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FAST SIMULATION OF TRUNCATED GAUSSIAN

DISTRIBUTIONS

NICOLAS CHOPIN, ENSAE-CREST

Abstract. We consider the problem of simulating a Gaussian vector X, con-

ditional on the fact that each component of X belongs to a finite interval

[ai, bi], or a semi-finite interval [ai,+∞). In the one-dimensional case, we

design a table-based algorithm that is computationally faster than alternative

algorithms. In the two-dimensional case, we design an accept-reject algorithm.

According to our calculations and our numerical studies, the acceptance rate

of this algorithm is bounded from below by 0.5 for semi-finite truncation in-

tervals, and by 0.47 for finite intervals. Extension to 3 or more dimensions is

discussed.

1. Introduction

Let X = (X1, . . . , Xd) be a d−dimensional Gaussian vector with mean µ and
covariance matrix Σ, and let [ai, bi] be d intervals, where bi may be either a real
number or +∞. The distribution of X , conditional on the event that Xi ∈ [ai, bi],
i = 1, . . . , d, is usually called a truncated Gaussian distribution (Johnson et al.,
1994, Chap. 13). Without loss of generality, one may assume that µ = 0, and that
Σ has unit diagonal elements.

Numerous statistical algorithms rely on intensive simulation of truncated Gaus-
sian distributions. In particular, several Bayesian models generate full conditional
distributions of this type, either directly or through a data augmentation represent-
ation (Tanner and Wong, 1987). Thus, the corresponding Gibbs samplers (or more
generally Markov chain Monte Carlo algorithms) draw repetitively from truncated
Gaussian distributions. Examples include linear regression models with ordered
parameters (Chen and Deely, 1996) or applied to truncated data (Gelfand et al.,
1992), probit models (Albert and Chib, 1993), multinomial probit models (Albert and Chib,
1993; McCulloch and Rossi, 1994; Nobile, 1998), multivariate probit models (Chib and Greenberg,
1998), multiranked probit models (Linardakis and Dellaportas, 2003), tobit mod-
els (Chib, 1992), models used in spectroscopy (Gulam Razul et al., 2003), copula
regression models (Pitt et al., 2006), among others.

To understand how intensive such MCMC algorithms can be, consider the prob-
lem of sampling the posterior distribution of a multinomial probit model with n
observations and p alternatives. A solution is to perform T iterations of the Gibbs
sampler of McCulloch and Rossi (1994), but this requires the generation of Tnp
univariate truncated Gaussian variates, a number that may exceed 1012 or even
1015 in difficult scenarios. Hence any improvement with respect to the computa-
tional cost of simulating univariate truncated Gaussian distributions may lead to
important savings. Another important aspect of such algorithms is that they simu-
late only one random variable from a given truncated Gaussian distribution, that is,
the parameters and the truncation intervals [ai, bi] change every time a truncated
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Gaussian variate is generated. Thus, we are interested in developing specialised
algorithms which are guaranteed to generate quickly one random variable from the
desired distribution, for all possible inputs (i.e., parameters and truncation inter-
vals). As a corollary, these algorithms cannot afford a long set-up (initialisation)
time, where some exploration of the target density is performed in order to improve
performance; this type of initialisation is meaningful only when one needs to simu-
late many variables from one fixed distribution, and is not discussed in this paper.
The algorithm we propose does require a table set-up, but which is independent of
the input parameters.

The first part of this paper presents a table-based simulation algorithm for uni-
variate Gaussian distributions truncated to either a finite interval [a, b] or a semi-
finite interval [a,+∞). In the latter case, and given the truncation point a, our
algorithm is up to three times faster than alternative algorithms in our simulations;
see below for references. Our algorithm is inspired from the Ziggurat algorithm
of Marsaglia and Tsang (1984, 2000), which is usually considered as the fastest
Gaussian sampler, and is also very close to Ahrens (1995)’s algorithm.

Another possible strategy for accelerating a Gibbs sampler is to ‘block’, i.e., to
update jointly, two or more components of the posterior density; this often strongly
improves the mixing properties of the algorithm. In some of the aforementioned
models, blocking requires simulating multivariate truncated Gaussian variates. We
develop an accept-reject algorithm for simulating from bivariate truncated Gaussian
distributions. In all but one particular case for finite intervals, we manage to prove
formally that the acceptance rate is bounded from below by 0.22. Our numerical
studies seem to indicate that this bound is not optimal, and that the acceptance rate
is bounded from below by 1/2 when the truncation intervals are semi-finite, and by
0.477 when they are finite. (This remains true even when the correlation coefficient
get close to 1 or −1, that is, in situations where MCMC blocking is particularly
efficient.) In the former case, we explain how to generalise this algorithm in some
situations to truncated Gaussian distributions of dimension d, with the outcome
that the acceptance rate is bounded from below by 1/2d−1. Interestingly, some of
the constants that must be pre-computed for our univariate algorithm can be re-
used so as to bypass part of the computations performed by our multi-dimensional
algorithms.

We note that independent variables from truncated Gaussian distributions may
also be obtained using the perfect samplers of Philippe and Robert (2003) and
Fernández et al. (2007), but, for small dimensions, these algorithms are much more
expensive than our approach, since each sample requires running a Markov chain un-
til some criterion is fulfilled. (According to Hörmann and Leydold (2006), Philippe and Robert
(2003) may not sample from the correct distribution.)

The paper is organised as follows. Section 2 presents our algorithm for simulating
univariate truncated Gaussian variables. Section 3 presents a rejection algorithm
for simulating bivariate Gaussian vectors, the components of which are truncated
to semi-finite intervals [ai,+∞). Section 4 does the same thing for finite truncation
intervals. Section 5 explains how to generalise the algorithms of Section 3 to three
or more dimensions. Section 6 concludes.
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2. One-dimensional case

First, we consider the problem of simulating a random variable X from a uni-
variate Gaussian density truncated to [a,+∞):

(2.1) p(x) =
ϕ(x)

Φ(−a)I(x ≥ a)

for some truncation point a, where ϕ and Φ denote respectively the unit Gaussian
probability density and cumulative distribution functions; ϕ(x) = exp(−x2/2)/

√
2π.

The extension to a finite truncation interval [a, b] is explained in §2.5.

2.1. Review of current algorithms. A convenient way to generate X is to use
the inverse transform method:

(2.2) X = −Φ−1 (Φ(−a)U) ,

where U ∼ U [0, 1] is a uniform variate. Note that this expression is equivalent to

(2.3) X = Φ−1 (Φ(a) + {1− Φ(a)}U) ,

but the latter expression is less stable numerically for large values of a, because it is
easier to approximate Φ−1 in the left tail than in the right tail. In our experiments,
(2.3) generates “inf” values when a > 9.5, while (2.2) generates “inf” values only
when a > 37.5.

