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Abstract In this paper we describe active set type algo-
rithms for minimization of a smooth function under gen-
eral order constraints, an important case being functions
on the set of bimonotone r x s matrices. These algorithms
can be used, for instance, to estimate a bimonotone regres-
sion function via least squares or (a smooth approximation
of) least absolute deviations. Another application is shrink-
age estimation in image denoising or, more generally, re-
gression problems with two ordinal factors after represent-
ing the data in a suitable basis which is indexed by pairs
@, j)e{l,...,r} x{1,...,s}. Various numerical examples
illustrate our methods.

Keywords Active set algorithm - Dynamic programming -
Estimated risk - Pool-adjacent-violators algorithm -
Regularization

1 Introduction

Monotonicity and other qualitative constraints play an im-
portant role in contemporary nonparametric statistics. One
reason for this success is that such constraints are often
plausible or even justified theoretically, within an appropri-
ate mathematical formulation of the application. Moreover,
by imposing shape constraints one can often avoid more
traditional smoothness assumptions which typically lead to
procedures requiring the choice of some tuning parameter.

R. Beran
University of California, Davis, CA, USA

L. Diimbgen ()
University of Bern, Bern, Switzerland
e-mail: duembgen @stat.unibe.ch

A good starting point for statistical inference under qualita-
tive constraints is the monograph by Robertson et al. (1988).

Estimation under order constraints leads often to the fol-
lowing optimization problem: For some dimension p > 2 let
Q0 :R? — R be a given functional. For instance,

14
QO)=> wu(Zy —0)° (1)

u=1

with a certain weight vector w € (0, c0)? and a given data
vector Z € R”. In general we assume that Q is continuously
differentiable, strictly convex and coercive, i.e.

Q) —> oo as 0] — oo,

where | - || is some norm on R”. The goal is to minimize Q
over the following subset K of R”: Let C be a given collec-
tion of pairs (u, v) of different indices u,v € {1, 2, ..., p},
and define

K=K(C)={6 €R":0, <0, forall (u,v) €C}.

This defines a closed convex cone in R” containing all con-
stant vectors.

For instance, if C consists of (1, 2), (2,3),...,(p—1, p),
then K is the cone of all vectors § € R” such that 0; <
0 < --- < 0,. Minimizing (1) over all such vectors is a stan-
dard problem and can be solved in O(p) steps via the pool-
adjacent-violators algorithm (PAVA). The latter was intro-
duced in a special setting by Ayer et al. (1955) and extended
later by numerous authors, see Robertson et al. (1988) and
Best and Chakravarti (1990).

As soon as Q(-) is not of type (1) or C differs from the
aforementioned standard example, the minimization of Q(-)
over K becomes more involved. Here is another example for
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K and C which is of primary interest in the present paper:
Let p = rs with integers r, s > 2, and identify R” with the
set R™* of all matrices with r rows and s columns. Further
let K, s be the set of all matrices # € R"** such that

0;,j <0;iy+1,; wheneveri <r and

0;,j <0;j+1 whenever j <s.

This corresponds to the set C, s of all pairs ((i, j), (k, £))
with i,k € {1,...,r} and j, £ € {1,...,s} such that either
(k,€) =G +1,j) or (k,£) = (i, j + 1). Hence there are
#C = 2rs — r — s constraints.

Minimizing the special functional (1), i.e. Q@) =
Zi’j w;j(Zij — Oij)z, over the bimonotone cone K, ; is a
well recognized problem with various proposed solutions,
see, for instance, Spouge et al. (2003), Burdakow et al.
(2004), and the references cited therein. However, all these
algorithms exploit the special structure of K, ¢ or (1). For
general functionals Q(-), e.g. quadratic functions with pos-
itive definite but non-diagonal Hessian matrix, different ap-
proaches are needed.

The remainder of this paper is organized as follows. In
Sect. 2 we describe the bimonotone regression problem and
argue that the special structure (1) is sometimes too restric-
tive even in that context. In Sect. 3 we derive possible al-
gorithms for the general optimization problem described
above. These algorithms involve a discrete optimization step
which gives rise to a dynamic program in case of K =K, ;.
For a general introduction to dynamic programming see
Cormen et al. (1990). Other ingredients are active meth-
ods as described by, for instance, Fletcher (1987), Best and
Chakravarti (1990) or Diimbgen et al. (2007), sometimes
combined with the ordinary PAVA in a particular fashion.
It will be shown that all these algorithms find the exact solu-
tion in finitely many steps, at least when Q(-) is an arbitrary
quadratic and strictly convex function. Finally, in Sect. 4
we adapt our procedure to image denoising via bimonotone
shrinkage of generalized Fourier coefficients. The statistical
method in this section was already indicated in Beran and
Diimbgen (1998) but has not been implemented yet, for lack
of an efficient computational algorithm.

