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Abstract This article proposes a stochastic version of the
matching pursuit algorithm for Bayesian variable selection
in linear regression. In the Bayesian formulation, the prior
distribution of each regression coefficient is assumed to be a
mixture of a point mass at 0 and a normal distribution with
zero mean and a large variance. The proposed stochastic
matching pursuit algorithm is designed for sampling from
the posterior distribution of the coefficients for the purpose
of variable selection. The proposed algorithm can be consid-
ered a modification of the componentwise Gibbs sampler. In
the componentwise Gibbs sampler, the variables are visited
by a random or a systematic scan. In the stochastic match-
ing pursuit algorithm, the variables that better align with
the current residual vector are given higher probabilities of
being visited. The proposed algorithm combines the effi-
ciency of the matching pursuit algorithm and the Bayesian
formulation with well defined prior distributions on coeffi-
cients. Several simulated examples of small n and large p
are used to illustrate the algorithm. These examples show
that the algorithm is efficient for screening and selecting
variables.
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1 Introduction

In the past two decades, Bayesian methods for variable se-
lection in linear regression models have become increas-
ingly popular. In their pioneering paper, George and Mc-
Culloch (1993) first proposed a Bayesian variable selection
method, called stochastic search variable selection. Some
other Bayesian methods related to stochastic search vari-
able selection were studied by Chipman (1996), Chipman
et al. (1997), and George and McCulloch (1997). These
Bayesian methods have been successfully applied to model
selection for supersaturated designs (Beattie et al. 2002),
signal processing (Wolfe et al. 2004, and Févotte and God-
sill 2006), and gene selection (Lee et al. 2003).

In the Bayesian formulation of George and McCulloch
(1993, 1997), the prior distributions of the coefficients are
assumed to be independent, and the prior distribution of each
coefficient is assumed to be a mixture of two normal distri-
butions. Both normal distributions are centered at O, but one
has a very small variance and the other has a much larger
variance. The normal distribution with a very small variance
is used to model the coefficients of the variables that are not
selected or are not active, and the normal distribution with a
very large variance is used to model the coefficients of the
variables that are selected or are active. For such a mixture
of normal prior distribution, one can augment an indicator
for each variable to indicate whether this variable is active
or not. The stochastic search variable selection of George
and McCulloch (1993) is a Gibbs sampler scheme that sam-
ples from the posterior distribution of the indicators and the
coefficients. The algorithm iteratively samples the indica-
tors given the coefficients, and then samples the coefficients
given the indicators. The subset of variables with the highest
posterior probability is considered the “best” model.

In this article, we adopt the commonly used notation of
n and p, where n is the number of observations, and p is
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the number of variables. In the Gibbs sampling scheme of
George and McCulloch (1993), the step of sampling the co-
efficients conditional on the indicators requires the computa-
tion of the posterior covariance matrix of these coefficients,
which is proportional to the inverse of a p x p information
matrix. The computational complexity is O (p3), which can
be expensive if p is large. In addition to this expensive step,
stochastic search variable selection of George and McCul-
loch (1993) also requires expensive computations for sam-
pling the indicators simultaneously. George and McCulloch
(1997) suggested several schemes for reducing the compu-
tational costs. One of them is to use the Cholesky decompo-
sition of the information matrix, and others focus on how to
efficiently sample the indicators.

This article proposes a stochastic matching pursuit algo-
rithm to avoid the inversion of potentially large matrices and
to improve the efficiency of the Markov chain Monte Carlo
algorithm for posterior sampling. We adopt the Bayesian
formulation of George and McCulloch (1993), except that
we assume that the variance of the normal distribution for
the inactive coefficients is 0. That is, the distribution of the
inactive coefficients is a point mass at 0. The proposed sto-
chastic matching pursuit algorithm is a Markov chain Monte
Carlo algorithm for sampling from the posterior distribution
of the coefficients.

The original version of the matching pursuit algorithm
was proposed by Mallat and Zhang (1993) in the context of
wavelet sparse coding. The algorithm is essentially a for-
ward stepwise variable selection method in linear regres-
sion. The algorithm is a greedy one. It starts from an empty
set of variables. Then at each step, the algorithm identifies a
variable that has the maximum correlation with the current
residual vector. It selects this variable, computes its coef-
ficient, and updates the residual vector. This algorithm has
proven to be very efficient for variable selection, and has
been widely used in signal processing.

However, the matching pursuit algorithm is only a pro-
cedure, not a principle, in the sense that it does not explic-
itly minimize any objective function or criterion. The greedy
nature of the algorithm can also cause problem in the sense
that the procedure may not select the optimal set of vari-
ables. Our method takes advantage of the efficiency of the
original matching pursuit algorithm, and modifies it into a
Markov chain Monte Carlo algorithm that samples from the
posterior distribution of the coefficients with well defined
mixture prior distributions.

The stochastic matching pursuit algorithm is a Metropo-
lis scheme with a pair of reversible moves. One is the “addi-
tion move,” which adds a new variable to the existing set of
selected variables, where the variables with larger correla-
tions with the residual vector are assigned higher probabil-
ities of being added, in a fashion that is very similar to the
original matching pursuit algorithm. The other move is the
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“deletion move,” which deletes a variable from the existing
set of selected variables. The deletion move complements
the addition move so that the Markov chain can be made
reversible.

Several simulated examples are used to illustrate the pro-
posed algorithm. In our simulation studies of small » and
large p problems with (n, p) = (50,200) and (100, 400),
the stochastic matching pursuit algorithm performs well in
screening and selecting variables. In comparison with exist-
ing methods for variable selection, the computational cost
of stochastic matching pursuit is lower than that of stochas-
tic search variable selection when the number of predictors,
p, is large. The proposed method is competitive with the
screening method of Shao and Chow (2007) and a Lasso
type method (Tibshirani 1996) in terms of variable selection
results.

We also compare our method with a Bayesian method
of Smith and Kohn (1996), who used conjugate prior distri-
butions for the coefficients of the selected variables, so that
these coefficients can be integrated out in closed form. How-
ever, the algorithm of Smith and Kohn (1996) involves ma-
trix inversion, which can be computationally expensive and
which may be numerically unstable when p is large. Sim-
ulation studies with n = 50 and p = 20, 50, 100 and 300
show that our method compares favorably with the method
of Smith and Kohn (1996) in terms of variable selection re-
sults.