As noted by Glasserman (2004, Chap. 2), the inverse transform method seldom
produces the fastest algorithms, but it has appealing properties that may justify
the increased cost in some settings, in particular when used in conjunction with
variance reduction or quasi Monte Carlo techniques; see the same reference and
also e.g. Blair et al. (1976) for an overview of fast methods for evaluating Φ and
Φ−1. We now focus on specialised algorithms.

First, we recall briefly the rejection principle (e.g. Devroye, 1986, Chap. 2 or
Hörmann et al., 2004, Chap. 2). Assume we know of a proposal density q such that

p(x) ≤Mq(x)

for some M ≥ 1, and all x in the support of q. Then a sample from p can be
obtained as follows: simulate X ∼ q, and accept the realisation x with probability
p(x)/Mq(x); otherwise repeat. The expected acceptance probability, a.k.a. the
acceptance rate, equals 1/M. It is important to choose q so that a) M is small and
b) simulating from q is cheap.

For a ≥ 0, Devroye (1986, p. 382) proposes a rejection algorithm based on the
proposal exponential density q(x) = λ exp {−λ(x− a)}, for x > a, with λ = a.
The acceptance rate of this algorithm is a exp(a2/2)Φ(a), which goes to zero as
a → 0, so it can be used only for a ≥ a0, with say a0 = 1. For a < a0, one
may use instead the following trivial rejection algorithm: repeat X ∼ N(0, 1) until
X ≥ a. Devroye (1986, p. 382) mentions Marsaglia (1964)’s algorithm, which
has the same acceptance rate, but is a bit more expensive. Geweke (1991) and
Robert (1995) independently derive a rejection algorithm for a ≥ 0, based again on

q(x) = λ exp {−λ(x− a)}, but with λ = (a +
√
a2 + 4)/2, which is shown to give

the optimal acceptance rate. For a < 0, these authors use the same trivial sampler
as above. In principle, these algorithms may be refined using ARS (Gilks and Wild,
1992), see also Hörmann (1995) and Evans and Swartz (1998), i.e., rejected points
are used to improve the proposal density (which is then piecewise exponential). As
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Figure 2.1. Plot of N(0, 1) density and the 2N vertical rect-
angles, for N = 20.

explained in the introduction however, we are interested in situations when only
one random variate must be generated (for a given value of a); hence, since the
acceptance rate of Devroye’s and Geweke and Robert’s algorithms are high enough,
we do not discuss this further.

The algorithm we propose in this paper is faster than these specialised algorithms
for two reasons: (a) its acceptance rate is higher, and, in fact, is almost one, for
most values of a; and (b) with high probability, the only floating point operations
that the algorithm performs are 2 additions and 3 multiplications, whereas the
aforementioned algorithms computes a few logarithms and square roots.

2.2. Principle of proposed algorithm. For the sake of clarity, we consider first
the simulation of a non-truncated N(0, 1) density, and consider the extension to a
truncated density in next section. We do not claim, however, that this algorithm is
either interesting or novel in the non-truncated case, see below for references. The
principle of the algorithm is summarised by Figure 2.1. The proposal distribution
consists of 2N + 2 regions: 2N vertical rectangles of equal area, and two Gaussian
tails of the same area. For rectangle i, i = −N, . . . , N − 1, let [xi, xi+1] denote its
left and right x-ordinates, yi its height, i.e., yi = ϕ(xi) ∨ ϕ(xi+1), yi the height

of the smaller of its two immediate neighbours, i.e., y
i
= ϕ(xi) ∧ ϕ(xi+1), and let

di = xi+1 − xi, δi = diyi/yi. (Symbols ∧ and ∨ means ‘min’ and max’ throughout

the paper.) All these numbers are computed beforehand and defined as constants
in the program. Note that the region labelled −N − 1 (resp. N) is the left tail
(resp. right tail) truncated at x = x−N (resp. at x = xN ).

To sample X ∼ N(0, 1), one may proceed as follows: choose randomly region
i, sample the point (X,Y ) uniformly within the chosen region, and accept X if
Y ≤ ϕ(X); otherwise repeat. However, if the chosen region is a rectangle, most of
the computation can be bypassed: one may first simulate Y , i.e., draw U ∼ U [0, 1]
and set Y = yiU , without simulating X , and check that the realisation y of Y is
such that y ≤ y

i
; recall that y

i
= ϕ(xi)∧ϕ(xi+1). If this condition is fulfilled, then

the realised pair (x, y) must be accepted whatever the value of x. Furthermore, one
can recycle the realisation u of U , and therefore avoid drawing a second uniform
variate, by simply setting x = xi + δiu.

In short, with high probability, the algorithm only performs the following basic
operations:
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draw a random integer i uniformly in range −N − 1, . . . , N
if i < N and i > −N − 1 then

sample u ∼ U [0, 1]
y ← yi ∗ u
if y ≤ y

i
then

return xi + δi ∗ u
end if

end if

A complete outline of the algorithm is given in Appendix A. When the condition
y ≤ y

i
is not fulfilled, one must sample X and check that (X,Y ) is indeed under

the curve of the N(0, 1) density. Similarly, when the chosen region is either the left
or right tail, one may use Devroye’s algorithm in order to simulate X .

Note that this algorithm has a slightly higher numerical precision than the rejec-
tion algorithms mentioned in the previous section: when calculating x = xi+ δi ∗u,
the absolute error equals the precision of the random generator that produces u,
say 2−32 ≈ 2.3× 10−10 for a 32 bit generator, times the small number δi, which is
typically of order 10−3.

Many algorithms proposed in the literature already use histograms to construct a
good proposal density; see e.g Marsaglia and Tsang (1984), Ahrens (1993), Zaman
(1996) or the survey in Hörmann et al. (2004, Chap. 5). In particular, the above
algorithm is similar to the Ziggurat algorithm (Marsaglia and Tsang, 1984, 2000),
which is the default Gaussian sampler in much mathematical software, e.g. Mat-
lab or the GNU Scientific Library, and most similar to Ahrens (1995)’s algorithm.
Both algorithms already use the idea of using rectangles of equal areas, but the Zig-
gurat algorithm is based on horizontal rectangles, while Ahrens (1995)’s algorithm
is based on vertical ones, as above. This seemingly innocuous variation greatly
facilitates the extension to truncated densities, as explained in next section.