2 Least squares estimation of bimonotone regression
functions

Suppose that one observes (x!, yl, zh, (x2,y2, zH, ...,
(x™", y", Z") with real components x’, y* and Z’. The points
(x!, y") are regarded as fixed points, which is always possi-
ble by conditioning, while

Z'=p(' ) et
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for an unknown regression function p : R x R — R and
independent random errors el, &2, ..., &" with mean zero.
In some applications it is plausible to assume p to be bi-
monotone increasing, i.e. non-decreasing in both arguments.
Then it would be desirable to estimate w under that con-

straint only. One possibility would be to minimize

> (2 =i y)?

t=1

over all bimonotone functions . The resulting minimizer
i is uniquely defined on the finite set of all design points
x,yH, 1<t<n.

For a more detailed discussion, suppose that we want to
estimate y on a finite rectangular grid

(@ ygp:1<i<r1<j<s},

where X(1) < X2) < - < X(@) and Y <Y < - < Ye)
contain at least the different elements of {x!, x?2,...,x"}
and { yl , yz, ..., y"}, respectively, but maybe additional
points as well. For 1 <i <r and 1 < j <s let w;; be the
number of all 7 € {1, ..., n} such that (x’, y") = (x), ¥(j)),
and let Z;; be the average of Z' over these indices ¢. Then
Y (Z' = p(x', y"))? equals

o) = Z wij (Zij — 6i))%,

i,j
where 6 = (6;;);,; stands for the matrix (u(x(), ¥(j)))i,j €
K-

Setting 1: Complete layout Suppose that w;; > 0 for all
@i, j)e{l,...,r} x{1,...,s}. Then the resulting optimiza-
tion problem is precisely the one described in the introduc-
tion.

Setting 2a: Incomplete layout and simple interpolation/ex-
trapolation  Suppose that the set U/ of all index pairs (i, j)
with w;; > 0 differs from {1, ...,r} x {1, ..., s}. Then

QO) =Y wu(Zy —0.)
ueld

fails to be coercive. Nevertheless it can be minimized over
K, s with the algorithms described later. Let 0 be such a min-
imizer. Since it is uniquely defined on U/ only, we propose to
replace it with =21 (0 + 0), where

0, = max({éi,j, LG ) el i’ <i j < j}U {émm}),

0;; =min({éi/j/ (@ eli<i' j<j') u{émax}),

and ém-m and émax denote the minimum and ma_ximum, re-
spectively, of {6, : u € U}. Note that § and @ belong to
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simple interpolation/extrapolation

1 2 3 4 5 6 7 8 9 10

Fig. 1 Simple interpolation/extrapolation versus light regularization

K, s and are extremal in the sense that any matrix 6 €
Ky.s N [Omin, Omax]”™™* with 6, = 6, for all u € U satisfies
necessarily Qij < Gij <0;j forall (G, j).

Setting 2b: Incomplete layout and light regularization In-
stead of restricting attention to the index set I/, one can esti-
mate the full matrix (1 (x(;), y¢j)))i,; € R™** by minimizing
a suitably penalized sum of squares,

QO)=Y_ wu(Zy —0.)> + 1P (B),
ueld

over K, ; for some small parameter A > 0. Here P(-) is a
convex quadratic function on R"*S such that Q(-) is strictly
convex. One possibility would be Tychonov regularisation
with P(0) = Zi, j(é’,- = 6,)% and a certain reference value
0,, for instance, 0, = Zi’j wij Zij/ Zi,j wj;. In our particu-
lar setting we prefer the penalty

PO)= >

(@), (k,0)€Crs

Okt — 6i)%, (2)

because it yields smoother interpolations than the recipe for
Setting 2a or the Tychonov penalty. One can easily show that
the resulting quadratic function Q is strictly convex but with
non-diagonal Hessian matrix. Thus it fulfills our general re-
quirements but is not of type (1).

Note that adding a penalty term such as (2) could be
worthwhile even in case of a complete layout if the un-
derlying function p is assumed to be smooth. But this
leads to the nontrivial task of choosing A > 0 appropriately.
Here we use the penalty term mainly for smooth interpola-
tion/extrapolation with A just large enough to ensure a well-
conditioned Hessian matrix. We refer to this as “light regu-
larization”, and the exact value of A is essentially irrelevant.

light regularization

Example 2.1 To illustrate the difference between simple
interpolation/extrapolation and light regularization with
penalty (2) we consider just two observations, (x!, y1 ,Zh=
(2,3,0) and (x2,y%,Z>) = (6,8,1), and let r =7, s = 10
with x;) =i and y(j) = j. Thus w;; = 0 except for wp 3 =
we,g = 1, while Z> 3 =0 and Zg g = 1. Any minimizer 0
of > ey wu(Zy — 6,)% over K7 1o satisfies 52,3 =0 and
56,8 = 1, so the recipe for Setting 2a yields

0, ifi <2,j<3,
9,']'= 1, ifi26,j28,
0.5, else.

