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Università degli Studi di Perugia

August 10, 2015

Abstract

We introduce a dimension reduction method for visualizing the clustering structure ob-
tained from a finite mixture of Gaussian densities. Information on the dimension reduction
subspace is obtained from the variation on group means and, depending on the estimated
mixture model, on the variation on group covariances. The proposed method aims at reduc-
ing the dimensionality by identifying a set of linear combinations, ordered by importance as
quantified by the associated eigenvalues, of the original features which capture most of the
cluster structure contained in the data. Observations may then be projected onto such a
reduced subspace, thus providing summary plots which help to visualize the clustering struc-
ture. These plots can be particularly appealing in the case of high-dimensional data and
noisy structure. The new constructed variables capture most of the clustering information
available in the data, and they can be further reduced to improve clustering performance.
We illustrate the approach on both simulated and real data sets.
Keywords: Dimension reduction, Model-based clustering, Gaussian mixture, Sliced inverse
regression, Feature selection.

1 Introduction

Model-based clustering assumes that the observed data are generated from a mixture of G com-
ponents, each representing the probability distribution for a different group or cluster (McLach-
lan and Peel, 2000). The general form of a finite mixture model is f(x) =

∑G
g=1 πgfg(x|θg),

where the πg’s are the mixing probabilities such that πg ≥ 0 and
∑
πg = 1, fg(·) and θg

are, respectively, the density and the parameters of the g-th component (g = 1, . . . , G). With
continuous data, we often take the density for each mixture component to be the multivariate
Gaussian φ(x|µg,Σg) with parameters θg = (µg,Σg). Thus, clusters are ellipsoidal, centered
at the means µg, and with other geometric features, such as volume, shape and orientation,
determined by Σg.

Parsimonious parametrization of covariance matrices can be adopted through eigenvalue
decomposition in the form Σg = λgDgAgD

>
g , where λg is a scalar controlling the volume of

the ellipsoid, Ag is a diagonal matrix specifying the shape of the density contours, and Dg is
an orthogonal matrix which determines the orientation of the corresponding ellipsoid (Banfield
and Raftery, 1993; Celeux and Govaert, 1995). Fraley and Raftery (2006, Table 1) report some
parametrizations of within-group covariance matrices available in the MCLUST software, and the
corresponding geometric characteristics. Maximum likelihood estimates for this type of mixture
models can be computed via the EM algorithm (Dempster et al, 1977; Fraley and Raftery, 2002),
while model selection could be based on the Bayesian information criterion (BIC) (Fraley and
Raftery, 1998) or the integrated complete-data likelihood (ICL) criterion (Biernacki et al, 2000).

In this paper we propose a dimension reduction method for model-based clustering, where
we pursue the estimation of a reduced subspace which captures most of the clustering structure
contained in the data. Following the work of Li (1991, 2000) on Sliced Inverse Regression (SIR),
information on the dimension reduction subspace is obtained from the variation on group means
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and, depending on the estimated mixture model, on the variation on group covariances. The
estimated directions, ordered by importance as quantified by the associated eigenvalues, span
a dimension reduction subspace. Observations may then be plotted on such a subspace, hence
providing summary plots which visualize the clustering structure, and may help to understand
the clustering and improve accuracy.

In Section 2 we introduce the problem of clustering on a dimension reduced subspace, and
we show that assignment of an observation to a given cluster is unchanged if performed on
a suitable subspace. Then we discuss estimation of the directions which span the reduced
subspace, and we provide some of their properties. In Section 3 we review and adapt a greedy
search procedure for selecting a subset of the new constructed variables which retains most
of the clustering information contained in the data. In Section 4 we describe a data analysis
example based on a synthetic data set; then we discuss results from simulation studies where
we compare the proposed approach to model-based clustering performed on both the original
variables and the leading principal components. Section 5 presents applications of the proposed
procedure on some real data sets. The final section contains some concluding remarks.

2 Dimension reduction for model-based clustering

Classical procedures for dimensionality reduction are principal components analysis and factor
analysis, both of which reduce dimensionality by forming linear combinations of the features.
The first method seeks a lower-dimensional representation that account for the most variance
of the features, while the second looks for the most correlation among the features. However,
neither method correctly addresses the problem of visualizing any potential clustering structure.

Chang (1983) discussed a simulated example from a 15-dimensional mixture model to show
the failure of principal components as a method for reducing the dimension of the data before
clustering. LetX = 0.5×d+d×Y+Z, where d = 0.95−0.05i (i = 1, . . . , 15), Y ∼ Bernoulli(0.2),
Z ∼ N(µ,Σ) with mean µ15×1 = [0, . . . , 0]> and covariance matrix Σ15×15 = [σij ], σii = 1, σij =
−0.13fifj , where the first 8 elements of f are −0.9 and the last 7 are 0.5. With this scheme the
first 8 variables can be considered roughly as a block of variables with the same correlations,
while the rest of the variables form another block. Using this scheme we simulated n = 300 data
points. Figure 1 shows the scatterplot matrix of the first, second and last principal components,
and the first GMMDR variable (to be discussed on Section 2.2) obtained from a two components
EEE mixture model. As it can be seen, the first two PCs are not able to show any clustering
information, but, as discussed by Chang (1983), the first and the last PCs are needed. On the
contrary, only one GMMDR variable is required to clearly separate the clusters. Furthermore,
the coefficients (under unit norm constraint) of the linear combination defining such a direction
reproduce the blocking structure used to simulate the variables, with the first 8 variables having
coefficients approximately equal to −0.32 and the remaining 7 coefficients approximately equal
to 0.16.

Tipping and Bishop (1999b) proposed a probabilistic principal component analysis based on
a factor analysis model for the data assuming that the distribution of the errors are isotropic,
i.e. the covariance matrix is proportional to the identity matrix. They also developed a mixture
of probabilistic principal components analyzers model (Tipping and Bishop, 1999a), and a hier-
archical visualization algorithm for exploring clusters (Bishop and Tipping , 1998). McLachlan
and Peel (2000) and McLachlan et al (2003) used mixtures of factor analyzers, by postulating
that the distribution of the data within any group or latent class follows a factor analysis model.
Parsimonious Gaussian mixture models based on mixtures of factor analyzers were discussed
by McNicholas and Murphy (2008). In order to deal with high dimensional data, Bouveyron
et al (2007) proposed a family of parsimonious GMMs on clustering subspaces. All such models
mainly address the problem of reducing the number of parameters to be estimated by a suitable
reparametrization of the covariance matrix. Since they produce estimates of (latent) factor an-
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Figure 1: Scatterplot matrix of 1st, 2nd and 15th PC, and 1st GMMDR variable for the Chang
data with points marked according to cluster membership.

alyzers, they can also be used to reduce dimensionality. However, as noted by McLachlan and
Peel (2000, p. 248), the resulting plots are not always useful in showing clustering structure.
To support such claim, they presented an example using a simple two clusters synthetic data
set where the differences between the group means are only in one variable, and with within-
group variation in the other variables being relatively large. They showed that both principal
components and factor analyzers were unable to show the underlying clustering structure (see
McLachlan and Peel, 2000, p. 240, 254–255). We applied the GMMDR method proposed in
this paper, and the data projected onto the subspace spanned by the first two directions are
shown in Figure 2: the two clusters appear well separated with one group showing less variation
than the other.

