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Abstract

In this paper, we consider the problem of modelling a pairedéted distribu-
tions using Bayesian nonparametric methods. A represemtat the distributions as
weighted sums of distributions is derived through nornadilir. This allows us to
define several classes of nonparametric priors. The piepeast these distributions
are explored and efficient Markov chain Monte Carlo methagsdeveloped. The
methodology is illustrated on simulated data and an exaogieerning hospital effi-

ciency measurement.

Keywords: Hospital efficiencies, Markov chain Monte CaiNgrmalised Random

Measures, Blya urn

1 Introduction

Data often arise under different conditions, either expernitally (different treatments)
or observationally (different socio-economic groups).ténslard statistical analysis of
such data involves the comparison of the distributions uttte different conditions.
A parametric analysis might compare means, medians, vasaor other summaries
of the data. In this paper, we take a nonparametric approadtcansider the sim-
plest case where we have two distributions. A simple nompatac analysis would

separately fit distributions to data under the two condgiodowever, it is likely that
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the distributions under the two conditions will be related @ Bayesian hierarchical
approach is a natural way to exploit such a relationship.

The problem of modelling a finite numbef, of related distributions has enjoyed
substantial attention recently. Models are usually exqa@$n a mixture model frame-

work where the data in group Yj1,Y)2, ..., Y;n, can be expressed as
ind.
Yii "N (Vi 05i),

ind. %
9]'2' ~ F}

wheref(-;0) is a probability density function with parametétaind /7', 5, ..., F';
are discrete distributions with an infinite number of atoifise problem then reduces
to modelling the dependence betweeh F5, ..., F7.

The Hierarchical Dirichlet process (HDP) (Teh et al., 2068% become a central
tool in many nonparametric models for allowing dependemteeenty', F5, . .., F;.
The model assumes thA} i DP(M, H) andH ~ DP(My, Hy), where DRM, H)
denotes a Dirichlet Process (DP) prior with mass param¥temnd centring distribu-
tion H. The introduction of an unknown centring distributiéhfor Fy', Fy, ... F7}
encourages posterioridependence between the distributions. This model is appro-
priate if the distributions can be considered exchangeatniedefines a particular type
of dependence between distributions, as discussed iro8et:ti

Several alternative approaches to modelling correlatgtilolitions have been pro-
posed. The bivariate Dirichlet process (Walker and Muli@@03) introduces latent
variables to encourage dependence between two conditidndkependent distribu-
tions which are given Dirichlet process priors. The disttilns could also be mod-

elled explicitly as
oo
Ff =% pudo,
k=1

whered, denotes a Dirac measureagtwhile ¢+, ¢2, ¢3, ... is an infinite sequence of
iid random variables an )~ , p;r = 1for j = 1,2,...,J. The construction of priors
for {p;} is technically challenging but some possible construstiare described by
Ishwaran and Zarepour (2009) and Leisen and Lijoi (2010).ivdpker approach to
defining dependent random measurgs Fy, ..., F'; arises from taking mixtures of

distributions. Muller et al. (2004) discuss such a methpthling
Ff =wFy+ (1 —w)F;

J

2
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where0 < w < 1andFy, F1, ..., Fy are distributions. Each distribution is a mixture
of a common component;,, shared by all distributions, anfl; which is specific
to the j-th distribution and will be termed an idiosyncratic distriion. The weight
w controls the dependence between the distributions, wigetaveights associated
with greater dependence. This idea is extended to spatiblegns by Rao and Teh
(2009). This paper will build on this framework by allowingetweight to depend on
4, allowing F7to have a given marginal prior and introducing more efficidairkov
chain Monte Carlo (MCMC) methods for posterior simulation.

The paper is organised as follows: Section 2 discusses senmexa ideas about
modelling correlated distributions and possible appreacBection 3 describes MCMC
methods for fitting our models, Section 4 includes applwatiof the methods to simu-
lated data and an economic example, and Section 5 providssf @iscussion. Proofs

are grouped in the Appendix.

