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Abstract Differential Evolution Markov Chain (DE-MC) is
an adaptive MCMC algorithm, in which multiple chains are
run in parallel. Standard DE-MC requires at least N = 2d

chains to be run in parallel, where d is the dimensionality
of the posterior. This paper extends DE-MC with a snooker
updater and shows by simulation and real examples that DE-
MC can work for d up to 50–100 with fewer parallel chains
(e.g. N = 3) by exploiting information from their past by
generating jumps from differences of pairs of past states.
This approach extends the practical applicability of DE-MC
and is shown to be about 5–26 times more efficient than the
optimal Normal random walk Metropolis sampler for the
97.5% point of a variable from a 25–50 dimensional Stu-
dent t3 distribution. In a nonlinear mixed effects model ex-
ample the approach outperformed a block-updater geared to
the specific features of the model.

Keywords Evolutionary Monte Carlo · Metropolis
algorithm · Adaptive Markov chain Monte Carlo ·
Theophylline kinetics · Adaptive direction sampling ·
Parallel computing · Differential evolution

1 Introduction

Bayesian statistical analysis combines the data likelihood
with a prior distribution using Bayes theorem. A key task
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is then to summarize the so obtained posterior distribution,
for example by the mean, the covariance or percentiles of
individual parameters. When this task cannot be carried out
by analytical means nor by analytical approximation, simu-
lation methods such as Markov chain Monte Carlo (MCMC)
can be used for generating a sample from the posterior dis-
tribution. The desired summary of the posterior distribution
is then obtained from the sample. The posterior distribution,
also referred to as the target, is typically high dimensional.

Ter Braak (2006) proposed a simple adaptive random
walk Metropolis algorithm called Differential Evolution
Markov Chain (DE-MC). DE-MC is local Differential Evo-
lution (Storn and Price 1997; Price et al. 2005) with an added
Metropolis step. DE-MC solves an important practical prob-
lem in random walk Metropolis, namely that of choosing
an appropriate scale and orientation for the jumping distri-
bution. Earlier approaches such as (parallel) adaptive direc-
tion sampling (Gilks et al. 1994; Roberts and Gilks 1994;
Gilks and Roberts 1996) solved the orientation problem but
not the scale problem.

In DE-MC N different chains are run in parallel and
the jumps for each chain are derived from the remaining
N − 1 chains. Each jump is simply generated as follows
(Fig. 1a). The difference of two vectors of randomly cho-
sen chains is multiplied by a factor γ , a random vector is
drawn from a narrow symmetrical distribution and the sum
of the scaled difference and the random vector is added to
the vector of the current chain. This jump is reversible as
Fig. 1b illustrates. The difference vector contains the re-
quired information on scale and orientation. By accepting
each jump with the Metropolis ratio, a Markov chain is
obtained, the stationary distribution of which is the poste-
rior distribution. The proof of this uses the fact that DE-
MC is essentially a Metropolis-within-Gibbs algorithm (see
Appendix). Ter Braak (2006) showed that a sensible choice
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Fig. 1 Parallel direction update in DE-MC in two dimensions with 30
parallel chains, each represented by a point (d = 2,N = 30). (a) For
updating the ith chain, which is in state xi , the proposed state is x*,
generated from xi , the difference of the states of two other chains (xR1
and xR2) and a random vector e by (1) with γ = 2.4/(2 × 2)1/2 = 1.2.
(b) The reverse jump from x* to xi is obtained by reversing e and the
order of the two other states

Fig. 2 Parallel direction update in DE-MC in two dimensions.
(a) DE-MC can jump between modes with γ = 1.0 and (b) an out-
lier chain (xi ) may need considerable time to reach the modal region
because the differences within this region are small. In (a) and (b) the
random term e is neglected as it is small compared to the jumps

of γ is 2.38/
√

(2d), with d the number of parameters of
the posterior. This choice is motivated by comparison with
random walk Metropolis with a normal jumping distribu-
tion (RWMN) (Roberts and Rosenthal 2001). This choice
of γ gives, at least for Gaussian and Student target distri-
butions, DE-MC acceptance probabilities close to 0.44 for
d = 1,0.28 for d = 5 and 0.23 for large d (see Sect. 7.84 of
Robert and Casella (2004) for a cautionary note on these ref-
erences acceptance rates). After a burn-in period, the states
of the chains are independent so that convergence of a DE-
MC run can be monitored with the R̂-statistic of Gelman
et al. (2004). DE-MC shares this useful feature with other
population MCMC samplers (Mengersen and Robert 2003).

DE-MC can be effective to explore multimodal densities.
With an occasional choice of γ ≈ 1, a chain can jump be-
tween two disconnected modes (Fig. 2a). If a mode is rep-
resented by at least a single chain, a second chain can be
moved to it in accordance with the posterior mass of the
mode. This simple strategy of DE-MC balances exploration
and exploitation of the space.

For DE-MC to work well the number of chains N must be
larger than d . Our previous work has shown that N = 2d or
3d worked fine for simple unimodal posteriors for d < 50,

say, but that N = 10d to 20d was required for more com-
plicated posteriors (ter Braak 2006). A large N has a dis-
advantage though. When initialized from a wide prior, each
chain must travel to the high density region of the poste-
rior. Although jumps can initially be larger than in RWMN,
the time for all N chains to converge is typically a factor N

larger than for a single chain. For slowly converging adap-
tive chains the performance could even be worse.

There are two other reasons why using a smaller N might
be advantageous. First, if the posterior is unimodal and all
but one chain have converged to the modal region, it might
still take considerable time to also move this outlier chain
to the mode, irrespective of the value of γ (Fig. 2b). Conse-
quently, standard DE-MC has potentially an outlier problem.
Empirically outlier chains occur more often with large N

which is necessary for large d . Second, in a multi-processor
environment, chains could run on individual computational
nodes (processors). The lower the number of nodes required,
the greater the practical applicability of DE-MC for compu-
tationally demanding problems. It would then also be advan-
tageous that the proposal of the ith chain would not require
the updated states of the chains 1, . . . , (i − 1), as they do
in Metropolis-within-Gibbs and thus in standard DE-MC.
There is therefore sufficient scope to further increase the ef-
ficiency and implementation of DE-MC.