2.1 Clustering on a dimension reduced subspace

Consider the (p× 1) vector X of random variables, and the discrete random variable Y taking
G distinct values to indicate the G clusters. Let β denote a fixed (p× d) matrix, where d ≤ p,
such that Y⊥⊥X|β>X. This conditional independence statement says that the distribution of
Y |X is the same as that of Y |β>X for all values of X in its marginal sample space. As a
consequence, the (p × 1) vector X can be replaced by the (d × 1) vector β>X without loss
of clustering information. If d < p, we have effectively reduced the dimension of the predictor
vector. The matrix β provides a basis for the subspace S(β), which in a regression context is
called a dimension-reduction subspace (DRS) for the regression of Y on X (Li, 1991). It can
be shown that a minimum DRS may not be unique, but when several of such subspaces exist
they all have the same dimension. Let SY |X denote the intersection of all DRSs. Under various
reasonable conditions given in Cook (1998, Chap. 6), SY |X is a unique minimum DRS and it is
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Figure 2: Plot of McLachlan and Peel (2000, p. 239–240) synthetic data projected along the
first two GMMDR directions, with points marked according to true group origin. The curve
represents clustering boundary.

called central DRS.
The assumption Y⊥⊥X|β>X implies that Pr(Y = g|X) = Pr(Y = g|β>X), so we may

write the density for the g-th component of the mixture model as

fg(x) =
Pr(Y = g|x)fX(x)

Pr(Y = g)

=
Pr(Y = g|β>x)fX(x)

Pr(Y = g)

= fg(β>x)
fX(x)

fβ>X(β>x)
,

(1)

and for any two groups, g and k, the ratio of the densities is

fg(x)

fk(x)
=
fg(β>x)

fk(β>x)
.

Thus, if Y⊥⊥X|β>X the ratio of the conditional densities is the same whether it is computed
on the original variables space or on the DRS, so the clustering information is completely
contained in S(β). For instance, consider the simple case of two clusters with bivariate Gaussian
distribution x|(Y = j) ∼ N(µj , I2) for j = 1, 2, where µ1 = [−1, 0]>, µ2 = [1, 0]>, and I2 is
the (2× 2) identity matrix. The ratio of the densities is thus given by

f1(x)

f2(x)
= exp{−1

2
(x− µ1)>(x− µ1) +

1

2
(x− µ2)>(x− µ2)} = exp{−2x1}.

It is straightforward to see that the direction containing all the clustering information is β =
[1, 0]>, so the ratio of the densities projected along such direction is

f1(β>x)

f2(β>x)
= exp{−1

2
(β>x− β>µ1)2 +

1

2
(β>x− β>µ2)2}

= exp{−1

2
(x1 + 1)2 +

1

2
(x1 − 1)2} = exp{−2x1}.
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In model-based clustering an observation is assigned to cluster g by the maximum a posteriori
principle (MAP), i.e. to the cluster for which the conditional probability given the data is a
maximum:

argg max Pr(Y = g|x) =
πgfg(x)∑G
j=1 πjfj(x)

.

By equation (1), the last expression is equivalent to

argg max Pr(Y = g|β>x) =
πgfg(β>x)∑G
j=1 πjfj(β

>x)
,

so the assignment of an observation to a cluster is unchanged if performed on the DRS. Cook
and Yin (2001, p. 156) considered D(Y |X) = argg max Pr(Y = g|x) and defined a discriminant
subspace as a subspace S such that D(Y |X) = D(Y |PSX) for all values ofX, where PS denotes
the projection operator onto S with respect to the usual inner product. The intersection of all
discriminant subspaces, if it exists, is itself a discriminant subspace, and is called the central
discriminant subspace (CDS) and denoted by SD(Y |X). Finally, the CDS is a subset of the
central DRS, SD(Y |X) ⊆ SY |X , and in some cases may be a proper subset.

In the case of known group memberships, a variety of methods for dimensionality reduction
have been proposed (Cook and Yin, 2001). These methods, such as Sliced Inverse Regression
(SIR) and Sliced Average Variance Estimation (SAVE), are not restricted to any particular
classification method. In the following subsection we discuss estimation of a dimension reduction
subspace for a model-based clustering procedure.

2.2 Estimation of GMMDR directions

Suppose we describe a set of n observations on p variables through a G components Gaussian
mixture model (GMM) of the form f(x) =

∑G
g=1 πgφ(x|µg,Σg).

From a graphical point of view, we pursue the smallest subspace that can capture the
clustering information contained in the data. A natural starting point would require to look for
those directions where the cluster means µg vary as much as possible, provided each direction
is orthogonal to the others. This amounts to solving the following optimization problem:

argβ maxβ>ΣBβ, subject to β>Σβ = Id,

where ΣB =
∑G

g=1 πg(µg−µ)(µg−µ)> is the between-cluster covariance matrix, Σ = n−1
∑n

i=1

(xi − µ)(xi − µ)> is the covariance matrix with µ =
∑G

g=1 πgµg, β ∈ Rp×d is the spanning
matrix, and Id is the (d × d) identity matrix. The solution to this constrained optmization
is given by the eigendecomposition of the kernel matrix M I ≡ ΣB with respect to Σ. The
eigenvectors, corresponding to the first d largest eigenvalues, [v1, . . . ,vd] ≡ β, provide a basis
for the subspace S(β) which shows the maximal variation among cluster means. There are at
most d = min(p,G− 1) directions which span this subspace.

This procedure is similar to the sliced inverse regression (SIR) algorithm (Li, 1991). SIR is
a dimension reduction method which exploits the information from the inverse mean function
(see Li, 2000, Chap. 2). Instead of conditioning on the response variable (or a sliced version of
it if continuous), here we condition on the cluster memberships. SIR directions span at least
part of the dimension reduction subspace (Cook, 1998, Chap. 6) and they provide an intuitive
and useful basis for constructing summary plots. However, they may miss relevant structures
in the data when within-cluster covariances are different.

