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1 Introduction

Shewhart and Exponentially Weighted Moving Average (EWMA) control charts are
simple and effective graphical procedures for monitoring the quality of manufactured
products (see Montgomery, 2004). Since the EWMA control chart can be designed
to quickly detect either small or large shifts but not both, and Shewhart control
chart is efficient for detecting large shifts, it is often suggested to combine these
two control schemes when both large and small shifts are to be detected. Resulting
procedures, both simple and intuitive for users, permit to achieve a more balanced
protection against shifts of different sizes (Lucas and Saccucci, 1990).

Charts performance is often measured in terms of run length, defined as the
number of samples that are taken until an alarm is triggered. In order to better
characterize the control chart performance both the zero-state and the steady-state
run-length distributions are usually evaluated. Zero-state run lengths refer to the run
lengths computed under the hypothesis of a mean shift occurring at the beginning
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of the monitoring process while the steady-state run lengths are evaluated assuming
that a shift may occur after the process has been running for a some period of time
and the control statistic has reached a steady-state distribution.

Observe that, the run-length distribution of the Shewhart control chart can be
computed analytically while the run-length distribution of the EWMA chart has to
be approximated numerically since its closed form expression cannot be obtained.
Two main approaches, both using the Markovian properties of the EWMA control
statistic, have been proposed to address this issue. Following the first approach,
pionereed by Brook and Evans (1972), the properties of the true continuous state
Markov process are evaluated by an approximating finite-state Markov chain. This
method has also been used to obtain the run-length properties of the combined
Shewhart-EWMA (CSEWMA) control chart (Lucas and Saccucci, 1990). Following
the second approach, a continuos characterization of the process is directly used
(Crowder, 1987). Then, solutions of the corresponding integral equations and in-
tegral recurrence relations are approximated numerically. As Champ and Rigdon
(1991) pointed out, this second approach is usually more efficient when an inte-
gral equation can be found; however, it has never been applied to the case of the
CSEWMA chart.

In this paper, we use the second approach to evaluate the run-length distribution
for the CSEWMA chart. The algorithm, based on a modified product Clenshaw-
Curtis quadrature (Clenshaw and Curtis, 1960; Imhof, 1963; Sloan and Smith, 1978;
Sloan, 1978; Sloan and Smith, 1980; Sloan, 1981; Sloan and Smith, 1982; Piessens,
2000), is able to overcome the problem raising from the discontinuous kernel in the
integral equations related to the combined use of the Shewhart and the EWMA
control chart. Indeed, when the kernel of an integral equation is not smooth, it is
not possible to use the numerical approach, based on Gaussian quadrature, usually
applied in the standard EWMA case. In Section 2, we describe how to compute the
expected value of the CSEWMA run length. Since in many practical applications
it is often useful to have a complete picture of the whole run-length distribution,
we discuss in Section 3 how to evaluate the entire run length distribution of the
CSEWMA chart. Section 4 is devoted to the computation of the steady-state distri-
bution. Section 5 illustrates how to practically use the proposed procedure to design
a suitable CSEWMA scheme. Results point to a good efficacy of the suggested al-
gorithm when compared to other numerical procedures.

2 Average Run Lengths for the CSEWMA control chart

Let xt, t = 1, 2, . . ., be a sequence of continuous, independent and identically dis-
tributed (i.i.d) random variables. This sequence may consist of single measurements,
sample means or of any other sample statistics having common probability density
function (p.d.f), f(·), and distribution function F (·). Here, the p.d.f. f(·) is not re-
stricted to being normal and can represent either the in-control or the out-of-control
distribution. Without loss of generality, assume that the in-control value for the
process mean and variance are zero and one, respectively.
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The CSEWMA control chart signals an alarm if |xt| > k or |zt| > h where

zt = (1− λ)zt−1 + λxt, 0 < λ ≤ 1, z0 = 0

is the EWMA control statistic. The control limit h is usually specified in terms
of the asymptotic standard deviation of the EWMA control statistic, that is h =
h̃
√
λ/(2− λ). The constant λ, h̃ and k are design constants chosen to obtain a

suitable run length performance.
Let RL be the run length of the scheme and

ARL(z) =

{
E(RL|z0 = z) if |z| ≤ h,
0 otherwise.