The left panel of Fig. 1 shows the latter fit 6, while the right
panel shows the regularized fit based on (2) with A = 107,
In these and most subsequent pictures we use a gray scale
from black = 0 to white = 1.

Example 2.2 (Binary regression) We generated a random
matrix Z € {0, 1} with r = 70 rows, s = 100 columns
and independent components Z;;, where

Pr(Z,-j = 1) = 9,'j

_ X0+ Yo n Hy) = 1/2 + cos(mwx(;)) /4}
4 2

with x) = (i — 0.5)/r and y(;y = (j — 0.5)/s. Thereafter
we removed randomly all but 700 of the 7000 components
Zij. The resulting data are depicted in the upper left panel
of Fig. 2, where missing values are depicted grey, while the
upper right panel shows the true signal . The lower pan-
els depict the least squares estimator with simple interpo-
lation/extrapolation (left) and light regularization based on
(2) with A = 10~* (right). Note that both estimators are very
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true signal

10 20 30 40 50 60 70 BO 80 100
light regularization

10 20 30 40 50 60

Fig. 2 Binary regression with incomplete layout

similar. Due to the small value of A, the main differences
occur in regions without data points.

The quality of an estimator 9 for 6 may be quantified by
the average absolute deviation,

1 r s .
AAD = ;X;;|9ij — ;1.
1=1j=

For the estimator with simple interpolation/extrapolation,
AAD turned out to be 7.5607 x 102, the estimator based on
light regularization performed slightly better with AAD =
7.4039 x 1072

3 The general algorithmic problem

We return to the general framework introduced in the begin-
ning with a continuously differentiable, strictly convex and
coercive functional Q : R? — R and a closed convex cone
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K =K(C) € R? determined by a collection C of inequality
constraints.

Before starting with explicit algorithms, let us character-
ize the point

0 = argmin Q(60).
0ecK

It is well-known from convex analysis that a point § € K
coincides with 8 if, and only if,

VO@)T0=0<vQ@) "y forallpek, (3)

where V Q(0) denotes the gradient of Q at #. This charac-
terization involves infinitely many inequalities, but it can be
replaced with a criterion involving only finitely many con-
straints.

3.1 Extremal directions of K

Note that K contains all constant vectors c1, ¢ € R, where
1=1,= (l)f: |- It can be represented as follows:
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Lemma 3.1 Define
E=Kn{0, 1}".
Then any vector x € K may be represented as

x = min(x)1 + Zkee
ecE
with coefficients A > 0 such that ), ¢ he = max(x) —

min(x).

Here min(x) and max(x) denote the minimum and max-
imum, respectively, of the components of x.

Modified characterization of ] By means of Lemma 3.1
one can easily verify that (3) is equivalent to the following
condition:

VO@)'0=0<VQ@) e forallecEU{-1}. 4)

Thus we have to check only finitely many constraints. Note,
however, that the cardinality of £ may be substantially larger
than the dimension p, so that checking (4) is far from trivial.

Application to K, s Applying Lemma 3.1 to the cone
K, s C R"** yields the following representation: With

gr,s = Kr,s N {07 1}r><s

any matrix x € K may be written as

x = aoly x5+ Z Ace

[

with coefficients a, e R and A, >0, e € &, 5.

There is a one-to-one correspondence between the set &,
and the set of all vectors e € {1,2,...,r + s} with compo-
nents €] < €y < --- < ¢, via the mapping

s
e <i+Z€ij>
=1

Since such a vector e corresponds to a subset of {1,2,...,
r + s} with r elements, we end up with

#gr’sz(r+s) =<r+s)-
r s

r

i=1

Hence the cardinality of &, ; grows exponentially in ming, s).

Nevertheless, minimizing a linear functional over &, ¢ is pos-
sible in O (rs) steps, as explained in the next section.

Proof of Lemma 3.1 For x e Kletag <a; <--- <ay be
the different elements of {x1, x2,...,x,}, i.e. ap = min(x)

and a,, = max(x). Then

x = a)l+ ) (a —ai-)(lx = ai))!_,.

i=1

Obviously, these weights a; — a;—1 are nonnegative and sum
to max(x) — min(x). Furthermore, one can easily deduce
from x € K that (1{x; > a})f=1 belongs to £ for any real

threshold a. 0
3.2 A dynamic program for &, ¢

For some matrix a € R"** let L : R"* — R be given by
r N
L(x) = Z Zaijxij.
i=1 j=1