The SIRII method (Li, 2000, Chap. 5) exploits the information coming from the differences
in the class covariance matrices. The kernel matrix is now defined as:

M II =
G∑

g=1

πg(Σg − Σ̄)Σ−1(Σg − Σ̄)>,

5



where Σ̄ =
∑G

g=1 πgΣg is the pooled within-cluster covariance matrix, and directions are found
through the eigendecomposition of M II with respect to Σ. Albeit the corresponding directions
show differences in group covariances, they are usually not able to also show location differences.

The proposed approach aims at finding those directions which, depending on the selected
Gaussian mixture model, are able to display both variation in cluster means and variation in
cluster covariances.

Definition 1. Consider the following kernel matrix

M = M IΣ
−1M I +M II . (2)

The basis of the dimension reduction subspace S(β) is the solution of the following constrained
optimization:

argβ maxβ>Mβ, subject to β>Σβ = Id.

This is solved through the generalized eigendecomposition

Mvi = liΣvi, v>i Σvj = 1 if i = j, and 0 otherwise,

l1 ≥ l2 ≥ . . . ≥ ld > 0.
(3)

Thus, the basis of the required subspace is given by the GMMDR directions β ≡ [v1, . . . ,vd].

The kernel matrix (2) contains information from variation on both cluster means and cluster
covariances. For mixture models which assume constant within-cluster covariance matrices, such
as models E, EII, EEI, and EEE (see Fraley and Raftery, 2006, Table 1), the subspace spanned
by M is equivalent to that spanned by M I .

Remark 1. Let S(β) be the subspace spanned by the (p × d) matrix β of eigenvectors from
(3), and µg and Σg be the means and covariance, respectively, for the g-th cluster. It can be

easily seen that the projection of the parameters onto the subspace S(β) are given by β>µg and

β>Σgβ. Furthermore, the projection of the (n×p) data matrix X onto S(β) can be computed
as Z = Xβ; we call these GMMDR variables.

Remark 2. The raw coefficients of the estimated directions are uniquely determined up to
multiplication by a scalar, whereas the associated directions from the origin are unique. Hence,
we can adjust their length such that they have unit length, i.e. each direction is normalized as
βj ≡ vj/||vj || for j = 1, . . . , d. In matrix form, let D = diag(V >V ), where V is the matrix of

eigenvectors from (3), then β ≡ V D−1/2. For the GMMDR variables

Cov(Z) = β>Σβ = D−1/2V >ΣV D−1/2 = D−1 = diag(1/||vj ||2).

Thus, they are uncorrelated, and with variances inversely related to the squared length of the
eigenvectors of the kernel matrix, while GMMDR directions are orthogonal with respect to
Σ-inner product.

We now provide some properties as propositions whose proofs are reported in the Appendix
A.1.

Proposition 1. GMMDR directions are invariant under affine transformation x 7→ Cx + a,
for C a nonsingular matrix and a a vector of real values. Thus, GMMDR directions in the
transformed scale are given by C−1β.

Proposition 2. Each eigenvalue of the eigendecomposition in (3) can be decomposed in the sum
of the contributions given by the squared variance of the between group means and the average of
the squared within group variances along the corresponding direction of the projection subspace,
i.e.

li = Var(E(Zi|Y ))2 + E(Var(Zi|Y )2) for i = 1, . . . , d.

6



Based on this result we may provide an interpretation to the contribution of each direction
to the visualization of the clustering structure. Furthermore, directions corresponding to small
eigenvalues provide little or no information about differences in cluster means or covariances.

Remark 3. Let X be the (n × p) sample data matrix which we assume, with no loss of gener-

ality, to have zero mean column-vectors. The sample version M̂ of (2) is obtained using the
corresponding estimates from the fit of a Gaussian mixture model via the EM algorithm. Then,
GMMDR directions are calculated from the generalized eigen-decomposition of M̂ with respect
to Σ̂.

Remark 4. The dimension of the estimated subspace S(β) is d = min{p,G−1} for models which
assume equal within-cluster covariance matrices (i.e. models E, EII, EEI, and EEE), while d ≤ p
otherwise. The GMMDR directions are ordered based on the associated eigenvalues, so those
directions corresponding to approximately zero eigenvalues can be discarded in practice since
clusters largely overlap along such directions. A more formal approach to the selection of
relevant directions is discussed in Section 3.

3 Subset selection of GMMDR variables

In the previous section we have discussed the estimation of GMMDR variables, which is basically
a linear mapping method onto a suitable subspace. This can be viewed as a form of (soft)
feature extraction, where the components are reduced through a set of linear combinations of
the original variables. However, it may be possible that a subset of the estimated GMMDR
variables provide either no clustering information or redundant clustering information already
provided by other variables.

Consider the partitioned (p × p) matrix (β,β0), which forms a basis for Rp. Based on
proposition 3 of Cook and Yin (2000, p.157), if β>0 X⊥⊥β>X|Y and β>0 X⊥⊥Y then S(β) is
a DRS. This is useful since, albeit it does not indicate how to construct β, it indicates that
unnecessary variables β>0 X are independent from relevant variables β>X within groups, and
that they are also marginally independent from Y . In our case, given that unnecessary GMMDR
variables provide no clustering information but require parameters estimation, we would like to
detect and discard them.

In the following we consider a subset selection method for GMMDR variables following the
approach of Raftery and Dean (2006), who proposed the use of BIC to approximate Bayes
factors for comparing mixture models fitted on nested subsets of variables. A generalization of
this approach has been recently discussed by Maugis et al (2009).

3.1 A criterion for feature selection

Let S be the set of indices with dim(S ) = q indexing a subset of q features from the original d
GMMDR variables Z (q ≤ d), and S ′ = {S \ i} ⊂ S be the set of dim(S ′) = q − 1 obtained
excluding the i-th feature index from S . The comparison of the two nested subsets can be
recast as a model comparison problem and addressed using BIC difference as an approximation
to Bayes factor. Following Raftery and Dean (2006), the BIC difference for the inclusion of the
i-th feature is given by

BICdiff(Zi∈S ) = BICclust(ZS )−BICnot clust(ZS ), (4)

where BICclust(ZS ) is the BIC value for the “best” model fitted using features in S , and
BICnot clust(ZS ) is the BIC value for no clustering. The latter can be written as

BICnot clust(ZS ) = BICclust(ZS ′) +BICreg(Zi|ZS ′),

i.e. the BIC value for the “best” model fitted using features in S ′ plus the BIC value for the
regression of the i-th feature on the remaining (q − 1) features in S ′. Noting that GMMDR
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variables are orthogonal, the general formula for BICreg (see Raftery and Dean, 2006, eq. (7))
reduces to BICreg(Zi|ZS ′) = −n log(2π)−n log(σ̂2

i )−n−(q+1) log(n), where σ̂2
i is the maximum

likelihood estimate of the i-th feature variance. In all cases the “best” clustering model is
identified with respect to both the number of mixture components and model parametrization.