One device that allows for the use of smaller N is
to decrease the number of parameters that is simultane-
ously altered in each jump. Rather than performing a full-
dimensional update, one can update blocks of parameters
in turn. With blocks of one parameter, each parameter is up-
dated in turn as in Gibbs sampling. More generally, the para-
meters to be updated jointly can be selected randomly with
some probability CR, the crossover rate (Price et al. 2005;
Vrugt et al. 2008a, 2008b). Preferably, highly correlated pa-
rameters should be updated jointly; so better probabilistic
schemes can be devised. An extreme case is to fix the blocks
of parameters in advance as illustrated in ter Braak (2006)
for a nonlinear mixed-effects model. The model in question
had d = 43 and was sampled with blocks of size one to three
using N = 9. Some computational tricks and special fea-
tures of the model were used to let the method outperform
standard DE-MC using 2d = 86 chains with full-space up-
dates.

This paper explores another way to decrease N , namely
by sampling the difference vectors in the DE-MC jump
from past states, which turns the method into an adaptive
Metropolis sampler (Haario et al. 2001; Roberts and Rosen-
thal 2007, 2008).

It is always of interest to have a larger variety of effi-
cient update schemes. In analogy with adaptive direction
sampling (Gilks et al. 1994), we present a snooker up-
date for DE-MC. Gibbs sampling usually samples along
each coordinate axis in turn (each representing a parame-
ter). A snooker update also samples along one axis at a
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time, but this axis does not need to run parallel to the co-
ordinate axes. The snooker axis typically runs through the
states of two different chains. Gibbs sampling along this axis
is often not feasible, and therefore one needs to resort to
a Metropolis-Hastings update. The DE-MC snooker update
presented herein is such an update, but with an adaptive step
size.

The effectiveness of the proposed methods is demon-
strated using two known synthetic target distributions (Stu-
dent t60 and t3) and two Bayesian data analysis examples.

2 Theory

2.1 Standard DE-MC

Let the states of the N chains be denoted by the d-dimen-
sional parameter vectors x1, . . . ,xN where d is the number
of parameters. Together the chains form a population that
evolves through generation time. In a Bayesian analysis the
initial population could be drawn from the prior distribution
of the parameters. For each chain i in turn (i = 1, . . . ,N), a
jump is simply generated as (Fig. 1a)

x* = xi + γ (xR1 − xR2) + e, (1)

where xR1 and xR2 are randomly selected without replace-
ment from the population X−i (the population without xi ), γ

is a user-defined scalar, and e is drawn from a symmetric dis-
tribution with a small variance compared to that of the pos-
terior, but with unbounded support, e.g. e ∼ N(0, b)d with b

small. As each jump is as likely as the reverse jump, given
the current state of the remaining chains (Fig. 1b), condi-
tional detailed balance with respect to π(.) is obtained by ac-
cepting each jump with the Metropolis ratio min(1, r) where
r = π(x*)/π(xi ). All N chains together form a Metropolis-
within-Gibbs sampler on an N ×d-dimensional space. Con-
ditional detailed balance for each chain is then sufficient to
show that the resulting joint Markov chain has a station-
ary distribution with a density that factorizes in to N terms
that are all equal to the density of the posterior distribution
(Mengersen and Robert 2003). Because of the unbounded
support of e in (1), the joint chain is ergodic, each of the
N chains converges to the posterior distribution, and at any
time after convergence the N chains are independent. The
proof is given in the Appendix.

Upon convergence, the averages across the population at
each generation, converge for large N to the expectation and
covariance of the posterior distribution, i.e.

ave(xi ) → μ and ave[(xi − xj )(xi − xj )
T] → 2�

for N → ∞
with ave the average across the (pairs of) chains. For large N

and small b, the proposal in (1) thus looks like x* = xi + γ ε

with E(ε) = 0 and cov(ε) = 2�, the covariance matrix of
the target. In particular, if π(.) is multivariate normal, then
γ ε ∼ N(0,2γ 2�) so that DE-MC is expected to behave like
RWMN. From the guidelines for c in RWMN (Roberts and
Rosenthal 2001) a sensible choice of γ is 2.38 /

√
(2d). This

choice of γ gives, for Gaussian and Student target distri-
butions, DE-MC acceptance probabilities close to 0.44 for
d = 1,0.28 for d = 5 and 0.23 for large d . If the initial pop-
ulation is drawn from the prior, DE-MC translates the ‘prior
population’ to the ‘posterior population’.

The jump in (1) is almost parallel to the line xR1 − xR2

and is therefore called the parallel direction update. Parallel
adaptive direction sampling (Gilks et al. 1994; Roberts and
Gilks 1994) uses Gibbs sampling along this direction (when
feasible), whereas (1) uses a local move. Without the ran-
dom term e in (1), all updates lie in a space of dimension
min(d,N − 1). To efficiently sample the full space, N must
therefore be larger than d .

2.2 DE-MCZ: sampling the difference vectors
from the past

One way to circumvent the requirement that N > d is to
sample the difference vectors in the update of (1) from past
states of the chains. This turns DE-MC into an adaptive
MCMC method in the sense of Haario et al. (2001) and
Roberts and Rosenthal (2007). To ensure that the chain con-
verges to the posterior distribution, the adaptation should de-
crease in time (Roberts and Rosenthal 2007, 2008). This can
be achieved by sampling the difference vectors (which form
the adaptive part of our proposal) uniformly at random with-
out replacement from a possibly thinned, version of the en-
tire past. Thinning has important advantages, as it reduces
storage requirements.

We implement this idea as follows. Let X denote an
N × d matrix that stores the locations of the chains at the
current generation, and Z the matrix that contains the current
and past states of the chains. DE-MC only contains two al-
gorithmic parameters, N and γ . Compared to DE-MC, DE-
MCZ contains two additional variables; M0, the initial num-
ber of rows of Z, and K which defines the thinning rate. As
default choice, we set N = 3, γ = 2.38/

√
(2d),M0 = 10d

and K = 10.