The minimum of L(-) over the finite set £, ; may be obtained
by means of the following recursion: For 1 <k <rand 1 <
£ < s define

r S
H(k, ) :min{ZZaueU re €&y, e = l},

i=k j=1

r )
Hk,s+ 1)=min{ZZaijeij :eeé‘r,s}.

i=k j=1
Then
min L(e)=H(1l,s + 1),
€ECys
and
r s
Hk, D=3 aij:

i=k j=1

N
H(k, ¢+ 1)=min<H(k,£), Z aijj+HKk+1,¢+ 1))
j=t+1

where we use the conventions that H(k + 1,-) = 0 and
Z;:S 41+ =0. In the recursion formula for H(k,¢ + 1),
the term Zj’:ul aij + H(k +1,€ + 1) is the minimum of
Li(e) =Y, ijl ajje;j over all matrices e € &, with
ere =0and ex p+1 =1 (if £ < s5), while H (k, £) is the mini-
mum of Ly (e) over all e € &  with exp = 1.

Table 1 provides pseudocode for an algorithm that deter-
mines a minimizer of L(-) over &, .

3.3 Active set type algorithms
Throughout this exposition we assume that minimization of

Q over an affine linear subspace of R? is feasible. This is
certainly the case if Q is a quadratic functional. If Q is twice
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Table 1 Minimizing a linear functional over &, ¢

Algorithm e <— DynamicProgram(a)
b« (Z;=l ak,./)kgr,[fﬁl
H < (0)k<r+1,0<s+1
for k < r downto 1 do
Hy1 <= Hiq1,1 + by
for ¢ < 1tos do
Hp g1 <= min(Hy,¢, bre+1 + Hiv1,041)
end for
end for
e < (Or<r s
k<« 1,0 «s
while k <rand ¢ > 1 do
if Hy ¢+1 = Hy,¢ then
(ei, )i < (DI,
L<—0—1
else
k<—k+1
end if

end while.

continuously differentiable with positive definite Hessian
matrix everywhere, this minimization problem can be solved
with arbitrarily high accuracy by a Newton type algorithm.

All algorithms described in this paper alternate between
two basic procedures which are described next. In both pro-
cedures 0 € K is replaced with a vector @, € K such that
Q(Opnew) < Q(0) unless e = 0.

Basic procedure I: Checking optimality of @ € K Suppose
that # € K satisfies already the following two equations:

Vo6 '0=0=v0@®)'1. (5)

According to (3), this vector is already the solution 0 if, and
only if, VQ(#) Te > 0 for all e € £. Thus we determine

A € argmin vVO@)'e
ec€

and do the following: If V 0(@@)" A >0, we know that = 0
and stop the algorithm. Otherwise we determine

t, = argmin Q@ +tA) >0
teR

and replace 6 with
Opew =60 +1,A.
This vector 0,y lies in the cone K, too, and satisfies the in-

equality Q(@pew) < Q(0). Then we proceed with basic pro-
cedure 2.
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Basic procedure 2: Replacing 0 € K with a “locally opti-
mal” point @pew € K The general idea of basic procedure
2 is to find a point 0y € K such that

01w = argmin Q(x) (6)

xeV

for some V in a finite family V of linear subspaces of R”.
Typically these subspaces V are obtained by replacing some
inequality constraints from C with equality constraints and
ignoring the remaining ones. This approach is described be-
low as basic procedure 2a. But we shall see that it is poten-
tially useful to modify this strategy; see basic procedures 2b
and 2c.

Basic procedure 2a: The classical active set approach For

0 € K define
V(0) = {x e R? : x, = x, for all (u, v) € C with 6, =6,}.

This is a linear subspace of R” containing 1 and # which
is determined by those constraints from C which are “ac-
tive” in 6. It has the additional property that for any vector
x eV(@),

10, x) = max{t el0,1]: (1 -0 +tx € K} > 0.

Precisely, (0, x) = 1 if x € K, and otherwise,

0, — 6
A0, x) = min ! “ .
wu,w)eCixy>xy Oy — 0y — xy + Xy

The key step in basic procedure 2a is to determine x, =
argmin, .y gy Q(x) and A(0, x,). If x, € K, which is equiv-
alent to A(0,x,) = 1, we are done and return 0,ey = X,.
This vector satisfies (6) with V=V (0) and V = V(0ew).
The latter fact follows simply from V(0ey,) C V(). If x, &
K, we repeat this key step with Opew = (1 — A(0,x,)0 +
A0, x,)x, in place of 6.

In both cases the key step yields a vector 0., satisfying
Q@ new) < Q(0), unless x, = 0. Moreover, if x, € K, then
the vector space V(0yey) is contained in V(@) with strictly
smaller dimension, because at least one additional constraint
from C becomes active. Hence after finitely many repetitions
of the key step, we end up with a vector 0., satisfying (6)
with V =V (0cw). Table 2 provides pseudocode for basic
procedure 2a.