2 Modelling Correlated Distributions

As mentioned in the introduction, a common way of inducingetelence between
data from different studies is to assume that their undaglyistributions are corre-

lated. A full hierarchical model could then be of the form:

ind.

}/j]” ~ f(}/3279]271/))7 i:1a27"'aNj7j:1727"'7J

0;; " Frj=1,2,...,]

FrFS,. . F5~h(X), j=1,2,...,J (1)

Y~ (@), A~ 7(A).

In the above); are data from/ different groups of sized/;, N,, ... and N, while
6;; are the parameters to be flexibly modelled using nonparamewrrelated dis-
tributions, which have priok. In this paper we will focus on defining appropriate
priors for the random distributions’*. The model also includeg which are (poten-
tial) additional parameters in the distribution5f; given;; and which groups the
parameters of the prior distribution &f', j =1,2,...,J.

In the simplest case of two correlated random distributidims following lemma

gives a representation of the mixing distributiafis and £ as mixtures.
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Lemma 1 If F}" and Fy are discrete probability distributions, they can be regreted

as
* _ (0) _
Fl —€F0—|—(1 6) [(plFl —l—(l (pl)Fl

Fy =cFy+ (1 —¢) [@21’2(0) +01- <P2)F2}

where0 < g, 1,09 <1 andFl(O) andFQ(O) share no atoms but have atoms in common
with Fy, while F} and F5 are discrete probability distributions which share no akom
with each other or withf, Fl(o) and FQ(O) .

This representation is hard to work with sinég shares atoms witlFl(O) and FQ(O)

and so must be modelled by correlated priors. In fact, theaehotiMuller et al.

(2004) assumes that; = ¢» = 0, which avoids modelling this correlation. This is
not a terribly restrictive simplification sincE’l(O) and FQ(O) can be approximated by
placing points mass “close” to the points&f. At the other extreme, the Hierarchical
Dirichlet process (Teh et al., 2006) assumes fhat o = 1 and all atoms are shared
by all distributions. The most general model involving mids of random measures

which share no atoms arises when

Fl* =e1Fp+ (1 — El)Fl,
F2* = eoFpy + (1 — 62)F2. (2)

The model of Miller et al. (2004) assumes that= ¢5. In this paper, we will restrict
attention to the model in (2). This model allows for a simpiteipretation off as
the common part shared " and Fi;', whereast; and F; are idiosyncratic parts.
Bayesian inference in this model involves placing priorstiom parametersy,
Fy, F5, 1 andes. Itis natural to assume that, F; and F5 are independent random
probability measures since they share no atoms. Howevewaudd often want to
assume that; andeo are correlatea priori since they will usually relate to distribu-
tions under similar conditions. The two correlated disttitns can then be naturally
embedded at an intermediate level of a larger hierarchicalan The intermediate

levels of the hierarchical model in (1) will then be the feliog:
0;; " F7, whereF; = ejFy + (1—¢j)F;, j=1,2
ind.

F; "™ DP(M;, H(N)), j =0,1,2 @3)

€1,€2 N7T(€1,€2)

4
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ind

Mj N'W(Mj),j:O,1,2,

where we have chosen Dirichlet Process (DP) priorsgforThis paper will focus on
DP priors, but other nonparametric priors can be consid@eeiffin et al., 2010). We
employ different concentration parameters for the three, DBt use the same centring
distribution, H, with parametei. In this way, the two distribution$y” and £ share
information, not only througtty, but also through the common base distributién
and their common parametar

The hierarchical model of Milller et al. (2004) fér= 2 is a special case of model
(3), wheres; = g9 = ¢ and a certain prior distribution is given to the common wgigh
€. However, the form of the model described in (3) has somadite features which

will be investigated in the following two subsections.