3.2 A greedy search algorithm for selecting the “best” subset

GMMDR variables are defined as orthogonal linear combinations of the original variables, and
it is likely that only a subset of them is needed for clustering. However, the space of all
possible subsets of size q, with q ranging from 1 to d, has number of elements equal to 2d − 1.
An exhaustive search soon becomes unfeasible, even for moderate values of d. To alleviate
this problem, Raftery and Dean (2006) proposed a greedy search algorithm for finding a local
optimum in the model space. The search has both a forward step which evaluates inclusion
of a proposed variable, and a backward step which evaluates exclusion of one of the currently
included variables. The algorithm stops when consecutive inclusion and exclusion steps are
rejected. Since GMMDR variables are orthogonal the search can be simplified by skipping the
backward step. This allows us to considerably speed up the computing time.

The search starts by selecting the single GMMDR variable which maximizes the BIC cri-
terion. This is equivalent to using the statistic in equation (4), with S ′ = ∅ and S = {i}
for any i = 1, . . . , d. Thus, at the first step equation (4) measures the difference between the
best clustering model and the single cluster model for each variable. In the following steps, we
select the GMMDR variate which maximizes the BIC difference (4), so taking into account the
features already included. We keep adding GMMDR variates until the BIC difference becomes
negative. A detailed description of the greedy search algorithm is reported in Appendix A.2.

At each step, the search over the model space is usually performed with respect to both
the model parametrization and the number of clusters. However, we may want to fix the
model parameters at the estimated values obtained using the full set of features; in such a case,
the order in which the GMMDR directions are selected follows the ordering of the associated
eigenvalues.

3.3 An iterative procedure for feature selection

The greedy search discussed in the previous section is likely to discard some of the GMMDR
variates, in particular those associated with small eigenvalues which do not carry any clustering
information once other features have been included. A GMM may then be fitted on such con-
structed variables and the corresponding GMMDR directions estimated. The feature selection
step can then be repeated, and the whole process iterated until no directions could be dropped.
Depending on the number of initial features, the number of iterations required is usually small.
The whole process is described in the following algorithm:

Algorithm: GMMDR estimation and feature selection process

1. Fit a GMM on the original data.

2. Estimate GMMDR directions using the method in Section 2.2 and project the
data onto the estimated subspace.

3. Perform feature selection using the greedy search discussed in Section 3.2.

4. Fit a GMM on the selected GMMDR variables and go to step 2.

5. Repeat steps 2–4 until none of the features could be dropped.

8



4 Simulations

In this section we present a data analysis example based on a synthetic data set to describe
the proposed approach, followed by some simulation studies. The adjusted Rand index (ARI),
proposed by Hubert and Arabie (1985), is adopted for evaluating the clustering obtained and
comparing the results arising from competing mixture models. The ARI gives a measure of
agreement between two partitions, one estimated by a statistical procedure independent of the
labelling of the groups, and one being the true classification. This index has zero expected value
in the case of random partition, and it is bounded above by 1. Thus, higher values represent a
better performance.

4.1 Synthetic data on three overlapping clusters with different shapes

Consider a simulated data set with three overlapping clusters on ten variables, with each cluster
sample size equal to ng = 50 (g = 1, 2, 3). The first three variables have been generated from a
multivariate normal distribution with means µ1 = [0, 0, 0]>, µ2 = [4,−2, 6]>, µ3 = [−2,−4, 2]>,
and within-groups covariances

Σ1 =

 1 0.9 0.9
0.9 1 0.9
0.9 0.9 1

 , Σ2 =

 2 −1.8 −1.8
−1.8 2 −1.8
−1.8 −1.8 2

 , and Σ3 =

0.5 0 0
0 0.5 0
0 0 0.5

 .
Seven noise variables, generated independently from a standard normal distribution, were also
added. Thus, clustering information is only contained in the first three variables, with the
remaining ones been simply noise. The correct model we hope to find is the VVV model with
G = 3.

The GMM with the largest BIC is the seven clusters EEI model, closely followed by the
model with six clusters. Both models have the wrong number of components, thus yielding a
poor classification accuracy. Constraining G = 3 the selected model improves the ARI, albeit
there are still some misclassified data points (see Table 1). Using the “best” unconstrained
GMM we obtained the GMMDR directions; there are d = 6 of such directions, but only the
first three are retained by the feature selection step. As it can be seen from Table 1, the final
VVV mixture model with 3 clusters fitted on the three selected GMMDR variables is able to
recover the original clustering structure.

Table 1: Clustering results for the three clusters simulated data.

Method Model G BIC ARI

GMM (unconstrained) EEI 7 -4731.56 0.6674
GMM (constrained) VII 3 -4820.57 0.8671
GMMDR (3 directions) VVV 3 -1339.40 1.0000

The left panel of Figure 3 shows the eigenvalues associated with the GMMDR directions.
From such a plot we can see that the first two directions are the most important, with the first
showing both difference in means and variances among clusters, while the second almost only
differences in means. The last direction adds a small amount of clustering information, mostly
from differences in variances. The coefficients for the selected GMMDR directions (see the right
panel of Figure 3) indicate that only the first three variables seem to be required, since the
coefficients for the remaining ones are almost zero.

Graphs contained in Figure 4 use GMMDR directions to convey clustering information
about the fitted GMM. Plots along the diagonal show univariate component densities, while
plots above the diagonal report contours of the estimated densities for each component. Such
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Figure 3: Plot of eigenvalues for each estimated direction with contributions from means and
variances differences among clusters (left panel) and coefficients defining the GMMDR directions
(right panel).

graphs clearly reflect the characteristics of the mixture model fitted; in particular, clusters have
different volume, shape and orientation. Furthermore, it is quite clear that clusters on the
projection subspace appear to be well separated along the first two directions, as it can be seen
from the maximum a posteriori (MAP) classification areas below the diagonal of Figure 4.