Algorithm DE-MCZ

1. Initialize the M0 × d matrix Z, for example by sampling
from the prior distribution with M0 > max(d,N), copy
the first N rows of Z to X and set M ← M0.

2. K times update population X.
3. Append the current rows of X to Z, so that M ← M +N .
4. If X has converged or the total number of updates of X is

greater than G, go to 5, else go to step 2.
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5. Summarize the samples stored in Z after discarding the
initial and burn-in samples.

In this algorithm, each update of X forms one generation
cycle and sequentially updates x1, . . . ,xN as follows.

Algorithm for updating population X
For i = 1, . . . ,N do

1. Sample uniformly at random without replacement two
numbers R1 and R2 from the numbers 1,2, . . . ,M .

2. Calculate the proposal x* (Figs. 1 and 2)

x* ← xi + γ (zR1 − zR2) + e (2)

where zR1 and zR2 are rows R1 and R2 of Z and γ and e
are as in (1).

3. Calculate the Metropolis ratio r = π(x*)/π(xi ).
4. Accept the proposal, i.e. xi ← x* with probability

min(1, r), otherwise leave xi unchanged.

The matrix Z grows through time. Appending N rows
changes Z by an order of N/M = K/t, which decreases in
generation time t , as required in adaptive MCMC. Changes
in the proposal distribution (and therefore in the transi-
tion kernel) from one batch of iterations to the next there-
fore decrease to zero as the length of the thinned past in-
creases without bound. Because of this diminishing adapta-
tion (Roberts and Rosenthal 2007), we conjecture that DE-
MCZ is ergodic and converges to a stationary distribution
with pdf π(.)N . Note that the chain may converge to an-
other than the intended distribution if only the recent past
is used to generate the jumps (see Haario et al. 2001 for an
example)—even if the vectors generating the difference are
never sampled from the past of the current chain.

The following remarks are in order. The algorithm is sim-
ilar in spirit to the adaptive Metropolis sampler (AM) of
Haario et al. (2001). AM is a single chain RWMN sampler
using a covariance matrix that is based on all past samples
thinned at rate K . The full past is required to guarantee er-
godicity of the chain (Haario et al. 2001). DE-MCZ also
needs to use the full past. A similar idea was explored in
DE (Babu and Angira 2006).

Because the asymptotic joint pdf of the N chains factor-
izes to π(x1) × · · · × π(xN), the states x1, . . . ,xN of the in-
dividual chains are independent at any generation after DE-
MC has become independent of its initialization. This fea-
ture of population MCMC samplers (Mengersen and Robert
2003) is important for monitoring the convergence of a DE-
MC and DE-MCZ run with the R̂-statistic of Gelman et al.
(2004). This statistic compares for each scalar parameter of
interest the between- and within-variance of the chains. Be-
cause of the asymptotic independence, the between-chain
variance and R̂ can be estimated consistently from a single
DE-MC(Z) run. Gelman et al. (2004) consider R̂ below 1.2
acceptable.

Fig. 3 The DE snooker update, which generates a proposal along the
line through xi and state z of another chain. The proposal point x* is
generated by randomly selecting two other chains (zR1 and zR2), by
projecting them orthogonally on to the line (zP 1 and zP 2) and adding a
multiple (1.7) of the difference between the projection points zP 1 and
zP 2 to xi . DE-MCS and DE-MCZS use 10% snooker updates and 90%
parallel direction updates

2.3 Snooker update

In this section, a DE-MC snooker update is proposed. The
standard snooker update has been presented in Gilks et al.
(1994), Roberts and Gilks (1994), Liang and Wong (2001)
and works as follows

To update xi

1. Select another chain, which is in state z, say.
2. Gibbs sample along the line xi − z from the density g(x)

on that line; with x a point on the line (Liang and Wong
2001)

g(x) ∝ π(x)‖x − z‖d−1.

Often it is not directly feasible to perform step 2, and one
has to resort to Griddy-Gibbs sampling, adaptive rejection
sampling (ARS) or a Metropolis-Hastings step (Gilks et al.
1994; Liang and Wong 2001). Griddy-Gibbs or ARS would
require multiple evaluations of the full posterior and is there-
fore likely not very efficient. A random walk Metropolis-
Hastings step gives as always a step-size problem that a
multi-chain method can solve automatically. This is the key
to the snooker update in DE-MC, which we describe now.
This snooker update is a Metropolis step with adaptive step
size.

Algorithm of DE Snooker update (Fig. 3)
To update xi

1. Select another chain, which is in state z, say.
2. Sample along the line xi − z from the density on that line

as follows (Fig. 3).
a. Select two other random chains, R1 and R2 that are in

states zR1 and zR2 respectively.
b. Project zR1 and zR2 orthogonally on to the line xi − z

yielding zP 1 and zP 2.
c. Propose,

x* ← xi + γs(zP 1 − zP 2). (3)
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d. Calculate the Metropolis ratio

r = π(x∗)‖x∗ − z‖d−1

π(x)‖xi − z‖d−1
. (4)

e. Accept the proposal with probability min(1, r), other-
wise remain at xi .

Remarks (1) The choice of γs is similar to that in DE-MC,
except that it uses d = 1 for all d , i.e. γs = 2.38/

√
2 ≈ 1.7.

The reason for this is that the projection step already reduces
the variance of the difference and thus takes care of the
dimensionality. This choice gives approximately the same
acceptance rate for Normal and Student posteriors as in a
well-scaled Metropolis-Hastings algorithm. At the expense
of some inefficiency for Normal and Student posteriors, γs

can be taken at random, for example, uniform in a unit in-
terval centred around 1.7, e.g. γs ∼ U[1.2,2.2]. This is our
default setting. Since the one-dimensional slice could have
any distribution, there is not necessarily a loss in efficiency.

(2) In step 1 of both algorithms, we chose the state of an-
other chain to compute the direction. Alternatively, z can be
replaced by any other state (Liang and Wong 2001). Possi-
bilities are: the average of states of a number of other, pos-
sibly best, chains or simply z + e with e as in (1).