2.1 The Normalisation Model

The model forF} and F5 in (3) can be constructed by normalising sums of Gamma
processes. Let Ga, b) denote a Gamma distribution with shape paramegerd mean
a/b and use the notatiof ~ I'P(M, H), whereM > 0 andH is a distribution func-
tion, to represent that follows a Gamma process for whi€l(B) ~ Ga(M H (B), 1)

for all measurable set8. The model in (3) can then be obtained in the following
way. LetGy, G; and G, be independent and; ~ T'P(M;, H) for i = 0,1,2

and defineG; = Gy + G; andG5 = Gy + Ga. Then,G; ~ T'P(My + M, H)
andG3 ~ FP(MO + Mo, H). NormalisingG7 to give F} = G?(Q)
Fy = leads toF} ~ DP(My + M, H) andFy ~ DP(My + Mo, H) (Fergu-

and, similarly,

G*(Q)
son, 1973). Then,
FH(B) Gi(B) Go(Q) Go(B) n G1(Q) G1(B)
' Gi(Q)  Go(Q)+Gi(Q) Go(Q)  Go(Q) + G1(Q) G1(Q)
= ea1lo(B) + (1 —e1)Fi(B)
wheree; = W(G)ﬂﬂ) Fy(B) = gggg; and F1(B) = giggg It follows from

the properties of Gamma processes thatf; and F; are independent and that ~
Be(M(], Ml), Fy ~ DP(M(), H) andFy ~ DP(Ml, H) Similarly,

FZ* = €2F0 + (1 — EQ)FQ

where Fy, ~ DP(My, H) andey ~ Be(My, My). So, forM; = My, Ff andF;
are identically DP-distributed, but not independent, duthe common parfy. The

5
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same holds for the two weights, which are both marginaliauis$tributed, but are

not independent. In fact, their joint density is

T(Mo + 2M;) eMorMim1(q _ o )Mim1 Mot Miml(y _ ) yMi-1
F(MO)[F(MI)]2 (61 + &9 — 5162)M0+2M1 )

for0 < eq,e0 < 1.

So, we can construct correlated distributions with DP nmeaigi with parameters
M and H by taking weighted sums of independent DPs with the samedistsibution
H. This idea could be extended to larger numbers of distibstior any process
constructed by normalising a random measure with indepgriderements (James
et al., 2005), as discussed by Griffin et al. (2010). Howetnermodel with Dirichlet
process marginals is the only one where the weights are émitemt of the component
random distributions. This is due to the properties of then@a process and does not

hold for any other infinitely divisible process.

2.2 The Singles Model

The model defined by normalisation leads to correlated vigigrands,. A simplified
version of this model assumes a common weigdmd is closer to the model of Muller
et al. (2004). The model is

0;; ~ Fy, whereF; = cFy + (1—¢)Fj, j=1,2

Fy ~ DP(Mo, H(X)), Fi, F> “S DP(M;, H(\)) (4)

g~ BG(MQ, Ml)

Mo, My " Gaag, by), A ~ ().

The simplifications; = &5 allows for more direct sharing of information between the
two distributions (since the weights are now the same rdktzar just correlated). This
sharing of information can be particularly useful in caseew observations from one
or both distributions. On the other hand, unless someonarticplarly interested in
inferring the weights, ande,, not much is lost by having the same weight, because
of the nonparametric, flexible modelling 6§, F; and F,>. Most of the posterior mass
for the weight will be assigned to the minimum of the weightsating the data and
a (usually small) proportion will be assigned to values velnse to zero. This is a

direct result of model fitting and Ockham’s razor, as exm@dim Muller et al. (2004).

