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Abstract

In this paper, we consider the problem of modelling a pair of related distribu-

tions using Bayesian nonparametric methods. A representation of the distributions as

weighted sums of distributions is derived through normalisation. This allows us to

define several classes of nonparametric priors. The properties of these distributions

are explored and efficient Markov chain Monte Carlo methods are developed. The

methodology is illustrated on simulated data and an exampleconcerning hospital effi-

ciency measurement.

Keywords: Hospital efficiencies, Markov chain Monte Carlo,Normalised Random

Measures, Ṕolya urn

1 Introduction

Data often arise under different conditions, either experimentally (different treatments)

or observationally (different socio-economic groups). A standard statistical analysis of

such data involves the comparison of the distributions under the different conditions.

A parametric analysis might compare means, medians, variances or other summaries

of the data. In this paper, we take a nonparametric approach and consider the sim-

plest case where we have two distributions. A simple nonparametric analysis would

separately fit distributions to data under the two conditions. However, it is likely that
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the distributions under the two conditions will be related and a Bayesian hierarchical

approach is a natural way to exploit such a relationship.

The problem of modelling a finite number,J , of related distributions has enjoyed

substantial attention recently. Models are usually expressed in a mixture model frame-

work where the data in groupj, Yj1, Yj2, . . . , YjNj
can be expressed as

Yji
ind.
∼ f(Yji; θji),

θji
ind.
∼ F ∗

j

wheref(·; θ) is a probability density function with parametersθ andF ∗
1 , F ∗

2 , . . . , F ∗
J

are discrete distributions with an infinite number of atoms.The problem then reduces

to modelling the dependence betweenF ∗
1 , F ∗

2 , . . . , F ∗
J .

The Hierarchical Dirichlet process (HDP) (Teh et al., 2006)has become a central

tool in many nonparametric models for allowing dependence betweenF ∗
1 , F ∗

2 , . . . , F ∗
J .

The model assumes thatF ∗
j

iid
∼ DP(M,H) andH ∼ DP(M0,H0), where DP(M,H)

denotes a Dirichlet Process (DP) prior with mass parameterM and centring distribu-

tion H. The introduction of an unknown centring distributionH for F ∗
1 , F ∗

2 , . . . , F ∗
J

encouragesa posterioridependence between the distributions. This model is appro-

priate if the distributions can be considered exchangeableand defines a particular type

of dependence between distributions, as discussed in Section 2.

Several alternative approaches to modelling correlated distributions have been pro-

posed. The bivariate Dirichlet process (Walker and Muliere, 2003) introduces latent

variables to encourage dependence between two conditionally independent distribu-

tions which are given Dirichlet process priors. The distributions could also be mod-

elled explicitly as

F ∗
j =

∞
∑

k=1

pjkδφk

whereδx denotes a Dirac measure atx, while φ1, φ2, φ3, . . . is an infinite sequence of

iid random variables and
∑∞

k=1 pjk = 1 for j = 1, 2, . . . , J . The construction of priors

for {pjk} is technically challenging but some possible constructions are described by

Ishwaran and Zarepour (2009) and Leisen and Lijoi (2010). A simpler approach to

defining dependent random measuresF ∗
1 , F ∗

2 , . . . , F ∗
J arises from taking mixtures of

distributions. Müller et al. (2004) discuss such a method by taking

F ∗
j = wF0 + (1 − w)Fj
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where0 ≤ w ≤ 1 andF0, F1, . . . , FJ are distributions. Each distribution is a mixture

of a common component,F0, shared by all distributions, andFj which is specific

to thej-th distribution and will be termed an idiosyncratic distribution. The weight

w controls the dependence between the distributions, with larger weights associated

with greater dependence. This idea is extended to spatial problems by Rao and Teh

(2009). This paper will build on this framework by allowing the weight to depend on

j, allowingF ∗
j to have a given marginal prior and introducing more efficientMarkov

chain Monte Carlo (MCMC) methods for posterior simulation.

The paper is organised as follows: Section 2 discusses some general ideas about

modelling correlated distributions and possible approaches, Section 3 describes MCMC

methods for fitting our models, Section 4 includes applications of the methods to simu-

lated data and an economic example, and Section 5 provides a brief discussion. Proofs

are grouped in the Appendix.

2 Modelling Correlated Distributions

As mentioned in the introduction, a common way of inducing dependence between

data from different studies is to assume that their underlying distributions are corre-

lated. A full hierarchical model could then be of the form:

Yji
ind.
∼ f(Yji; θji,ψ), i = 1, 2, . . . ,Nj , j = 1, 2, . . . , J

θji
ind.
∼ F ∗

j , j = 1, 2, . . . , J

F ∗
1 , F ∗

2 , . . . , F ∗
J ∼ h(λ), j = 1, 2, . . . , J (1)

ψ ∼ π(ψ), λ ∼ π(λ).

In the above,Yji are data fromJ different groups of sizesN1,N2, . . . andNJ , while

θji are the parameters to be flexibly modelled using nonparametric, correlated dis-

tributions, which have priorh. In this paper we will focus on defining appropriate

priors for the random distributionsF ∗
j . The model also includesψ which are (poten-

tial) additional parameters in the distribution ofYji givenθji andλ which groups the

parameters of the prior distribution ofF ∗
j , j = 1, 2, . . . , J .

In the simplest case of two correlated random distributions, the following lemma

gives a representation of the mixing distributionsF ∗
1 andF ∗

2 as mixtures.
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Lemma 1 If F ∗
1 andF ∗

2 are discrete probability distributions, they can be represented

as

F ∗
1 = εF0 + (1 − ε)

[

ϕ1F
(0)
1 + (1 − ϕ1)F1

]

F ∗
2 = εF0 + (1 − ε)

[

ϕ2F
(0)
2 + (1 − ϕ2)F2

]

where0 ≤ ε, ϕ1, ϕ2 ≤ 1 andF
(0)
1 andF

(0)
2 share no atoms but have atoms in common

with F0, whileF1 andF2 are discrete probability distributions which share no atoms

with each other or withF0, F
(0)
1 andF

(0)
2 .

This representation is hard to work with sinceF0 shares atoms withF (0)
1 andF

(0)
2

and so must be modelled by correlated priors. In fact, the model of Müller et al.

(2004) assumes thatϕ1 = ϕ2 = 0, which avoids modelling this correlation. This is

not a terribly restrictive simplification sinceF (0)
1 andF

(0)
2 can be approximated by

placing points mass “close” to the points ofF0. At the other extreme, the Hierarchical

Dirichlet process (Teh et al., 2006) assumes thatϕ1 = ϕ2 = 1 and all atoms are shared

by all distributions. The most general model involving mixtures of random measures

which share no atoms arises when

F ∗
1 = ε1F0 + (1 − ε1)F1,

F ∗
2 = ε2F0 + (1 − ε2)F2. (2)

The model of Müller et al. (2004) assumes thatε1 = ε2. In this paper, we will restrict

attention to the model in (2). This model allows for a simple interpretation ofF0 as

the common part shared byF ∗
1 andF ∗

2 , whereasF1 andF2 are idiosyncratic parts.