4.2 Simulation studies

Here we discuss the results from some simulation studies we conducted to compare the proposed
GMMDR approach to model-based clustering performed on both the original variables and the
leading principal components. The data sets used for such comparison are generated from some
overlapping Gaussian mixtures with different covariance matrix structures. In addition, we
investigated the effect of the inclusion of a certain number of redundant and noise variables.
The former are variables correlated with those bringing clustering information, so they only
provide redundant information. The latter are variables whose distribution do not depend on
the cluster label, thus they only introduce some noise which tends to obscure the underlying
clustering structure to be recovered.

The simulation schemes used for generating the data are described below.

Model 1: three overlapping clusters with common covariances. In the first simulation
scheme each data set was generated from three overlapping clusters with equal mixing proba-
bilities on three variables. These were generated from a multivariate normal distribution with
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Figure 4: Scatter plots of GMMDR variables for the three clusters simulated data: bivariate
component density contours (above diagonal), marginal univariate component densities (diago-
nal), and MAP regions (below diagonal).

means µ1 = [0, 0, 0]>, µ2 = [0, 2, 2]>, µ3 = [2,−2,−2]>, and common covariance matrix

Σ =

2.0 0.7 0.8
0.7 0.5 0.3
0.8 0.3 1.0

 .
To this basic setup, which correponds to a EEE mixture model (see Fraley and Raftery, 2006,
Table 1), we added two further scenarios. In the first scenario (noise variables), seven noise
variables were generated from independent standard normal variables. In the second scenario
(redundant and noise variables), we generated three variables correlated with each clustering
variable (with correlation coefficients equal to 0.9, 0.7, 0.5, respectively) and four independent
standard normal variables. In both cases, there was a total of ten variables.

Model 2: three overlapping clusters with constant shapes. In this simulation scheme
we generated observations with equal prior from three classes using the mixture model VEV.
The means for each class were µ1 = [0, 0, 0]>, µ2 = [4,−2, 6]>, and µ3 = [−2,−4, 2]>, while
for the covariance matrices Σg = λgDgAD

>
g (g = 1, 2, 3) the scale, shape and orientation
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parameters were, respectively, λ = [0.2, 0.5, 0.8]>, A = diag(1, 2, 3), and

D1 =

 1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

 , D2 =

 2 −1.2 1.2
−1.2 2 −1.2
1.2 −1.2 2

 , D3 =

0.5 0 0
0 0.5 0
0 0 0.5

 .
As for the previous model setup, we also considered two further scenarios with the addition of
noise variables in the first case, and noise and redundant variables in the second case.

Model 3: three overlapping clusters with unconstrained covariances. For this last
scheme we simulated each data set from three overlapping clusters with equal mixing prob-
abilities on three variables. Clustering variables were generated from a multivariate normal
distribution with parameters set as in the synthetic example of Section 4.1, which correspond
to a VVV parametrization with G = 3. Again, we also considered the effect of adding only
noise variables, and noise and redundant variables.

For each data set simulated as described above we fitted a GMM with number of clusters
in the range [1, 15] and different model parametrizations, then we selected the model with the
highest BIC. A GMM was also fitted to the leading principal components computed from the
correlation matrix, or equivalently using standardized variables; the number of components was
chosen using the Kaiser’s rule, i.e. selecting those with eigenvalues larger than one (Jolliffe,
2002, p. 114–115). Finally, we applied the GMMDR approach discussed in Section 2.2, fol-
lowed by the subset selection procedure of Section 3. For each estimated model we computed
the adjusted Rand index (Hubert and Arabie, 1985) as a criterion to evaluate the clustering
partitions obtained: higher values of ARI correspond to better performance.

The results of the simulation procedure based on 1000 repetitions for increasing sample sizes
are shown on Table 2, where we reported the average adjusted Rand index for the three fitting
procedures to be compared and the corresponding standard errors.

When no noise variables are included, the GMMDR procedure yields equivalent clustering
accuracy to GMM on the original variables. However, when irrelevant features (either noise
or redundant ones) are present the GMMDR procedure significantly improves the accuracy as
measured by the adjusted Rand index. This is particular evident for smaller sample sizes (n =
100, 300) when noise variables are present, and when the underlying clusters have different within
cluster covariance matrices. The PCA+GMM procedure leads to uniformly small values of ARI,
confirming that reducing the dimensionality of the problem through principal components does
not help to discover clustering structures in the data. As expected, as the sample size increases
all the three methods improve in accuracy, with the GMM method on the original variables and
the GMMDR approach leading essentially to the same accuracy for n = 1000.

A further aspect was also checked, the number of clusters selected by each procedure (results
not shown here). Recalling that for all the simulation schemes the number of clusters was three,
GMMDR almost always selects the true value, whereas GMM tends to select a larger number
of components when noise variables are included and the clusters have different covariance
structures. PCA+GMM performs worst than the other two methods, often under-estimating
the true number of clusters in the presence of noise variables and for smaller sample sizes
(n = 100, 300).

Based on the simulation results we may conclude that when there are redundant or noise
variables a suitable subset of GMMDR variables allows us to significantly improve cluster identi-
fication. The improvement is larger for small samples having different within-cluster covariances
and in the presence of noise variables. Overall, using GMMDR variables do not produce worse
results than using original variables, but often leads to a better selection of the clustering struc-
ture. There appears no reason to perform model-based clustering on principal components.

12



Table 2: Average adjusted Rand index (with standard errors within parenthesis) based on 1000
simulations.

No noise Noise variables Noise and redundant variables

Model 1 (EEE) n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000

GMM 0.9684 0.9744 0.9754 0.6869 0.8918 0.9742 0.8518 0.9695 0.9743
(0.0420) (0.0166) (0.0083) (0.1363) (0.1217) (0.0090) (0.1889) (0.0241) (0.0087)

PCA+GMM 0.8591 0.9105 0.9146 0.4989 0.8352 0.9091 0.5361 0.7518 0.7942
(0.1626) (0.0446) (0.0221) (0.1700) (0.1256) (0.0298) (0.1342) (0.0909) (0.0239)

GMMDR 0.9716 0.9742 0.9753 0.8612 0.9674 0.9742 0.8832 0.9699 0.9742
(0.0347) (0.0172) (0.0088) (0.1426) (0.0234) (0.0090) (0.1613) (0.0197) (0.0088)

Model 2 (VEV) n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000

GMM 0.9738 0.9802 0.9819 0.7316 0.6328 0.9808 0.6648 0.6811 0.9807
(0.0302) (0.0141) (0.0073) (0.0825) (0.0793) (0.0081) (0.0913) (0.1572) (0.0078)