the expected value of the CSEWMA run-length conditioned on the initial state of
the EWMA statistic being z. In particular, the expected value of the first-passage
time from the starting state 0 over the control limit h, i.e. ARL(0), is equal to the
zero-state ARL of the control chart. Since zt is Markovian, a standard argument can
be used to show that ARL(z) satisfies a Fredholm integral equation of the second
kind

ARL(z) = 1 +
∫ k

−k
ARL((1− λ)z + λx)f(x)dx, (1)

with −h ≤ z ≤ h. Making the change of variable to v = ((1−λ)z+λx)/h, equation
(1) can be rewritten as

y(u) = 1 +
∫ 1

−1
Q(u, v)y(v)dv (2)

where y(u) = ARL(hu) and Q(u, v) = I(u, v)g(u, v) is the kernel of the integral
equation (2). Here,

I(u, v) =

1 if |v − (1− λ)u| ≤ λk

h
0 otherwise

and

g(u, v) =
h

λ
f

(
h(v − (1− λ)u)

λ

)
.

For large values of k, in particular for k ≥ h(2 − λ)/λ, the Shewhart control limits
are no longer effective and I(u, v) = 1, for (u, v) ∈ [−1, 1]2. In this case, since f(·)
and the kernel Q(·, ·) are continuous, the Gauss-Legendre quadrature can be used
to approximate the integral equation (2) by the sistem of equations

y(ui) = 1 +
n∑
j=1

wjg(ui, uj)y(uj), i = 1, . . . , n. (3)

where u1, . . . , un and w1, . . . , wn are the nodes and the corresponding weights of
the quadrature rule. Solving the system (3) in y(ui), i = 1, . . . , n, and replacing ui
by u, we may obtain an approximation of y(u), for any value of u ∈ [−1, 1]. This
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approach, pionereed by Crowder (1987) for the EWMA control chart and known as
the Nyström method in the literature regarding the numerical solution of integral
equations, gives excellent results for the EWMA control chart using a limited number
of nodes (see Figures 1 and 2).

However, one cannot expect a high accuracy using the Gauss-Legendre quadra-
ture when the Shewhart and the EWMA control limits run simultaneously, i.e. when
k < h(2 − λ)/λ (see, for instance, Figure 3 and 4). Indeed, when the kernel Q(·, ·)
of the integral equation (2) is not-smooth, the Gauss-Legendre quadrature, used by
Crowder (1987) to derive the expectations of the run length of the EWMA scheme,
may fail to provide a reasonable approximation to the right hand side of equation
(2). Further, under this condition, we cannot be sure of getting convergence of the
solution of the system of linear algebraic equations (3) to the exact result, as n→∞.
This is because, when k is not large enough, a single quadrature rule cannot be used
to approximate the integral on the right side of (2) for each value of u. Indeed,
since singularities of the function Q(u, ·) depend on u, different rules should be used
for different values of u. On the other hand, to obtain a linear system of equations
similar to (3), all the rules must be based on the same set of nodes ui.

One feasible solution consists of using a Clenshaw-Curtis (CC) type quadrature
(Clenshaw and Curtis, 1960; Imhof, 1963). This algorithm does not seem to have
been previously used in the context of control charts. However, many software li-
braries for numerical integration are based on the CC integration rules. The QUAD-
PACK library (Piessens et al., 1983), for instance, and also well-known commercial
libraries, such as NAG (http://www.nag.co.uk) and IMSL (http://www.vni.com),
make use of the CC quadrature to numerically integrate functions with singulari-
ties, oscillatory functions or functions with weights. Further, the CC quadrature has
been used to solve integral equations (Sloan and Smith, 1982; Piessens, 2000; Kang
et al., 2002). In particular, if f is Riemann-integrable, it is possible to show that
the numerical solution, obtained using the CC quadrature, converges to the exact
solution of the integral equation as n → ∞ (Sloan and Smith, 1978). In addition,
recent theoretical results also show that, for a several times differentiable integrand,
CC and Gauss quadrature formulas have essentially the same accuracy (Trefethen,
2006). Thus, CC quadrature results is a viable alternative to the Gauss Legendre
procedure even when this quadrature rule can be applied. Indeed, Figures 1 and 2
show for a standard EWMA (with no Shewhart limits) a very similar performance
of the CC and Gauss-Legendre quadrature rules.