This article is organized as follows. Section 2 presents
the stochastic matching pursuit algorithm and explains how
to choose the tuning parameters. Section 3 studies small n
and large p problems, where the stochastic matching pur-
suit algorithm is applied to the simulated data sets studied
by Shao and Chow (2007) as well as to an example of im-
age representation using Gabor wavelet elements. Section 4
compares the computational cost of the stochastic match-
ing pursuit algorithm with that of stochastic search variable
selection. It also compares the proposed method with the
method of Smith and Kohn (1996) that is based on conjugate
prior. Finally Sect. 5 summarizes our findings and discusses
future directions.

2 Stochastic matching pursuit

In this section, we first review stochastic search variable se-
lection of George and McCulloch (1993, 1997). Then we
present the stochastic matching pursuit algorithm.

2.1 Variable selection in linear regression

To fix notation, consider the following linear regression
model

Y =Xp+e. M



Stat Comput (2011) 21: 247-259

249

where Y is an n x 1 response vector, X = [X1, ..., Xp]isan
n X p matrix, and X; is the i-th predictor variable or regres-
sor. = (B1,...,Bp) isa p x 1 vector of the unknown co-
efficients, and € = (¢q, ..., €,)’ is an n x 1 noise vector that
follows a multivariate normal distribution with zero mean
vector and covariance matrix 021,,, where [, is an n X n
identity matrix.

The variable selection problem is to select the “best” sub-
set of variables from X1, ..., X, to model the response vec-
tor Y. We can introduce a p x 1 vector of latent variables,
Y=, yp)/ , to indicate which variables are selected.
Each y; is an indicator that takes value O or 1. y; = 1 means
that the variable X; is selected or active, and y; = 0 means
that the variable X; is not selected or inactive.

2.2 Stochastic search variable selection

In stochastic search variable selection of George and Mc-
Culloch (1993, 1997), the prior distribution of the coefficient
Bi given the indicator y; is

[Bilyi =01~ N(@,vp;), and [Bilyi=11~N(O,vy).

@)

The value of vy; is set to be small, and N (0, vy;) is the prior
distribution of the coefficient 8; if the variable X; is not
selected or if X; is inactive. The value of vy; is set to be
large, and N (0, vy;) is the prior distribution of 8; if the vari-
able X; is selected or active. Usually one can assume that
V1i = CjVoi-

The prior distribution of y; is P(y; = 0) = p;, and
P(yi = 1) =1 — p;. The prior distributions of (y;, B;) are
assumed to be independent for i =1, ..., p, and they are
independent of the prior distribution of the residual vari-
ance 02, which is an inverse Gamma distribution, o2
IG(v/2,v)1/2).

The stochastic search variable selection procedure is a
Gibbs sampling scheme where each iteration samples from
the conditional distributions [B|y,Y,o], [y|B,Y, o], and
[o]Y, B, v]. The best subset of variables are selected accord-
ing to the information contained in the Monte Carlo samples
of y.

Within each iteration of the above Gibbs sampling
scheme, the most costly step is to sample 8 from a multivari-
ate normal distribution, [8|y,Y,0] ~ N(c 24, X'Y, A,),
where A, = (c72X'X + D;IR_ID;l)_l, R is the
prior correlation matrix, and D; 2 - diag[(alvm)_], e,

~

(apvop)fl] with a; = 1if y; =0, 0or a; = ¢; if y; = 1. The
computational complexity of this step is O (p?).

2.3 Componentwise Gibbs sampler

To avoid computing the inverse matrices, we may adopt
a componentwise Gibbs sampler. The stochastic matching

pursuit algorithm is a further improvement of the compo-
nentwise Gibbs sampler.

Before describing the componentwise Gibbs sampler, we
first make a minor modification to the prior specification.
Following Geweke (1996) and Smith and Kohn (1996), we
set vy; = 0, thus (2) becomes

Bilyi ~ (1 — y;)80 + yiN(0, 77), 3)

where §p is a point mass at 0 and rl.z = vy;. That is, we
simply assume that the coefficients of the inactive variables
equal 0. Without much loss of generality, we assume that all
the variables have the same probability to be included into
the model, i.e., p = p; = P(y; =0),i =1,..., p. We also
assume thatt =17; fori =1,..., p.

For such a prior distribution, Smith and Kohn (1996) and
George and McCulloch (1997) suggested modifications of
stochastic search variable selection. However, it is still nec-
essary to compute inverse matrices in their modified algo-
rithms.

The componentwise Gibbs sampler samples (y;, §;) one
at a time conditioning on (y_;, B—;), where the commonly
used notation —i means all the components except the
i-th one. In fact, George and McCulloch (1997) suggested
generating y; componentwise from the full conditionals,
[vily—i, Y], in order to save the computational cost. How-
ever, in the componentwise Gibbs sampler, one does not
only sample y componentwise, but one can also sample
componentwise. The key step in this Gibbs sampler is to
compute the likelihood ratio

_ P(Ylyi =L (B VK #i))

i = N 17 y P
P(Y1yi =0,{Bk. Yk #i})
It is easy to show that
2 2
=y Lexpl ot @
2 207,
where
o o272
T XIXt2 402
RIX;72
o2+ XXt

and R; =Y — X B Xi. For more details about (4), please
see Lemma 3.1 in Lai (2007).

Algorithm 1 is a description of the componentwise Gibbs
sampler. It is essentially the same as the Bayesian search
algorithm of Geweke (1996), who assumed that the prior
distribution of 8; conditional on 8; # 0 is a truncated normal
distribution.
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Algorithm 1 (The componentwise Gibbs sampler for vari-
able selection)

(D) Randomly select a variable X;. Compute R; =Y —
Zisti B Xk, and let

) o272 R;Xirz
07 = ——————, r=—
" XIXit? 402 ! o2+ X!X;t?

D) Compute

_plyi=1 B Yk 5 {i}
G =0, VA VTP 2 |

i
i*

Then evaluate the posterior probability

= p)zi

P(Vi=1|{,3k,Vk75i}7Y)=m-

() Sample y; from the above posterior probability. If
y; =0, then set Bi = 0, otherwise, sample B; ~
N(ri, aiz*). Go back to (I).