Bayesian inference in this model involves placing priors onthe parametersF0,

F1, F2, ε1 andε2. It is natural to assume thatF0, F1 andF2 are independent random

probability measures since they share no atoms. However, wewould often want to

assume thatε1 andε2 are correlateda priori since they will usually relate to distribu-

tions under similar conditions. The two correlated distributions can then be naturally

embedded at an intermediate level of a larger hierarchical model. The intermediate

levels of the hierarchical model in (1) will then be the following:

θji
ind.
∼ F ∗

j , whereF ∗
j = εjF0 + (1 − εj)Fj , j = 1, 2

Fj
ind.
∼ DP(Mj ,H(λ)), j = 0, 1, 2 (3)

ε1, ε2 ∼ π(ε1, ε2)

4



CRiSM Paper No. 10-22, www.warwick.ac.uk/go/crism

Mj
ind.
∼ π(Mj), j = 0, 1, 2,

where we have chosen Dirichlet Process (DP) priors forFj . This paper will focus on

DP priors, but other nonparametric priors can be considered(Griffin et al., 2010). We

employ different concentration parameters for the three DPs, but use the same centring

distribution,H, with parameterλ. In this way, the two distributionsF ∗
1 andF ∗

2 share

information, not only throughF0, but also through the common base distributionH,

and their common parameterλ.

The hierarchical model of Müller et al. (2004) forJ = 2 is a special case of model

(3), whereε1 = ε2 = ε and a certain prior distribution is given to the common weight,

ε. However, the form of the model described in (3) has some attractive features which

will be investigated in the following two subsections.

2.1 The Normalisation Model

The model forF ∗
1 andF ∗

2 in (3) can be constructed by normalising sums of Gamma

processes. Let Ga(a, b) denote a Gamma distribution with shape parametera and mean

a/b and use the notationG ∼ ΓP(M,H), whereM > 0 andH is a distribution func-

tion, to represent thatG follows a Gamma process for whichG(B) ∼ Ga(MH(B), 1)

for all measurable setsB. The model in (3) can then be obtained in the following

way. Let G0, G1 and G2 be independent andGi ∼ ΓP(Mi,H) for i = 0, 1, 2

and defineG∗
1 = G0 + G1 andG∗

2 = G0 + G2. Then,G∗
1 ∼ ΓP(M0 + M1,H)

andG∗
2 ∼ ΓP(M0 + M2,H). NormalisingG∗

1 to give F ∗
1 =

G∗

1
G∗

1(Ω) and, similarly,

F ∗
2 =

G∗

2
G∗

2(Ω) leads toF ∗
1 ∼ DP(M0 + M1,H) andF ∗

2 ∼ DP(M0 + M2,H) (Fergu-

son, 1973). Then,

F ∗
1 (B) =

G∗
1(B)

G∗
1(Ω)

=
G0(Ω)

G0(Ω) + G1(Ω)

G0(B)

G0(Ω)
+

G1(Ω)

G0(Ω) + G1(Ω)

G1(B)

G1(Ω)

= ε1F0(B) + (1 − ε1)F1(B)

whereε1 = G0(Ω)
G0(Ω)+G1(Ω) , F0(B) = G0(B)

G0(Ω) , andF1(B) = G1(B)
G1(Ω) . It follows from

the properties of Gamma processes thatε1, F0 andF1 are independent and thatε1 ∼

Be(M0,M1), F0 ∼ DP(M0,H) andF1 ∼ DP(M1,H). Similarly,

F ∗
2 = ε2F0 + (1 − ε2)F2

whereF2 ∼ DP(M2,H) and ε2 ∼ Be(M0,M2). So, forM1 = M2, F ∗
1 andF ∗

2

are identically DP-distributed, but not independent, due to the common partF0. The

5
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same holds for the two weights, which are both marginally beta-distributed, but are

not independent. In fact, their joint density is

Γ(M0 + 2M1)

Γ(M0)[Γ(M1)]2
εM0+M1−1
1 (1 − ε1)

M1−1εM0+M1−1
2 (1 − ε2)

M1−1

(ε1 + ε2 − ε1ε2)M0+2M1
,

for 0 < ε1, ε2 < 1.

So, we can construct correlated distributions with DP marginals with parameters

M andH by taking weighted sums of independent DPs with the same basedistribution

H. This idea could be extended to larger numbers of distributions or any process

constructed by normalising a random measure with independent increments (James

et al., 2005), as discussed by Griffin et al. (2010). However,the model with Dirichlet

process marginals is the only one where the weights are independent of the component

random distributions. This is due to the properties of the Gamma process and does not

hold for any other infinitely divisible process.

2.2 The Single-ε Model

The model defined by normalisation leads to correlated weightsε1 andε2. A simplified

version of this model assumes a common weightε and is closer to the model of Müller

et al. (2004). The model is

θji ∼ F ∗
j , whereF ∗

j = εF0 + (1 − ε)Fj , j = 1, 2

F0 ∼ DP(M0,H(λ)), F1, F2
iid
∼ DP(M1,H(λ)) (4)

ε ∼ Be(M0,M1)

M0,M1
iid
∼ Ga(a0, b0), λ ∼ π(λ).

The simplificationε1 = ε2 allows for more direct sharing of information between the

two distributions (since the weights are now the same ratherthan just correlated). This

sharing of information can be particularly useful in cases of few observations from one

or both distributions. On the other hand, unless someone is particularly interested in

inferring the weightsε1 andε2, not much is lost by having the same weight, because

of the nonparametric, flexible modelling ofF0, F1 andF2. Most of the posterior mass

for the weight will be assigned to the minimum of the weights creating the data and

a (usually small) proportion will be assigned to values veryclose to zero. This is a

direct result of model fitting and Ockham’s razor, as explained in Müller et al. (2004).
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2.2.1 Properties of the Single-ε Model

The Single-ε model has some very nice properties, both theoretical and computational,

many of them a direct consequence of the way it was constructed. In this part the

theoretical properties will be presented, whereas the computational implementation of

the model is discussed in Section 3.