2.3. Extension to truncated Gaussians. For a fixed truncation point a, let la
denote the index of the region that contains a. To adapt the above algorithm to
the truncated density (2.1), one may choose an integer ia such that ia ≤ la, sample
randomly one region among ia, ia + 1, . . . , N , and proceed as explained above. In
addition, for the regions ia, . . . , la, one must reject the random point (X,Y ) if
X < a, as described in Appendix A.

The difficulty is to define ia in such a way that (a) the computation of ia is
quick, and (b) ia is as close as possible to la, so that the overall acceptance rate is
as high as possible. We propose the following method. We choose a small width
h > 0, and store beforehand in an integer array the following quantities:

jk = max {i : xi ≤ kh} , for all k such that kh ∈ [amin, amax]

for some interval [amin, amax]. As said before, all these constants are computed
separately, and hard-coded in the program. Then, provided a ∈ [amin, amax], ia is
computed as

ia = j⌊a/h⌋
where ⌊·⌋ stands for the floor function. Provided h ≤ mini(xi+1−xi), each interval
[kh, (k + 1)h) contains at most one xi, so that either ia = la or ia = la − 1. This
means that, when choosing randomly between regions ia, ia + 1, . . . , N , one must
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Figure 2.2. Execution time (seconds) vs truncation point, for 108

simulations of Devroye’s algorithm (dotted line), Geweke-Robert
sampler (dashed line), the inverse transform algorithm (based on
the inverse transform approximation of Wichura (1988), as imple-
mented in the GSL library, dash-dotted line), and our algorithm
(solid lines), with, from left to right, Ns = 1000, Ns = 2000,
Ns = 4000.

treat separately the two leftmost regions ia and ia + 1, and perform the additional
check mentioned above, i.e., x ≥ a, but the other regions ia + 2, . . . , N can be
treated exactly as explained in the previous section.

In our simulations, we set amin = −2, amax = xN−20, and h = x1 − x0, that is,
the smallest of the interval ranges (xi+1 −xi). A complete outline of the algorithm
is given in Appendix A.

2.4. Results. We implemented our algorithm, the inverse transform algorithm,
Devroye’s algorithm (using cut-off value a0 = 0.65) and Geweke-Robert’s algorithm
in C, using the GNU Scientific library (GSL). Figure 2.2 plots the execution time of
108 runs on a 2.8 Ghz desktop computer, for each algorithm and for different values
of the truncation point a. Our algorithm appears to be up to two times faster than
Geweke-Robert’s algorithm, and up to three times faster than Devroye’s algorithm
and the inverse transform method. The three solid lines correspond to different
sizes Ns, Ns = 1000, 2000, 4000, from left to right, of the five arrays containing
the constants xi, yi, yi, di, δi; note that only those values such that xi, xi+1 ∈
[amin, amax] need to be stored, hence Ns < 2N . Figure 2.2 shows that increasing
Ns only improves the execution time for a tiny interval of a values, so there may be
little point in increasing Ns further than, say, 4000. For Ns = 4000, the acceptance
rate is typically above 0.99 or even 0.999 for most values of a ∈ [amin, amax]. The
increase of the computational cost for a > 2 is due to the increasing probability
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of sampling X from the right tail using Devroye’s algorithm. Outside of the range
of the represented interval, the rejection algorithms have a similar computational
cost, as they perform the same operations. For Ns = 4000 and a double precision
implementation, the total memory cost of the algorithm is 162 kB, a small fraction
of the memory cache of most modern CPU’s. (A CPU memory cache is a small,
fast memory where a CPU stores data used repetitively.)

2.5. Truncation to a finite interval [a, b]. The extension to finite truncation
intervals [a, b] is straightforward. First, one determines a region index ia (resp. i′b)
such that either region ia or region ia +1 (resp. region i′b or region i′b− 1) contains
a (resp. b), using the table look-up method described in 2.3. Then, one proceeds
as above, choosing randomly a region in the range ia, . . . , i

′
b, and so on.

However, a difficulty arises if (b − a) is small. Suppose for instance that a and
b fall in the same region, and that b − a is small with respect to the width of
the region. Then, if one samples uniformly point (X,Y ) within that region, the
probability that a ≤ X ≤ b may be arbitrarily small.

We propose the following work-around: when i′b − ia ≤ kmin, say kmin = 5, use
instead a rejection algorithm based on Devroye (1986)’s exponential proposal, but
truncated to [a, b], i.e.,

(2.4) q(x) =
λ exp(−λx)

exp(−λa)− exp(−λb)I(a ≤ x ≤ b).

with λ = a (resp. λ = b) when b > 0 (resp. when b ≤ 0). The advantage of this
approach is that it gives an acceptance rate close to 1 whatever the values of a,
and b, subject to i′b − ia ≤ kmin; i.e., whether a and b are both in the same tail,
or both close to 0. In the latter case, q should be close numerically to a uniform
distribution.

3. Bi-dimensional case: semi-finite intervals

We now consider the simulation of X = (X1, X2) ∼ N2(µ,Σ), subject to X1 ≥ a1
and X2 ≥ a2. Without loss of generality, we set µ = (0, 0)′,

Σ =

(

1 ρ
ρ 1

)

,

and assume that a1 ≥ a2; if necessary, swap components to impose the last condi-
tion. The joint density of the considered truncated density is, up to a constant:

(3.1) p(x1, x2) ∝ exp

{

− 1

2ν2
(

x21 + x22 − 2ρx1x2
)

}

I (x1 ≥ a1;x2 ≥ a2) ,

where the short-hand ν2 = 1 − ρ2 will be used throughout the rest of the paper.
The conditional distribution of X2|X1 = x1 is a univariate Gaussian N(ρx1, ν

2)
truncated to X2 ≥ a2, which we denote from now on TN[a2,∞)(ρx1, ν

2). A common
misconception is that the marginal density of X1 is also a truncated Gaussian
density, although standard calculus leads to:

(3.2) p(x1) ∝ ϕ(x1)Φ
(

ρx1 − a2
ν

)

I(x1 ≥ a1).

In order to simulate from (3.1), a natural strategy is to derive a rejection al-
gorithm for the marginal (3.2), and to simulate X2 conditional on X1, using the
algorithm we developed in Section 2. This is basically the approach adopted here,
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although we shall see that, in some cases, it is preferable to derive a rejection
sampler for the joint distribution (3.1). We mention briefly that universal bivariate
samplers exist, see e.g. Hörmann (2000) or Leydold (2000), but as in the univariate
case our objective is to design a specialised algorithm that runs faster (i.e., does
not require a set-up time), for situations where only one random vector must be
generated.