(IV) After a number of iterations of the above steps, com-
pute the current residual vector, Res =Y — Y, Bi X;.
Then sample o ~ IG(%, W). Go back to (1).

In the above algorithm, o2 is updated less frequently than
the coefficients and indicators.

2.4 Metropolize the matching pursuit algorithm

In the componentwise Gibbs sampler, the variables are vis-
ited in random order. They can also be visited by a system-
atic scan. Both the random and systematic scans can cause
problems. If the variables are highly correlated and if the
residual variance is small, an inferior variable can be vis-
ited first and then selected, thus preventing a variable of
more importance from being selected. So a better selec-
tion scheme should be devised, where the variables com-
pete to be selected. This motivates us to design the stochastic
matching pursuit algorithm.

The matching pursuit algorithm of Mallat and Zhang
(1993) is widely used in wavelet sparse coding, where the
goal is to represent a signal by a small number of wavelet
elements selected from a large dictionary. This algorithm is
essentially a forward stepwise variable selection procedure
in linear regression. Initially, all the coefficients §;’s are set
to be 0, and the initial residual vector R = Y. Without loss of
generality, let us assume that all the predictor vectors X; are
normalized to have || X; || = 1. Then each step of the match-
ing pursuit algorithm selects the X; that achieves the maxi-
mum magnitude of the inner product [(R, X;)|. After X; is
selected, its coefficient is updated to 8; < B; + (R, X;), and
the residual is updated to R <— R — (R, X;)X;. The pro-
cedure stops when the maximum of |(R, X;)| is below a
threshold.
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Unlike the random or systematic updating of the coeffi-
cient B;, each step of the matching pursuit algorithm updates
the coefficient of the variable that gives the best fit to the cur-
rent residual vector. This can avoid the problem of the com-
ponentwise Gibbs sampler discussed above. Our stochastic
matching pursuit algorithm incorporates this feature by us-
ing a Metropolis scheme. The algorithm is an improvement
of the componentwise Gibbs sampler.

The Metropolis scheme consists of a pair of reversible
moves: “addition” and “deletion”. The addition move adds
a variable to the current set of active variables. The addi-
tion move is very similar to the matching pursuit algorithm,
where those variables that have larger correlations with the
current residual vector are given higher probabilities of be-
ing selected. The deletion move deletes a variable from the
current set of active variables, and it is a reversal of the ad-
dition move to make the Markov chain reversible.

Specifically, suppose currently there are A active vari-
ables. With probability p,q4, We propose to add an inac-
tive variable to the set of active variables. With probability
Pdelete = 1 — padd, We propose to delete an active variable,
or make it inactive.

The following is the proposal on how to add a variable,
which is similar to matching pursuit. Among all the inac-
tive variables, we compute z; = p(Y|y; = 1, {Bk, Vk #i})/
p(Ylyi =0,{Bxk, Vk #i}) as in (I) and (I) of the componen-
twise Gibbs sampler of Algorithm 1. This z; is the likelihood
ratio for testing whether y; = 1. The larger z; is, the more
promising the variable X; is. In the Metropolis scheme, we
propose to add a variable by sampling a variable i from the
group of inactive variables, where the probability for a vari-
able i to be sampled is proportional to z;, that is, the pro-
posal probability of adding the variable i into the set of ac-
tive variables is z;/ Zi:y;:O z;. Meanwhile, we propose to
sample S; according to (III) of the componentwise Gibbs
sampler.

The proposal for deleting an active variable is simple.
Among all the active variables, we randomly select one, and
set the corresponding indicator and coefficient to 0.

The pair of addition and deletion moves makes it possi-
ble to design a reversible Markov chain using the Metropolis
scheme. We only need to calculate the acceptance probabil-
ity of the addition proposal and the acceptance probability
of the deletion proposal.

The acceptance probability for the proposal of adding
variable i whose current y; =0 is

Paccept-add
i |:1 P(yi =1{Bk, Yk #i},Y) pdeteic  1/(A+1) :|
PO =OUBYKZ L Y) Paaa /2507

. |: (I = p)zi pdelete  1/(A+1) i|
=min| 1,
o Dadd Zi/Zj:yj:OZf
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. |:1’ (I = p) Pdelete Zj:yj:()zj]. 5)

= min
0 Padd (A+1D

Recall that p is the prior probability that y; = 0.
The acceptance probability for the proposal of deleting
variable i whose current y; = 1 is

Paccept-delete

i [1 P(yi =O[{Br, Yk #i},Y) paad zM(Zj:y,-:toHf)]
"PGi= 1B, Yk #i),Y) paclete 1/A

P Padd A ] 6
' (1 = p) pdelete Zj:)/j=0z./ +zi ' ( )

:min[l

Note that in the above calculations, the likelihood
ratio z; = p(Ylyi = L{B.Vk # iD)/p(Ylyi = 0,
{Br, Yk # i}) naturally balances out the posterior ratio
P(yi = (B, Vk # i}, Y)/P(yi = Ol{Br. Vk # i}, Y), so
that the resulting acceptance probabilities have quite sim-
ple forms.

In particular, it is interesting to see that the paccept-add
calculated in (5) does not depend on the variable i to be
sampled, because the probability that i is sampled is propor-
tional to z;. Paccept-add s decided by the overall fitness of all
the inactive variables, i.e., Y =02

The paccept-delete calculated in (6), however, depends on
which variable i is to be deleted. A subtle point is that all the
z; and z; in (6) are re-calculated with the variable i turned
inactive. If the variable i is an important one, ) =02 T
z; can be very large, so that paccept-delete Can be very small.

Algorithm 2 gives a detailed description of the stochastic
matching pursuit algorithm.

Algorithm 2 (Stochastic matching pursuit for variable se-
lection)

(D) Let A be the number of active variables. With probabil-
ity padd, g0 to (II). With probability pdelete = 1 — padd
go to (IV).

(I) With probability paccept-add calculated according to (5),
go to (III), and with probability 1 — paccept-add g0 back
to (D).

