 Simulations in medium-dimensional settings

In the following we first investigate the performance of several methods for a
medium number of variables. The simulation setting is similar to the setting
used in the original lasso paper (Tibshirani (1996)) and the elastic net paper
(Zou & Hastie (2005)). The underlying regression model is given by

y = x>βββ + σε, ε ∼ N(0, 1).

Each data set consists of a training set, on which the model were fitted, a val-
idation set, which was used to select the tuning parameters, and a test set
for evaluation of the performance. The notation ·| · |· is used to describe the
number of observations in the training, validation and test set, respectively.
In simulations, we center all variables based on the training data set. Let
x̄>train = (x̄1,train, . . . , x̄p,train) denote the vector of means of the training data,
ntest the number of observations in the test data set and ytrain the mean over
responses in the training data.

We use two measures of performance, the test error (mean squared error)

MSEy = 1
ntest

r>simrsim with ri,sim = x>i βββ − (ȳtrain + (xi − x̄train)>β̂̂β̂β) on the test

data set and the mean squared error for the estimation of βββ, MSEβ = |β̂̂β̂β − βββ|2.
While the first measure evaluates prediction, the latter aims at the accuracy of
the estimator and therefore the identification of the effect strength of variables.

The scenarios which have been investigated by simulating 50 data sets are
given in the following.

(1) In the first example with p = 8, βββ is specified by βββ> = (3, 1.5, 0, 0, 2, 0, 0, 0)
and σ = 3. The pairwise correlation was set to %(xi, xj) = 0.5|i−j|. The
sample size was 20|20|200.
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(2) With p = 9, βββ is specified by βββ> = (1, 2, 3, 4, 0, 4, 3, 2, 1) and σ = 3,
%(xi, xj) = 1− 0.25|i− j|, same sample size as in (1).

(3) The setting is the same as in (1) except that β1 = β2 = . . . = β8 = 0.85.

(4) With p = 40, the coefficient vector is given by

βββ> = (0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
10

, 2, . . . , 2︸ ︷︷ ︸
10

),

σ = 15, %(xi, xj) = 0.5, for all i and j. The sample size was 100|100|400.

Method Simulation 1 Simulation 2 Simulation 3 Simulation 4
median median median median median median median median
MSEy MSEβ MSEy MSEβ MSEy MSEβ MSEy MSEβ

Ridge Regr. 3.28 3.35 3.57 17.12 1.91 1.69 30.25 51.67
LASSO 2.92 3.13 3.73 28.83 3.35 3.99 43.69 83.26
Elastic Net 2.96 3.65 4.15 23.91 3.46 4.44 47.95 87.64
CP 3.40 3.68 3.06 16.95 2.07 1.20 21.95 34.47

Table 1: Median test mean squared errors and median MSEβ for the simulated

examples 1-4, based on 50 replications.

The simulation results are given in Table 1 and Figure 2. In Table 1 the
best performance is given in boldface. The first example contains only positively
correlated variables whereas in the second example variables are positively and
negatively correlated. Examples 3 and 4 contain grouped variables; in example 3
there is only one group, in example 4 there are two groups of relevant variables.
Examples 1, 3, and 4 correspond to examples 1, 2, and 3 in Zou & Hastie (2005).
It is seen that in the first setting with positively correlated variables the elastic
net performs best but the performance does not strongly differ between methods.
In the case of positively and negatively correlated variables the correlation based
estimate dominates. In particular in the last setting with grouping effect the
correlation based estimator clearly dominates all of the other methods in both
measures of performance.

4 Blockwise Boosting

The correlation based estimator (2) does shrinkage but not variable selection.
Thus, in particular for very high dimensional predictors it has some drawbacks.
A method that performs very well in high dimensions is componentwise boosting.
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Figure 2: Boxplots of test mean-squared errors (left column) and MSEβ (right

column) for simulations 1-4.

Originating in the machine learning community it has been shown to have good
properties in regression (Bühlmann & Yu (2003), Bühlmann (2006)).