The CC quadrature rule for integral equations of the form (2) is characterized
by an approximate system of linear equations of the form

y(ui) = 1 +
n∑
i=1

wijg(ui, uj)y(uj), i = 1, . . . , n (4)

Here, the nodes ui are the zeros of the Chebyshev polynomials of degree n, Tn(cos θ) =
cos(nθ), i.e.

ui = cos
(

(i− 1)π
n− 1

)
, i = 1, . . . , n

and the weights wij are determined so that the rule is exact when the integrand
is a polynomial of degree n − 1. Note that, this quadrature rule uses the same
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integration points for every value of u in the left handside of equation (2) but adjusts
the corresponding weights for handling discontinuities in I(ui, ·).

In practice, wij are obtained solving the following linear system

n∑
j=1

wijTr−1(uj) =
n∑
j=1

wij cos
(

(j − 1)(r − 1)π
n− 1

)
= mir

i = 1, . . . , n
r = 1, . . . , n

(5)

where mir, the modified Chebyshev moments of the function I(ui, v), are defined as

mir =
∫ 1

−1
I(ui, v)Tr−1(v)dv.

Reminding that I(·, ·) is an indicator function, the Chebyshev moments are easy to
compute from the indefinite integral of Tr−1(v) given by

∫
Tr−1(v)dv =


v for r = 1
v2/2 for r = 2
1
2

[
Tr(v)
r
− Tr−2(v)

r − 2

]
for r > 2

.
The solution of the system (5) can be obtained by applying the Fast Fourier

Transform (FFT) or the Discrete Cosine Transform (DCT). Since the standard FFT
is more widely available, we here present the solution obtained via FFT. In particu-
lar, let (w̃i1, . . . , w̃i(2n−2)) be the discrete Fourier transform of (mi1, . . . ,min,mi(n−1), . . . ,mi2).
Then, it can be shown that

wij =


Real part of w̃i1

2(n− 1)
if i = 1 or i = n

Real part of w̃i1
n− 1

otherwise
.

For the CSEWMA case, we have found convenient to consider a slight modification
of the weights wij given by

w+
ij =

max(0, wij)si∑
i max(0, wij)g(ui, uj)

(6)

where

si =
∫ 1

−1
Q(ui, v)dv = (7)

= F

{
min

[
k,
h

λ
(1− u(1− λ))

]}
− F

{
max

[
−k,−h

λ
(1 + u(1− λ))

]}
are directly evaluable from the distribution function F (·) of the observations. Ob-
serve that such a modification leads to non-negative weights and makes the approx-
imation of the integral

∫
Q(ui, v)dv, i = 1, . . . , n, i.e.

∑
j w

+
ijg(ui, uj), exact. This

modification is asymptotically negligible; indeed, since in the current case g(·, ·) ≥ 0,
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the “asymptotic positivity” property of the weigths, proved by Sloan and Smith
(1982), can be used to show that

lim
n→∞

n∑
j=1

(wij − w+
ij)g(ui, uj)y(uj) = 0

Concerning the ARL, our results do not show practical differences between the
modified and unmodified weights for n > 30. On the other hand, we will show in
Sections 3 and 4 that the modified weights (6) give some advantages when the whole
run-length distribution has to be evaluated.

Given the weights, the approximation to y(ui) can be obtained by solving the sys-
tem of equations (4). Note that, if an odd number of nodes is used, then u(n+1)/2 = 0
and y(u(n+1)/2) can be used to directly approximate the average run length.