First of all, the marginal distributions ofF ∗
1 andF ∗

2 can be shown to be (see Ap-

pendix)

F ∗
1 , F ∗

2 ∼ DP(M0 + M1,H). (5)

Next, using the distributions ofF ∗
1 , F ∗

2 , F0, F1, F2 andε and the (conditional onM0,M1)

independence ofε with theFj , j = 0, 1, 2, it is straightforward to derive the following

moment results:

Theorem 1 Let Ω denote a probability space andF the σ−algebra ofΩ. Let also

F ∗
j = εF0 + (1− ε)Fj , j = 1, 2, F0 ∼ DP(M0,H), F1, F2

iid
∼ DP(M1,H) andε ∼

Be(M0,M1). Then,∀ A ∈ F ,

E(F ∗
1 (A)) = E(F ∗

2 (A)) = H(A),

Var(F ∗
1 (A)) = Var(F ∗

2 (A)) =
H(A)[1 − H(A)]

M0 + M1 + 1
,

and

Corr(F ∗
1 (A), F ∗

2 (A)) =
M0

M0 + M1
.

The last expression is an interesting result, as it indicates that the correlation between

the masses allocated to a setA by F ∗
1 andF ∗

2 does not depend onA or H.

Let s denote the vector of all allocation parameters, assigning each data point to

a distinct value in the Dirichlet process. The exchangeableproduct partition formula

(EPPF) of the Dirichlet process with mass parameterM has the well-known form

p(s|M) = Mk Γ(M)

Γ(M + n)

K
∏

i=1

Γ(ni) (6)

where there areK distinct values with data points allocated to them andni is the

number of data points allocated to thei-th distinct value. Next, the EPPF and the

Pólya-urn representations for model (4) are derived. In order to do this, it is useful to

notice that the model forF ∗
1 andF ∗

2 in (4) is a mixture model, so we introduce two sets

of indicators,rji andsji, i = 1, 2, . . . ,Nj , j = 1, 2. Therji are binary indicators,

7



CRiSM Paper No. 10-22, www.warwick.ac.uk/go/crism

taking values 0 and 1, depending on whether the underlying parameterθji, associated

with the (j, i)−th observation, is drawn from the common part or the idiosyncratic

part: θji ∼ F0 if rji = 0 and θji ∼ Fj if rji = 1 for i = 1, 2, . . . ,Nj , j =

1, 2. The indicatorssji assign eachθji to one of the discrete values of the component

distributionsFj , j = 0, 1, 2 (given the value ofrji):

sji = k ⇔







θji = φ0k, if rji = 0

θji = φjk, if rji = 1

whereφji, i = 1, 2, . . . ,Kj , j = 0, 1, 2 are the discrete values in eachFj andKj is

the corresponding number of those clusters in use (for example K1 is the number of

distincts1i, for whichr1i = 1).

Proposition 1 The EPPF for model (4) is:

p(s, r|M) =
Γ(M0 + M1)

Γ(M0 + M1 + N)
MK0

0 MK1+K2
1

Γ(M1 + n1 + n2)Γ(M1)

Γ(M1 + n1)Γ(M1 + n2)

2
∏

j=0

Kj
∏

i=1

Γ(nj,i)

(7)

wheres denotes the vector of allsji, r is the vector of allrji, M = (M0,M1), N =

N1+N2 is the total data size,Kj is the number of clusters in component distributionj

in use,nj,i is the number of data allocated to thei-th cluster of component distribution

Fj andnj =
∑Kj

i=1 nj,i is the number of data allocated to componentj ∈ {0, 1, 2}.

The Pólya-urn representations for the same model can be nowderived:

Proposition 2 Suppose thatθ1,1, θ1,2, . . . , θ1,N1 ∼ F ∗
1 and θ2,1, θ2,2, . . . , θ2,N2 ∼

F ∗
2 . The Ṕolya-urn representations for model (4) will be as follows:∀ A ∈ F and

j = 1, 2

P
(

θj,Nj+1 ∈ A|D
)

= w0F̄0(A) + wjF̄j(A) + (1 − w0 − wj)H(A)

wherew0 = n0
M0+M1+N

, wj = M1+N−n0
M0+M1+N

nj

M1+nj
and

F̄j =
1

nj

Kj
∑

i=1

njiδφji
, j = 0, 1, 2.

HereD denotes the set of all data and the rest is as in Proposition 1.

The distribution of a future observationθj,Nj+1 is drawn from a mixture of the em-

pirical distribution of the observations allocated to the common component (̄F0), the

8
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empirical distribution of the observations in groupj which are not allocated to the

common component (̄Fj) and the centring distributionH.

Instead ofM0 andM1, one can also use the alternative parameterisationx = M0+

M1 andy = M0
M0+M1

. Based on the results of Theorem 1,y can also be interpreted as

the prior correlation betweenF ∗
1 (A) andF ∗

2 (A) andx as a precision parameter of the

prior distributions ofF ∗
1 (A) andF ∗

2 (A). This reparametrisation is helpful when we

have some prior beliefs about those two quantities and allows us to rewrite (7) as

p(s, r|x, y) = κ1κ2κ3, (8)

where

κ1 =
Γ(x)

Γ(x + N)
xK0+K1+K2

2
∏

j=0

Kj
∏

i=1

Γ(nj,i),

κ2 = yK0(1 − y)K1+K2,

and

κ3 =
Γ(x(1 − y) + n1 + n2)Γ(x(1 − y))

Γ(x(1 − y) + n1)Γ(x(1 − y) + n2)
.

Note from (6) that the factorκ1 relates top(s|x) if we were to sample from a single

distribution with a DP prior with precision parameterx = M0 + M1. The second part

κ2 can be seen as the contribution to the joint distribution of “splitting” the discrete

values from this joint DP to the common part and to the idiosyncratic parts, with

corresponding probabilitiesy = M0
M0+M1

and1−y. Finally,κ3 refers to “splitting” the

data not allocated to the common part into the two idiosyncratic parts.

Likewise, under the assumption that the allocation of observations between the

different components is in line with the prior so that on averagen0 = Ny andnj =

Nj(1 − y), the weights in Proposition 2 can be written asw0 = y N
x+N

andwj =

(1 − y)
Nj

x+Nj
. Both weights are expressed as linear functions of the parameter y,

measuring strength of dependence, multiplied by a term which gets larger asNj gets

larger orx gets smaller, which controls the contribution of the empirical distribution

to the predictive.

Whereas the Single-ε model and the model of Müller et al. (2004) are very similar,

they have some notable differences in their behaviour and their properties. The reason

for that lies in the way these models were constructed. In general, one can argue

that the model of Müller et al. (2004) is more flexible, sincethe construction of the

prior distribution forε is a more general one, and there is one extra parameter (M2).

9
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On the other hand, the construction method used here is a moresystematic one, and

induces some nice properties. In model (4) the random distributionsF ∗
1 andF ∗

2 are

DP-distributed, whereas this is not always true for the other model. In model (4) the

expressions for the first two central moments and the correlation structure are very

simple and easy to use. The corresponding quantities for themodel of Müller et al.