(3) Equation (4) nicely shows that a reversible chain in
d > 1 cannot jump directly from xi to z, since with such
a proposal ‖x∗ − z‖ = 0 and, hence, r = 0. For d = 1, the
snooker update reduces to (2) with e equal to zero.

(4) An interesting extension of the snooker update is to
choose the sign and value of γs depending on the values of
the posterior at xi and z. If π(z) > π(xi ), then one would
like to jump with higher probability than 0.5 towards z and
if π(z) < π(xi ), then one would like to jump with higher
probability than 0.5 away from z. Of course, we need a
Metropolis-Hastings correction for this bias in the jump di-
rection. One way of implementing this idea is to jump to-
wards z with probability

�
(
c∗ (log(π(z)) − log(π(xi )))

)

with �(.) the cumulative standard normal distribution and
c∗ an adjustable parameter. This snooker DE update is con-
structed in the spirit of more ‘intelligent’ algorithms such
as the Metropolis-adjusted Langevin algorithm (Roberts and
Rosenthal 2001). Limited experimentation with this idea did
not show any real advantage over the simple DE Snooker
update.

(5) In this paper, the DE snooker update is always mixed
with the parallel direction update so as to diversify the jump-
ing possibilities. After some experimentation we chose the
updates in a mix of 10% snooker updates and 90% paral-
lel direction updates. We denote the resulting sampler with
DE-MCS and, when used with differences of past samples,
by DE-MCZS and both by DE-MC(Z)S.

3 Tests with known distributions

DE-MC and DE-MCZ with and without snooker update
were applied to multivariate Student distributions with sixty
and with three degrees of freedom, both distributions centred
at the zero vector. The covariance matrix was set such that
the variance of the j th variable was equal to j and all pair-
wise correlations were 0.5. These distributions were chosen
to reflect the possibly widely differing scales of unknown
parameters in many applications. These samplers were also
compared to the optimal RWMN sampler and a RWMN
sampler (MH-est) in which the covariance matrix of the pro-
posal was estimated from burn-in draws and the scaling fac-
tor was set such that the acceptance rate was about 0.24. The
initial covariance matrix was the identity matrix multiplied
with the average true variance of the variables.

In all simulations and analyses, the details of the tested
samplers were as follows. To allow for occasionally large
jumps with the parallel direction updates of (1) and (2),
γ = 1 with probability 0.1 (Fig. 2) and γ = 2.38/

√
(2d)

otherwise (Fig. 1). We used var(e) = b = 10−4. When the
snooker update (3) was included, it was applied to 10% of
the updates with γs ∼ U[1.7,2.2]. DE-MC and DE-MCS

were run with N = 2d , DE-MCZ(S) with N = 3,K = 10 and
optimal and estimated RMWN with N = 1. The initial pop-
ulation was drawn from the d-dimensional uniform distribu-
tion U[−5,15]d , reflecting a lack of prior knowledge about
the mean and variance of the posterior.

The efficiency of each sampler for a given statistic
is defined with respect to the optimal RWMN as 100 ×
MSEoptRWMN/MSEsampler, where MSE is the mean squared
error in the statistic. The statistics we used were the empiri-
cal 2.5, 50 and 97.5-percentiles which, for a d-dimensional
distribution, were determined from the sample for the first
and d th variable. The squared error divided by the true vari-
ance of the variable did not differ much between these vari-
ables and therefore their mean was used in the calculation of
the MSE. Because the theoretical MSEs for the 2.5 and 97.5
percentiles are equal, their estimated MSEs were averaged
and their average was used to calculate the efficiency under
the heading P2.5. It is thus a pooled efficiency for the 2.5
and 97.5 percentiles.

Each efficiency estimate is based on 100 runs, each con-
sisting of 106 draws of each sampler after a burn-in of 105

draws, with draws counting the number of proposal eval-
uations, each one requiring one evaluation of π(.). With
K = 10, the final number of rows of Z in DE-MCZ(S) is thus
10d + 1.1 × 105 for any value of N .

We would like to stress that our comparison of DE-MC
and DE-MCZ(S) with the RWMN samplers is fair in the
sense that each run required the same number of evalua-
tions of the target function π(.) and the respective statis-
tics (parameters) were calculated using the same number
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Table 1 Efficiency (in percentages) of DE-MC variants with respect to Random Walk Metropolis with optimal Normal jumping distribution for
the median (P50) and 2.5% percentile (P2.5) of d-dimensional Student t60 and t3 distributions. (DE-MC: default, parallel direction updates only;
subscript S: 10% snooker updates, 90% parallel direction updates; subscript Z: updates use sampling difference vectors from past)

N Student t60 Student t3

d = 25 d = 50 d = 100 d = 25 d = 50

P50 P2.5 P50 P2.5 P50 P2.5 P50 P2.5 P50 P2.5

MH-est. 1 69 82 94 61 79 38 33 77 15 143

DE-MC 2d 68 71 77 73 10 5 67 10 27 3

DE-MCS 2d 63 77 88 86 9 31 76 439 108 1016

DE-MCZ 3 85 94 108 85 13 17 128 125 27 114

DE-MCZS 3 88 99 106 103 70 79 117 506 131 2668

Note. The estimated MSEs per draw of RWMN were, in column order, 85, 285, 203, 552, 384, 951, 65, 13916, 166 and 102010. P2.5 is a pooled
efficiency for the 2.5 and 97.5 percentiles

of draws. In real applications the function evaluation costs
typically dominate CPU time, in which case all runs would
require about the same amount of CPU time. To be spe-
cific, in Sects. 3.1 and 3.2 each RMWN run consisted of
1.1 × 106 iterations of a single chain of which 105 iterations
were discarded as burn-in, whereas DE-MC or DE-MCZ(S)

runs with N parallel chains consisted of 1.1 × 106/N gen-
erations (updates of X) of which 105/N generations were
discarded as burn-in. For d = 50, for example, DE-MC and
DE-MCS were run with N = 100. Each such run consisted
of 11,000 generations of which 1,000 were discarded as
burn-in. RMWN could thus benefit from N = 100 times
more burn-in iterations than each of the member chains of
DE-MC.