(IIT) Among all the inactive variables i with y; =0, sample
a variable i with probability proportional to z;, then
let y; = 1 and sample B; as described in (III) of Algo-
rithm 1. Go back to (1).

(V) If A > 0, then randomly select an active variable i with
yi=1

(V) With probability paccept-delete calculated according
to (6), accept the proposal of deleting the variable i,
ie., set yi =0, and B; = 0. With probability 1 —
Daccept-delete, reject the proposal of deleting variable i,
and sample B; as described in (1I1) of Algorithm 1. Go
back to (1).

(VD) After a number of iterations of the above steps, com-
pute the current residual vector, Res=Y — . i X;,
and then update o* ~ IG(%, W). Go back
to (I).

In this algorithm, the step of sampling B; of an ac-
tive variable i is the same as in the componentwise Gibbs
sampler. The difference is that the inactive variables com-
pete with each other to be included in the model or to be
turned active, in a fashion that is similar to matching pur-
suit. It is possible to introduce other reversible moves into
the Metropolis algorithm, such as switching an active vari-
able and an inactive variable. We shall explore such possi-
bilities in future work.

The above algorithm combines the strengths of both
matching pursuit and the componentwise Gibbs sampler.
As in matching pursuit, the algorithm aggressively pursues
promising variables. As in the componentwise Gibbs sam-
pler, the algorithm does not require the inversion of large
matrices, and it samples the posterior distribution of the co-
efficients with well defined mixture priors.

2.5 Implementation details

The stochastic matching pursuit algorithm produces a se-
quence of dependent random draws from the posterior distri-
bution [y |Y] after a burn-in period. This Monte Carlo sam-
ple of y’s can be used for model selection. In this paper, we
adopt the median probability criterion proposed by Barbi-
eri and Berger (2004) for variable selection. Specifically, we
estimate the posterior inclusion probability P(y; = 1|Y) for
each variable X; from the Monte Carlo sample. If the esti-
mated P(y; = 1|Y) is greater than or equal to 1/2, then X;
is included into the model.

As for the tuning parameters, we set p,qd, i.e., the prob-
ability of the addition move, to be 1/2, which is the same as
Pdelete, the probability of the deletion move.

For the parameters v and A in the prior distribution of o2,
we follow George and McCulloch (1993) by setting A =1
and setting v to be the non-zero components of y;.

We set p, the prior probability that a variable is excluded
from the model, to be 1/2, following George and McCulloch
(1993, 1997). In the situation of small n large p, this proba-
bility should be set to a larger value to reflect the prior belief
of sparsity.

Now we consider the parameter 7, which is the prior stan-
dard deviation of the active variables. It plays an important
role in determining the values of z; and the conditional pos-
terior probability of y;, P(y; = 1|{Br, k #i},Y). It can be
shown that the value of z; is a decreasing function of 7 if
2> (RIR; — 02)/(X;Xi). Thus the larger 7 is, the smaller
the value of z; is. Since the conditional posterior probabil-
ity of y; = 1 is decreasing as z; decreases, the larger t is,
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the smaller the conditional posterior probability of y; =1
is, i.e., it is more difficult to include the variable X; in the
model. Hence large T favors more parsimonious models, and
small T would yield more complex models.

If we have no prior knowledge about the parameter t, we
may use K-fold cross validation method to select t. Specif-
ically, we partition the whole data set into K subsets. We
use K — 1 subsets to train the model, and use the remaining
subset to test the model in terms of the prediction error. We
choose T to be

K
t=argmin) ) () — Ik (), @)

k=1 j

where y; is the j-th observation in the k-th subset, and
Y—kj(7) is the value predicted by the model selected by the
other subsets.

We can also adopt a Monte Carlo version of K-fold
cross validation. We randomly divide the n observations into
two subsets with n/K observations and (K — 1)n/K obser-
vations respectively. The subset with n/K observations is
treated as the testing set and the subset with (K — 1)n/K
observations is used for learning the model. After N repli-
cations, a loss function, essentially the same as (7), can be
defined, and the value of t is chosen by minimizing the loss
function.

For small n large p problems, we may also choose p,
the prior probability of excluding a variable, by the above
cross-validation scheme.

3 Small » and large p problems

During the last decade, the small n and large p problems
have received increasingly more attention. One example
is the gene selection problem in microarray experiments,
where the number of candidate genes, p, is much larger than
the number of available samples, n. Based on the sparsity as-
sumption, there are only a few active genes in the candidate
pool, and the variable selection approach is widely used for
searching possible candidate genes. Yi et al. (2003) mod-
ified the stochastic search variable selection procedure for
identifying multiple quantitative trait loci. Lee et al. (2003)
proposed a Bayesian gene selection method, which is simi-
lar to the idea of stochastic search variable selection. In ad-
dition to the gene selection problem, signal representation
can also be considered as a small n large p model selection
problem, where a signal such as an image is represented by
a linear superposition of basis functions or basis elements
selected from an overcomplete dictionary. Here “overcom-
plete” means that the number of basis functions is larger than
the size of the signal. Wolfe et al. (2004) studied such a prob-
lem using Bayesian variable selection methods. In this sec-
tion, we shall apply stochastic matching pursuit algorithm to
small n large p problems.
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3.1 Simulation studies

Shao and Chow (2007) studied the small n and large p
problem in microarray experiments, and proposed a variable
screening procedure to eliminate inactive variables. Based
on the sparsity assumption, their procedure employs a posi-
tive decreasing sequence {a,} such that a, — 0 as n — oo.
For a fixed n, the i-th variable is screened out if | ﬁ,-l <ay,.
Shao and Chow (2007) used the ridge regression estimator:

B=XX+h,I,)"'X'Y = RpX'Y,

where I, is the p x p identity matrix, h, is the ridge pa-
rameter and Rp = (X'X + h,1,)~!. Rp is similar to A, in
stochastic search variable selection, because

Rp=XX+D'1,p7H7",

where D is a diagonal matrix whose elements are equal to
1/4/h,,. Shao and Chow (2007) proved that their procedure
is asymptotically consistent. They also pointed out that their
idea is similar to that of the Lasso method (Tibshirani 1996).

Shao and Chow (2007) considered two cases of n and p:
(n, p) = (50,200) and (100, 400), and the true parameter
vector of the 5 true active variables is set to be

B=(3,-3.5,4,-28,3.2,0,...,0).