PCA+GMM 0.6562 0.6789 0.7130 0.1907 0.4307 0.6458 0.4579 0.6465 0.8018
(0.2745) (0.2138) (0.0824) (0.1386) (0.1700) (0.1417) (0.1780) (0.1483) (0.0309)

GMMDR 0.9709 0.9802 0.9819 0.9201 0.9747 0.9806 0.9231 0.9727 0.9806
(0.0351) (0.0141) (0.0073) (0.0799) (0.0165) (0.0082) (0.0811) (0.0169) (0.0077)

Model 3 (VVV) n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000

GMM 0.9960 0.9981 0.9983 0.6937 0.8877 0.9751 0.8434 0.9708 0.9742
(0.0115) (0.0043) (0.0024) (0.1260) (0.1189) (0.0081) (0.1932) (0.0194) (0.0092)

PCA+GMM 0.9805 0.9896 0.9899 0.4917 0.8357 0.9074 0.5396 0.7493 0.7945
(0.0534) (0.0105) (0.0053) (0.1663) (0.1277) (0.0316) (0.1353) (0.0984) (0.0236)

GMMDR 0.9952 0.9981 0.9983 0.8643 0.9674 0.9751 0.8799 0.9712 0.9740
(0.0146) (0.0042) (0.0024) (0.1384) (0.0210) (0.0081) (0.1609) (0.0185) (0.0099)

4.2.1 Unequal prior probabilities

The previous simulation examples assumed equal prior group probabilities. It may be of interest
to investigate if the results obtained depend on such assumption. We expect that, provided there
is enough cluster information in the data, no dramatic change from previous findings should
be observed. Thus, we replicated the previous simulation study for the more complex Model 3
(VVV), but with unequal prior probabilities set at π = (0.1, 0.3, 0.6). The results are shown in
Table 3.

When no noise variables are included the accuracy of GMM and GMMDR are essentially
the same as in the equal prior probabilities case, whereas PCA+GMM performs slightly worse.
If irrelevant variables (either noise or redundant ones) are present both GMM and GMMDR
yield somewhat worse results when n = 300 or 1000. This seems to be due to the fact that
BIC often selected models with more components than the true number of clusters. On the
contrary, PCA+GMM seems to improve when redundant variables (i.e. variables correlated with
clustering ones) are included. Since principal components are computed from the correlation
matrix, we argued that correlated variables are likely to provide useful clustering information
when some groups are represented by few observations. Overall, we note that GMMDR never
performed worst than GMM, and it was also better than PCA+GMM except when irrelevant
variables are included and n = 300.

4.2.2 High-dimensional data

Clustering high-dimensional data is a challenging task. The main problem in fitting a GMM
model is the large number of parameters which need to be estimated. To overcome this Ghosh
and Chinnaiyan (2002) suggested to perform model-based clustering on the first few principal
components. Based on the conclusion of Chang (1983), discussed also in Section 2, this approach
does not seem to be advisable. Bouveyron et al (2007) proposed a method for dealing with high
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Table 3: Average adjusted Rand index (with standard errors within parenthesis) based on 1000
simulations with unequal prior probabilities.

Model 3 (VVV) No noise Noise variables Noise and redundant variables

n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000 n = 100 n = 300 n = 1000

GMM 0.9826 0.9991 0.9994 0.7451 0.6195 0.7407 0.8214 0.7326 0.7209
(0.0502) (0.0025) (0.0010) (0.1468) (0.1663) (0.1160) (0.1433) (0.1188) (0.0937)

PCA+GMM 0.8781 0.8644 0.8606 0.8305 0.8347 0.7398 0.8334 0.8434 0.8228
(0.0970) (0.0871) (0.0532) (0.0748) (0.1050) (0.2017) (0.0590) (0.0353) (0.1054)

GMMDR 0.9742 0.9991 0.9994 0.8733 0.8176 0.7964 0.8720 0.8073 0.8136
(0.0734) (0.0024) (0.0011) (0.1341) (0.1378) (0.1547) (0.1303) (0.1601) (0.1600)

dimensional data.
In Section 4.2 we described a three clusters VEV model (2) on 3 clustering variables. We

also considered the inclusion of 3 redundant variables (i.e., correlated with the clustering ones)
and 4 noise variables; there was a total of ten variables according to the scheme {3|3|4}. This
basic setup has been generalized to investigated the behavior of the proposed approach as the
number of variables increase. For k = {1, 2, 3, 5} we generated 10k variables following the
scheme {3k|3k|4k}; for instance, if k = 3, there are 30 variables, 9 of them are clustering
variables, 9 are correlated with the previous ones, and the remaining 12 are noise variables. We
only investigated the most difficult case, i.e. the case of a small sample size, by setting n = 100.

As the number of variables increase the accuracy of all the three methods tend to decrease,
with GMMDR always more accurate on the average that the other two methods (see Table 4).
However, for p = 40 and p = 50 the average ARI for GMMDR dropped just above 0.6. Looking
in more detail the results, we realized that, even though a subset of directions could provide
better cluster accuracy, BIC frequently selected too many of such directions. To find evidence of
this fact we replicated the simulation study, but using the simple model EII (common spherical
covariance matrix) and selecting the GMMDR directions on the basis of the entropy criterion
(Celeux and Soromen, 1996). This provides a measure of the overlap of the clusters, and it is
defined as −

∑G
g=1

∑n
i=1 tig log(tig), where tig denotes the conditional probability that the i-th

unit arises from the g-th mixture component. Except for the case p = 10, where the ARI is
smaller, and p = 20, where the ARI is essentially equivalent, the accuracy of GMMDR is largely
increased (see Table 4). Note also that, although we constrained to fit the wrong EII model,
the accuracy of GMM do not worsen.

Based on this limited study, it seems that for high-dimensional data GMMDR directions
are still able to recover the clustering structure of the data, but the BIC criterion overestimates
how many of them are needed. When the entropy criterion is used to select relevant directions
the clustering accuracy improve.

An extreme form of high-dimensional data is the p� n case. Clustering of gene expression
data arising from microarray experiments is a typical application and model-based approaches
have been proposed (Yeung et al, 2001). In order to apply the approach discussed in this paper,
a form of regularization is required for the inversion of the covariance matrix in (2), such as
one of those discussed in Bernard-Michel et al (2009). However, these aspects require further
studies.