To derive a proposal distribution for (3.2), we substitute the Φ(·) factor with a
simpler expression derived from the two following straightforward inequalities:

(3.3)
1

2
≤ Φ(x) ≤ 1 for x ≥ 0,

(3.4) Φ(x) ≤ c(x0)ϕ(x) for x ≤ x0 ≤ 0,

where c(x0) = (
√

π/2) ∧ (−1/x0), for x0 < 0, c(0) =
√

π/2. We now distinguish
between cases where the argument of Φ(·) in (3.2) is positive, negative, or both,
over the range of possible values for x1. We consider the following cases, and treat
them separately:

• case S+: either ρ ≥ 0 and ρa1 − a2 ≥ 0, or ρ < 0 and a1 ≤ Φ−1(1/3) ≈
−0.4307
• case S−: ρ < 0, ρa1 − a2 ≤ 0, and a1 > Φ−1(1/3) ≈ −0.4307.
• case M+ : ρ ≥ 0 and ρa1 − a2 < 0.
• case M−: ρ < 0, ρa1 − a2 > 0, and a1 > Φ−1(−1/3) ≈ −0.4307.

where ‘S’ stands for ‘Simple’, and ‘M’ for ‘Mixture’, as we elaborate below.
We now prove that, in each case, it is possible to derive a rejection algorithm

with an acceptance rate bounded from below for all values of ρ, a1 and a2.

3.1. Case S+. Assuming first ρ ≥ 0 and ρa1 − a2 ≥ 0, then, according to (3.3),

(3.5) Φ

(

ρx1 − a2
ν

)

∈ [1/2, 1]

for all x ≥ a1, which suggests the following proposal distribution:

qS+(x1) ∝ ϕ(x1)I(x1 ≥ a1),
i.e., a TN[a1,+∞)(0, 1) distribution, in order to sample from the marginal p(x1). For
a given x1 simulated from qS+ , the acceptance probability equals (3.5), hence the
acceptance rate of such a rejection algorithm equals

(3.6)

ˆ +∞

a1

Φ

(

ρx1 − a2
ν

)

ϕ(x1)

Φ(−a1)
dx1,

and is larger than 1/2 by construction.
However, it is more efficient to simulate jointly (X1, X2) as follows: sample

X1 ∼ TN[a1,∞)(0, 1), X2|X1 = x1 ∼ N(ρx1, ν
2), and accept if X2 ≥ a2; otherwise

repeat. It is easy to check that the latter rejection algorithm has exactly the same
acceptance rate, i.e., (3.6), as the former, but it is faster, because it does not perform
any evaluation of Φ, and because X2 is obtained ‘for free’, i.e., a second step is not
required to generate X2.

When ρ < 0, the argument of Φ in (3.6) is not positive for all x1 ≥ a1, but
the integral is still larger than 1/2 provided a1 ≤ Φ−1(1/3). To establish this
property, one may remark that (3.6) is the probability that X2 ≥ a2, conditional
on X1 ≥ a1, provided (X1, X2) ∼ N2(µ,Σ). This probability decreases with respect
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to a2, a2 ≤ a1, and, for a2 = a1, this probability decreases with respect to −ρ and
a1. Finally, for ρ = −1 and a1 = a2 = Φ−1(1/3), this probability equals 1/2. Thus,
we use Algorithm S+ also when ρ < 0 and a1 ≤ Φ−1(1/3).

3.2. Case S−. If ρ < 0 and ρa1 − a2 ≤ 0, then inequality (3.4) holds for all values
of the argument x = (ρx1 − a2)/ν, and for x0 = (ρa1 − a2)/ν. This suggests the
following algorithm: sample X1 from proposal density

qS−(x1) ∝ ϕ(x1)ϕ

(

ρx1 − a2
ν

)

I(x1 ≥ a1)

∝ ϕ
(

x1; ρa2, ν
2
)

I(x1 ≥ a1)
that is, the density of truncated Gaussian distribution TN[a1,∞)(ρa2, ν

2), and ac-
cept with probability:

(3.7) ψ

(

−ρx1 − a2
ν

)

/c

(

ρa1 − a2
ν

)

,

where ψ(x) = Φ(−x)/ϕ(x). The acceptance rate is then:

(3.8) ETN[a1,∞)(ρa2,ν2)

[

ψ

(

−ρX1 − a2
ν

)]

/c

(

ρa1 − a2
ν

)

.

We show formally in Appendix B1 that this acceptance rate admits a lower bound
which is larger than 0.416; our numerical studies indicate that the optimal lower
bound may be 1/2. Intuitively, the idea behind inequality (3.4) is that Φ(−x) ≈
ϕ(x)/x for large values of x, hence the true marginal density p(x1) behaves like a
Gaussian density density times 1/(a2−ρx1), but the latter factor varies slowly with
respect to a Gaussian density, so it can be discarded in the proposal.

3.3. Case M−. If ρ < 0 and ρa1−a2 > 0, the quantity (ρx1−a2)/ν takes positive
and negative values for x1 ≥ a1. To combine both inequalities, one may use a
mixture proposal:
(3.9)

qM−(x1) ∝ ϕ(x1)I (ρx1 − a2 > 0) +

√

π

2
ϕ(x1)ϕ

(

ρx1 − a2
ν

)

I (ρx1 − a2 < 0)

subject to x1 ≥ a1. To sample from the mixture proposal, choose component 1
(corresponding to the first term above), with probability ω1/(ω1 + ω2), with

ω1 = Φ(a2/ρ)− Φ(a1)

ω2 =
ν

2
exp

{

−a
2
2

2

}

Φ

(

−a2ν
ρ

)

and choose component 2 otherwise. If component 1 is chosen, one can use the same
shortcut as in Algorithm S+, that is, draw X1 ∼ TN[a1,a2/ρ](0, 1) and X2|X1 =

x1 ∼ N(ρx1, ν
2), and accept the simulated pair (x1, x2) if x2 ≥ a2. If component 2 is

chosen, the proposed value for X1 is drawn from a TN[a2/ρ,∞)(ρa2, ν
2) distribution,

and is accepted with probability
√

2

π
ψ

(

−ρx1 − a2
ν

)

.

When a draw x1 is accepted, it is completed with x2 drawn from X2|X1 = x1 ∼
TN[a2,+∞)(ρx1, ν

2).
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The acceptance rate of this algorithm is a weighted average (with weights given
by ω1 and ω2) of the acceptance rate of Component 1, which is larger than 1/2 by
construction, and the acceptance rate of algorithm S− for a2 = ρa1, which is also
bounded from below, as explained in the previous subsection.

3.4. Case M+. If ρ ≥ 0 and ρa1 − a2 ≤ 0, then again (ρx1 − a2)/ν take both
negative and positive values for x1 ≥ a1, which suggests that we use a mixture
proposal similar to (3.9). Unfortunately, the acceptance rate may be arbitrarily
small in that case. Exact calculations are omitted for the sake of space, but it can
be shown that the mode of p(x1) can be arbitrary far from x1 = a2/ρ, the point
where the two components intersect, which gives an arbitrary small acceptance rate.