6
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2.2.1 Properties of the Single= Model

The Singles model has some very nice properties, both theoretical amghatational,
many of them a direct consequence of the way it was consttudie this part the
theoretical properties will be presented, whereas the otetipnal implementation of
the model is discussed in Section 3.
First of all, the marginal distributions df; andF% can be shown to be (see Ap-
pendix)
Fy, Fy ~DP(My+ M, H). (5)

Next, using the distributions df}", F, Fy, F1, F»> ande and the (conditional on/y, M)
independence afwith the F;, j = 0, 1,2, itis straightforward to derive the following

moment results:

Theorem 1 Let 2 denote a probability space anfl the o—algebra of{). Let also
Ff =eFy+(1—¢)F}, j =1,2, Fy ~ DP(Mo, H), F1, F> % DP(M,, H) ande ~

Be(My, M;). ThenV A € F,

E(F7(A)) = E(F3(A)) = H(A),

Var(Fy(A)) = Var(F5 (A)) = Hﬁz)[j ]\_41]5:5/11)]’
and
Corr(Fy (A), F5 (A)) = ﬁ

The last expression is an interesting result, as it indscttat the correlation between
the masses allocated to a seby F} and £ does not depend oA or H.

Let s denote the vector of all allocation parameters, assignaul elata point to
a distinct value in the Dirichlet process. The exchangepheluct partition formula

(EPPF) of the Dirichlet process with mass paramétehas the well-known form

e LOD Frl
p(s|M) = Mkm Ellr(nz) (6)

where there ard( distinct values with data points allocated to them ands the
number of data points allocated to th¢h distinct value. Next, the EPPF and the
Poblya-urn representations for model (4) are derived. tfepto do this, it is useful to
notice that the model faF;" andF5 in (4) is a mixture model, so we introduce two sets

of indicators,r;; andsj;, i = 1,2,...,N;, j = 1,2. Thery; are binary indicators,

7
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taking values 0 and 1, depending on whether the underlyirgnpeterd;;, associated
with the (j,7)—th observation, is drawn from the common part or the idiosstic
part: 0;; ~ Fyif rj; = 0and;; ~ F;if rj; = 1fori = 1,2,...,N;, j =
1,2. The indicatorss;; assign each;; to one of the discrete values of the component

distributionsF;, j = 0,1, 2 (given the value of-;;):

0i; = o, fry;=0
5ji = [N ji (b(]k . i
O0ji = Gji, frj=1
whereg;;, i = 1,2,...,K;, j = 0,1,2 are the discrete values in eaghand K is
the corresponding number of those clusters in use (for ekafip is the number of

distinct s1;, for whichr; = 1).

Proposition 1 The EPPF for model (4) is:

2 Kj
(Mo + M) Koy pEi+K: L (M1 +mn1 +ng)l
M) = Mo K
p(s, r|M) D(Mo+M;+N) % 1 L(My +ny)T M1—|—n2 HU (75:)

(7)
wheres denotes the vector of ail;, r is the vector of allj;, M = (Mo, M;), N =
N1+ N is the total data sizel(; is the number of clusters in component distributjon
inusen; ; is the number of data allocated to tii¢h cluster of component distribution

Fjandn; = Zf{:jl nj; is the number of data allocated to compongr {0, 1, 2}.
The Polya-urn representations for the same model can balaoved:

Proposition 2 Suppose thaﬁm, 91,2, o ,917]\[1 ~ Fl* and 9271, 92’2, . ,927]\[2 ~
F3. The Blya-urn representations for model (4) will be as follows:A € F and
j=1,2

P (9]'7]\[].4_1 S A’D) = 'wQF()(A) + ij}(A) + (1 — Wy — wj)H(A)

Mi+N—-ng _ "1y

_ no J—
wherew) = 3=3=x% W; = 335N Mi+n; and
K;
Fy = —Znﬂ&)ﬂ, 7=012.

i=1

Here D denotes the set of all data and the rest is as in Proposition 1.

The distribution of a future observatid) v, 1 is drawn from a mixture of the em-

pirical distribution of the observations allocated to tloenenon componentk}), the

8
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empirical distribution of the observations in grogpvhich are not allocated to the
common components;) and the centring distributiof .