5 Data analysis examples

5.1 Italian wines

Forina et al (1986) reported data on 178 wines grown in the same region in Italy but derived
from three different cultivars (Barolo, Grignolino, Barbera). For each wine 13 measurements of
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Table 4: Average adjusted Rand index (with standard errors within parenthesis) based on 500
simulations for increasing dimensionality of the feature space and n = 100. The last two rows
show the results from fitting a GMM with a common spherical and equal volume model (EII)
and the corresponding GMMDR with relevant directions selected by the entropy criterion.

Model 2 (VEV) p = 10 p = 20 p = 30 p = 40 p = 50

GMM 0.6788 0.6405 0.6128 0.5968 0.5859
(0.0850) (0.0702) (0.0744) (0.0726) (0.0783)

PCA+GMM 0.4602 0.7238 0.6928 0.6485 0.6009
(0.1831) (0.1655) (0.1574) (0.1582) (0.1283)

GMMDR 0.9205 0.9717 0.8447 0.6802 0.6131
(0.0843) (0.0951) (0.1960) (0.2092) (0.1920)

GMM (EII) 0.7101 0.6581 0.6299 0.6148 0.5979
(0.0889) (0.0707) (0.0696) (0.0753) (0.0765)

GMMDR 0.8447 0.9830 0.9817 0.9204 0.8381
(0.1672) (0.0837) (0.0801) (0.1528) (0.1923)

chemical and physical properties were made, such as the level of alcohol, the level of magnesium,
the color intensity, etc. The data set is avalaible at UCI Machine learning data repository
http://archive.ics.uci.edu/ml/datasets/Wine. The following analyses were performed on
a standardized scale.

Modelling all the available variables with a GMM selects the model VEI with eight clusters,
which gives a small adjusted Rand index (see Table 5). This can be largely improved by the
variable selection method proposed by Raftery and Dean (2006). A comparable accuracy is
also achieved by McNicholas and Murphy (2008), who applied a class of parsimonious Gaussian
mixture models (PGMM) based on mixtures of factor analyzers; their selected model has q = 2
latent factors and it is denoted as CUU (see McNicholas and Murphy, 2008, Table 1). We note,
however, that, despite the improvement on accuracy, PGMM selects a wrong number of clusters
(see Table 5).

Table 5: Model-based clustering results for some models fitted to the wine data.

Method Number of Model G ARI
features

GMM 13 VEI 8 0.48
GMM (best subset†) 5 VEV 3 0.78
PGMM 2 CUU 4 0.79
GMMDR 5 VEV 3 0.85

†(Malic, Proline, Flavanoids, Intensity, OD280)

We applied the GMMDR approach to this data set and we obtained a final VEV model
with three clusters estimated on five GMMDR directions. This model yields an adjusted Rand
index equal to 0.85 (see Table 5) and the resulting confusion matrix is reported in Table 6.

As Figure 5 shows, the first two directions mainly exhibit differences in cluster means,
whereas the remaining directions mostly represent differences in cluster variances. We also note
that the first three GMMDR directions appear to contain most of the clustering information.

Figure 6 shows a static view of a rotating 3D spin plot for the first three GMMDR directions
with data points marked according to cluster membership; Barbera wines (3) appear to be well
separated from the others along the first direction, while Barolo (1) and Grignolino (2) wines
present a significant separation on the plane identified by the second and third directions.
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Cluster
Wines 1 2 3

Barolo 57 2 0
Grignolino 2 64 5
Barbera 0 0 48

Table 6: A classification table for the best model found using GMMDR on the wine data.
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Figure 5: Plot of eigenvalues for each GMMDR direction with contributions from means and
variances differences among clusters for the wine data.

5.2 Australian crabs data

This data set contains measurements recorded on 200 specimens of Leptograpsus variegatus
crabs on the shore in Western Australia (Campbell and Mahon, 1974). Crabs are classified
according to their colour form (blue and orange) and sex. There are 50 specimens of each sex
of each species. Each specimen has 5 measurements: frontal lobe size (FL), rear width (RW),
carapace length (CL) and width (CW), body depth (BD). The main interest is to distinguish
between species and sex based on the available morphological measurements.

Gaussian mixture modelling performs poorly for this dataset. The model with the highest
BIC selects 9 components, which gives a small adjusted Rand index. If we constrain the number
of components to match the actual number of classes, the performance is still poor (see Table 7).
Raftery and Dean (2006) obtained a large improvement through variable selection, ending up
with a mixture model based on four variables. This dataset was also analyzed by Bouveyron et al
(2007, pp. 516–517) who obtained a 5% error rate with the high-dimensional data clustering
(HDDC) model [aibiQidi].

Starting with the “best” unconstrained mixture model (EEE, G = 9) we estimated the
GMMDR directions and then we performed feature selection. The final GMMDR model is
fitted on three directions with 4 clusters having ellipsoidal, equal volume and shape but different
orientation (EEV). The error rate is 7.50%, the same obtained by Raftery and Dean (2006).
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Figure 6: A static view of a 3D spinning plot of the first three GMMDR directions for the wine
data. Data points are marked according to cluster membership; the clusters identified refer
mainly to (1) Barolo, (2) Grignolino, and (3) Barbera.

The resulting accuracy is slightly worst than that for the HDDC model of Bouveyron et al
(2007), but it has the advantage of providing a visualization of the clustering structure.

Table 7: Model-based clustering results for some models fitted to the crabs data.

Method Model G Error ARI
rate (%)

GMM (unconstrained) EEE 9 0.4831
GMM (constrained) VEV 4 42.50 0.3165
GMM (best subset†) EEV 4 7.50 0.8154
HDDC [aibiQidi] 4 5.00
GMMDR EEV 4 7.50 0.8195
†(CW, RW, FL, BD)

Summary plots (not shown here) indicate that the first direction mainly separates blue
from orange type of crabs, while the second reflects sex differences. The last direction adds
only marginal information contrasting blue and orange crabs within sex. Figure 7 plots the
uncertainty ui = 1 − maxg(ẑig) projected onto the first two GMMDR directions, where ẑig is
the estimated conditional probability that observation i belongs to group g. Misclassified crabs
are indicated by a square surrounding the point. As it can be seen, orange and blue crabs
appear well separated, whereas discrimination of sex within crabs species is more problematic:
some points lie in the regions of higher uncertainty (darker areas), in particular for blue crabs.
It is interesting to note that these aspects can also be read-off from the corresponding confusion
matrix (see Table 8).
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Cluster
Species 1 2 3 4

BF 50 0 0 0
BM 12 38 0 0
OF 0 0 47 3
OM 0 0 0 50

Table 8: A classification table for the final GMMDR model fitted on the crabs data.