Instead, we substitute (3.4) with a slightly different inequality:

(3.10) Φ(x) ≤ d(x0)ϕ(x)eλx for x0 ≤ x ≤ 0

where λ = 0.68, d(x0) = (
√

π/2) ∨ χ(−x0), and χ(x) = eλxΦ(−x)/ϕ(x). This
inequality stems from straightforward calculus. Other values of λ are also valid,
but in our numerical experiments, λ = 0.68 seemed to be close to optimal, in terms
of minimum acceptance rate.

This inequality leads to the following proposal mixture density:

qM+(x1) ∝ ϕ(x1)I (ρx1 − a2 ≥ 0)

+ϕ(x1)ϕ

(

ρx1 − a2
ν

)

exp

(

λ(ρx1 − a2)
ν

)

d

(

ρa1 − a2
ν

)

I (ρx1 − a2 < 0)

subject to x1 ≥ a1. The second term is proportional to a N(θ, ν2) density, with
θ = ρ(a2+λν). To sample from this mixture, choose component 1, with probability
τ1/(τ1 + τ2), choose component 2 otherwise, where

τ1 = Φ(−a2/ρ)

τ2 =
ν√
2π

{

Φ

(

a2/ρ− θ
ν

)

− Φ

(

a1 − θ
ν

)}

exp

{

θ2 − a22 − 2λνa2
2ν2

}

d

(

ρa1 − a2
ν

)

.

If component 1 is selected, drawX1 ∼ TN[a2/ρ,+∞)(0, 1),X2|X1 = x1 ∼ N(ρx1, ν
2),

and accept simulated pair (x1, x2) if x2 ≥ a2. Otherwise, drawX1 ∼ TN[a1,a2/ρ](θ, ν
2),

and accept with probability

χ

(

a2 − ρx1
ν

)

/d

(

a2 − ρa1
ν

)

,

and, upon acceptance, complete with

X2|X1 = x1 ∼ TN[a2,+∞)(ρx1, ν
2).

We show formally in Appendix B2 that the acceptance rate of this algorithm is
bounded from below by 0.22, and we found numerically that the optimal lower
bound seems to be 1/2, see Section 3.6.
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3.5. Computational cost. The above algorithms, except algorithm S+, involve
a few evaluations of function Φ, which is expensive. But such evaluations can
be bypassed in most cases. In algorithm S− for instance, given the expression of
acceptance probability (3.7), one should accept the proposed value x1 if and only if

Φ (rx1 + s) ≥ ut(x1)

where u is an uniform variate, and the exact expression of r, s, and t are easily
deduced from (3.7). If good, fast approximations of Φ are available, such that
Φ(x) ≤ Φ(x) ≤ Φ(x), it is enough to check that Φ (rx1 + s) ≥ ut(x1) (resp.
Φ(rx1 + s) < ut(x1)) to accept (resp. reject) x1. It is only when ut(x1) is very
close to Φ (rx1 + s) that an exact evaluation of Φ (rx1 + s) is required.

Such fast, good approximations of Φ may be deduced from the tables of our
univariate algorithm, see Section 2.3. Specifically, and using the same notations
as Section 2.3, let z = rx1 + s, and assume that z ∈ [amin, amax], then one may
set Φ(z) = A(j⌊z/h⌋ + 1), where A(i) > Φ(xi+1) denotes the total area of all the
regions up to region i, and may be computed beforehand and hard-coded in the
program like the other constants yi, di and so on. One may define similarly Φ(z)
using Φ(z) = 1 − Φ(−z). When z /∈ [amax, amin], one may use the expansion of
Abramowitz and Stegun (1965, p. 932) to derive the following upper and lower
approximations

Φ(z) = −ϕ(z)
z

{

1− 1

z2
+

3

z4

}

, Φ(z) = −ϕ(z)
z

{

1− 1

z2
+

3

z4
− 15

z6

}

,

for z < 0. (For z > 0, similar formulae are obtained using Φ(z) = 1 − Φ(−z)).
Note also that one does not necessarily have to compute all the terms of these
expressions. For instance, if Φ1(αx1 + β) < uυ(x1), where Φ1(z) = −ϕ(z)/z, then
the proposed value can be rejected without computing the remaining terms. This
principle can be used for each term of the expansion, but, on the other hand, it is
preferable not to expand further the expressions above, since they work well already
for reasonable values of amin and amax, and since that would define diverging series.

Provided the above strategy is implemented, the algorithms proposed in the
section are reasonably fast, since they only involve a few basic operations, and
their acceptance rate is greater than 1/2 for all parameters. Algorithms M+ and
M− are slightly more expensive, as they require sampling a mixture index, but note
that the same strategy can be implemented in order to avoid with good probability
the evaluation of functions Φ appearing in the expression of the mixture weights.

3.6. Numerical illustration. We simulated 105 parameters (a1, a2, ρ), where ρ ∼
U [−1, 1], a1, a2 ∼ N(0, s2), conditional on a1 ≥ a2. For each parameter, we
evaluated the acceptance rate of our algorithm by computing the average acceptance
probability over the proposed draws generated by 1000 runs. Figure 3.1 reports the
histogram of the acceptance rates for s = 1; larger values of s give histograms that
are even more concentrated around 1.

In this simulation exercise, 90% of the acceptance rates are above 0.8 and 99%
are above 0.65; none is lower than 1/2.
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Figure 3.1. Histogram of acceptance rates corresponding to 105

simulated vectors (a1, a2, ρ), where ρ ∼ U [0, 1], a1, a2 ∼ N(0, 1),
conditional on a1 ≥ a2.

4. Bi-dimensional case: finite intervals

We now consider the simulation of X = (X1, X2) ∼ N2(0,Σ), with

Σ =

(

1 ρ
ρ 1

)

,

conditional on X1 ∈ [a1, b1] and X2 ∈ [a2, b2], where, without loss of generality,
ρ ≥ 0. As in the previous section, the main difficulty is to sample from the marginal
density of X1:

(4.1) p(x1) ∝ ϕ(x1) [Φ(αx1 + β1)− Φ(αx1 + β0)] I(a1 ≤ x1 ≤ b1)
where α = ρ/ν ≥ 0, β1 = −a2/ν, β0 = −b2/ν and β1 ≥ β0, since the distribution
of X2 conditional on X1 = x1 is the univariate truncated Gaussian distribution
TN[a2,b2](ρx1, ν

2).
We shall consider two situations, according to whether β1 − β0 < ∆ or not; we

take ∆ = 2, which seems to close to the optimal value in our simulations, in terms
of minimum acceptance rate.