The variables X;’s are independently generated from the
multivariate normal distribution with mean vector 0 and co-
variance matrix [,. In addition to the independent structure
as in Shao and Chow (2007), we also consider the dependent
structure by adding a common factor, G, so that

Xi=G; +kG,

where k is a pre-specified constant, G;’s and G are indepen-
dently generated from the multivariate normal distribution
with mean vector 0 and covariance matrix [,,. Two different
values of k are considered: k = 0 and 1. When k = 1, the cor-
relation between any two variables is 0.5. Then the response
vector is generated according to (1) with B, and the error
term € is also independently generated from the multivari-
ate normal distribution with mean vector 0 and covariance
matrix /.

In our simulation studies, there are two designs for (n, p),
and two designs on the distributions for the variables. So
there are 4 different combinations. For each combination,
we perform a Monte Carlo study with 100 replications. For
each replication, X;’s and € are re-generated independently,
and the response vector Y is also re-computed. The para-
meter T in stochastic matching pursuit is selected from a
pre-specified candidate set, A, according to (7) by 5-fold
cross validation. As mentioned in Sect. 2.5, the larger t
is, the more parsimonious the selected model is. Thus we



Stat Comput (2011) 21: 247-259

253

Table 1 Results based on 100 replications with (r, p) = (50, 200)

k Method Number of selected variables
<2 3 4 5 6 7 8 9 10 >10 # of corr. sel.
0 SC fi 1 4 6 14 14 20 18 9 10
f2 0 0 0 1 1 10 13 9 9 3 46
Lasso_CV fi 0 0 0 17 5 10 14 6 4 44
2 0 0 0 17 5 10 14 6 4 44 100
SMP(?) fi 0 0 0 94 4 2 0 0 0 0
f 0 0 0 94 4 2 0 0 0 0 100
1 SC fi 1 6 10 21 10 19 13 12 4 4
b 0 0 0 2 2 9 8 6 4 4 35
Lasso_CV fi 0 0 0 0 1 0 1 4 8 86
1 0 0 0 0 1 0 1 4 8 86 100
SMP(7) fi 0 0 0 97 3 0 0 0 0 0
b 0 0 0 97 3 0 0 0 0 0 100

Note: fi is the frequency (in 100 replications) of the number of selected variables, and f> is the frequency (in 100 replications) of including all
5 true active variables. “SC” is used to denote the results obtained by the screening method of Shao and Chow (2007). “Lasso_CV” means the
results selected by the Matlab code, lasso_cv. “SMP(7)” means the stochastic matching pursuit procedure whose 7 is chosen by the 5-fold

cross validation

would suggest choosing the larger value of t for small
n large p problems due to the sparsity assumption. For
(n, p) = (50,200), we set A = {80, 120, 160, 220}, and,
when we study the case of (n, p) = (100, 400), A is cho-
sen as {100, 150,200, 250}. For each replication, we run
stochastic matching pursuit for 5,000 x p iterations. Af-
ter discarding the first 3,000 x p iterations, we take the
2,000 samples by using every pth sample from the remain-
ing 2,000 x p posterior samples for variable selection. For
comparison, we also code the screening method of Shao
and Chow (2007), where we set h;,, = n2/3 and a, = n_1/6,
the same as those in Shao and Chow (2007). In addition
to the above two methods, a Matlab implementation of the
homotopy/Lars-Lasso algorithm for tracing the regulariza-
tion path of the L1-penalized squared error loss is available
at  http://www.stat.berkeley.edu/twiki/Research/YuGroup/
Software. In this tool-box, the stopping criterion for this
Lasso Matlab code is defined as

IX'(Y — X'B)lloo < b,

where b is a pre-specified threshold and its default value
is 1078, In this tool-box, the function lasso_cv is
used to fit the parameters of a linear model by using
the Lasso and K-fold cross validation. Thus we apply
this Matlab implementation as a selection procedure, and
active variables are selected if the corresponding coeffi-
cients are non-zero. Here the value of b is chosen from
2x1071,1071,1072,1073,107%,107,107%} and K is
set to be 10. Then the “best” results, i.e. the minimal num-
ber of selected variables, would be recorded among selection
results for different values of b.

The variable selection results are shown in Tables 1 and 2.
In the tables, SC means the method of Shao and Chow
(2007), and SMP(7) means the stochastic matching pursuit
procedure whose 1 is chosen by the 5-fold cross validation
method. Lasso_CV means the Matlab code, lasso_cv,
with b € {2 x 1071,107',1072,1073,107%, 1072, 1078).
In these two tables, we use two sets of numbers to report
the performance of a variable selection method. The first
one, denoted by f1, is the frequency of the number of the
selected variables, that is, how many times we select 1 vari-
able, how many times we select two variables, and so on.
For instance, Table 1 tells us that when k& = 0, stochastic
matching pursuit selects five variables 94 times per 100 rep-
etitions; selects six variables four times per 100 repetitions,
and selects seven variables in the other two replications. The
second set of numbers, denoted by f>, is the frequency of in-
cluding all the true variables, that is, how often the selected
model includes all of the true active variables. For instance,
Table 1 tells us that all the 94 times that stochastic matching
pursuit selects five variables, all of the 94 times, it selects
the five true variables. Each of the four times it selects six
variables, the selected six variables also include the five true
variables. We also report the frequency (in 100 simulation
runs) of including all five true variables in the last column
of the table.

From both tables, we can make the following observa-
tions.