6 Conclusion

In this paper we addressed the problem of dimension reduction for model-based clustering from
the point of view of visualizing the clustering structure. Often, principal component analysis
is used as a pre-processing step, and a clustering procedure is applied to the leading princi-
pal components. Probabilistic principal components and factor analyzers have been also used
for dimension reduction. However, these do not necessarily capture the underlying clustering
structure.

Unlike other approaches (Tipping and Bishop, 1999a,b; McLachlan et al, 2003; Bouveyron
et al, 2007; McNicholas and Murphy, 2008), the proposed method is not connected to any un-
derlying latent variables structure, nor an EM-like algorithm is employed in the estimation.
Instead, we aim at identifying the subspace which capture most of the clustering information
contained in the data. Estimation of directions spanning such subspace is based on the eigen-
decomposition of a suitable kernel matrix, with unknown parameters estimated from a GMM
selected as the best description of the data at hand. Visualization techniques can then be ap-
plied using the leading directions in order to obtain summary plots. The estimated directions
can be further reduced by recasting the problem of feature selection as a model choice problem
and using BIC to approximate Bayes factors. A forward greedy search algorithm is discussed
to avoid the search over all possible subsets.

The proposed methodology has been applied to simulated and real data sets. In all cases
we were able to identify a dimension reduced subspace while preserving the cluster information
contained in the original variables. Moreover, simulation studies showed that a suitable subset
of directions allows for significant improvement in cluster identification. The improvement is
larger when within-cluster covariances are different and redundant or noise variables are present.

Finally, it is straightforward to extend the proposed approach in a supervised context, where
the class membership for each unit is known in advance.

Appendix

A.1 Proofs

Proof of proposition 1 Define the transformed data matrix as X∗ = XC + 1a>, where
C is a (p × p) nonsingular matrix, a is a p-vector of real values, and 1 is a n-vector of ones.
It is easy to show that in the transformed scale Σ∗ = C>ΣC and the kernel matrix is given
by M∗ = C>MC. The generalized eigendecompostion in the transformed scale satisfy the
equation MCV ∗ = ΣCV ∗L∗, so CV ∗ must be equal to the matrix V of eigenvalues of the
generalized eigendecomposition of M with respect to Σ, and L∗ is equal to the corresponding
diagonal matrix of eigenvalues. Hence, V ∗ = C−1V , L∗ = L, and the GMMDR directions
in the transformed scale are given by β∗ = C−1β. Furthermore, the corresponding variates
Z∗ = X∗β∗ = Xβ + 1a>C−1β, so they are simply a shifted version of the GMMDR variates
in the original scale.
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Figure 7: Plot of crabs data points with uncertainty areas projected onto the first two GMMDR
directions. Data points are marked according to the estimated cluster membership, while a
square surrounding a point indicates a misclassified crab.

Proof of proposition 2 For any kernel matrix we may rewrite the eigendecomposition in (3)
as MV = ΣV L. Since by definition V >ΣV = Id, the diagonal matrix of eigenvalues can be
expressed as L = diag[li] = V >MV .

We start by considering the kernel matrix M I , for which M I = Var(E(X|Y )). Thus,

L = V >Var(E(X|Y ))V = Var(E(Z|Y )) = diag[Var(E(Zi|Y )],

where Z = XV is the projection onto the subspace spanned by the columns of V . So, for a
SIR kernel matrix each eigenvalue is equal to the variance of the between group means along the
i-th direction. Consider the kernel matrix in (2), for which the diagonal matrix of eigenvalues
can be written as

L = V >M IΣ
−1M IV + V >M IIV .

We note that since V >ΣV = Id we have Σ−1 = V V >. Thus, the first part of the above
equation may be written as

V >M IΣ
−1M IV = (V >M IV )(V >M IV ) = Var(E(Z|Y ))2.

For the following part we have

V >M IIV = V >

 G∑
g=1

πg(Σg − Σ̄)Σ−1(Σg − Σ̄)>

V = E(Var(Z|Y )2).

Therefore, the matrix of eigenvalues can expressed as L = Var(E(Z|Y ))2 + E(Var(Z|Y )2), and
proposition 2 follows.
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A.2 Greedy search algorithm for feature selection

In this section we provide a detailed description of the greedy search algorithm used to select
the “best” subset of GMMDR variates.

The BIC criterion (Schwartz, 1978) is the basic building block for choosing the number of
clusters and model parametrization (Fraley and Raftery, 1998). In general, for a finite mixture
model M with g components it is computed as

BIC(M, g) = 2 max l − νM,g log(n),

where max l is the maximized log-likelihood, νM,g is the number of parameters estimated,
and n is the number of observations. The difference between BIC values for two models is
approximately equal to twice the logarithm of the Bayes factor for the comparison of the two
models (Kass and Raftery, 1995). Raftery and Dean (2006) investigated variable selection in
model-based clustering, recasting the problem as a model selection procedure. We adapt their
approach for GMMDR variable selection.

Let S = {1, 2, . . . , d} be the set of GMMDR variables ZS computed for a mixture model
following the method described in Section 2.2. The criterion used for model comparison is the
BIC difference in equation (4). The steps of the greedy search algorithm are the following:

1. Select the first variable to be the one which maximizes the BIC difference criterion. Let
S1 = {i} be the candidate set, and S ′

1 = ∅ be the set of already included variables, which
is of course empty at the beginning. We select the variable Zi1 such that

i1 = argi∈S max BICdiff(ZS1)

= argi∈S max (BICclust(ZS1)−BICreg(Zi)) .

At the first step dim(S1) = 1, thus maximization is taken over the clustering models E
and V with G = 1, 2, . . . ,max(G), where max(G) is the maximum number of clusters to
be considered for the data. Then, define S1 = {i1}, set j = 2 and go to the next step.

2. Select a variable to include, among those not already included, to be the one which
maximizes the BIC difference criterion. Formally, let Sj = Sj−1 ∪ {i} be the candidate
set, and S ′

j = Sj−1 be the set of already included variables. We choose the variable Zij

to be included such that

ij = argi∈S \S ′
j

max BICdiff(ZSj
)

In this case the “best” model is identified with respect to both the number of mixture
components up to max(G), and model parametrization. Then, update the subset of
currently included variables, i.e. Sj = S ′

j ∪ {ij}.

3. Set j = j + 1 and iterate the previous step until a stopping rule is met. The algorithm
naturally terminates when all variables are included, but it might be stopped earlier when,
for example, the maximal BIC difference for the inclusion of a variable becomes negative.

As mentioned, the proposed greedy search is a forward-type algorithm. Given the orthogo-
nality of the GMMDR variables, a backward step is not required.
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