To overcome the drawbacks of the correlation based estimator we propose a
novel way of componentwise boosting. In order to obtain the grouping effect of the
correlation based estimator in combination with variable selection we consider a
boosting procedure which updates in each step the coefficients of more than one
variable. The procedure differs from common componentwise boosting where
just one variable is selected and the corresponding coefficient is adjusted. To
distinguish componentwise boosting from the procedure considered here we will
refer to blockwise boosting.
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Let S ⊂ {1, . . . , p} denote the index set of the variables which are considered
in a given step. The basic concept is to compute within one step of the iterative
procedure the parameters which minimize the penalized least squares criterion

|r−XSb|2 + Pc,S, (6)

where r denotes the vector of residuals (from the previous step), XS is the reduced
design matrix containing only the variables j ∈ S and Pc,S is the correlation based
penalty for the subset S. By minimization of (6) one obtains a simultaneous refit
for all the components of S. As usual in boosting, in each step a weak learner
is used. That means only a small change in parameter estimates should occur
within one step. Thus the parameter λ in (6) is chosen very large, in our case
λ ≥ 1000. It has been shown (Bühlmann & Yu (2003)) that large values of λ
yield better performances. The only limit is the computational effort, since very
large values of λ entail many iteration steps.

As in componentwise boosting, variable selection is performed by selecting
in each step an appropriate subset S. Considering all possible subsets implies
heavy computational effort, even for a small number of variables. Therefore the
candidate sets are reduced by first ordering the variables (as in componentwise
boosting) and then considering as candidate sets only subsets S that are built
by successively adding one variable from the given order. Therefore in each step
first an ordering of variables is constructed.

For subsets S that contain only one variable Pc from (2) cannot be used
directly. In those cases we define the penalty by the ridge type penalty Pc,{j} =
λβ2

j . The adequacy of subsets is evaluated by information theory measures as the
AIC, which is also used as a stopping criterion. First we will give the algorithm,
deferring the specification of the used AIC criterion until later.

Algorithm BlockBoost

Step 1: (Initialization)

Set β̂̂β̂β(0) = 0, µ̂̂µ̂µ(0) = 0.

Step 2: (Iteration)

For m = 1, 2, . . .

(a) Find an appropriate order of regressors according to their improvements of
fit

Compute the residuals r(m) = y − µ̂̂µ̂µ(m−1) and fit for j ∈ {1, . . . , p} the
model r(m) = X{j}bj + εεε by minimizing | r(m) −X{j}bj |2 +Pc,{j}, yielding

b̂j1 , . . . , b̂jp such that AIC(b̂j1) ≤ . . . ≤ AIC(b̂jp).
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(b) Find a suitable number of regressors to update

For r = 1, . . . , p

With Sr = {j1, . . . , jr} fit the model r(m) = XSrbSr + εεε by minimizing
| r(m) − XSrbSr |2 +Pc,Sr yielding estimates b̂Sr and AIC criterion

AIC(b̂Sr).

(c) Selection

Select the subset of variables which has the best fit, yielding

S(m) = arg min
Sr

AIC(b̂Sr).

(d) Refit

The parameter vector is updated by

β̂
(m)
j =

{
β̂

(m−1)
j + b̂j, if j ∈ S(m),

β̂
(m−1)
j , otherwise,

yielding the vector β̂̂β̂β(m) = (β̂
(m)
1 , . . . , β̂

(m)
p )T and µ̂̂µ̂µ(m) = µ̂̂µ̂µ(m−1)+XS(m)b̂S(m) .