Instead ofd/, and M, one can also use the alternative parameterisatien)/; +

My andy = Mﬁ%y Based on the results of Theoremylcan also be interpreted as
the prior correlation betweeR;"(A) andF5 (A) andx as a precision parameter of the
prior distributions ofF}(A) and F5(A). This reparametrisation is helpful when we

have some prior beliefs about those two quantities and alleswto rewrite (7) as

p(&""‘%y) = R1k2K3, (8)
where
I(x) 2
_ Ko+ Ki1+K N
S vrm KA | § D EC
7=01=1
ko =y (1 — y)frihe,
and

Lzl —y) +n1+n)l(z(1 —y))
I(z(l—y) + )@l —y) +n2)
Note from (6) that the factok; relates top(s|z) if we were to sample from a single

R3 =

distribution with a DP prior with precision parameter= M, + M. The second part
ko Ccan be seen as the contribution to the joint distributionsgitting” the discrete

values from this joint DP to the common part and to the idigsgtic parts, with

corresponding probabilitieg = MﬁOMl and1 —y. Finally, x5 refers to “splitting” the

data not allocated to the common part into the two idiosyicarts.

Likewise, under the assumption that the allocation of olst@ms between the
different components is in line with the prior so that on agem, = Ny andn; =
N;(1 — y), the weights in Proposition 2 can be written@ag = yac-i-LN andw; =

(1-1y) xivjv Both weights are expressed as linear functions of the pateam,
J

measuring strength of dependence, multiplied by a termwheéts larger asv; gets
larger orz gets smaller, which controls the contribution of the enggiridistribution
to the predictive.

Whereas the Singleimodel and the model of Miller et al. (2004) are very similar,
they have some notable differences in their behaviour agid phoperties. The reason
for that lies in the way these models were constructed. Ireigénone can argue
that the model of Miller et al. (2004) is more flexible, sirtbe construction of the

prior distribution fore is a more general one, and there is one extra paramefgy: (

9
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On the other hand, the construction method used here is a systematic one, and
induces some nice properties. In model (4) the random bligions F}* and F; are

DP-distributed, whereas this is not always true for the othedel. In model (4) the
expressions for the first two central moments and the cdioalatructure are very
simple and easy to use. The corresponding quantities fomtiael of Miller et al.

(2004) are easy to derive, but more complicated. The sanus liot the Polya-urn
representations and the EPPF. Another nice feature of (B®imice intuitive form of

expression (8).

3 Computational Methods

In this section we describe the MCMC methods used to fit a fabieal mixture
model with a Single= or Normalisation prior for a pair of correlated distribui®d As

in Mller et al. (2004), we assume that the sampling mgd&l;;; 1.;;,.S) is a normal
distribution with mearu;; and variances and thatu;; ~ F. The base distribution
H follows a normal distribution Nn, B). The meann is assigned a normal prior
with parametersny and A, the varianceB is assighed an inverse gamma distribution
with shape parameterand scale parametet”, 1Ga(c, cC') (so that the prior mean
of B is £ (for ¢ > 1) and the prior variance |§% (for (¢ > 2)), and the

variances is also given an inverse gamma distribution with parametarsdqgR. The

full Single= model can thus be written as
Yji ~ N(@ji, S), i =1,2,...,N;, j =1,2

pji ~ F, whereF; = el + (1 — ) F}
Fy ~ DP(My, H), F; % DP(My, H), whereH = N(m, B) (9)
e ~ Be(My, M)
Mo, My " Galag, bo), (m, B) ~ N(mo, A) x IGa(c, cC), S ~ 1Ga(q, ¢R).

In order to simulate from the posterior distribution of mb(#, we use a Polya-
urn scheme and use the fact that the sampling model and theéngedistribution are
conjugate. As in Muller et al. (2004), we use the indicatogsr;; and the discrete
values¢;; defined in Section 2.2.1. The posterior distribution inesly, s, {¢;;},
My, My, e, m, B andS. The full conditional distributions of all parameters whi¢

10

CRiSM Paper No. 10-22, www.warwick.ac.uk/go/crism



the same as in Milller et al. (2004) witfi, = M;, except for the parametets M

and M7, on which we will focus in the next subsection.