(2004) are easy to derive, but more complicated. The same holds for the Pólya-urn

representations and the EPPF. Another nice feature of (4) isthe nice intuitive form of

expression (8).

3 Computational Methods

In this section we describe the MCMC methods used to fit a hierarchical mixture

model with a Single-ǫ or Normalisation prior for a pair of correlated distributions. As

in Müller et al. (2004), we assume that the sampling modelf(Yji;µji, S) is a normal

distribution with meanµji and varianceS and thatµji ∼ F ∗
j . The base distribution

H follows a normal distribution N(m,B). The meanm is assigned a normal prior

with parametersm0 andA, the varianceB is assigned an inverse gamma distribution

with shape parameterc and scale parametercC, IGa(c, cC) (so that the prior mean

of B is cC
c−1 (for c > 1) and the prior variance is c2C2

(c−1)2(c−2)
(for (c > 2)), and the

varianceS is also given an inverse gamma distribution with parametersq andqR. The

full Single-ε model can thus be written as

Yji ∼ N(µji, S), i = 1, 2, . . . ,Nj , j = 1, 2

µji ∼ F ∗
j , whereF ∗

j = εF0 + (1 − ε)Fj

F0 ∼ DP(M0,H), Fj
iid
∼ DP(M1,H), whereH ≡ N(m,B) (9)

ε ∼ Be(M0,M1)

M0,M1
iid
∼ Ga(a0, b0), (m,B) ∼ N(m0, A) × IGa(c, cC), S ∼ IGa(q, qR).

In order to simulate from the posterior distribution of model (9), we use a Pólya-

urn scheme and use the fact that the sampling model and the centring distribution are

conjugate. As in Müller et al. (2004), we use the indicatorssji, rji and the discrete

valuesφji defined in Section 2.2.1. The posterior distribution involvesr, s, {φji},

M0, M1, ε, m, B andS. The full conditional distributions of all parameters willbe

10
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the same as in Müller et al. (2004) withM2 = M1, except for the parametersε, M0

andM1, on which we will focus in the next subsection.

3.1 MCMC sampler for the Single-ε model

The full conditionals ofM0, M1 andε are:

• ε| · · · ∼ Be(M0 +N −
∑

j,i rji,M1 +
∑

j,i rji) which can be simulated directly.

• f(M0| · · · ) ∝ Ma0+K0−1
0 e−M0[b0−log(ε)] Γ(M0+M1)

Γ(M0+n0)
and

f(M1| · · · ) ∝ Ma0+K1+K2−1
1 e−M1[b0−log(1−ε)] Γ(M1)Γ(M0+M1)

Γ(M1+n1)Γ(M1+n2)
. We can use

Random Walk Metropolis-Hastings (RWMH) steps for these parameters.

The marginal posterior distribution ofε is often bimodal which can cause slow

mixing for the algorithms described so far. To combat this problem, we introduce an

additional split/merge step.

3.1.1 The Split/Merge Step

The split/merge step allows faster movement between the modes of the marginal dis-

tribution of ε. The basic form of this extra step consists of first choosing whether we

will propose a mix or a split move (with probability 1/2 each)and then calculate the

Metropolis-Hastings acceptance probability. If a split step is chosen, we uniformly

choose a cluster fromF0 and propose to split it into two clusters, one inF1 and one

in F2 (or move it to eitherF1 or F2, if this cluster contains only data from the first

or second data set, respectively). If a merge step is chosen,we uniformly choose a

cluster fromF1, or an empty cluster, and a cluster fromF2, or an empty cluster, and

we propose to merge those two clusters (or move a cluster, if in one of the two cases

an empty cluster is chosen) to a common cluster inF0.

This split-merge step is a Metropolis-Hastings update, so the acceptance probabil-

ity in each case needs to be calculated, which depends on whether a split or a merge

step is selected and on the existing and proposed allocationof the indicator parameters

sji, rji, i = 1, 2, . . . ,Nj , j = 1, 2.

In the following, let K0,K1 andK2 denote the number of clusters in compo-

nentsF0, F1 andF2, respectively, in use (i.e. the number of distinctsji within each

of F0, F1 andF2, according to the correspondingrji’s), m01 andm02 denote the num-

ber of data from each data set associated with a chosen cluster in F0 in a split step and

11
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let m1,m2 be the number of data from each data set associated with the chosen clus-

ters inF1, F2 respectively in a merge step. Let alson1 andn2 denote the current (i.e.

before the proposed mix or split step) number of data assigned in each idiosyncratic

component distribution,F1 andF2, respectively.

To simplify expressions, we will write the multinomial Betafunction asB(a) =
∏

Γ(ai)
Γ(

∑

ai)
and define

e(m1,m2) = exp

{

−
1

2

[

(m1 + m2)m
2 − 2m(

∑

Y ′
1 +

∑

Y ′
2) − B

S
(
∑

Y ′
1 +

∑

Y ′
2)2

(m1 + m2)B + S

]}

× exp

{

1

2

[

m1m
2 − 2m

∑

Y ′
1 − B

S
(
∑

Y ′
1)

2

m1B + S

]}

× exp

{

1

2

[

m2m
2 − 2m

∑

Y ′
2 − B

S
(
∑

Y ′
2)

2

m2B + S

]}

and

d(m1,m2) =

√

S[(m1 + m2)B + S]

(m1B + S)(m2B + S)
.

The sums appearing ine(m1,m2) are taken over theY1i or Y2i associated with the

clusters chosen to be split or merged. The algorithm for the split/merge step and the

corresponding acceptance probabilitiesα(c, c′), wherec = (r , s) is the current and

c′ = (r ′, s′) is the proposed complete vector of indicators for model (9),are as follows:

Split/Merge Method:

1. Choose split or merge, each with probability 1/2.

2. If a split step is selected:

(a) If K0 = 0, we do nothing (we exit the split/merge step), since there is no

cluster to split (or move to eitherF1 or F2).

(b) Else, we choose a cluster from the common part (F0) uniformly. We then

propose to:

• move this cluster to one of the two idiosyncratic parts (F1, F2), if the

data associated with the chosen cluster come only from the first or the

second data set, respectively.

• split this cluster to two clusters, one in each of the idiosyncratic parts,

if the related data come from both data sets. In such a case, the data

12
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from the first group will be moved to the new cluster inF1 and the data

from the second group will be moved to the new cluster inF2.

The acceptance probabilitiesα(c, c′) will be as follows:

i. If we propose to move a cluster fromF0 to Fk, k = 1, 2, say the clus-

ter corresponding to thed-th discrete value inF0, φ0d,

α(c, c′) = min
{

1, M1
M0

B(M1+n1+n2+m0k ,M1+nk)
B(M1+n1+n2,M1+n3−k+m0k)

K0
(Kk+2)(K3−k+1)−1

}

.

ii. If we propose to split a cluster to bothF1 andF2, say the cluster cor-

responding to the d-th discrete value inF0, φ0d, the acceptance proba-

bility will be:

α(c, c′) = min
{

1,
M2

1
M0

a K0
(K1+2)(K2+2)−1

d(m01 ,m02)
e(m01,m02)

}

where

a = B(M1+n1+n2+m01+m02,M1+n1,M1+n2)
B(M1+n1+n2,M1+n1+m01,M1+n2+m02)B(m01,m02).