The stopping criterion we propose is a version of the AIC criterion AIC =
−2(l(µ̂̂µ̂µ(m))− tr(Hm)) where l(µ̂̂µ̂µ(m)) denotes the log-likelihood after the mth refit
and tr(Hm) is the trace of the corresponding hat matrix. Some derivation shows
that it is given by

µ̂̂µ̂µ(m) = Hmy,

where

Hm =
m∑

j=1

H̃j

j−1∏

`=1

(I − H̃j−`)

= H̃1 + H̃2(I − H̃1) + . . .

with H̃j = XS(j)(X>
S(j)XS(j) + λWS(j))−1X>

S(j) , where WS(j) denotes the penalty

matrix from (3) for subset S(j).
We use the corrected AIC criterion (Hurvich, Simonoff & Tsai (1998)) with

an additional correction factor

AICc = log(σ̂2
m) +

1 + 1.8 · tr(Hm)/n

1− (1.8 · tr(Hm) + 2)/n
,

where

σ̂2
m =

1

n
(y − µ̂̂µ̂µ(m))>(y − µ̂̂µ̂µ(m)).
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The estimate β̂̂β̂βB resulting from BlockBoost inherits the strong grouping effect
from the correlation based estimator. If predictors are highly correlated the
corresponding updates within the algorithm have (up to sign) similar values.

Within the algorithm the correlation based estimator is used for subsets of
varying size. The tuning parameter λ that is used has to be adapted to the num-
ber of regressors. For subsets containing only one variable the tuning parameter
is λ. For larger subsets we use the penalty

Pc,S(βββ) = λ|S|
∑
i<j

(i,j)∈S

{
(βi − βj)

2

1− %ij

+
(βi + βj)

2

1 + %ij

}

= 2λ|S|
∑
i<j

(i,j)∈S

β2
i − 2%ij + β2

j

1− %2
ij

(7)

where λ|S| is a tuning parameter that depends only on the size of S, denoted
by |S|. In order to have just one tuning parameter the parameter λ|S| is chosen
as a function of λ. If one considers the case of uncorrelated variables the penalty
for all variables given in (2) reduces to Pc(βββ) = 2λ(p − 1)

∑p
i=1 β2

i which is the
ridge penalty with tuning parameter 2λ(p − 1). Thus λ|S| in (7) is chosen by
λ|S| = λ(|S| − 1).

Before investigating the performance in high-dimensional settings we demon-
strate the grouping effect in a small simulation and consider variable selection for
real-life data.

4.1 The grouping effect

For the illustration of the grouping effect we use the idealized example given by
Zou & Hastie (2005). With Z1 and Z2 being two independent U(0, 20) variables
the response is generated as N(Z1 + 0.1Z2, 1). It is assumed that one observes
only

x1 = Z1 + ε1, x2 = −Z1 + ε2, x3 = Z1 + ε3,
x4 = Z2 + ε4, x5 = −Z2 + ε5, x6 = Z2 + ε6,

where εi are independent identically distributed N(0, 1/16). The variables x1, x2

and x3 may be considered as forming one group and x4, x5, x6 as forming a second
group. Figure 3 shows the coefficient build-ups for the lasso and BlockBoost for
sample size n = 100. It is seen that BlockBoost selects the variables x1, x2 and
x3 and the corresponding estimates are (up to sign) identical. The strong group
consistency of x1, x2 and x3 is distinctly identified. Lasso shows quite different
coefficient build-ups selecting as strongly influential the variables x1 and x3 and,
with rather weak effect, x2. While coefficient paths for BlockBoost reflect the
high correlation of x1, x2 and x3 the path of the lasso are rather irregular. Elastic
net behaves quite similar to BlockBoost (compare Zou & Hastie (2005)).
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Figure 3: Coefficient build ups for lasso (left) and BlockBoost (right) of the

hidden factors example.

4.2 Application to body fat data

The body fat data set has been used by Penrose, Nelson & Fisher (1985). The
study aims at the estimation of the percentage of body fat by various body
circumference measurements for 252 men. The thirteen regressors are age (1),
weight (lbs) (2), height (inches) (3), neck circumference (4), chest circumference
(5), abdomen 2 circumference (6), hip circumference (7), thigh circumference
(8), knee circumference (9), ankle circumference (10), biceps (extended) circum-
ference (11), forearm circumference (12), and wrist circumference (13). All cir-
cumferences are measured in cm. The percent body fat has been calculated from
the equation by Siri (1956) using the body density determined by underwater
weighting.