When β1 − β0 is small (case T ), one may Taylor expand the second factor of
(4.1), which is denoted κ from now on, into:

κ(x1) = Φ(αx1 + β1)− Φ(αx1 + β0) ≈ (β1 − β0)ϕ
(

αx1 +
β0 + β1

2

)

,

hence κ behaves like a Gaussian density, see the right panel of Figure 4.1. Therefore,
p(x1) is also well approximated by a Gaussian, which is the basis of algorithm T
detailed in 4.2.

Otherwise, when β1 − β0 is large, κ behaves like the curve plotted in the left
panel of Figure 4.1. In this case, called M3 below, we cut κ into at most three
pieces, and derive a mixture proposal, using ideas similar to the previous section.

4.1. Case M3. Let γi = −βi/α, for i = 0, 1, and υ = (β1 − β0)/2; note γ1 ≤ γ0
since β0 ≤ β1. We may divide the curve of κ into three parts, so as to re-use
the same ideas as in Section 3, that is, deriving a mixture of Gaussian proposals.
Specifically,
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Figure 4.1. Function κ(x1) = Φ(αx1 + β1) − Φ(αx1 + β0) , for
(α, β0, β1) = (2,−5, 5) (left), and (α, β0, β1) = (2,−0.5, 0.5) (right)

• for x1 < γ1, one shows easily that

{2Φ(∆)− 1}Φ(αx1 + β1) ≤ κ(x1) ≤ Φ(αx1 + β1).

We know already that target density ϕ(x1)Φ(αx1 + β1)I(x1 < γ1) can be
simulated efficiently using a particular Gaussian proposal density, see Com-
ponent 2 of Algorithm M+ in Section 3.4. The above inequality indicates
that, using the same proposal, one should obtain an acceptance rate which
is at least 2Φ(∆) − 1 times the minimum acceptance rate of M+, that is,
Φ(∆)− 1/2 ≈ 0.477.
• for x1 ∈ [γ1, γ0], κ is roughly flat, and

Φ(∆)− 1/2 ≤ κ(x1) ≤ 2Φ(υ)− 1 ≤ 1.

This suggests using proposal distribution X1 ∼ TN[γ1∨a1,γ0∧b1](0, 1), and
accept realisation x1 with probability κ(x1)/ {2Φ(υ)− 1}. The acceptance
probability is then bounded from below by Φ(∆)− 1/2 ≈ 0.477.
• for x1 > γ0, one has:

{2Φ(∆)− 1}Φ(−αx1 − β0) ≤ κ(x1) ≤ Φ(−αx1 − β0).

Again, one may use the same proposal as for Component 2 of algorithm
M− , see 3.3, which should lead to an acceptance rate which is larger than
Φ(∆)− 1/2 ≈ 0.477.

The principle of Algorithm M3 is therefore to draw from a mixture of at most three
components, the relative weights of which are given below, and given the chosen
component, to use one of the three strategies described above.

Denote ζl, ζc, ζr, the unnormalised weights of the left, centre, and right com-
ponents, respectively. In case b1 ∨ γ1 > 0, one has

ζl =
ν d(αa1 + β1)√

2π
exp

(

m2
l − a22 − 2λνa2

2ν2

){

Φ

(

γ1 −ml

ν

)

− Φ

(

a1 −ml

ν

)}

I(γ1 ≥ a1)
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with ml = ρ(a2 + λν) and function d was defined in Section 3.4; Otherwise, one
obtains the same expression, but with λ set to 0, i.e.,

ζl =
ν

2
exp

(

−a
2
2

2

){

Φ

(

γ1 −ml

ν

)

− Φ

(

a1 −ml

ν

)}

I(γ1 ≥ a1)

with ml = ρa2. In all cases,

ζc = {2Φ(υ)− 1} {Φ(γ0 ∧ b1)− Φ(γ1 ∨ a1)} I(b1 > γ1; a1 < γ0),

ζr =
ν

2
exp

(

−b
2
2

2

){

Φ

(

b1 − ρb2
ν

)

− Φ

(

γ0 − ρb2
ν

)}

I(b1 > γ0).

One may show that the acceptance rate of this algorithm is bounded from below
by 1/2− Φ(−∆) ≈ 0.477; simulations suggest this bound is optimal. We omit the
exact calculations, as they are similar to those of previous algorithms. We managed
to obtain this result under the following assumptions: (i) ρ ≥ 0; (ii) b2 ≥ 0 and
(iii) either a2 ≥ a1 or b1 ≤ 0. It is always possible to enforce such conditions, by
either swapping X1 and X2, or changing their signs, or both. We note also that, in
most of our simulated exercises, at least one component of this mixture is empty,
and often two of them are, which makes it possible to skip calculating the weights
and simulating the mixture index.

4.2. Case T . As explained above, when β1 − β0 < ∆, a good Gaussian approxim-
ation of p(x1) is

q(x1) ∝ ϕ(x1)ϕ
(

αx1 +
β0 + β1

2

)

that is, a N(m, s2) density with

(m, s2) =

(

−α(β0 + β1)

2(1 + α2)
,

1

1 + α2

)

.

In our experiments, this approximation appears to be accurate for all values of
α, β0, β1 (in the sense that the rejection rate of the algorithm we now describe is
always larger than 0.47 in our simulations, see next subsection). On the other hand,
it seems difficult to apply approximations similar to those we used before. Instead,
we note that p(x1) is a log-concave density (Prekopa, 1973). This suggests using
either exponential or piecewise exponential proposals, and working out a simplified
version of ARS (Adaptive Rejection Sampling, Gilks and Wild, 1992).

Specifically, let ξ denote the marginal log-density of X1:

ξ(x1) = logϕ(x1) + log κ(x1)

the derivative of which is easy to compute:

ξ′(x1) = −x1 + α
ϕ(αx1 + β1)− ϕ(αx1 + β0)

Φ(αx1 + β1)− Φ(αx1 + β0)
,

which leads to the inequality

ξ(x1) ≤ ξ(v) + ξ′(v)(x1 − v)
for any x1, v ∈ [a1, b1]. Up to a constant, the right hand side is the log-density of the
truncated Exponential distribution Exp[a1,b1](λ) defined in (2.4), with λ = ξ′(v);

note that λ may be negative. Thus, one may sample x1 ∼ Exp[a1,b1] {ξ′(v)}, and
accept with probability

exp {ξ(x1)− ξ(v)− ξ′(v)(x1 − v)} .
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Figure 4.2. Histogram of acceptance rates for 105 simulated para-
meters (ρ, a1, b1, a2, b2), with ρ ∼ U [−1, 1], a1, a2 ∼ N(0, 22), and
bi = ai + 2ei with ei ∼ Exp(1), i = 1, 2.