— For the screening method of Shao and Chow (2007), it is
possible that some of the five true variables are not se-
lected in the model. For example, for the case of (n, p) =
(50,200) and k = 0, SC includes all five true variables
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Table 2 Results based on 100 replications with (r, p) = (100, 400)

k Method Number of selected variables
<2 3 4 5 6 7 8 9 10 >10 # of corr. sel.
0 SC fi 0 3 9 49 22 13 3 1 0 0
b 0 0 0 41 19 13 3 1 0 0 77
Lasso_CV fi 0 0 0 75 6 5 1 0 2 11
f2 0 0 0 75 6 5 1 0 2 11 100
SMP(7) fi 0 0 0 95 5 0 0 0 0 0
H 0 0 0 95 5 0 0 0 0 0 100
1 SC fi 0 1 11 35 28 13 9 2 1 0
b 0 0 0 33 28 13 8 2 1 0 85
Lasso_CV fi 0 0 0 4 5 3 7 7 7 67
f 0 0 0 4 5 3 7 7 7 67 100
SMP(?) fi 0 0 0 98 2 0 0 0 0 0
b 0 0 0 98 2 0 0 0 0 0 100

Note: fi is the frequency (in 100 replications) of the number of selected variables, and f> is the frequency (in 100 replications) of including all
5 true active variables. “SC” is used to denote the results obtained by the screening method of Shao and Chow (2007). “Lasso_CV” means the
results selected by Matlab code, lasso_cv. “SMP(7)” means the stochastic matching pursuit procedure whose t is chosen by the 5-fold cross

validation

in the final model 46 times. When (n, p) = (100, 400)
and k = 0, the frequency for including all true variable
is 77/100.

For the selection results by Lasso_CV, all five true vari-
ables are included in the final model. However, there can
be problem with over-selection. For example, for the case
of (n, p) = (50,200) and k = 1, Lasso_CV selects more
than 10 variables in the model in 86 replications.

For both SC and Lasso_CV, their performance is im-
proved when n is larger. For the screening method of
Shao and Chow (2007), the frequency that the five true
variables are included in the model for » = 100 is higher
than the frequency for the case with n = 50, regardless of
the value of k. For the results of the Lasso type method,
when n = 50, the average numbers of over-selected vari-
ables are 6.61 for k = 0 and 13.61 for k = 1, but when
n = 100, the average numbers are 1.9 for k = 0 and 10.81
for k = 1. Thus we believe that the consistent property for
both methods still holds.

For stochastic matching pursuit, the frequency of iden-
tifying the true model, i.e., containing only the five true
variables, is always larger than or equal to 94/100. There
exist a few cases where more than five variables are se-
lected.

The above simulation results suggest that stochastic match-
ing pursuit performs fairly well. Although it may select more
variables into the model, it always includes the five true vari-
ables into the model.

3.2 Image representation
Wolfe et al. (2004) applied the Bayesian variable selection

method to represent the time-frequency surface, and this sur-
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face is modeled as the Gabor regression model, i.e.
f= Z cigi+e,
i

where g;’s are the Gabor basis functions, ¢;’s are the un-
known coefficients, and ¢ is the white noise. A stochastic
search variable selection type procedure is used to infer the
unknown coefficients, c;.

Given a grid X = {(x1,x2)|x; € {22,24,...,40} and
x2 €1{7,9,...,25}}, the Gabor basis function is defined as

1 2
g(u, v) =exp [—E(Uuuz + Ouvz)} cos [% + w} ;

u=ug+ x1cosf — xpsinf,

v=1vy+ x1sinf — x cosH,

where (x1, x2) is the coordinate of X’; ug, vg, o, and o, are
user chosen parameters of a two-dimensional Gaussian win-
dow satisfying the relationships o, = V20, A = 270y
and ¢ are parameters of a sinusoidal grating, and 6 is the
angle between the x-axis of the image and the u-axis of
the Gabor functions. Here (ug, vog) € X, and we set ¢ =0,
oy, =1 and 0 € {0,3/8x}. Thus, we have 200 Gabor ba-
sis functions in total whose norms are all equal to 1 on &'.
For simplicity, we use Xi, ..., X200 to index all the basis
functions, and X; isa 100x 1 vector,i = 1,2, ..., 200. Note
here the sample correlation structure of these basis func-
tions are not the same as the constant correlation structure
in Sect. 3.1. A part of this correlation structure is shown in
Appendix. The response is generated by

Y=7X17-7X71+7X161 — 7X177 + ¢,
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Table 3 Posterior inclusion

probabilities of selected basis Selected bases

functions X117 X71 X73 X161 X177 SNR1 SNR2
0.9957 0.5243 0.6317 0.6933 1.0000 0.373 0.080

where & ~ Nygo(0, I100). Thus there are four active vari-
ables, and (n, p) = (100, 200). So this is a small n and large
p selection problem.

For stochastic matching pursuit, the parameter 7 is cho-
sen from A4 = {50, 100, ..., 300} by Monte Carlo cross val-
idation with 100 replications, and at each replication, we
randomly choose n/5 observations as the testing set and
4/5n as the training set. The resulting Tspp = 50. We it-
erate 10,000 x p times. Then we discard the first 7,000 x p
draws, and sample the remaining 3,000 x p draws by taking
every pth sample to compute the posterior inclusion proba-
bilities. Table 3 shows the variables selected by our method
via the median probability criterion. Here our procedure se-
lects all correct variables and X73. The sample correlation
of X71 and X73 is 0.5893. Two signal to noise ratio indices
are computed, and SNR1 and SNR2 are defined as

SNRI =¥ —Y|?/|Y]? and
SNR2 = ||V — Yirwell2/ | Yirwe |12,

where ¥ = X inﬁin, Xin 1s the set of X;’s that are included in
the model, ,3111 is the corresponding Bayesian parameter es-
timate, and Yy iS the original response without noise. The
smaller SNR2 is, the better the model we find. Since SNR2
is small (0.080), we believe that the stochastic matching pur-
suit procedure performs well in this example.

3.3 Comparison with componentwise Gibbs sampler

The componentwise Gibbs sampler is less computationally
expensive than the stochastic matching pursuit algorithm.
However, as we mention in Sect. 2, the componentwise
Gibbs sampler might not perform well when the variables
are highly correlated and the residual variance is small.

Using the Gabor regression model, we compare stochas-
tic matching pursuit with the componentwise Gibbs sampler.
Here the response is generated by

Y =7X354+7X36+7X37 —7X71
+7X165 — 7X175 + €,

where & ~ Nigo(0, 0%1100), and or = 1072, Thus there
are only six active variables and these active variables are
highly correlated with the other variables, for example, the
sample correlation between X35 and X3 is 0.86. Here

we fix T = 100. For each procedure, we run 10,000 itera-
tions and use the last 3,000 iterations for computing pos-
terior inclusion probabilities. The stochastic matching pur-
suit can select the true model, i.e. X35, X3¢, X37, X71, X165,
X175, but the componentwise Gibbs sampler also selects
18 other variables in addition to the five true variables,
X35, X37, X71, X165, X175. This difference may be caused
by the small variance. For the cases with larger variance, the
componentwise Gibbs sampler may work well.