In order to investigate the performances of the alternative approaches the data
set has been split 20 times at random into a training set of 151 observations and
a test set of 101 observations. Tuning parameters have been chosen by tenfold
cross validation. The performance in terms of the median mean squared errors
is given in Table 2, the corresponding boxplots are shown in Figure 4. It is seen
that correlation based penalization has the best performance in terms of mean
squared errors, BlockBoost and elastic net select the same number of variables.

Figure 5 shows the coefficient build-ups for lasso, elastic net, ridge regression,
correlation based estimation and BlockBoost based on the full data set. It is seen
that the paths for ridge regression and the correlation based estimator are very
similar. There is also some similarity between the paths of the elastic net and
the lasso. BlockBoost selects 5 variables whereas the elastic net and lasso select
9 and 11 variables, respectively. The reduction to relevant variables is about
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Method median median no. of
MSEy selected variables

Ridge regression 20.84 13
Lasso 21.80 9.5
Elastic net 24.38 6
CP 20.67 13
BlockBoost 21.70 6

Table 2: Body fat Data - median test mean squared error over 20 random splits

for different methods.
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Figure 4: Boxplots of different methods for 20 random splits of body fat data

set into a training set of 151 observations and a test set of 101 observations.

the same for both procedures whereas BlockBoost includes less variables into the
final predictor. The estimates given in Table 3 show that strong differences are
only found for variables 4, 12 and 13.
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Figure 5: Coefficient build-ups for body fat data based on five estimation meth-

ods: lasso (upper left panel), elastic net (upper right panel), ridge regression (mid

left panel), correlation based estimation and BlockBoost (lower left panel).

5 Performance in high-dimensional settings

5.1 Predictive power and estimation of effects

In the following the same notation is used as for the simulations in Section 3.
However, the focus is now on high dimensional problems with many predictors.
We use the following three high dimensional simulation scenarios.
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Variables Ridge Lasso Elastic net CP BlockBoost
Tuning λ = 148.41 s = 0.79 λ = 0.05 λ = 8.17 λ = 2000
parameters: s = 0.77 m = 56
1 0.07 0.06 0.09 0.08 0.09
2 -0.03 -0.05 0 -0.03 0
3 -0.16 -0.11 -0.19 -0.18 -0.15
4 -0.43 -0.40 -0.24 -0.28 -0.11
5 0.05 0 0.06 0.1 0
6 0.77 0.86 0.63 0.65 0.69
7 -0.16 -0.11 0 -0.03 0
8 0.19 0.12 0.09 0.13 0
9 0.10 0 0 0.08 0
10 0.02 0.02 0 -0.002 0
11 -0.04 0.10 0.03 -0.05 0
12 0.01 0.37 0.26 -0.04 0
13 -0.39 -1.53 -1.60 -0.242 -1.29

Table 3: Body fat data - tuning parameters and estimated parameters for the

whole data set.

(H1) The parameter vector in the first high-dimensional simulation scenario is
given by βββT = (3, . . . , 3︸ ︷︷ ︸

5

, 0, . . . , 0︸ ︷︷ ︸
5

, 3, . . . , 3︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
5

, 3, . . . , 3︸ ︷︷ ︸
5

, 0, . . . , 0︸ ︷︷ ︸
25

). The

correlation %(xi, xj) = %ij is given by

%ij =

{
1− 0.01 · |i− j|, i, j ∈ {k, k + 1, . . . , k + 4}, k ∈ {1, 6, 11, 16, 21}

εij, otherwise,

where εij are truncated iid N(0, 0.12). The simulated data has 20|20|40 for
training set, independent validation set and test set.

(H2) The parameter vector and the setting is the same as in H1, with weaker
correlation specified by

%ij = 1− 0.05 · |i− j|, i, j ∈ {k, k + 1, . . . , k + 4}, k ∈ {1, 6, 11, 16, 21}.