For a range of values of λ, h and k, and for the case of normal and Student t
density functions, Figures 1-4 show, for n ranging from 1 to 100, the approximation
to the ARL obtained by using the following four methods:

(i) Gauss-Legendre quadrature;
(ii) modified CC quadrature;

(iii) Markov chain approximation based on n states;
(iv) “extrapoled” Markov chain method suggested by Lucas and Saccucci (1990).

In this case, Markov chain approximations with n−32, n−24, n−18, n−8 and
n states, respectively, are computed. Then, a least square curve a+ b/n+ c/n2

is fitted and the intercept is used to approximate the continuous state ARL’s.
For a standard EWMA chart (Figures 1 and 2), comparisons show that Gauss-
Legendre quadrature and approximations based on CC quadrature have a compa-
rable accuracy and that these integral equation methods outperform Markov-chain
approach, with or without extrapolation. When a combined Shewhart-EWMA chart
is considered, solution of the integral equation using CC quadrature seems to be the
most reliable and fastly convergent procedure.

3 CSEWMA Run Length Distributions and Related Sum-
mary Values

In order to gain a complete understanding of chart performance, run-length char-
acteristics different from the average run length, such as standard deviation and
quantiles of the run-length distribution or the probability of signalling alarms dur-
ing a given time interval, are often evaluated. Therefore, in this section we show
how to use the modified CC integration rule to approximate the whole run-length
distribution.

Let
pRL(r|u) = P (RL = r|z0 = hu), u ∈ [−1, 1]

be the probability that the run-length is r, given that the EWMA control statistic
starts at time 0 with value hu. It is straightforward to show that

pRL(1|u) = 1−
∫ 1

−1
Q(u, v)dv (8)
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and

pRL(r|u) =
∫ 1

−1
Q(u, v)pRL(r − 1|v)dv (9)

for r > 1, where Q(·, ·) has been defined in Section 2.
Discretizing the recurrence integral relations (9), through a procedure similar to

that used for approximating the average run length, we obtain

pRL(r|ui) '
n∑
j=1

w+
ijg(ui, uj)pRL(r − 1|uj),

i = 1, . . . , n
j = 1, . . . , n

(10)

where w+
ij are the modified weights (6) corresponding to the CC nodes ui. By

pretending that left-hand and right-hand sides of equation (10) are equal, we obtain
the following homogeneous difference equation

pRL(r) = ApRL(r − 1) (11)

where pRL(r) = [pRL(r|u1), . . . , pRL(r|un)]T and A = {aij} is a matrix whose (i, j)-
th element is aij = w+

ijg(ui, uj). The solution of (11) is given by

pRL(r) = Ar−1pRL(1)

where, by equations (7) and (8), pRL(1) = (1− s1, . . . , 1− sn)T .
Observe that, when the suggested modified weigths (6) are used, then

i) A is a sub-stochastic matrix, i.e. it is a nonnegative matrix with row sums not
exceeding 1. Indeed w+

ij and g(·, ·) are non-negative and∑
j

aij =
∑
j

w+
ijg(ui, uj) = si ≤ 1;

ii) pRL(1) = (I −A)O, where O = (1, . . . , 1)T .
Thus, i) the solution to the difference equation (11) is numerically stable; ii) pRL(r|ui) ≥
0, ∀r, i; iii) since A is a sub-stochastic matrix, (I − A)−1 = limr→∞

∑r
j=0A

j and
consequently

∑
r pRL(r|ui) = 1. These properties cannot be guaranteed when the

unmodified CC weigths are used.
Here, we are interested in pRL(r|0), i.e. in the distribution of the run length

when the monitoring process starts from zero. For an odd number of nodes, this
probability is given by

pRL(r|0) = P

[
r|u
(
n+ 1

2

)]
= bTAr−1pRL(1) = bTAr−1(I −A)O (12)

where b is a column vector with 1 as its (n+ 1)/2-th element and 0 otherwise.
Either quantiles of the RL distribution or the probability of signals during a

given time interval can be directly computed from the probability distribution (12).
By continuing to assume an odd value of n, moments of the run length distribution
can be found using the following expression of the moment generating function

MGF (t) =
∞∑
t=1

ertpRL(r|0) = bT et[I − etA]−1(I −A)O (13)
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From (13), we can obtain directly the expected value of the approximated run-length
distribution

E[RL] = b(I −A)−1O (14)

and the variance
V [RL] = b(I +A)(I −A)−2O.