Basic procedure 2b: Working with complete orders The
determination and handling of the subspace V() in basic
procedure 2a may be rather involved, in particular, when the
set C consists of more than p constraints. One possibility to
avoid this is to replace V(6) and K in the key step with the
following subspace V*(#) and cone K* (@), respectively:
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Table 2 Basic procedure 2a

Algorithm 6., < BasicProcedure2a(f)
Opew < 0
X, < argmin, cyq, y O (%)
A < A(Opew, Xo)
while A < 1 do
Onew < (1 — L)0pew + Ax,
X, < argminxevwnew) 0(x)
A< A(Opew, X5)
end while

Onew < X,

V*@) = {x eR? :forallu,ve{l,..., p},
Xy =Xy 1f 6, =9v},
K*(@0) = {x e R” :forallu,ve{l,..., p},
Xy <xyiff, < Qv}.
Note that 1, 6 € K*(6) C V*(0), and one easily verifies that
K*(@#) c K if # € K. Basic procedure 2b works precisely

like basic procedure 2a, but with V*(-) in place of V(-), and
A0, x) is replaced with

A%(0,x) =max{r €[0,1]: (1 — 1) + 1x e K*(9)}.

Then basic procedure 2b yields a vector 0, satisfying (6)
with V = V*(0 pew).

When implementing this procedure, it is useful to de-
termine a permutation o (-) of {1, ..., p} such that 6, <
O50) < -+ <065 Let 1 <iy <ip <--- <iy = p denote
those indices i such that 6,y < 65 (i+1) if i < p. Then, with
ip=0,

V*@)={x R’ :forl <t <gq,
Xo (i) is constant in i € {ig—1 +1,...,i}},

K*(0) = {x € V¥(0) :for 1 <€ <q, Xo(iy) < Xo(ip1) }»
and

1%(0, x)
O (ig) = Oo (ir_1)

= min .
2=U=pxaiy_ Yoty o(ie) = Oolip—1) = Xolip) T Xolir_1)

Basic procedure 2c: A shortcut via the PAVA  In the special
case of Q(0) being the weighted least squares functional
in (1), one can determine

Onew = argmin O(x)
xeK*(0)

directly by means of the PAVA with a suitable modification
for the equality constraints defining V*(6).

3.4 The whole algorithm and its validity

All subspaces V(#) and V*(#), 6 € K, correspond to par-
titions of {1,2,..., p} into index sets. Namely, the linear
subspace corresponding to such a partition consists of all
vectors x € R? with the property that x, = x,, for arbitrary
indices u, v belonging to the same set from the partition.
Thus the subspaces used in basic procedures 2a—b belong to
a finite family ) of linear subspaces of R?” all containing 1.
We may start the algorithm with initial point

0 = (argmin Q(tl)) - 1.
teR

Now suppose that 0(0), e 0% ¢ K have been chosen such
that

00 = argmin Q(x) forl <<k
xev®

with linear spaces VO .., V® V. Then 0 = 0% sat-
isfies (5), and we may apply basic procedure 1 to check
whether 8% = 8. If not, we may also apply a variant of ba-
sic procedure 2 to get o0+ e K minimizing Q on a linear
subspace V&1 €V where 00Dy < 0(0W). Since V
is finite, we will obtain 6 after finitely many steps.

Similar arguments show that our algorithm based on ba-
sic procedure 2c reaches an optimum after finitely many
steps, too.

Final remark on coercivity As mentioned for Setting 2a,
the algorithm above may be applicable even in situations
when the functional Q fails to be coercive. In fact, we
only need to assume that Q attains a minimum, possibly
non-unique, over any linear space V(6), V*() or any cone
K*(#), and we have to able to compute it. In Setting 2a, one
can verify this easily.

4 Shrinkage estimation

We consider a regression setting as in Sect. 2, this time with
Gaussian errors &' ~ N (0, 02). As before, the regression
function @ : R x R — R is reduced to a matrix

M = (n(xi). i), ; € R
for given design points x(1) < x2) < --- < X() and y(1) <
Y@) < -+ < Y(s). This matrix is no longer assumed to be

bimonotone, but the latter constraint will play a role in our
estimation method.
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4.1 Transforming the signal

At first we represent the signal M with respect to a cer-
tain basis of R"**. To this end let U = [uj u>---u,] and
V = [v] vy -vg] be orthonormal matrices in R"™*" and
RS*S, respectively, to be specified later. Then we write

_pavT — Y T

M=UMVT =) M;uv]
ij
with M =U"MV = (u/ Mv}), ..
ij

Thus M contains the coefficients of M with respect to the
new basis matrices uiv}— € R"**. The purpose of such a
transformation is to obtain a transformed signal M with
many coefficients being equal or at least close to zero.