3.1 Multivariate Student distribution with 60 degrees
of freedom

Table 1 shows the efficiency of the samplers with respect
to RWMN with the optimal jumping distribution (with c =
2.38/

√
d and � set to the true covariance of the distribution)

as obtained from a simulation study for d = 25,50 and 100.
DE-MCZS (with sampling difference vectors from the

past and with 10% snooker updates) showed the best per-
formance with efficiencies ranging between 70% and 106%,
followed by MH-est that exhibits the second highest effi-
ciency ranging between 38% and 94%. The efficiencies of
standard DE-MC were all about 70%, except for d = 100,
which shows a much lower efficiency. This loss was due to
bias, despite the fact that each individual run had converged
as judged on the basis of the R̂ statistics (all R̂ < 1.2). If
the efficiency were based on the estimated variance or if the
length of the burn-in period would have been doubled, then
the efficiency of DE-MC would still be about 70% as shown
in ter Braak (2006). DE-MCS tended to perform slightly bet-
ter than DE-MC.

3.2 Multivariate Student distribution with three degrees
of freedom

For a Student t3 distribution, the samplers with snooker
update performed much better than the other samplers, in
particular for the 2.5% percentile, with a 4–27 times im-
provement over the optimal RWMN. Sampling difference
vectors from the past increased the efficiency, as DE-MCZ

and DE-MCZS had higher efficiencies than both DE-MC
and DE-MCS, respectively. MH-est and DE-MC did poorly.
Ter Braak (2006) reported high efficiencies for DE-MC for
d = 50 but these results were obtained using a better initial
population.

We also carried out runs for d = 100 with 106 draws. The
50% and 2.5% percentiles of the Student t3 with unit vari-
ance 1, are 0 and 1.84, respectively. On this scale, the Root
Mean Squared Error (RMSE) using the optimal RWMN
were 0.015 and 0.61 for the 50% and 2.5% percentiles, re-
spectively, whereas DE-MCZS resulted in 0.035 and 0.09,
respectively. In this case, DE-MCZS is about 40 times more
efficient for the 2.5% percentile.

Acceptance rates in all these runs varied between 0.21
and 0.24. In optimal RWMN and MH-est, c was scaled to
this acceptance rate, whereas the DE-MC variants gave this
rate automatically using γ = 2.38/

√
(2d).

3.3 Effect of N and number of draws on efficiency

Whereas Table 1 varied the dimension and the number of
degrees of freedom for a fixed number of draws and parallel
chains (N = 3) in DE-MC(Z)(S), Table 2 varies the number
of draws and the number of parallel chains (N) for a fixed
dimension d(d = 10) and degrees of freedom (3). The target
distribution is thus a 10-dimensional t3 distribution and the
initial population was as before and thus overdispersed and
far removed from the target.
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Table 2 Mean squared error
(per 1000 draws) in the 2.5%
percentile of a 10-dimensional
Student t3 distribution for the
samplers of Table 1 in relation
to the number of draws and the
number of parallel chains (N)

Sampler N Number of draws

5 × 103 104 2 × 104 106

RMWN-opt 1 47.2 49.3 45.4 2.9

MH-est 1 21.1 23.2 35.5 4.1

DE-MC 20 162.1 244.3 314.0 3.8

DE-MCS 20 128.2 128.4 228.3 1.3

DE-MCZS 1 3.0 1.5 1.2 1.0

DE-MCZS 2 3.5 1.5 1.2 1.2

DE-MCZS 4 5.4 2.3 1.3 1.1

DE-MCZS 8 16.1 6.5 1.9 1.1

DE-MCZS 16 47.7 27.5 11.2 1.0

Table 2 shows the mean squared error per draw (MSEpD)
of the samplers for the 2.5% percentile (defined as in Ta-
ble 1) using 1,000 independent runs with 5 × 103,104, and
2 × 104 draws and an additional 200 runs with 106 draws.
The first 10% of the draws of each run was discarded and
used as burn-in. Table 2 does not include DE-MCZ as DE-
MCZS consistently performed somewhat better.

Table 2 shows that DE-MCZS with N ≤ 8 had much
lower MSEpD than the RWMN and DE-MC(S) samplers.
For 104 draws, DE-MCZS with N = 1 − 2 is about 30 times
more efficient than the optimal RWMN, whereas for 106

draw it is approximately 2.5 times more efficient. Notice
that, with N between 1 and 4, 106 draws with either imple-
mentation of RWMN yields higher MSEpDs than 104 draws
with DE-MCZS. Table 2 also shows that, for a small num-
ber of draws, DE-MC (without sampling difference vectors
from the past) can be very inefficient compared to RWMN.

Inflating N increases MSEpD in DE-MCZS when using
5×103 draws, but this effect of N decreases with increasing
numbers of draws, eventually disappearing after 106 draws.
The reason is that it takes time for the chain(s) to converge
from a distant point towards the target, but after convergence
the efficiency is largely independent of N . Judged by this
criterion, DE-MCZS with N = 1–2 has converged within
2 × 104 draws. Indeed, with N = 2 the Gelman’s R̂ statistic
never exceeded 1.2 with 2 × 104 draws, but did so in 7% of
the runs with 104 draws.

The conclusion we draw from Table 2, is that N should be
chosen small in DE-MCZS. In further analyses, we choose
N = 3 as it allows for a better assessment of convergence
with the R̂ statistic of Gelman et al. (2004).