Observe that the expected value of the run-length, given by equation (14), is equal
to the ARL obtained in the previous section.

An example of the algorithms performance is given in Figures 5 and 6 that show
approximations, of the median and standard deviation of the CSEWMA run-length
distribution, obtained using the four numerical methods described in the previous
section. Even for these summary values the modified CC quadrature seems to show
the best accuracy.

4 The CSEWMA Steady State Run Length Distribution

In this section we show how to compute the steady-state distribution, namely

p∞(r) = lim
t→∞

P (RL = r + t|RL > t). (15)

that is the distribution of the run length when no false alarm is given before the signal
and the shift occurs after the control statistic has reached its stationary distribution.

Given the Markovian property of the control statistic, p∞(r) is given by

p∞(r) =
∫ 1

−1
pRL(r|u)pz(u;∞)du (16)

where pz(u;∞) is the limit distribution function, as t tends to ∞, of the density
function of zt/h, given that RL > t. Standard arguments can be used to show
that the limit distribution pz(u;∞) can be obtained iterating, until convergence is
achieved, the following recursion

pz(u; t+ 1) =

∫ 1
−1 pz(v, t)Q(v, u)dv∫ 1

−1

∫ 1
−1 pz(v, t)Q(v, w)dvdw

, (17)

where pz(v, 1) = Q(0, v)/
∫ 1
−1Q(0, w)dw.

Using the CC quadrature, equation (17) may be approximated by

pz(ui; t+ 1) =

∑
j w
∗
ijpz(vj , t)g(vj , ui)dv∑

j,l w
CC
l w∗ijpz(vj , t)g(vj , ui)

(18)

where ui are the CC nodes, w∗ij are the CC weights modified as described in the
previous section and here used for approximating integrals in the numerator of (17).
Further, wCCl are the standard CC weights used to numerically integrate a contin-
uous function on the in the interval [−1, 1].

Observe that using the modified weights, the approximated recursion (18) is
stable; thus, its iteration converges. Once convergence is reached, an estimate of
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pz(u;∞), denoted by p̃z(u;∞), can be used to obtain a discretized version of (15)
given by

p∞(r) '
∑
i

wCCi pRL(r|ui)p̃z(u;∞). (19)

Figures 7 and 8 illustrate how accurate the compared quadrature rules are to ap-
proximate both the steady-state ARL and probability to give a true signal within
ten observations.

5 Design of a CSEWMA control chart

In this section, we illustrate how to apply the proposed algorithms to the design of
a CSEWMA chart. The CSEWMA design consists of choosing, between all com-
binations of constants giving a large in control ARL, those values λ, h̃ and k for
which the out-of-control ARL is relatively small. Since the CSEWMA control chart
is desirable for its satisfactory performance for both small and large mean shifts,
we here investigate the CSEWMA run length performance for a range of mean val-
ues. Results presented in the previous sections outline that, using the modified CC
quadrature rule, a very high accuracy may be otained with 65 support points. Com-
putation of the CC weights for n = 65 is also particularly rapid since it requires
a FFT of a vector of a highly factorizable length, i.e., 128. Thus, we show results
obtained for n = 65 and for monitoring a Gaussian process having, in the in-control
situation, mean equal to zero and unitary variance. Here, we assume that a per-
sistent change of size µ can affect the process mean and that the desired in-control
average run-length is equal to 370.4.