We accept the split with the corresponding probability above. Otherwise,

we do nothing.

3. If a merge step is selected:

(a) If K1 = K2 = 0, we exit, since there are no clusters to merge.

(b) Otherwise, if onlyKk = 0, k = 1, 2, we propose to move a cluster from

the other idiosyncratic part to the common one. In other words, we propose

merging a cluster fromF3−k with an empty cluster fromFk, k = 1, 2.

In this case, we uniformly choose a cluster from the other idiosyncratic

part (corresponding to, say,φ3−k,d) and move it to the common part with

probabilityα(c, c′) = min
{

1, M0
M1

K3−k

K0+1

}

.

If the step is rejected, we do nothing.

(c) If bothK1 andK2 are positive, we uniformly choose a cluster fromF1 or an

empty cluster (in which case we just move a cluster fromF2 toF0), i.e. each

cluster (including the empty cluster) is chosen with probability 1/(K1 +

1). We similarly choose a cluster fromF2 or an empty cluster. If two

empty clusters are chosen, we repeat the above draw, since this merging is

prohibited (in order to have a reversible MCMC algorithm). The acceptance

probability in this case will be:

i. If we propose to transfer the selected cluster fromFk to F0, k = 1, 2,

α(c, c′) = min
{

1, M0
M1

B(M1+n1+n2−mk,M1+nk)
B(M1+n1+n2,M1+nk−mk)

(K1+1)(K2+1)−1
K0+1

}

.

13
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ii. If two existing clusters are chosen, corresponding to, say, (φ1d, φ2d),

the acceptance probability is:

α(c, c′) = min
{

1, M0

M2
1
a (K1+1)(K2+1)−1

K0+1
e(m1,m2)
d(m1,m2)

}

where

a = B(M1+n1+n2−m1−m2,M1+n1,M1+n2)
B(M1+n1+n2,M1+n1−m1,M1+n2−m2)

1
B(m1,m2)

.

If the proposed step is accepted, we perform the merging.

Otherwise, we do nothing.

The reason for including empty clusters when randomly picking clusters in the merge

step is to guarantee the reversibility of the Markov chain. This is because the act of

merging an existing cluster from, sayF1, with an empty cluster (i.e. moving a cluster

from F1 to F0) is the reverse of moving a cluster fromF0 to F1, which will happen if

we propose to split a cluster inF0 that is associated only with data fromF ∗
1 .

3.2 MCMC sampler for the Normalisation model

Now, we consider the Normalisation model described in Subsection 2.1 withM1 =

M2. It is useful to write

εj =
γ0

γ0 + γj
, j = 1, 2

whereγ0, γ1 andγ2 are mutually independent withγ0 ∼ Ga(M0, 1), γ1 ∼ Ga(M1, 1) and

γ2 ∼ Ga(M1, 1). It is computationally more convenient here to work with theparametri-

sationγ0, γ1 andγ2 instead ofε1 = γ0

γ0+γ1
andε2 = γ0

γ0+γ2
. The parameters that need

to be updated differently to the algorithm for the model in Section 3.1 areγ0, γ1, γ2,

M0 andM1. We also describe the necessary expressions to use the split-merge move.

The joint full conditional distribution for theγ’s will be:

f(γ0, γ1, γ2| · · · ) ∝ f(γ0|M0)f(γ1|M1)f(γ2|M1)f(r|γ0, γ1, γ2)

∝ γM0−1
0 e−γ0γM1−1

1 e−γ1γM1−1
2 e−γ2 ×

(

γ1

γ0 + γ1

)

∑

r1i
(

γ0

γ0 + γ1

)N1−
∑

r1i
(

γ2

γ0 + γ2

)

∑

r2i
(

γ0

γ0 + γ2

)N2−
∑

r2i

.

In order to simulate from the above distribution, we use the identity
∫ ∞

0
e−atdt = 1/a

14
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and introduce latent variablesUki for k = 1, 2 andi = 1, 2, . . . ,Nk and defineU to

be the set ofUki, so that

f(γ0, γ1, γ2,U | · · · ) ∝ γM0−1
0 e−γ0γM1−1

1 e−γ1γM1−1
2 e−γ2

2
∏

k=1

Nk
∏

i=1

γ1−rki

0 γrki

k e−(γ0+γk)Uki .

Integrating acrossU leads to the correct distribution. Therefore, consider theaug-

mented vector of parameters(γ0, γ1, γ2,U). In this case, the full conditional distribu-

tions are of known form:

Uki| · · · ∼ Exp(γ0 + γk), k = 1, 2, i = 1, 2, . . . ,Nk,

γ0| · · · ∼ Ga(M0 + N1 + N2 −
∑2

k=1

∑Nk

i=1 rki, 1 +
∑2

k=1

∑Nk

i=1 Uki),

γk| · · · ∼ Ga(M1 +
∑Nk

i=1 rki, 1 +
∑Nk

i=1 Uki), k = 1, 2.

Here, Exp(θ) denotes the exponential distribution with mean1/θ.

The full conditionals ofM0 andM1, due to the different prior of the weights (ac-

tually, the priors of theγ’s), will be:

f(M0| · · · ) ∝ Ma0+K0−1
0 e−b0M0γM0

0
1

Γ(M0+n0)
and

f(M1| · · · ) ∝ Ma0+K1+K2−1
1 e−b0M1γM1

1 γM1
2

1
Γ(M1+n1)Γ(M1+n2)

whereKj andnj are as before. Since the above distributions are not of any standard

form, Metropolis-Hastings updating steps can be used to simulate from them.

Despite the fact that now there areN1+N2 auxiliary variables, the simulation time

is not increased substantially, since the full conditionaldistributions of these auxiliary

variables are of known form, and therefore easy to sample from. Also notice that,

since the size of these auxiliary variables is equal to the data size, there will not be any

additional problems of varying dimensionality of the parameter space.