In addition to comparing the selection results, the compu-
tational cost is also measured. Here we run the Matlab code
for both algorithms on a PC with 3.20 GHz Pentium 4 CPU.
The CPU times are measured for 10,000 x p iterations of the
stochastic matching pursuit and 10,000 x 100p iterations of
the Gibbs sampler. The times are 10676.51 and 15551.66
seconds for stochastic matching pursuit and componentwise
Gibbs sampler respectively.

4 Comparison with related methods
4.1 Computational cost

George and McCulloch (1993) proposed to implement the
stochastic search variable selection procedure via the Gibbs
sampling scheme. However, there is a high computational
cost for sampling the whole coefficient vector § from a
multivariate normal distribution because an inverse matrix
is involved in this step. Here we code the stochastic search
variable selection procedure in Matlab to compare the com-
putational cost of stochastic search variable selection with
that of stochastic matching pursuit. We run both methods
on a PC with 3.20 GHz Pentium 4 CPU for 10,000 itera-
tions of the stochastic search variable selection procedure
and 10,000 x p iterations of the stochastic matching pur-
suit. Two large n and small p problems with (n, p) = (60, 5)
and (60, 10) are used here, and the active variables are two
and six respectively. The selection results of the stochas-
tic search variable selection and the stochastic matching
pursuit are similar to each other. To save the space here,
we do not show the selection results. Table 4 shows the
CPU times of the two algorithms. For the situations with
(n, p) = (60, 5) and (60, 10), i.e., where there are a small
number of candidate variables, stochastic matching pursuit
takes slightly more time than stochastic search variable se-
lection. However, if we increase p as shown in the example
with (n, p) = (200, 100), stochastic matching pursuit takes
much less time than stochastic search variable selection.
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Table 4 CPU times (in seconds) for 10,000 iterations of stochastic
search variable selection and stochastic matching pursuit

SMP SSVS
n=60and p=5 14.6s 9.3s
n=060and p=10 39.5s 20.8s
n =200 and p = 100 2016.6 s 7266.4 s

Note: “SMP” means stochastic matching pursuit and “SSVS” means
stochastic search variable selection

4.2 Prior assumptions

Different prior assumptions for 8 will lead to different
Bayesian variable selection approaches. Following the prior
assumptions in George and McCulloch (1993), the prior
of Bily;i =1 is set to be N(O, tl.z), which is a noncoju-
gate prior. In contrast, Smith and Kohn (1996) used the
conjugate prior for the coefficient vector by setting 8, ~
N (O, caz(X;,Xy)_l), where ¢ is a pre-specified constant,
and B, and X, are the components of 8 and the columns
of X such that the corresponding y;’s are equal to 1. George
and McCulloch (1997) have discussed the relationship be-
tween conjugate and nonconjugate priors in the stochastic
search variable selection approach.

With the conjugate prior of §, the posterior distribution
[¥1Y] can be obtained by integrating out 8 and o. For ex-
ample, in (2.4) of Smith and Kohn (1996), the posterior dis-
tribution of y is

P
P(IY) oc(L+0) %252 [=) (1 — m)' 7,

i=1

where ¢, is the number of selected variables, S(y) =Y'Y —
ﬁY’Xy(X;XV)_IX;,Y and m; = P(yi=1)=1— p;.
Then a Gibbs sampler can be implemented to generate
the posterior samples of [y|Y]. However, an inverse ma-
trix computation, (X;, Xy)’l, is involved when we sample
vilY, {yx, k # i}. Thus, the computational complexity would
be increased when g, becomes larger. Numerical instability
might also be a problem for highly correlated variables.

We code the algorithm of Smith and Kohn (1996) using
Matlab by fixing m; = p = 1/2, and we conduct two simu-
lation studies for comparison with stochastic matching pur-
suit.

We apply this Matlab code to the image representation
problem in Sect. 3.2. In their algorithm, c is a pre-specified
parameter, and Smith and Kohn (1996) suggested that the
value of c is in the range 10 < ¢ < 1,000 when the norm of
X;’s are all equal to 1. Following the suggestion in Smith
and Kohn (1996), we set ¢ to be 100. Here we iterate the
code 10,000 times and the selection result is obtained after
discarding the first 7,000 iterations. The final model is se-
lected based on the median probability criterion. However,
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the selection result is not very good, while three of the true
active variables are selected, the other 96 variables are also
included. Thus it also causes the warning message about the
singularity of X;,Xy. When we set ¢ = 500 and re-run the
code, the selected result is similar to what we obtain for
¢ = 100. The result for SMP is shown in Sect. 3.2, where
SMP selects five variables included the four true active vari-
ables.

Another simulation with (n, p) = (50, 300) is also stud-
ied. In this simulation, the variables X;, i = 1,..., p, are
independently generated from the multivariate normal dis-
tribution with mean vector 0 and covariance matrix /,,, and
the true response is set to be

Y =3X;+3Xo+---+3X10+¢, (¥

where ¢ also comes from a multivariate normal distribution
with mean vector 0 and covariance matrix [,,. For the al-
gorithm of Smith and Kohn (1996), two different values of
¢, ¢ =500 and ¢ = 1,000, are used. The algorithm is iter-
ated 5,000 times and the last 2,000 samples are kept. The
median probability criterion is used for variable selection.
Selection result with both ¢ = 500 and ¢ = 1,000 are similar
and we only report the results with ¢ = 1,000. For ¢ = 1,000,
51 variables are selected but only six true active variables
are included. Because too many variables are included in
the model, the singularity of X;,Xy becomes a problem. In
comparison, the stochastic matching pursuit with 7 = 250
selects 10 variables and all of them are the true active vari-
ables. We repeat this simulation five times. The stochastic
matching pursuit with T = 250 identifies 10 true variables in
each replication. The algorithm of Smith and Kohn (1996)
might include the 10 true variables in the final model, but
over-selection of variables and the singularity problem of
X', X, still exist.