Obviously, the difficulty is to choose v. Since the target density is well approximated
by a TN[a1,b1](m, s

2), and assuming that a1 ≥ m (resp. b1 ≤ m), it seems reasonable
to set v = (m + s) ∨ a1 (resp. v = (m − s) ∧ b1). These values would be optimal
if the target density would be equal to its approximation TN[a1,b1](m, s

2). In case
a1 < m and b1 > m, i.e., the mean m is within [a1, b1], we use instead a mixture
proposal, based on two well chosen points v, w ∈ [a1, b1], say v < w. Thus,

ξ(x1) ≤ {ξ(v) + ξ′(v)(x1 − v)} ∧ {ξ(w) + ξ′(w)(x1 − w)}
and one may sample from the density defined as the exponential of the right hand
side above (which is a piecewise exponential distribution), and accept with prob-
ability

exp [ξ(x1)− {ξ(v) + ξ′(v)(x1 − v)} ∧ {ξ(w) + ξ′(w)(x1 − w)}] .
Note that, in the original ARS algorithm of Gilks and Wild (1992), the proposal

is progressively refined by adding a new component each time the proposed value
is rejected. We found however that the acceptance rate of Algorithm T described
above is generally above 1/2, so using fixed proposals with at most two components
seems reasonable. Obviously, the good properties of the above algorithm lie in the
good choice of points v, w, which was made possible by the knowledge of a good
approximation of the target density.

We were not able to prove formally that the acceptance rate of Algorithm T is
bounded from below, as in previous cases, so we performed intensive simulations
for assessing its properties; the acceptance rate of Algorithm T seems to converges
to one for limiting values, say a1 → −∞ but with b1 − a1 and ρ kept fixed; and to
be bounded from below by 1/2.

4.3. Numerical illustration. We simulated 105 parameters (a1, b1, a2, b2, ρ), where
ρ ∼ U [−1, 1], a1, a2 ∼ N(0, 22), and bi = ai + 2ei with ei ∼ Exp(1), i = 1, 2. For
each parameter, we evaluated the acceptance rate of our algorithm by computing
the average acceptance probability over the proposed draws generated by 1000 runs.
Figure 4.2 reports the histogram of the acceptance rates. About 90% of these val-
ues are above 0.71, about 99% are above 0.55, and all values are above 0.47, as
expected.
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5. Generalisation to 3 or more dimensions

We discuss briefly the problem of simulating d-dimensional truncated Gaussian
distributions, for d ≥ 3 and for semi-finite truncation intervals; i.e., X ∼ Nd(0d,Σ),
subject to Xi ≥ ai, i = 1, . . . , d. As we have done for d = 2, we assume without
loss of generality that a1 ≥ . . . ≥ ad. It does not seem possible to generalise to
dimension d ≥ 3 algorithms based on mixture proposals, i.e., M+ and M−, as the
corresponding mixture weights would involve intractable integrals. But algorithms
S+ and S− can be generalised to larger dimensions, as explained below, which
makes it possible to sample X under certain conditions on Σ and a = (a1, . . . , ad).

5.1. Extension of Algorithm S+. An obvious way of generalising Algorithm S+

to 3 dimensions is to do the following. Let Q = (qij) = Σ−1 and Σ12 denote the
sub-matrix obtained by removing the last row and the last column from Σ, then:

(1) Sample (X1, X2) ∼ N2(02,Σ12) conditional on X1 ≥ a1 and X2 ≥ a2 (using
one of the algorithms discussed in Section 3)

(2) Sample from the unconstrained conditional distribution of X3:

X3| {X1 = x1, X2 = x2} ∼ N
(

−q13x1 + q23x2
q33

,
1

q33

)

(3) If x3 ≥ a3, accept the simulated vector (x1, x2, x3); otherwise reject and go
to Step 1.

One easily shows that the acceptance rate corresponding to Step 3 is larger than 1/2
under the following set of conditions: q13 ≤ 0, q23 ≤ 0 and q13a1+q23a2+q33a3 ≤ 0.

One may iterate the above principle so as to extend Algorithm S+ to any di-
mension d; i.e., for d = 4, add Step 4 where X4 is simulated from the appropriate
conditional distribution and accept if X4 ≥ a4; provided appropriate conditions
similar to those above, are iteratively verified, one obtains an overall acceptance
rate that is at least 2−(d−1), since each rejection step (including Step 1 above for
the first two variates X1 and X2) induces an acceptance rate that is at least 1/2.

We note that these iterative conditions imply in particular that any pair of
components of X is positively correlated, except for (X1, X2) which may have any
type of correlation. There are several practical settings where this assumption is
met, such as in Gaussian Markov random fields models (e.g. Rue and Held, 2005)
where one would impose positive correlation between neighbour nodes. Thus, in
such or other particular settings, and since the acceptance rate is expected to be
higher than its lower bound for most parameters, as observed in two dimensions,
the above algorithm may remain practical for dimensions as large as 4 or 5. For
instance, in a Markov chain Monte Carlo context involving truncated Gaussian
vectors or large dimension, one may try to form a larger and larger block, by
including one variable at a time, checking the recursive assumptions above, and
stop when either they are no longer met or the acceptance rate is too small.

5.2. Extension of Algorithm S−. Again, assuming d = 3, one notes that the
marginal distribution of (X1, X2) is:

p(x1, x2) ∝ exp







−1

2

2
∑

i,j=1

qijxixj







Φ

(

−
∑2

i=1 qi3xi + q33a3

q
1/2
33

)

I (x1 ≥ a1;x2 ≥ a2)
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which suggests the following bivariate truncated Gaussian density as a proposal
density:

p(x1, x2) ∝ exp











−1

2

2
∑

i,j=1

qijxixj −

(

∑2
i=1 qi3xi + q33a3

)2

2q33











I (x1 ≥ a1;x2 ≥ a2)

based on inequality (3.4). For given x1 and x2, the acceptance probability is there-
fore:

ψ

(

∑2
i=1 qi3xi + q33a3

q
1/2
33

)

/c

(

∑2
i=1 qi3xi + q33a3

q
1/2
33

)

where we recall that ψ(x) = Φ(−x)/ϕ(x). Using the same type of calculations as in
Section 3.4, one may show that the expectation of the acceptance probability above
is larger than or equal to 1/2 provided q13 ≥ 0, q23 ≥ 0, and q13a1+q23a2+q33a3 ≥ 0.
Again, this means that the overall acceptance rate is larger than or equal to 1/4.