3.1 MCMC sampler for the Single< model

The full conditionals ofM,, M7 ande are:
o |- ~Be(Mo+N—3;,rji, Mi+)_,; ;) which can be simulated directly.

a —l.— —lo I'(Mo+M-
° f(MO‘...)O(Moo—i-Ko 1—Mol[bo @(@]W and

M-+ o 2 KoKt i1=0) FOIIAAL i can use

Random Walk Metropolis-Hastings (RWMH) steps for thesepaaters.

The marginal posterior distribution afis often bimodal which can cause slow
mixing for the algorithms described so far. To combat thizhem, we introduce an

additional split/merge step.

3.1.1 The Split/Merge Step

The split/merge step allows faster movement between theemoftithe marginal dis-
tribution of . The basic form of this extra step consists of first choosihgtiver we
will propose a mix or a split move (with probability 1/2 eaar)d then calculate the
Metropolis-Hastings acceptance probability. If a splépsts chosen, we uniformly
choose a cluster froni; and propose to split it into two clusters, onefih and one
in I, (or move it to eitherF or Fy, if this cluster contains only data from the first
or second data set, respectively). If a merge step is chesemniformly choose a
cluster fromF7y, or an empty cluster, and a cluster frar, or an empty cluster, and
we propose to merge those two clusters (or move a clusterafé of the two cases
an empty cluster is chosen) to a common clustdrgn

This split-merge step is a Metropolis-Hastings updatehsatceptance probabil-
ity in each case needs to be calculated, which depends ommevteesplit or a merge
step is selected and on the existing and proposed alloaaitibie indicator parameters
SjisTiiy 1 =1,2,...,N;, j =1,2.

In the following, let Ky, K1 andK, denote the number of clusters in compo-
nentsky, F andF;, respectively, in use (i.e. the number of distirgt within each
of Fy, F1 andFy, according to the correspondimg’s), mg; andmg, denote the num-

ber of data from each data set associated with a chosenrdlugigin a split step and

11
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let m1, mo be the number of data from each data set associated with tisercttius-
ters in Fy, F» respectively in a merge step. Let alspandns, denote the current (i.e.
before the proposed mix or split step) number of data asdigneach idiosyncratic
component distributionf; and Fy, respectively.

To simplify expressions, we will write the multinomial Béfianction asB(a) =

[1T(a:) ;
" a) and define

1

e(mi,ms) =exp {—5

(m1+ma)m? —2m(3 Y]+ 3 V3) = Z(X Y + X V))?
(my +mo)B+ S

{1 [m1m2—2mZYf—%(ZYf)2 }
X exp q 5

miB + S
d(my,ma) = \/(S[(m1 + mg)B + S|

}

moB + S

and

{1 [mng —2m Y Yy - E(3V))?
X exp 5

The sums appearing ie(m1, m9) are taken over th&y; or Ys; associated with the
clusters chosen to be split or merged. The algorithm for gigreerge step and the
corresponding acceptance probabilities, ¢’), wherec = (r,s) is the current and

¢ = (r’,d) is the proposed complete vector of indicators for modeld as follows:

Split‘Merge Method:

1. Choose split or merge, each with probability 1/2.
2. If a split step is selected:
(a) If Ky = 0, we do nothing (we exit the split/merge step), since thereis n
cluster to split (or move to eithdr; or F3).