4 Bayesian examples

4.1 One-way random-effects model

Ter Braak (2006) presented a DE-MC analysis of a one-
way random-effects model for four groups yielding seven

Table 3 Number of runs with R̂ < 1.2 and mean (standard devia-
tion) of percentiles in 100 runs of the posterior of log(ξ) of a one-way
random-effects model with d = 7

log(ξ)

Sampler N #(R̂ < 1.2) P2.5 P50 P97.5

True −0.94 0.98 4.00

DE-MC 14 86 −0.95 1.01 4.05

(0.14) (0.10) (0.33)

DE-MCS 14 100 −0.88 1.08 4.01

(0.13) (0.11) (0.25)

DE-MCZ
* 3 100 −0.87 1.06 3.98

(0.13) (0.16) (0.22)

DE-MCZS
* 3 100 −0.91 1.01 4.00

(0.13) (0.09) (0.22)

Note. Each run consisted of 104 draws of which 20% burn-in. * with
K = 1

parameters in total using an example from Liu and Hodges
(2003). The example is more difficult than one might think
because of a discrepancy between the prior and the data like-
lihood. The DE-MC analysis showed a small bias in log(ξ)

where ξ denotes the variance components ratio, when the
number of simultaneous chains was increased from 14 to 21
to 70 using 106 draws. Here we analyze the same data us-
ing the DE-MC variants presented herein using 104 draws
of which the first 20% was discarded and used as burn-in.
With this number of draws, standard DE-MC with N = 14
converged in 86 of the 100 runs, whereas the DE-MC vari-
ants converged in all cases (Table 3), of which DE-MCZS

showed the closest mean and smallest standard deviation of
the percentiles of log(ξ) in Table 3. Acceptance rates in all
these runs varied between 0.20 and 0.26.

4.2 Nonlinear mixed-effects model

This subsection illustrates the advantage of using fewer
chains in DE-MC for a nonlinear mixed-effects model us-
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Table 4 Root mean squared error of percentiles for DE-MC (N = 86,5000 generations), DE-MCZS (N = 3,143,333 generations, M0 = 430,K =
3), and Block DE-MC (N = 9 and 5000 generations with two inner iterations), based on 41, 100 and 75 runs out of 100 runs with 20% burn-in
and maximum R̂ < 1.2 and requiring ca. 25 seconds per simulation each on a 3.2 GHz Pentium 4, respectively

DE-MC N = 86(41/100) DE-MCZS N = 3(100/100) Block N = 9(75/100)

P2.5 P50 P97.5 P2.5 P50 P97.5 P2.5 P50 P97.5

lKe 0.010 0.002 0.007 0.004 0.002 0.003 0.009 0.004 0.009

lKa 0.021 0.008 0.028 0.025 0.011 0.036 0.069 0.025 0.076

lCl 0.007 0.002 0.007 0.007 0.003 0.006 0.016 0.006 0.017

log(τ 2
e ) 3.231 0.496 0.228 2.965 0.246 0.070 1.202 0.231 0.108

log(τ 2
a ) 0.040 0.017 0.057 0.021 0.021 0.049 0.027 0.026 0.075

log(τ 2
c ) 0.034 0.043 0.089 0.029 0.023 0.039 0.031 0.027 0.063

log(σ 2) 0.006 0.004 0.022 0.007 0.006 0.009 0.005 0.003 0.006

ing the Theophylline data presented in Pinheiro and Bates
(2000, p. 444). The data consist of the oral doses of the anti-
asthmatic drug Theophylline administered to twelve patients
and the serum concentrations of Theophylline in these pa-
tients at 11 time points over 25 hours after the oral intake.
The pharmacokinetics of this drug is modeled by the first-
order open-compartment model

μit = Dikeikai

ci(kai − kei)

[
exp(−kei t) − exp(−kai t)

]

where μit is the expected concentration of the ith patient at
time t,Di is the dose of theophylline administered to the ith
patient and kei, kai and ci are unknown patient-specific para-
meters representing the elimination rate, absorption rate and
clearance, respectively. As in ter Braak (2006), analysis 2 in
Pinheiro and Bates (2000, pp. 364–365) was mimicked by
using the normal likelihood yit ∼ N(μit , σ

2), the indepen-
dent normal priors log(kei) ∼ N(lKe, τ 2

e ), log(kai) ∼ N(lKa,
τ 2
a ) and log(ci) ∼ N(lCl, τ 2

c ) and improper uniform priors
for lKe, lKa, lCl and logσ 2. The priors for the τ -parameters
were chosen to be improper uniforms on the τ -scale, i.e.
p(log(τ 2

x )) ∝ τx , for x = e, a, c. The total number of para-
meters in the posterior density is 3 + 3 + 1 + 12 × 3 = 43
of which 36 are patient-specific ones. The log-posterior
was programmed and the initial population for DE-MC was
drawn in a similar way as done in ter Braak (2006).

Here we compare DE-MCZS with N = 3,M0 = 10d and
K = 3 with standard DE-MC with N = 2d = 86 and block
DE-MC with N = 9 as specified in ter Braak (2006). The
runs in ter Braak (2006) used 4.3 million draws in DE-MC.
Despite this large number, standard DE-MC with N = 86
converged only in 71 of the 100 runs. Separate runs with
WinBUGS 1.4 (Spiegelhalter et al. 2003) lasted about twice
as long, but did not perform well either (ter Braak 2006). In
contrast, DE-MCZS consistently converged in all 100 differ-
ent sampling runs, whereas block DE-MC in almost all. The
advantage of DE-MCZS can be shown even more convinc-
ingly by reducing the number of draws by a factor of ten.

Again, DE-MCZS converged in all 100 runs, whereas stan-
dard DE-MC and block DE-MC converged in only 41 and 75
of the 100 runs, respectively. Table 4 compares the samplers
in terms of the RMSE of the percentiles of parameters, the
true values being based on a very long WinBUGS 1.4 run.
As expected, the RMSEs are typically about a factor

√
10

higher than their counterparts presented in ter Braak (2006),
which took ten times longer to compute. The RMSEs of DE-
MCZS are similar to or lower than those of DE-MC. Block
DE-MC performs best on σ 2 and τ 2

e (which is very close to
0 and thus ill-determined on a log-scale), whereas the full
space methods DE-MC and DE-MCZS do better for the lo-
cation parameters lKe, lKa and lCl. Note that block DE-MC
required several additional tricks to speed up the compu-
tation by using specific properties of the nonlinear effects
model, whereas DE-MCZS did not require additional tuning.
Based on these findings, DE-MCZS appears to be the most
efficient and robust sampling method. DE-MCS performed
slightly better than DE-MC in this example, and DE-MCZ

slightly worse than DE-MCZS (data not shown). The accep-
tance rate for each sampler in these runs varied between 0.14
and 0.17.