Additionally, an extra split/merge step, similar to the onepresented before (the

differences will be in the acceptance probabilities) can also be incorporated in this al-

gorithm and help improve mixing of the chains. The corresponding acceptance prob-

abilities will now be:

2b, i) α(c, c′) = min

{

1, M1
M0

·

(

1+
∑2

j=1

∑Nj
i=1 Uji

1+
∑Nk

i=1 Uki

)m0(3−k)

K0
(K3−k+1)(Kk+2)−1

}

, k =

1, 2,

2b, ii) α(c, c′) = min

{

1,
M2

1
M0

(

1+
∑2

j=1

∑Nj
i=1 Uji

1+
∑N1

i=1 U1i

)m01 (

1+
∑2

j=1

∑Nj
i=1 Uji

1+
∑N2

i=1 U2i

)m02

a

}

, where

a = B(m01,m02)
d(m01 ,m02)
e(m01,m02)

K0
(K1+2)(K2+2)−1 ,

3b)α(c, c′) = min

{

1, M0
M1

·

(

1+
∑N3−k

i=1 U3−k,i

1+
∑2

j=1

∑Nj
i=1 Uji

)m3−k

·
K3−k

K0+1

}

, k = 1, 2,
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3c, i) α(c, c′) = min

{

1, M0
M1

·

(

1+
∑Nk

i=1 Uki

1+
∑2

j=1

∑Nj
i=1 Uji

)mk

· (K1+1)(K2+1)−1
K0+1

}

, k = 1, 2,

3c, ii) α(c, c′) = min

{

1, M0

M2
1

(

1+
∑N1

i=1 U1i

1+
∑2

j=1

∑Nj
i=1 Uji

)m1
(

1+
∑N2

i=1 U2i

1+
∑2

j=1

∑Nj
i=1 Uji

)m2

a

}

, where

a = 1
B(m1,m2)

e(m1,m2)
d(m1,m2)

(K1+1)(K2+1)−1
K0+1 .

4 Applications

4.1 Simulated data

The models developed in this paper were applied to a simulated data set with two

groups which each contained 200 observations. The data in group 1 were generated

from the distribution0.5N(1, 1)+0.5N(−10, 1) and the data in group 2 were generated

from the distribution0.7N(1, 1)+0.3N(8, 1). We apply the Single-ε model to the data
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Figure 1:Trace plot for the posterior ofε with (right) and without (left) the extra split/merge step

for model (4) for the simulated data set.

takingf(Yji; θji, S) to be a N(θji, S), together with the rest of the prior distributions

in (9) (with a0 = b0 = 0.5,m0 = 0, A = 10, c = 2.1, C = 2, q = 0.01 and

R = 0.0001) and use the MCMC sampler with and without the split/merge step. The

trace plots for the weightε are shown in Figure 1. The posterior distribution ofε is

bimodal, with modes at 0 and 0.5 (the minimum of 0.7 and 0.5, asdiscussed earlier).

The trace plots also illustrate a possible mixing problem inthe algorithm without the

split/merge step. The split/merge step improves mixing of the chain by increasing the

frequency of the jumps between the two modes ofε. The move has a 4.5% acceptance

rate of split steps and 4.6% acceptance of merge steps. The mode at 0 is quite large in
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this case. However, the mode could be much smaller with otherdata and the algorithm

without split/merge moves might not visit the mode at zero ina reasonable number of

iterations. As a result, we used the algorithm with the additional split/merge step in all

subsequent analyses.
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Figure 2:Posterior density of the weightε for model (4) for the simulated data set.

The posterior density for the weightε is shown in Figure 2, which puts most of its

mass on values around 0.5 (which is the minimum of 0.7 and 0.5). For this value forε,

note that we can perfectly reproduce the distribution generating the data by takingF0

to be a point mass at one,F1 a point mass at -10, andF2 to put weight 0.4 on a point

mass at 1 and 0.6 on a point mass at 8. The predictive densitiescorresponding to the

component distributionsFj (left) and the correlated distributionsF ∗
j (right) are shown

in Figure 3. Indeed, we notice from the predictives corresponding to the components

that F0 is concentrated around the (correct) value 1,F1 is concentrated around -10

andF2 is bimodal, with about40% of the mass around 1 and the rest around 8. The

posterior ofε also has a smaller mode around 0. This value ofε corresponds to the

case without a common part and explains the small second modeat 1 forF1.

The predictives for groupj (corresponding toF ∗
j , j = 1, 2) closely match the

distributions from which the data were generated. For comparison purposes, the latter

distributions are also plotted on the same graph, using dashed lines.

The posterior mean, median and 95% credible intervals for the parameters in this

model are shown in Table 1. The values of the concentration parametersM0 andM1

are quite small, indicating thatF0 andFj , j = 1, 2 are quite far from their normal

centring distribution. Indeed, it turns out from the inference onKj , j = 0, 1, 2 that the

number of clusters is quite small indeed, with only one forF0 andF1 in the median,
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Figure 3:Predictive densities for the component distributionsF1 (top), F2 (middle) andF0 (bot-

tom) (left-hand panels) and ofF ∗
1 (top) andF ∗

2 (bottom) (right-hand panels) using the Single-ε

model for the simulated data set. Dashed lines indicate the distributions that generated the data.

M0 M1 K0 K1 K2

Mean 0.199 0.221 1.215 1.319 2.022

Median 0.138 0.168 1 1 2

2.5th perc 0.010 0.013 - - -

97.5th perc 0.722 0.746 - - -

Table 1: Posterior mean, median and 95% credible intervals for the parameters in the Single-ε

model for the simulated data set.

and two forF2, as expected. So the inference corresponds quite accurately to the

distribution that generated the data.

Results with the Normalisation model lead, as expected, to densities forε1 andε2

that concentrate most of their mass around 0.5 and 0.7, respectively, and the resulting

predictive distributions are very similar to those found with the Single-ε model.

4.2 Hospital efficiency data

Stochastic frontier models were introduced by Aigner et al.(1977) and Meeusen and

van den Broeck (1977) to model the efficiency of firms. We will consider a cost frontier

for hospitals. The frontier corresponds to the minimum costof producing a certain

level of outputs, given specific input prices and representsthe theoretical scenario
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where a hospital is fully efficient. The observed cost is modelled by

Yijt = α + X ′
ijtβ + uij + vijt, 1 ≤ i ≤ Nj, 1 ≤ t ≤ T, j = 1, 2 (10)

whereYijt is the logarithm of cost andXijt is a vector of output levels and input prices

for thei-th hospital in thej-th group in time periodt, while α + X ′
ijtβ is the frontier.

We have two types of error terms in (10). The first error,vijt, accounts for the uncer-

tainty regarding the location of the frontier and is assumedto be normally distributed

with mean 0 and varianceσ2. The second error term,uij, captures hospital-specific

disturbances and represents the loss with respect to full efficiency. This inefficiency

error can only take positive values, and is assumed to remainconstant over time (the

implications of relaxing the last assumption are discussedby Fernández et al., 1997).

The two sets of error terms are taken to be independent of eachother. The efficiency

for firm i in groupj is then defined asexp {−uij} , i = 1, 2, . . . , n, j = 1, 2.