One particular construction of such basis matrices U and

V is via discrete smoothing splines: For given degrees k,
¢ > 1, consider annihilators

ay o Al 0
ann T az k+2
A=
0 Ar—k,r—k Ar—k,r
c R(r—k)xr
b1y b1,e+1 0
by - b e42
B =
0 bsfé,sfé bsfﬁ,s
c R(sfl)xs

with unit row vectors such that

A(x{y)i_, =0 fore=0,....k—1,

B(yf/>);=1 =0 fore=0,...,¢—1.

An important special case is k = ¢ = 1. Here

1 -1 0
1 I -1
A=— and
| 0 1 —1]
1 -1 0]
1 I -1
B=—
V2
| 0 1 —1]

satisfy the equations A1, =0 and B1; =0.
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Next we determine singular value decompositions of A
and B, namely,

A=U- [O(r—k)xk diag(ay, ..., a,_k)] . UT,

0<a; < <ax
B=V-[0,_,,, diagb.....bs_)]- V'
0<by < <bs—

with column-orthonormal matrices U ,U=[ujuy ---u,],
V and V = [vi v --- vs]. The vectors uy,...,u; and
vy, ..., vy correspond to the space of polynomials of or-
der at most k and £, respectively. In particular, we always
choose u; = r~1/21, and v; = s~ /?1,. Then

M = MU ulvlT (constant part)

r s
+ ZM“ uivir + ZMU ulv}— (additive part)
i=2 =2

v T
+ ) M)
ij=2

(interactions).

One may also write

polynomial part  |half-polyn. interactions
M—U kxt kx(s—10) T
— 7 |half-polyn. interactions|non-polyn. interactions|
(r—k)x¢ r—k)yx(s—20

For moderately smooth functions p we expect |A~4ij | to have
a decreasing trend in i > k and in j > €. This motivates a
class of shrinkage estimators which we describe next.

4.2 Shrinkage estimation in the simple balanced case

In the case of n = p = rs observations such that each grid
point (x(;, y(j)) is contained in {(x oy, ..., (", ¥y}, our
input data may be written as a matrix

Z=M+e¢

with & € R"** having independent components ¢;; ~ N (0,
02). Reexpressing such data with respect to the discrete
spline basis leads to Z = M + & with Z := U"ZV and
& :=U"eV. Note that the raw data Z is the maximum like-
lihood estimator of M. To benefit from the bias-variance
trade-off, we consider component-wise shrinkage of the co-
efficient matrix Z: For y € [0, 1775 we consider the candi-
date estimator

~ () ~
M7 =U (i Zip); ; V' @)

Eventually we will choose a shrinkage matrix p depending
on the data and compute the shrinkage estimator

o=, 8)
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Let || A| r denote the Frobenius norm of a matrix A, i.e.
[EVPEDYY Al.zj = trace(A " A). As a measure of risk of
the estimator (7), we consider

Ry, M) =E |7~ M}

=Y (A= yip)* M} +0%y3)
i,j

) M2ON2
=)} +02)(m,- - 27])
2
ij Mij +o

M}o?
+Y =
2 2
i Mijto

Here we used the fact that the transformed error matrix € has
the same distribution as €. An estimator of this risk is given
by
R =) (6% + U —yip*(Z —67)

ij

=>"Z2(nj— (1 -6%Z}))

i,J

+Y 6 (1-6%/Z}),
inj

where & is a certain estimator of o, e.g. based on high fre-
quency components of VA , see later.

Thus optimal shrinkage factors would be given by y;; =
Mlzj / (Ml.zj + o2), but these depend on the unknown sig-
nal M. Naive estimators would be y;; = (1 — 62/Zi2j)+. The
resulting estimator’s performance is rather poor, but it im-
proves substantially if p in (8) is given by

)
;7,-j=max<1—%,o> ©)
Z; i

with t close to 2; cf. Donoho and Johnstone (1994).

An alternative strategy, utilized for instance by Beran and
Diimbgen (1998), is to restrict p to a certain convex set of
shrinkage matrices serving as a caricature of the optimal p.
The previous considerations suggest to restrict —y to be
contained in K£f<§£), the set of all matrices # € R™** such

that

e 01,j=0;;=---=0  isnon-decreasing in j > £,
e 0;1 =07 ="---=0;,is non-decreasing in i > k,
o (0ij)i>k, j>¢ belongs to K, _j s_¢.

The set of all such shrinkage matrices y is denoted by
G%@ = (—Kﬁﬁff)) N [0, 1775, Thus we propose to use the
shrinkage matrix

y = argmin Ié(y). (10)
yeGY

In the present setting one can show (cf. Beran and Diimbgen
1998) that

7 = argmin R(y, M) = <’7712)
yeGY i+t

with § = — argmin Z(—(I\;Ilzj +0%) — Gij)2~

0K i,
Similarly,
y =argmin R(y) = (1 - 6/fip)*), ,
yeGkY
with ) = —argmin Z(—Zizj — Qij)z.