(b) Else, we choose a cluster from the common p&g) (iniformly. We then

propose to:

e move this cluster to one of the two idiosyncratic pa#fs,(F3), if the
data associated with the chosen cluster come only from thteofithe

second data set, respectively.

e split this cluster to two clusters, one in each of the idi@sgtic parts,

if the related data come from both data sets. In such a casalatia

12
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from the first group will be moved to the new clusterfinand the data

from the second group will be moved to the new clusteFin
The acceptance probabilitiegc, ¢’) will be as follows:

i. If we propose to move a cluster frofy to Fy,, k = 1,2, say the clus-

ter corresponding to thé-th discrete value itFy, ¢oq,

i My B(Mi+ni+na+mop, Mi+nyg) Ko
a(c, ) = min {1’ Mo B(Mi+ni+nz,Mi+nz_g+mor) (Kp+2)(Kz—p+1)-1 |

ii. If we propose to split a cluster to botf; and F5, say the cluster cor-

responding to the d-th discrete valuehl, ¢qq, the acceptance proba-

bility will be:

. M?2 K d(mo1,mo2)
a(c,c’) = min {17 Mo CTRF) (KT =1 e(mgimg;)}
where

_ B(Mi+ni+nz+mo1+moz,Mi+n1,Mi+n2)
— B(Mi+ni+n2,Mi+ni+mo1,Mi+n2+mo2) B(mm’ m02)'

a

We accept the split with the corresponding probability abo@therwise,

we do nothing.
3. If amerge step is selected:

(a) If K1 = Ky =0, we exit, since there are no clusters to merge.

(b) Otherwise, if onlyK; = 0, k = 1,2, we propose to move a cluster from
the other idiosyncratic part to the common one. In other wong propose
merging a cluster frond’;_;, with an empty cluster fronk},, & =1, 2.

In this case, we uniformly choose a cluster from the othevsigicratic
part (corresponding to, sayz_ ¢q) and move it to the common part with
probability a(c, ¢’) = min {1, Mo Kok }

If the step is rejected, we do nothing.

(c) Ifboth K, and K are positive, we uniformly choose a cluster frémor an
empty cluster (in which case we just move a cluster filgno £y), i.e. each
cluster (including the empty cluster) is chosen with prolitgb1 /(K +
1). We similarly choose a cluster froh, or an empty cluster. If two
empty clusters are chosen, we repeat the above draw, sisaadhging is
prohibited (in order to have a reversible MCMC algorithmheTacceptance

probability in this case will be:

i. If we propose to transfer the selected cluster frBpto Fy, k= 1,2,

o Mo B(Mi+ni+ne—my,Mi4ng) (Ki+1)(Ko+1)—1
a(c,¢) =min {1, My B(My+ni+na, Mi+ng,—my) Ko+1 '
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ii. If two existing clusters are chosen, corresponding &y, &b14, $24)s

the acceptance probability is:

. Ki+1)(Kao+1)—1 ,
a(c,c) = min {1, 4y o (e )=t com.ma) |

where

_ BMi+ni+ne—mi—ma,Mi+n1,Mi+n2) 1
B(Mi+ni+n2,Mi+n1—mi,Mi+nz—m2) B(mi,ma)"

a

If the proposed step is accepted, we perform the merging.

Otherwise, we do nothing.

The reason for including empty clusters when randomly pigldglusters in the merge

step is to guarantee the reversibility of the Markov chaihisTs because the act of
merging an existing cluster from, sy, with an empty cluster (i.e. moving a cluster
from F} to Fp) is the reverse of moving a cluster frofg to £, which will happen if

we propose to split a cluster iy that is associated only with data frofj .

3.2 MCMC sampler for the Normalisation model

Now, we consider the Normalisation model described in Sethse 2.1 withM; =

M. Itis useful to write

_ o
Y+’

£ j=1,2

whereyy, 71 and, are mutually independent withy ~ Ga(My, 1),y ~ Ga My,1) and

v2 ~ Ga(Mi, 1). Itis computationally more convenient here to work with plagametri-

i i — _ 70 — _ 70
sation~yy,y; and~, instead of:; = o andey = e The parameters that need
to be updated differently to the algorithm for the model irct8m 3.1 areyg, v1, Y2,
My and M, . We also describe the necessary expressions to use thengplie move.