Understanding the effect of firm characteristics, such as management structure or

regulatory framework, on the efficiency distribution is oneimportant aim of stochastic

frontier models. If the firm characteristics are discrete, the firms can be divided into

groups and the problem then reduces to modelling the efficiency distribution for each

group. Griffin and Steel (2004) describe a Product of Dirichlet Processes model for a

Bayesian nonparametric analysis in this case. An alternative approach, based on the

methods developed in this paper, uses the following model:

Yijt
ind.
∼ N(α + X ′

ijtβ + uij, σ
2), 1 ≤ i ≤ Nj , 1 ≤ t ≤ T, j = 1, 2,

uij ∼ F ∗
j = εF0 + (1 − ε)Fj , 1 ≤ i ≤ Nj , j = 1, 2,

Fk
ind.
∼ DP(Mk,H), k = 0, 1, 2, H ∼ Exp(λ),

Mk/η0
iid
∼ InvBe(η, η), k = 0, 1, 2,

and

f(a, β, σ2) ∝ σ−2, λ ∼ Exp(− log(r∗)).

The prior for λ (the inverse mean ofH) is chosen so that prior predictive median

efficiency isr⋆ (as in Griffin and Steel, 2004) and a noninformative prior for(α, β, σ2)

is assumed, which leads to a proper posterior distribution (as shown in Fernández et

al., 1997). An inverted beta (gamma-gamma) distribution (Bernardo and Smith, 1994)

for the precision parametersM0,M1 andM2 (each divided by a hyperparameterη0,
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which is the prior median) was adopted, as in Griffin and Steel(2004). For the Single-

ε and the Normalisation models we assume the same priors forε andγ0, γ1 andγ2 as

before.

The data refer to 268 nonteaching hospitals in the U.S.A. fora period ofT = 5

years, from 1987 to 1991, which are a subset of those analysedby Griffin and Steel

(2004) and Koop et al. (1997). The same frontier as Koop et al.(1997) is used and

the interested reader should consult that paper for its specification. In particular, we

focussed on non-profit hospitals, which were divided into two categories according

to the number of clinical workers per patient, which is termed “staff ratio”: a binary

variable taking the value 1 if the average (over the years) ofthe ratio of clinical workers

per patient for a specific hospital is higher than the median of those averages of all 382

hospitals in the full sample, and 0 otherwise. This led to a sample of 141 hospitals

with staff ratio of 0 (group 1) and 127 hospitals with staff ratio of 1 (group 2).

The models were fitted withr⋆ = 0.8, η = η0 = 1. The value ofη0 implies a prior

median value of 1 forM0,M1 andM2. The posterior distributions were simulated

using the MCMC algorithm with the split/merge move.

We first considered the Single-ε model applied in this setting. The acceptance rate

of the split steps in the split/merge step was around24.0%, whereas for merge steps

the corresponding rate was around19.8%. The posterior distribution of the weight
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Figure 4:Posterior distribution ofε (left), M0 (top-right) andM1 (bottom-right) for the Single-ε

model applied to the non-profit hospitals.

parameterε is shown in the left panel of Figure 4. There is a very small mode at 0

(which corresponds toF ∗
1 andF ∗

2 not having a common part) and two larger modes at

1 (the case ofF ∗
1 andF ∗

2 coinciding) and around 0.88 (roughly speaking,F ∗
1 andF ∗

2

sharing around 88% of their mass). The distribution illustrates the importance of the

split-merge move. The mode at 0 is unlikely to be sampled without the split/merge
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merge.

The right-hand side panels of Figure 4 show the posterior densities ofM0 andM1.

The posterior distribution ofM0 is flatter than the one ofM1, which is peaked below

1, indicating thatF1 andF2 are very far from their expected centring distribution.
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Figure 5:Predictive densities (left) and cumulative distributions(right) for the efficiency of firms

in the low staff ratio (solid line) and the high staff ratio group (dashed line) for the Single-ε model

applied to the non-profit hospitals.

The predictive density of the efficiency of a new firm in each ofthe two groups

and the corresponding cumulative distribution functions (cdf) are plotted in Figure 5.

The results resemble those of Griffin and Steel (2004). For group 1, there is a mode at

1, an antimode around 0.95, a “bump” around 0.86, a larger mode at 0.7 and a bump

around 0.75. One difference is the mode around 0.67 of Griffinand Steel (2004),

which is now transposed to the left, around 0.6, and looks more like a bump. For the

second group, we have the same large mode at 0.7 and bumps around 0.67 and 0.75.

In this case, there is also a tiny mode around 0.47. For this high staff ratio group,

the main difference with the results in Griffin and Steel (2004) is the behaviour close

to full efficiency, as in Griffin and Steel (2004) the mass of the predictive density is

decreasing as the efficiency approaches 1, whereas here there is a small mode around

1. However, overall the results are very similar. The right graph of Figure 5 clearly

demonstrates that the first group (non-profit hospitals withlow staff ratio) is more

efficient than the second group (non-profit hospitals with high staff ratio). It is also

interesting that this occurs in a rather specific way with an increase of probability of

about 0.06 around 0.65, and this difference is more or less preserved up to 0.9 or so,

where the two cdf’s start to coincide.
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Another interesting point here is that, comparing the predictive densities corre-

sponding toF ∗
1 andF ∗

2 , it becomes clear that their main differences are in the intervals

(0.6,0.7) (whereF ∗
2 has more mass) and the interval (0.8,0.9) (where the opposite is

true). In other words, it can be said that some mass ofF ∗
1 in (0.8,0.9) has been moved

to (0.6,0.7) forF ∗
2 . This difference is also clear from the predictive densities of the

component distributionsF1, F2 andF0 in Figure 6. This graph is helpful in providing

a better insight as to where the characteristics of those predictives come from: the

large mode at 1 and the bump around 0.86 inF ∗
1 are due to the idiosyncratic partF1,

whereas the mode around 0.7 and the bumps around 0.75 and 0.6 come from the com-

mon partF0. As for F ∗
2 , the small mode at 0.47 is due to its idiosyncratic partF2, the

mode at 1 and the bump at 0.85 are due toF0, the bump around 0.75 is mostly (but not

completely) due toF0, whereas the bump around 0.67 is due toF2
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Figure 6:Predictive densities for the efficiency of a firm inF1 (above),F2 (centre) andF0 (below)

for the Single-ε model applied to the non-profit hospitals.

Next, we applied the Normalisation model on the same data. The acceptance rates

were around25.1% for the split steps and around24.6% for the merge steps, and the

results presented below are taken with this extra step. As a general comment, the

results are very similar to the ones of the Single-ε model. The posterior distributions

for theM ’s were similar, and so were the predictive distributions for F ∗
1 , F ∗

2 and the

component distributionsF0, F1, F2, with the only difference worth mentioning being

a larger mode at 1 for all of them. The only practically different posterior result is

regarding the weights, since here we have two, instead of onein the previous model.