(H3) The parameter vector is given by

βββT = (5, 4, 3, 2, 1, 0, . . . , 0︸ ︷︷ ︸
5

, 5, 4, 3, 2, 1, 0, . . . , 0︸ ︷︷ ︸
5

,−5,−4,−3,−2,−1, 0, . . . , 0︸ ︷︷ ︸
25

),

and the correlation %(xi, xj) = %ij is given by

%ij =

{
1− 0.075 · |i− j|, i, j ∈ {k, k + 1, . . . , k + 4}, k ∈ {1, 6, 11, 16, 21}

εij, otherwise,
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where εij are truncated iid N(0, 0.12). The evaluation setting is 20|20|40.

In the simulations an additional variant of BlockBoost, called BlockBoost(cut),
is investigated. It is designed to delete variables that have been selected only once
or twice within the iterative selection procedure. More concrete, predictor i is
deleted, if |βi|/

∑
j |βj| < 0.01. Again we consider the prediction MSEy and the

mean squared error for the estimator of β, MSEβ.

Method Simulation H1 Simulation H2 Simulation H3
median median median median median median
MSEy MSEβ MSEy MSEβ MSEy MSEβ

Ridge Regression 48.11 27.27 72.77 44.33 63.35 54.06
LASSO 19.62 131.63 59.86 88.06 20.90 125.51
Elastic Net 14.94 97.28 38.55 51.31 17.34 87.84
CP 47.63 26.48 72.99 44.32 64.08 53.96
BlockBoost 23.01 19.36 67.10 44.99 36.01 38.11
BlockBoost (cut) 23.53 19.67 69.54 45.15 35.02 38.00

Table 4: Median test mean squared errors and median MSEβ for the simulated

examples (H1), (H2) and (H3) and six methods based on 50 replications.

The simulation results are given in Table 4 and Figure 6. In all three set-
tings, the elastic net has the best prediction, followed by the lasso. However, if
one considers the accuracy of the parameter estimate, the performance of Block-
Boost is distinctly superior to the elastic net and the lasso. BlockBoost seems
to dominate in terms of MSEβ. One reason is that BlockBoost does somewhat
better in identifying relevant variables. This effect is investigated more closely in
the next section.

5.2 Identification of relevant variables

While prediction performance is an important criterion for comparison of methods
the variables included into the final model are of special interest to practitioners.
The final model should be as parsimonious as possible but all relevant variables
should be included. The criteria by which the performance of procedures can be
judged are the hits (i.e. the number of correctly identified influential variables)
and the false positives (i.e. the number of non-influential variables dubbed influ-
ential). Table 5 and Figure 7 show the mean hits and false positives for the high
dimensional simulation settings. Figure 7 is constructed in a way that is similar to
ROC curves, but showing points rather than curves. The ideal case performance
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Figure 6: Boxplots of test mean-squared errors (left column) and MSEβ (right

column) for simulations H1 to H3.

corresponds to the left upper corner. Deviations to the right correspond to an
increase in false positives; bad performance in identification of relevant variables
corresponds to low values on the abscissae. Due to construction, ridge and cor-
relation based estimator are found in the right upper corner meaning all relevant
variables are included but also all irrelevant variables. BlockBoost (as well as
BlockBoost(cut)) performs very well in identifying relevant variables. Lasso def-
initely misses some of the relevant variables but also elastic net has a tendency
to miss some. In terms of false positives BlockBoost is comparable to elastic
net and lasso while BlockBoost(cut) has the best performance in terms of false
positives. The same tendency may be seen from Figure 8 where the performance
of the elastic net, the lasso and BlockBoost are shown for the single simulations.
(In Figure 8 the points have been jittered in order to show all the simulated data
sets.)
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Method Results for the following examples:
Example H1 Example H2 Example H3

hits false hits false hits false
positives positives positives

Ridge regression 15 35 15 35 15 35
Lasso 9 6 11 7 10 8
Elastic net 12 6 14 16 12 8
CP 15 35 15 35 15 35
BlockBoost 15 9 15 11 15 9
BlockBoost (cut) 15 4 13 7 14 5

Table 5: Median number of correctly chosen coefficients for examples H1, H2

and H3.
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Figure 7: Median hits versus median false positives for simulations H1 to H3.