WinBugs runs of 10,000 iterations (taking twice the time
of a DE-MCZS run) that converged, gave about 3–5 times
higher RMSE than DE-MCZS for the percentiles of lKa and
lCl and similar RMSEs for the other parameters (data not
shown). Such runs converged to the correct values in ca.
50% of the cases.

5 Discussion

Standard DE-MC as proposed by ter Braak (2006) requires
at least N = 2d chains to be run in parallel. This is fine for
low-dimensional problems, i.e. when only a relatively small
number of parameters needs to be estimated. However, N

parallel chains typically take N times longer to converge



Stat Comput (2008) 18: 435–446 443

than a single chain. This makes standard DE-MC rather inef-
ficient for high-dimensional problems (d > 20, say). In this
paper, we show that DE-MC can work for d up to 50–100
with far fewer chains (e.g. N = 3) by exploiting information
from past samples from the individual chains. This approach
extends the practical applicability of DE-MC. In a nonlinear
mixed effects model example, the approach outperformed
a block-update sampler geared to the specific features of
the model. We chose N = 3 as this still allows for an ac-
curate assessment of when convergence has been achieved.
Nevertheless, for the problems considered herein N = 1 and
N = 4 gave similar results.

The advantage of DE-MCZ(S) with Nz parallel chains
over an N -chain DE-MC (Nz � N) can be understood as
follows. For the same number of burn-in draws (CPU time),
the burn-in of each member chain of DE-MCZ(S) is N/Nz

times longer than that of each member chain of DE-MC. The
extended burn-in per chain improves convergence in high di-
mensional problems when the initial population (initial dis-
tribution) is far from the target. The proposal generation by
sampling difference vectors from the past had negligible ef-
fect on CPU time.

We observed from trace plots for a 100-dimensional
Gaussian target that, after convergence, an N -chain DE-MC
and an N -chain DE-MCZ(S) need about as many generations
as the one-chain optimal RWMN needs iterations to move
from an independent point on the target to another. These
generations require N times more function evaluations, re-
spectively, than the iterations of RWMN, but generate, ac-
cording to the theorem for DE-MC in the Appendix and the
corresponding conjecture for DE-MCZ(S), simultaneously N

independent draws as compared a single independent draw
for RWMN, yielding about equal efficiencies for Gaussian
targets. The reported efficiencies of DE-MC and DE-MCZ(S)

for Gaussian targets are less than 100, largely because of
their shorter burn-in per member chain.

The new method, DE-MCZS, has two more algorithmic
variables than DE-MC (M0 and K). Our simulation and real
data examples suggest that M0 = 10d is a reasonable value
for the initial size of Z. As there are almost no costs in-
volved it would be tempting to set M0 even higher, but this
would hamper the speed of initial adaptation. The lag para-
meter K should not be too large either, as this would also
hamper adaptation. Moreover, a small value of K would re-
sult in excessive storage. In all our runs, we chose K equal
to the thinning rate. This choice works well for a range of
problems, and avoids excessive storage requirements.

The DE-MC variants presented herein are among the
simplest adaptive Metropolis sampling methods, yet attain
high efficiency with respect to the optimal Normal jump
Metropolis algorithm (Table 1). DE-MCZS differs in var-
ious ways from the adaptive Metropolis sampler (AM) of
Haario et al. (2001). AM runs a single chain and uses nor-
mally distributed jumps, using a covariance matrix that is

based on all past samples. The method may have difficulty
to start up and also to define the proper scaling factor γ

for non-normal distributions. The Delayed Rejection added
to AM in DRAM (Haario et al. 2006) helps to overcome
some of these difficulties, although this method exhibits dif-
ficulty converging to the appropriate limiting distribution in
the presence of multimodality. DE-MCZS is quite similar in
spirit to AM in that it uses past samples for adaptation to the
posterior; DE-MC uses differences of past samples directly,
where AM uses them indirectly via the covariance matrix.
This store of past samples makes the memory requirement
of DE-MC much larger than that of AM, but the computing
time shorter. AM requires updating the covariance matrix
at each sample and decomposing it regularly in triangular
form, whereas DE-MC directly draws two past samples to
generate a jump proposal.

No direct performance comparison between DE-MC and
(DR)AM was attempted in this paper. An indirect compari-
son is as follows. AR and DRAM use normally distributed
proposals, whereas these are suboptimal for distributions
with heavier tails. AM and DRAM can therefore never be
more efficient than the optimal RWMN and can thus never
attain the 2–27 fold efficiency increase compared to the op-
timal RWMN sampler as DE-MCZS attains in the Student t3
example summarized in Tables 1 and 2. In addition, DE-MC
can efficiently sample multimodal distributions (Strens et al.
2002; ter Braak 2006), whereas (DR)AM cannot.

The standard snooker update (Gilks et al. 1994; Gilks
and Roberts 1996; Liang and Wong 2001) often requires
a Metropolis step along the chosen direction. The DE-MC
snooker update performs this Metropolis step with an adap-
tive step size. The proposed update is related to the Type
IIb geometric proposal of Strens et al. (2002). Their pro-
posal lacks, however, a default step size and the details of
the Metropolis ratio of (4). When used in a 10–90 combi-
nation with the standard parallel direction update of (1) of
DE-MC, the snooker update increased efficiency for extreme
percentiles of the heavy tailed t3 distribution (Table 1).

The good performance of DE-MC and its variants on
the heavy tailed t distributions can be understood by not-
ing that the proposed jumps are (once the chain is station-
ary) effectively sampling from a distribution with tails which
are nearly as heavy as those of the target and are therefore
more efficient than the light tailed jumps in RWMN (Roberts
2003; Jarner and Roberts 2007). DE-MCZS benefits more
from this than DE-MC and DE-MCS (Tables 1 and 2), be-
cause it uses fewer chains and convergence in each chain is
inherently slow for a heavy tailed target (Jarner and Roberts
2007).