As in the previous section, one may iterate the construction above, so as to
obtain a simulation algorithm for any dimension d, the acceptance rate of which
is bounded from below by 2−(d−1). This requires checking recursively conditions
similar to those above. The same remarks in the previous subsection relative to the
applicability of this algorithm may be repeated here.

6. Conclusion

We focused in this paper on the simulation of independent truncated Gaus-
sian variables, but similar ideas can be used in other settings, such as importance
sampling or MCMC. For instance, in case T , see Section 4.2, one may use the de-
rived Gaussian approximation as an importance distribution, rather than a basis
of an ARS algorithm. The same remark applies to most of our algorithms.

As briefly mentioned in the previous section, if one needs to simulate a vector
from a high-dimensional truncated Gaussian distribution using MCMC, one may
ask how to choose blocks of two or more variables, which will be updated using the
algorithms proposed in this paper, in a way that ensures good MCMC convergence
properties. A good strategy would be to form a first block of two variables with
strong (conditional) correlation, then to see if additional variables may be included
in that block, using the conditions given in the previous section, and repeat this
process until all variables are included in a block of at least two variables. But more
research is required to find the best trade-off in terms of convenience and efficiency.

Open source programs implementing the proposed algorithms are available at
the author’s personal page on the website of his institution, www.crest.fr.
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Appendix A: Outline of the univariate algorithm for a semi-finite

truncation interval

Note Devroye(a) refers to Devroye’s algorithm, Direct(a) refers to the rejec-
tion algorithm based on the non truncated Gaussian distribution, see Section 2.1 for
details. In both cases the input a is the truncation point. Pre-computed constants
consist of five floating-point tables: (xi), (yi), (yi), (di) and (δi); one integer table:

(jk), plus two design parameters amin, and amax.

Require: a {truncation point}
Ensure: x {simulated value}

if a < amin then

return Direct(a)
else if a > amax then

return Devroye(a)
end if

ia ← j⌊a/h⌋
loop

Sample integer i uniformly between ia and N
if i = N then {rightmost region}

return Devroye(xN)
else if i ≤ ia + 1 then {two leftmost regions}

Sample u ∼ U [0, 1]
x = xi + di ∗ u
if x ≥ a then

Sample v ∼ U [0, 1]
y ← yi ∗ v
if y ≤ y

i
then

return x
else if y ≤ ϕ(x) then

return x
end if

end if

else {all the other regions}
Sample u ∼ U [0, 1]
y ← u ∗ yi
if y ≤ y

i
then {occurs with high probability}

return xi + u ∗ δi
else

Sample v ∼ U [0, 1]
x← xi + di ∗ v
if y ≤ ϕ(x) then

return x
end if

end if

end if

end loop
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Appendix B: Lower bounds for Acceptance rates

B1. algorithm S−

Let A(a1, a2, ρ) the acceptance rate (3.8), which we rewrite as:

A(a1, a2, ρ) = ETN[α,∞)(β,ρ2) [ψ (Z)] /c (−α)
where Z = −(ρX1− a2)/ν ∼ TN[α,∞)(β, ρ

2), α = (a2− ρa1)/ν, and β = a2ν. Note
that α ≥ 0, β ≤ α, and ψ is a decreasing function. Thus, the quantity above is a
decreasing function of β. (To see this, one can rewrite the distribution of Z as

Z = β + ρΦ−1

(

U + (1− U)Φ(
α− β
ρ

)

)

where U is an uniform variate, and check that, conditional on U = u, Z is a
decreasing function of β.). Thus, the above quantity is larger than or equal to the
same quantity, but with β = α:

A(a1, a2, ρ) ≥ ETN[α,∞)(α,ρ2) [ψ (Z)] /c (−α) = ETN[0,∞)(0,1) [ψ (ρZ ′ + α)] /c (−α)
which is a decreasing function of ρ, hence

(6.1) A(a1, a2, ρ) ≥ ETN[0,∞)(0,1) [ψ (Z ′ + α)] /c (−α) ,

and since c(−α) = (
√

π/2) ∧ (1/α), one can show that the bound is minimised for

α =
√

π/2, which leads to:

A(a1, a2, ρ) ≥
√

2

π
ETN[0,∞)(0,1)

[

ψ

(

Z ′ +

√

2

π

)]

≈ 0.416.

This lower bound is not sharp, because not all combinations of (α, β, ρ) are valid,
even in the constraints α ≥ 0, β ≤ α are taken into account; for instance, β = α
implies that a1 = ρa2 ≤ ρ2a1, which is impossible if ρ 6= 1. Our simulations suggests
that the optimal lower bound is 1/2, see Section 3.6.

B2. algorithm M+

One easily shows that χ(x)/χ(x′) ≥ 1/2 for all x, x′ ∈ [0, xd], with xd ≈ 3.117.
Thus, if (a2 − ρa1)/ν ≤ xd, the acceptance rate is larger than or equal to 1/2 by
construction. Now assume that (a2 − ρa1)/ν > xd; note that χ(x) is an increasing
function for x > xd. Since a1 ≥ a2 and ρ ≤ 1, one has

θ = ρ(a2 + λν) ≤ a2 + ν(λρ− xd) < a1.

The acceptance rate equals

(6.2) ETN[a1,a2/ρ](θ,ν2)





χ
(

a2−ρX1

ν

)

d
(

a2−ρa1

ν

)



 = ETN[0,zmax](η,ρ2)

[

χ (Z)

χ (zmax)

]

where zmax = (a2 − ρa1)/ν, and η = (a2 − ρθ)/ν > zmax; note d(zmax) = χ(zmax)
provided zmax > 0.751, but we assumed that zmax > xd ≈ 3.117. The TN[0,(a2−ρa1)/ν](η, ρ

2)
distribution should concentrate its mass at the right edge of interval [0, zmax],
and χ(Z)/χ(zmax) should take values close to one. Specifically, one has that
zΦ(−z)/ϕ(z) ∈ (0.84, 1) for z > 2, thus

χ(z)

χ(zmax)
> 0.84eλ(z−zmax) ≥ 0.5
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for z ∈ [zmax − 0.76, zmax]. Therefore (6.2) is larger than 0.5 times the probability
that Z ≥ zmax−0.76, for Z ∼ TN[0,zmax](η, ρ

2), which is larger than or equal to 0.44,
the probability of the same event with respect to Z ∼ TN[0,zmax](zmax, 1), for zmax.
This gives a lower bound for (6.2) of 0.22. We obtained sharper bounds with more
tedious calculations (omitted here), but more importantly, our simulation studies
indicates that the optimal lower bound is likely to be larger than or equal to 1/2.
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