For the performance in a real data set we consider the body fat data again.
Figure 9 shows the selected variables for BlockBoost and elastic net for the 20
splittings of the data set. It is seen that BlockBoost has less variability in the
selection of relevant variables. For example BlockBoost never selects variable
2 whereas it has been selected in four cases by elastic net. Variable 13 has
always been selected by BlockBoost but only in 50 percent of the cases by elastic
net. Let hi, i = 1, . . . , 13 denote the number of splits when variable i has been
selected. Considering h1, . . . , h13 as measurements one may compare the standard
deviations across the measurements. One obtains 8.55 for BlockBoost and 6.37
for elastic net which shows that BlockBoost is more stable in the sense that it
tends to select the same variables across the splits.
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Figure 8: Hits versus false positives for simulations H1 to H3.

6 Concluding remarks

Two algorithms for the fitting of linear models have been proposed which like
the elastic net focus on the grouping effect. It has been demonstrated that, al-
though the elastic net has advantages in predictive power, the correlation based
algorithms seem to have superior performance if success is measured by the cor-
rect identification of relevant variables. Since in applications, in particular in
high dimensional problems, the identification of relevant variables is of crucial
importance, the method may be considered as a strong competitor in this field.
The method may be extended to generalized linear models by using a penalized
likelihood approach. For the correlation based penalty approach the extension
is straightforward. Boosted versions may be obtained by modifying LogitBoost
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Figure 9: Comparison of chosen regressors between elastic net (left) and Block-

Boost (right) for 20 random splits of body fat data.

(Friedman, Hastie & Tibshirani (1999)).
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Appendix
A1: Proposition 1
The penalty P from (2) can be written as

Pc = λ(βββTDTW1Dβββ + βββTATW2Aβββ)

where W1 = diag(1/(1−%12), 1/(1−%13) . . . ) is a (m×m) diagonal matrix, with
m = n(n − 1)/2 denoting the numbers of pairs (i, j), i 6= j,W2 = diag(1/(1 +
%12), 1/(1 + %12), . . . ),D specifies the differences,

D =




1 −1 0 0 . . .
1 0 −1 0 . . .
...

...
...

...
. . .

0 1 −1 0 . . .
0 1 0 −1 . . .
...

...
...

...
. . .




and A is the matrix that specifies the addition of parameters

A =




1 1 0 0 . . .
1 0 1 0 . . .
...

...
...

...
. . .

0 1 1 0 . . .
0 1 0 1 . . .
...

...
...

...
. . .




.

The resulting penalty term takes the form Pc(βββ) = λβββTWβββ where W = DTW1D+
ATW2A. A simpler form of W is obtained by computing the derivatives. One
obtains

∂Pc(βββ)

∂βr

= 4λ
∑
i,r

1

1− %2
ir

(βr − %irβi)

and

∂Pc(βββ)

∂βr∂βs

=

{
4λ

∑
i6=s

1
1−%2

is
if r = s

−4λ %rs

1−%2
rs

if r 6= s.

which gives the form (4).
Since a function is strictly convex if the matrix of second derivatives is positive

it is enough to show that the quadratic form Pc(βββ) takes value zero only for βββ = 0.
For %2

ij 6= 1, λ > 0, the penalty Pc(βββ)/(2λ) may be seen as the quadratic
Euclidean norm of the expanded vector

v =

(
β1 − β2√
1− %12

,
β1 + β2√
1 + %12

,
β1 − β3√
1− %13

,
β1 + β2√
1 + %13

, . . .

)
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Thus, the norm of v equals zero only if all components are equal to zero. This
is only the case if βi = 0 for all i. Therefore Pc(βββ) > 0 if βββ 6= 0. Thus Pc(βββ) is

strictly convex, and β̂̂β̂βc exists and is unique.
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