0ek? i

This allows one to experiment with different values for &
with little effort.

Estimation of the noise level Two particular estimators are
given by

6 = ijriissze 2 Ve or
DTS ) i)+ s = k)
B Median(|Z;;|:i/r + j/s > k)
2T ®T(3/4)

D

A

for a certain number « € (0, 2), where @~ ! denotes the stan-
dard Gaussian quantile function. The idea is that for i > 1
and j > 1, the components Zi j are essentially equal to the
noise variables &;; ~ N(0, o2). Otherwise both estimators
tend to overestimate o .

As to the choice of k, we propose to choose it via visual
inspection of the graphs of k¥ + 61 and k — 67 . Typi-
cally these functions are almost constant and close to o on a
large subinterval of (0, 2), non-increasing to the left of that
interval, and show random fluctuations to the right. As we
shall illustrate later, the quality of the shrinkage estimator
is rather robust with respect to the estimator ¢. In particu-
lar, overestimating o slightly is typically harmless or even
beneficial.

Consistency We now augment the foregoing discussion
with consistency results that follow from more general con-
siderations in Beran and Diimbgen (1998). First of all, for
large p, the normalized quadratic loss p~—! ||M »_ M ||%
of a candidate estimator is close to its normalized risk

p’1 R(y, M), uniformly over y € Gﬁ{f;e). Precisely,

1) _
E sup |[p ' IM” —M|%-p 'Ry, M)
yecko

ol +op M|
C
max(r, s)1/2
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data true signal

10 20 30 40 50 50 ) 70 . 80 - 0 100 10 20 30 40 50 60 70 BO a0 100
estimator, c=0.5 estimator, c=1.0

10 20 30 40 50 G0 D B0 80 1
estimator,c=1.5 estimator, c = 2.0

10 20 30 40 50 60 70 80 20 100 10 20 30 40 50 60 70 80 90 100

Fig. 3 Shrinkage estimation: data and true signal (s row), estimators with 6 < ¢d for ¢ = 0.5, 1.0, 1.5, 2.0 (2nd and 3rd row)

with C denoting a generic universal constant. Moreover, E sup | p_lﬁ(y) — p_lR(y, M)|

if the variance estimator 62 is Li-consistent, the normal- yeG&?

ized estimated risk p_lR(y) differs little from the nor- o2 +ap_1 /2” M|y

malized true risk p~'R(y, M), uniformly in y € Grfcs’l) <C 73 —I—CE|&2 —02|.
Namely max(r, s)!/
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transf. squared coefficients

shrinkage matrix

10 20 30 40 50 60 70 80 90 100

10 20 30 40 50 60 70 80 490 100

Fig. 4 Shrinkage estimation: Transformed squared coefficients lej /(1 + Zizj) (left) and bimonotone shrinkage matrix y (right)

Average loss versus est.c
1 [ T T T T T |

09+ ]

0.8 ]

0.7+ B

0.6+ ]

0.5} 1

04} 1

0.3F i

0.2} B

0.1} B

0 L L L L L L L L
0 0.5 1 1.5 2 25 3 35 4 4.5 5

Fig. 5 Shrinkage estimation: Average quadratic loss as a function of &

In particular, the shrinkage matrix p in (10) and the
corresponding estimator M=M @)
ties

Elp™'R@) = p™' Ruin(M)]

Elp~ ' IM — M|% — p~" Ruin(M)|

satisfy the inequali-

2 -12\pm
co_top M|l F

CE|6% - o7
max(r, s)1/2 + |U “

’

where Rpin (M) denotes the minimum of R(y, M) over all
k.t
y €GRY.

Example 4.1 We generated a random matrix Z € R"*® with
r = 60 rows, s = 100 columns and independent components
Zij ~ N ((xqy, yj))» 1), where xgy = (i = 0.5)/r, yj) =

(j —0.5)/s, and

w(x, y) =2t(x, )" sin(zr (x, y)) + 0.05(x + y),

T(x,y) =4/3x2+2xy +3y2 + 1.

We smoothed this data matrix Z as described above with an-
nihilators of order k = £ = 2. The estimators 61, and 67
turned out to be almost constant and slightly smaller than 1.0
on (0.5,0.65), so we chose 6 = 1. The first row of Fig. 3
shows gray scale images of the raw data Z (left) and the
true signal M (right). The second and third row depict the
matrix M for different values of &. Precisely, to show the
effect of varying the estimated noise level, we replaced &
with ¢6, where ¢ = 0.5 (undersmoothing), ¢ = 1.0 (origi-
nal estimator), ¢ = 1.5 (oversmoothing) and ¢ = 2.0 (heavy
oversmoothing). In these pictures the gray scale ranges from
—7 (black) to 7 (white).