In our algorithm for DE-MCZ(S), each generated new
sample xi does not change Z immediately. This is advan-
tageous in a multi-processor environment as it allows simul-
taneous real-time updating of the N chains. The outcome of
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each processor is the K th iterate of xi , which should then be
stored in the matrix Z at a location that is accessible by all
processors for proposal generation. In such environments,
DE-MC and DE-MCZ(S) should perhaps be compared with
an RWMN sampler with N parallel but independent chains.
As the burn-in time of DE-MC, DE-MCZ(S) and RWMN are
then of the same order (for identical N), the efficiency of
DE-MC and DE-MCZ(S) compared to RWMN are likely to
be higher than those reported in this paper. We confirmed
this by simulation for Gaussian targets (results not shown).

This paper shows that DE-MCZS can be a simple and at-
tractive adaptive Metropolis sampler for d up to 50–100. For
higher dimensions, we need to resort to block updating with
block size up to 20–50 and combine block DE-MC with
other multi-dimensional block-updaters, particularly when
available in closed form. Such a mixed approach is already
implemented in OpenBugs (Thomas and O’Hara 2007).
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Appendix

The proof in ter Braak (2006) that Differential Evolution
Markov Chain (DE-MC) is a valid MCMC method, con-
tains an error, as was kindly pointed out by a referee. Here
we give a valid proof, that is similar to that for the pinball
sampler (Mengersen and Robert 2003). In essence, DE-MC
works because the N chains can together be considered as
a single chain on state space SN , which is updated using an
N -component Metropolis-within-Gibbs algorithm.

Let π̃ (x1, . . . ,xN)be the target probability density func-
tion (pdf). Recall that a Metropolis-within-Gibbs algo-
rithm is constructed in such a way that the jumping kernel
Ki(.|x1, . . . ,xN) for the ith component xi satisfies for each
i = 1, . . . ,N the conditional detailed balance condition with
respect to π̃(.|x1, . . . ,xi−1,xi+1, . . . ,xN):

π̃(x(t)
i |x(t+1)

1 , . . . ,x(t+1)
i−1 ,x(t)

i+1, . . . ,x(t)
N )

× Ki(x
(t+1)
i |x(t+1)

1 , . . . ,x(t+1)
i−1 ,x(t)

i ,x(t)
i+1, . . . ,x(t)

N )

= π̃ (x(t+1)
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1 , . . . ,x(t+1)
i−1 ,x(t)

i+1 . . . ,x(t)
N )

× Ki(x
(t)
i |x(t+1)

1 , . . . ,x(t+1)
i−1 ,x(t+1)

i ,x(t)
i+1 . . . ,x(t)

N ). (5)

If (x(t)
1 , . . . ,x(t)

N ) ∼ π̃ (.), the joint pdf of x1, . . . ,xN at it-

eration t , it then follows that(x(t+1)
1 , . . . ,x(t+1)

N ) ∼ π̃ (.) at

iteration t +1, because using (5) and the fact that kernels in-
tegrate to unity (adapted after Mengersen and Robert 2003)
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∼
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× Ki+1(x
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This concludes that proof that π̃(.)is the stationary distri-
bution of the N -component Metropolis-within-Gibbs algo-
rithm. We are now in the position to proof

Theorem 1 DE-MC yields a Markov chain that is er-
godic with unique stationary distribution (x1, . . . ,xN) ∼
π̃(x1, . . . ,xN) = π(x1) × · · · × π(xN).

Proof Chains are updated sequentially and conditionally
upon one another. The proof consists of three parts. In part
(a) we establish detailed balance of the kernel of the ith
chain conditionally on the states of the other chains. We then
use the general result on Metropolis within Gibbs in part (b)
to proof that the chain has stationary distribution pdf π(.)N .
Ergodicity is proven in part (c).

(a) In this part we show that the kernel Ki(.|x1, . . . ,xN)of
updating the ith chain satisfies for each i = 1, . . . ,N the
conditional detailed balance condition with respect to π(.):

π(x(t)
i )Ki(x

(t+1)
i |x(t+1)

1 , . . . ,x(t+1)
i−1 ,x(t)

i ,x(t)
i+1, . . . ,x(t)

N )

= π(x(t+1)
i )Ki(x

(t)
i |x(t+1)

1 , . . . ,x(t+1)
i−1 ,x(t+1)

i ,

x(t)
i+1 . . . ,x(t)

N ).

The update of the ith chain proceeds by random selection
of a pair of two different other chains. The kernel of this
update thus is a mixture of

(
N−1

2

)
kernels. Such a mixture

maintains detailed balance with respect to π(.), if each of its
components does (Robert and Casella 2004). Let one such
component be based on the pair of chains j and k (j 
= i, k 
=
i, j 
= k). This component indeed maintains detailed balance
as, from (1),

xi = x* − γ (xj − xk) − e = x* + γ (xk − xj ) − e (6)

and noting that xj is selected equally often afore xk as is
xk afore xj , and that the distribution of e is symmetric.
Thus, detailed balance with respect to π(.) is achieved point-
wise by accepting the proposal with probability min(1, r)

where r = π(x*)/π(xi ). As the Jacobian of the transforma-
tion implied by (6) is 1 in absolute value, detailed balance
also holds in terms of arbitrary measurable sets, as required
for reversibility of the Markov chain (Waagepetersen and
Sorensen 2001).

(b) As shown in (a) the kernel Ki(.|x1, . . . ,xN)of updat-
ing the ith chain satisfies for each i = 1, . . . ,N the condi-
tional detailed balance condition (5) with

π̃(x(t)
i |x(t+1)

1 , . . . ,x(t+1)
i−1 ,x(t)

i+1, . . . ,x(t)
N ) = π(x(t)

i ).

DE-MC is thus an N -component Metropolis-within-Gibbs
algorithm with joint stationary distribution(x1, . . . ,xN) ∼
π̃(x1, . . . ,xN) = π(x1) × · · · × π(xN).

(c) The stationary distribution is unique, if the chain is
aperiodic, not transient and irreducible (Robert and Casella
2004). The first two conditions are satisfied, except for triv-
ial exceptions, because of the random walk component gen-
erated by e in each DE-MC update. For the third condition, it
is required that any state can be reached with positive proba-
bility and this is guaranteed by the unbounded support of the
distribution of e in (6) (Robert and Casella 2004). Each com-
ponent has therefore a unique stationary distribution which,
from (a), is π(.). This concludes the proof. �
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