These two simulation studies show that stochastic match-
ing pursuit is more stable. In stochastic matching pursuit, we
use more information to decide whether a variable is to be
included (or deleted), because, based on the current model,
the added variable is chosen from the inactive set of vari-
ables according to their likelihood ratios. Another reason
that stochastic matching pursuit is more stable may be re-
lated to the inverse matrix of X;/Xy and the choice of c. In
our experience, once X;, X, is singular, i.e. too many vari-
ables are included in the model, then y might not be able to
progress beyond the current status or might be unstable in
the model space. In fact, the key problem is about the choice
of c. Just like the prior parameter, t, in stochastic match-
ing pursuit, ¢ should be larger for larger p, especially when
p > n, because the larger c is, the smaller the probability
that y; =1 is. Thus, when c is too small, X;/Xy tends to be
singular for small n and large p problems. To illustrate this
point, we first run the algorithm of Smith and Kohn (1996)
for the cases of (n, p) = (50, 20) and (50, 50) with the true
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Table S Results based on 100 replications with (n, p) = (50, 200) for full Bayesian SMP
k Method Number of selected variables
<2 3 4 5 6 7 8 9 10 >10 # of corr. sel.

0 B-SMP fi 0 0 0 68 27 5 0 0 0 0

f 0 0 0 68 27 5 0 0 0 0 100
1 B-SMP fi 0 0 0 73 18 9 0 0 0 0

f2 0 0 0 73 18 9 0 0 0 0 100

Note: fi is the frequency (in 100 replications) of the number of selected variables, and f5 is the frequency (in 100 replications) of including all 5
true active variables. “B-SMP” is used to denote the results obtained by “full” Bayesian stochastic matching pursuit procedure

model as in (8). The algorithm successfully identifies the
true model with 10 variables regardless of whether ¢ = 10
and 100, because X;,XJ, is always invertible. Next, using the
same model in (8), (n, p) is set to be (50, 100). The result
with ¢ = 10 fails to identify the model due to the singularity
of X;,Xy, but when we choose ¢ = 100 or 1,000, we can ob-
tain the true model successfully. However, when p = 300,
the algorithm of Smith and Kohn (1996) fails to identify
the true model even when we set ¢ = 1,000. The stochas-
tic matching pursuit with t = 250 successfully selects the
true model for (8), when n = 50 and p = 20, 50, 100, 300.
Therefore, it seems that stochastic matching pursuit is more
stable than the algorithm of Smith and Kohn (1996) for
small n and large p problems. These selection results also
show that the algorithm of Smith and Kohn (1996) is sensi-
tive to the value of ¢ for small n and large p problems, and
¢ probably can be determined by a similar approach to what
we use for 7.

As pointed out by one reviewer, the scheme of sto-
chastic matching pursuit can also be applied to the model
of Smith and Kohn (1996). In (2.3) of Smith and Kohn
(1996), P(Y|y) is derived in closed form. We can define
Zi=P(Ylyi =1y k #iD/P(Ylyi =0, {yi. k # i}) for
i=1,..., p. Then we can replace P(y;|{Bk,k #i},Y) by
P(yil{yx, k #i},Y) and replace z; by z;. Thus, we can use
the stochastic matching pursuit algorithm to sample from the
posterior distribution P (y|Y) for the purpose of variable se-
lection.

4.3 Full Bayesian approach

In this article, cross validation method is used to choose the
proper value for the parameter t in the prior distribution
of B;. From Tables 1 and 2, we can see that the stochas-
tic matching pursuit procedure works well for small n and
large p problems by coupling with cross validation method
for the selection of 7. We can also implement the stochas-
tic matching pursuit procedure in a full Bayesian treatment.
Following the prior assumption of 7; in Wolfe et al. (2004),
we use an inverse gamma prior with parameters, « and &,

for 7, i.e. IG(k, &). Then we sample T from its posterior in-
verse Gamma distribution in Step (VI). We apply this full
Bayesian procedure to the small n and large p problem with
(n, p) = (50, 200) by setting k = 1 and & = 10. The selec-
tion results are shown in Table 5. It seems that the selec-
tion results are not as good as those of the stochastic match-
ing pursuit where 7 is selected by cross validation. When
we trace the values of t in this full Bayesian approach, we
find that most of t are around 10 which might be too small
for this case. We also try the other sets of (k, &), for ex-
ample, (k,&) = (1, 100). The selection results are slightly
better than what we show in Table 5. Thus, how to select
these two parameters, x and &, is another problem for this
procedure.

5 Conclusion

This article proposes a stochastic matching pursuit algo-
rithm for Bayesian variable selection. Our experiments sug-
gest that it performs well for both large n small p and small
n large p problems. The algorithm combines the advantages
of the original matching pursuit algorithm and the compo-
nentwise Gibbs sampler.

Compared with other Bayesian variable selection meth-
ods, the stochastic matching pursuit algorithm avoids the
computation of inverse matrices, thus reduces the compu-
tational burden and produces stable selection results. Our
simulation studies show that the proposed method compares
favorably with existing variable selection methods in terms
of the selection results.

It is possible to further improve the efficiency of the cur-
rent version of the stochastic matching pursuit algorithm.
The first scheme is blocking. Before running the algorithm,
we find blocks of variables, where the variables within the
same block are highly correlated. Different blocks can over-
lap with each other. Then within each iteration of the al-
gorithm, instead of looking at all the inactive variables, we
randomly choose a block, and apply the addition and dele-
tion moves only for the variables within the block. This will
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greatly reduce computational cost. The last author once ap-
plied such a scheme for image modeling (Wu et al. 2002).
The second scheme is switching, where we choose an ac-
tive variable and an inactive variable that is highly correlated
with this active variable, and then we switch their status by
making the active variable inactive while making the inac-
tive variable active.

For the small n large p problems, we also need to devise
a method for tuning the parameter p, the prior probability of
excluding a variable from the model. We leave this to future
investigations.

Reproducibility Data and Matlab code for reproducing the
experimental results reported in this paper can be down-
loaded at http://www.stat.nuk.edu.tw/Ray-Bing/selection_
web/homepage.htm.
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Table 6 A Part of correlation matrix of Gabor basis functions
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