The posterior distribution of the weights is shown in Figure7. In both cases, the mode

22



CRiSM Paper No. 10-22, www.warwick.ac.uk/go/crism

0 0.2 0.4 0.6 0.8 1
0

5

10

ε
2

De
ns

ity

Kernel density estimate for ε
2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

ε
1

De
ns

ity

Kernel density estimate for ε
1

Figure 7:Posterior distribution ofε1 (top) andε2 (bottom) for the Normalisation model.

at 0 is smaller than before. The largest mode at 1 is present for bothε1 andε2, while

for ε1 we have another mode around 0.85.

Finally, we applied the model of Müller et al. (2004) (with aroughly comparable

prior for the weight) in the same context and on the same data,leading to very similar

results as with the Single-ε model.

5 Discussion

This paper discusses the use of nonparametric mixture models for two correlated dis-

tributions. Several models are developed for representingthe relationship between

two nonparametric distributions, inspired by normalisingrandom measures. We also

develop and discuss efficient computational methods which use a novel split/merge

move to improve mixing. We concentrate on a Dirichlet process-based framework

which simplifies the derivation and the methodology leads toan effective borrowing

of strength between the distributions. The modelling approach could be immediately

extended to more distributions by extending the representation of Lemma 1. By mak-

ing similar assumptions, the models proposed in this paper could then be extended

to accommodate larger numbers of groups. This is a research direction that we are

currently pursueing further.
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A Appendix

A.1 Proof of Lemma 1

Let F ∗
1 =

∑∞
i=1 w⋆

1iδθ∗1i
, F ∗

2 =
∑∞

i=1 w⋆
2iδθ∗2i

, θ⋆
1 = (θ⋆

11, θ
⋆
12, θ

⋆
13, . . . ) and θ⋆

2 =

(θ⋆
21, θ

⋆
22, θ

⋆
23, . . . ). Let A = θ∗1 ∩ θ∗2. Then we can write

F ∗
k =

∑

θj∈A

w∗
kjδθj

+
∑

θ⋆
kj
∈θ⋆

k
−A

w∗
kjδθ⋆

kj
, k = 1, 2.

Let w†
j = min{w∗

1j , w
∗
2j} for θj ∈ A, then

F ∗
k =

∑

θj∈A

w†
jδθj

+
∑

θj∈A

(w∗
kj − w†

j)δθj
+

∑

θ⋆
kj
∈θ⋆

k
−A

w∗
kjδθ⋆

kj
, k = 1, 2

and it is clear that the result follows from takingε =
∑

θj∈A w†
j ,

ϕk =

∑

θj∈A(w∗
kj − w†

j)
∑

θj∈A(w∗
kj − w†

j) +
∑

θ⋆
kj
∈θ⋆

k
−A w∗

kj

, F0 =

∑

θj∈A w†
jδθj

∑

θj∈A w†
j

F
(0)
k =

∑

θj∈A(w∗
kj − w†

j)δθj

∑

θj∈A(w∗
1j − w†

j)
, Fk =

∑

θ⋆
kj

∈θ⋆
k
−A w∗

kjδθ⋆
kj

∑

θ⋆
kj

∈θ⋆
k
−A wkj

for k = 1, 2. �
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A.2 Proof of equation (5)

Let A ∈ F and let
d
= denote equality in distribution. ForF ∗

1 (A), we have that:

F ∗
1 (A) = εF0(A) + (1 − ε)F1(A)

=
a

a + b

G0(A)

G0(Ω)
+

b

a + b

G1(A)

G1(Ω)
, wherea ∼ Ga(M0, 1), b ∼ Ga(M1, 1)

d
=

G0(A) + G1(A)

a + b
, since alsoG0(Ω) ∼ Ga(M0, 1), G1(Ω) ∼ Ga(M1, 1)

d
=

G0(A) + G1(A)

(G0 + G1)(Ω)
, since(G0 + G1)(Ω)

d
= a + b

∼ DP(M0 + M1,H(A)).

The same procedure can be used forF ∗
2 (A). �

A.3 Proof of Theorem 1

The first two expressions are a direct result of the fact that both F ∗
1 andF ∗

2 are dis-

tributed as DP(M0 + M1,H).

For the last expression, first calculate the covariance between the two:

Cov(F ∗
1 (A), F ∗

2 (A)) =Cov(εF0(A) + (1 − ε)F1(A), εF0(A) + (1 − ε)F2(A))

=Var(εF0(A)) + Cov(εF0(A), (1 − ε)F2(A))

+Cov((1 − ε)F1(A), εF0(A)) + Cov((1 − ε)F1(A), (1 − ε)F2(A))

=
M0H(A)(1 − H(A))

(M0 + M1)(M0 + M1 + 1)
.

Then, by dividing the expression above with the product of the standard deviations of

F ∗
1 (A) andF ∗

2 (A), we get the desired expression. �
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A.4 Proof of Proposition 1

The probability mass function of the indicators, givenM0 andM1, and after having

integrated out the weight is:

p(s, r|M0,M1) =

∫ 1

0
p(s|ε, r,M)p(r|ε)f(ε|M)dε

= p(s|r,M)

∫ 1

0
p(r|ε)f(ε|M)dε

= p(s|r,M)

∫ 1

0
εn0(1 − ε)n1+n2

Γ(M0 + M1)

Γ(M0)Γ(M1)
εM0−1(1 − ε)M1−1dε

= p(s|r,M)
Γ(M0 + M1)Γ(M0 + n0)Γ(M1 + n1 + n2)

Γ(M0)Γ(M1)Γ(M0 + M1 + N)
.

Using the independence ofsji in the three components (given the indicatorsrji) and

applying expression (6) to each of them, the EPPF for model (4) can be derived. �

A.5 Proof of Proposition 2

To derive the Pólya-urn scheme, we first derive the Chinese restaurant representation.

Let cji = (sji, rji) andc be the set of all{cji}. Suppose that the new observation falls

in groupk, thenck,new = (sk,Nk+1, rk,Nk+1). The conditional probability formula,

p(ck,new|c,M0,M1) =
p(ck,new, c|M0,M1)

p(c|M0,M1)

and equation (7) implies that

P (ck,new = (j, i)|c,M0,M1) =







































M0

M0 + M1 + N
, j = K0 + 1, i = 0

n0,j

M0 + M1 + N
, 1 ≤ j ≤ K0, i = 0

M1

M1 + nk

M1 + N − n0

M0 + M1 + N
, j = Kk + 1, i = 1

nk,j

M1 + nk

M1 + N − n0

M0 + M1 + N
, 1 ≤ j ≤ Kk, i = 1.

The Pólya-urn scheme can then be derived by adding the corresponding probabilities.

�
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