Figure 9 shows how the design constant k affects both the zero-state and the
steady-state ARL’s for different values of λ. Observe that, in the case of small mean
shifts, there is no practical difference between the ARL profiles corresponding to
different values of k and λ. However, as µ increases, a better ARL performance
can be observed, throughout the λ values, for k = 3.25 o k = 3.5. Thus, Figure 10
illustrates the comparison between the ARL profiles of two CSEWMA charts, based
on k = 3.25 and 3.5, for various λ. Note that, the choice of an optimal value of λ
depends on the size of shift which should be promptly detected. However, choosing
λ equal to 0.05 or 0.1 and k roughly equal to 3.25 or 3.5, seems to be a reasonable
compromise for the whole range of location shifts.

In alternative to this graphical analysis, the CSEWMA design can be also based
on a suitable optimization criterion. For example, given the satisfactory performance
of the Shewhart chart for a relatively large value of the mean shift, the CSEWMA
chart can be designed so that, between all the schemes having an in-control ARL
equal to B, i) it is the most efficient at signalling a small mean shift µ1; ii) it
approximately performs as well as the Shewhart control chart, when the step shift
is equal to a great value µ2. Thus, denoting by ψ(µ;λ, h̃, k) the ARL when the size
of shift is equal to µ, a possible design procedure consists on determining λ, h̃ and
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k as solution of the following constrained minimization


min
λ,h̃,k

ψ(µ1;λ, h̃, k)

subject to
ψ(0;λ, h̃, k) = B

ψ(µ2;λ, h̃, k) ≤ (1 + α)C

(20)

where α is a small tollerance value and C is the out-of-control ARL, for a mean shift
of µ2, of a Shewhart control chart having an in-control ARL equal to B.

Table 1 lists the solutions of (20), the corresponding CSEWMA ARL’s profiles
for a range of shift sizes and also the 10th, 50th and 90th quantiles of the CSEWMA
run length distribution. The minimization problem (20) has been solved using the
Nelder-Mead algorithm (Nelder and Mead, 1965) with constraints introduced as
penalties. Users should choose the design constants that guarantee a desired ARL
profile. For example, the combination of the design constants λ = 0.077, k = 3.201,
h̃ = 2.863 seems able to give a satisfactory protection against both small and and
large shifts.

6 Conclusion

The use of a modified Clenshaw-Curtis quadrature rule is suggested to approximate
integral equations and integral recurrence relations related to the run-length charac-
teristics of the combined Shewhart-EWMA control chart. The proposed approach,
as illustrated in the paper, can be used to compute a variety of performance measures
(not only the average run-length). Numerical results demonstrate an increased ac-
curacy compared to other conventional methods. In particular, this technique gives
the advantage of a more rapid convergence than the Markov chain based approach
previously used for this kind of monitoring schemes. In addition, since it explic-
itly accounts for the discontinuities in the integral kernels, it does not suffer from
any drawbacks, associated to the convergence, that affect the Gauss-type quadra-
ture methods. Further, our results outline that the performance of the suggested
algorithm is not inferior to that based on the Gauss quadrature rule, even in those
situations where this rule is considered optimal from the current literature, such is
the case with the standard EWMA chart without Shewhart limits.

The implementation of the suggested algorithm is quite simple. A reference
implementation in R (R Development Core Team, 2006) is available at the journal
web page.