Figure 4 depicts the transformed squared coefficients
lej /(14 Zizj) (left panel) and the bimonotone shrinkage ma-
trix p (right panel).

Figure 5 shows the average squared loss p_1 ||M — M||%
as a function of 6. The emerging pattern is very stable over
all simulations we looked at. This plot and Fig. 4 show that
there is a rather large range of values for ¢ leading to esti-
mators of similar quality. Overestimation of & is less severe
than underestimation and sometimes even beneficial.

Since this is just one simulation, we also conducted a
simulation study. We generated 5000 such data matrices Z.
Each time we estimated the noise level via ¢ = 67 1. Then
we computed the shrinkage estimators M in (8), where the
shrinkage matrices y were given by (10) and by (9) with
T running through a fine grid of points in (0, 2]. It turned
out that T = 0.60 yielded optimal performance, although
this value depends certainly on the underlying signal and

@ Springer



188

Stat Comput (2010) 20: 177-189

25

20

15

10

4.5+

5 10 15 20 25 30 35 40 45 50

0.5

04t ,

0.2+ i
3rd year,

= |

2nd year
1st year

5 10 15 20 25 30 35 40 45 50

Fig. 6 Raw vineyard data (top left), transformed data and fitted values (top right), additive part (bottom left) and interactions (bottom right)

Table 3 Estimated risks of different estimators in Example 4.1

Bimonotone Componentwise thresholding (9) with

shrinkage (10) 7=05 =06 =10 =15 =20

0.0790 0.0922  0.0888  0.1044  0.1342  0.1619

(0.0044) (0.0050) (0.0051) (0.0061) (0.0073) (0.0082)

noise level. Table 3 provides Monte Carlo estimates of the
corresponding risk, i.e. the expectation of the normalized
quadratic loss p_1 ||M -M ||2F. The values into parentheses
are the estimated standard deviations of the latter loss. This
table shows that bimonotone shrinkage yields better results
than componentwise (soft) thresholding.

4.3 Viticultural case study

In this case study, row i of the data matrix ¥ € R32*3 reports
the grape yields harvested in 3 successive years from a vine-

@ Springer

yard near Lake Erie that has 52 rows of vines. The data is
taken from Chatterjee et al. (1995). The grape yields, mea-
sured in lugs of grapes harvested from each vineyard-row,
are plotted in the upper left panel of Fig. 6, using a differ-
ent plotting character for each of the three years. The analy-
sis seeks to bring out patterns in the vineyard-row yields
that persist across years. Year and vineyard-row are both
ordinal covariates. The covariate vineyard-row summarizes
location-dependent effects that may be due to soil fertil-
ity and microclimate. The covariate year summarizes time-
varying effects that may be due to rainfall pattern, tempera-
tures, and viticultural practices.

A preliminary data analysis based on running means
and variance estimates from triplets (¥; ;, Yit1,, Yit2,;),
1 <i <50, revealed that a square-root transformation yields
a data matrix Z € R32*3 which may be viewed as a two-way
layout in which both the row and column numbers are ordi-
nal covariates, the measurement errors are independent with
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mean zero and common unknown variance o> and unknown
mean matrix M =EZ.

Now we applied the orthonormal transformation into
spline bases with x;) =i and y(;) = j, where k =2 and
£ = 1. In particular, u; and u, are proportional to 15 and
@i—- 26.5);2 1» respectively. Similarly, vq, v; and v3 are pro-
portional to 13, (—1,0,1)T and (1, —2,1)T, respectively.
The graphs of k — 61, and k — &7 revealed that 6 =
0.25 is a plausible estimator for o. The resulting fitted ma-
trix M is shown in the upper right panel of Fig. 6, adding
linear interpolation between adjacent elements to bring out
their trend. In addition the transformed data Z;; are super-
imposed as single points.

The estimated mean grape yields reveal shared patterns
across the three years. Large dips in estimated mean grape
yields occur in the outermost rows of the vineyard and near
row 33. These point to possible geographical variations in
growing conditions, such as harsher climate at the vineyard
edges or changes in soil fertility.

It is also interesting to split the fit M into an additive part
(including constant) and interactions,

N -
Mg =v11Z U 0y

r s
~ ad T A ad T
+Y PnZnuvl + ) Pz up),
i=2 j=2

r N
N _ o~ T
Mo = E E YijZijuiv; -
i=2 j=2

The lower panels of Fig. 6 depict these parts separately. The
plot of the additive part emphasizes the pattern across rows
just described and the (nonlinear) increase across years. The

interactions reveal that a simple additive model does not
seem appropriate for these data.
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