Finally, it should also be noted that the suggested approach can be easily adapted
and seems to be promising for studying the performance of other combined control
charts (e.g., combined Shewhart-CUSUM or combination of more than one EWMA
[CUSUM] charts) and, more in general, of those monitoring schemes which result in
integral equation or integral recurrence relations with discountinuos kernel.
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Figure 1: Approximations of the EWMA in-control average run-length (control chart
without Shewhart limits) as function of the dimension of the discretized system. The
underlying distribution is a standard normal. Approximations have been computed
using the following methods: (i) integral equation approach using Gauss-Legendre
quadrature (dot line); (ii) integral equation using Clenshaw-Curtis quadrature (solid
line); (iii) Markov chain (dash line); (iv) extrapolated Markov chain (dash-dot line).
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Figure 2: Approximations of the EWMA in-control average run-length (control chart
without Shewhart limits) as function of the dimension of the discretized system. The
underlying distribution is a Student’s t with 5 degree of freedom. Legend: see Figure
1.
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Figure 3: Approximations of the CSEWMA in-control average run-length as function
of the dimension of the discretized system. The underlying distribution is a standard
normal. Legend: see Figure 1.
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Figure 4: Approximations of the CSEWMA in-control average run-length as function
of the dimension of the discretized system. The underlying distribution is a Student’s
t with 5 degree of freedom. Legend: see Figure 1.
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Figure 5: Approximations of the median of the CSEWMA in-control run-length as
function of the dimension of the discretized system. The underlying distribution is
a standard normal. Legend: see Figure 1.
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Figure 6: Approximations of the standard deviation of the CSEWMA in-control
run length as function of the dimension of the discretized system. The underlying
distribution is a standard normal. Legend: see Figure 1.
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Figure 7: Approximations of the CSEWMA out-of-control steady state average run-
length as function of the dimension of the discretized system. The underlying dis-
tribution is normal with mean 0.5 and unit variance. The steady state distribution
has been computed assuming that the in-control distribution is a standard normal.
Legend: see Figure 1.
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Figure 8: Approximations of the CSEWMA steady state probability to give a signal
within 10 observation as a function of the dimension of the discretized system. The
underlying distribution is normal with mean 0.5 and unit variance. The steady
state distribution has been computed assuming that the in-control distribution is a
standard normal. Legend: see Figure 1.
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Figure 9: Profiles of the CSEWMA average run-length: k = 3.25 (solid line); k = 3.5
(dot line); k = 4 (dash line); k = 4 (dash-dot line).



22 Figures and Tables

0 1 2 3 4

2
5

10
50

20
0

k == 3.25,,  zero−state ARL

µµ
0 1 2 3 4

2
5

10
50

20
0

k == 3.25,,  steady−state ARL

µµ

0 1 2 3 4

2
5

10
50

20
0

k == 3.5,,  zero−state ARL

µµ
0 1 2 3 4

2
5

10
50

20
0

k == 3.5,,  steady−state ARL

µµ

Figure 10: Profiles of the CSEWMA average run-length: λ = 0.025 (solid line);
λ = 0.05 (dot line); λ = 0.1 (dash line); λ = 0.2 (dash-dot line).
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Table 1: Some Combined Shewhart-EWMA control charts optimal according to cri-
terion (20) (B = 370.4, α = 0.05). ARL and Qp denote the average and the
p-quantile of the run-length distribution of the resulting control scheme.

Design shifts Optimal parameters Mean shifts
µ1 µ2 λ h̃ k 0 0.5 1 2 3 4
0.5 3 0.077 2.863 3.201 ARL 370.4 31.4 10.8 4.2 2.1 1.3

Q0.1 44.0 11.0 5.0 1.0 1.0 1.0
Q0.5 259.0 26.0 10.0 4.0 2.0 1.0
Q0.9 845.0 59.0 17.0 6.0 4.0 2.0

0.5 4 0.043 2.763 3.158 ARL 370.4 31.1 12.1 4.7 2.1 1.3
Q0.1 46.0 13.0 6.0 1.0 1.0 1.0
Q0.5 259.0 27.0 12.0 5.0 2.0 1.0
Q0.9 843.0 54.0 18.0 7.0 4.0 2.0

1.0 3 0.146 2.874 3.410 ARL 370.4 33.8 10.0 3.7 2.1 1.3
Q0.1 43.0 9.0 5.0 2.0 1.0 1.0
Q0.5 258.0 26.0 9.0 4.0 2.0 1.0
Q0.9 847.0 69.0 17.0 6.0 3.0 2.0

1.0 4 0.126 3.00 3.178 ARL 370.4 36.7 10.6 3.8 2.0 1.3
Q0.1 42.0 10.0 5.0 1.0 1.0 1.0
Q0.5 258.0 28.0 9.0 4.0 2.0 1.0
Q0.9 848.0 75.0 18.0 6.0 3.0 2.0

Note. h̃ and k are computed assuming σ = 1 where σ denotes the standard deviation
of the process. In general, this values should be multiplied by σ.
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