The joint full conditional distribution for the’s will be:

fOvo, 7172l --0) o< f(volMo) f (yi | My) f (2l Ma) f (770, 715 72)

Mo—1_—~o Mi—1
€ 2

x 7 gl g

< " >Z7"1i < Y >N1—Z r14 < Yo >Z7”2i < Y >N2—Z r2i
Y + 7 Yo + 7 Yo + 2 Yo + 2 '

In order to simulate from the above distribution, we use themiity

/ e"%dt =1/a
0
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and introduce latent variabldg,; for k = 1,2 andi = 1,2,..., N, and defindJ to

be the set ot/;;, so that

2 N

Ml— Ml— Ml 1mm +7%)Uki
f(707717727U|...)o<700 0~ M M-l WHHV yikie™ (vo+7%) Ui

k=1i=1
Integrating acros$&/ leads to the correct distribution. Therefore, considerabg-
mented vector of parametefsy, 71,72, U). In this case, the full conditional distribu-
tions are of known form:
Uil -+ ~Exp(yo + ), k=12, i=1,2,..., Ny,
Yol -+~ GAMoy + Ny + Na = 35y S i 1+ Yy Soity Ui,
Yl -+~ GAMy + SN v, 1+ SO Upy), k= 1,2,
Here, Exgf) denotes the exponential distribution with meg.

The full conditionals ofM/y and M, due to the different prior of the weights (ac-
tually, the priors of they's), will be:
f(My|--+) x M80+K0_16_b0M07éw° 7F(J\/[0+no) and
FOMy] -+ ) oc Mot FitRa=le=boMi i M 1"(Ml+n1)1F(M1+n2)

whereK; andn; are as before. Since the above distributions are not of amylatd

form, Metropolis-Hastings updating steps can be used talabe from them.

Despite the fact that now there akg + N, auxiliary variables, the simulation time
is not increased substantially, since the full conditiatiatributions of these auxiliary
variables are of known form, and therefore easy to sampla.frédlso notice that,
since the size of these auxiliary variables is equal to the siae, there will not be any
additional problems of varying dimensionality of the paeten space.

Additionally, an extra split/merge step, similar to the gresented before (the
differences will be in the acceptance probabilities) cao &le incorporated in this al-
gorithm and help improve mixing of the chains. The corresliog acceptance prob-

abilities will now be: N "
- ) 1+Z?: lej Usi 0(3—k)

1+Zi:1 U
1,2,
N; mo1 N mo2
N . M2 (142 0 Uy 1+ 5, Us
2b, i) Oé(C, C,) =min< 1, W M M a p ,where
0 1430 Uy 14302 Uy
d(mo1,mo2) Ko

a= B(mm’ m02) e(mo1,mo2) (K1+2)(K2+2)—

m3_g
14>, " Uz g K3 i
3b)a(c,c) = mln{l, M, . #> s } k=1,2
M N; Ko+1 ) <
! 1""2?:1 21;1 Uji oF
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)
M, 1_,’_2] 122 1 Ko+1

mi N ma2
1 1 2 Uy,
< _ LT U U > <—+221‘1N,2 > a} ,where
1 1+Z] 1Zz 1 1+Zj:1 Zi:J1 Uji

e(mi,meo) (K1+1)(K2+1)—
B(ml,mg) d(m1,m2) K0+1

3c, i) a(c, @) mln{ My . < 1+5 1 Ui >mk : —(K1+1)(K2+1)_1}, k=12,
3c, i) a(c, ) mln{

a =

4 Applications

4.1 Simulated data

The models developed in this paper were applied to a sintlildé¢a set with two
groups which each contained 200 observations. The dataoupdt were generated
from the distributior0.5N(1, 1)+0.5N(—10, 1) and the data in group 2 were generated
from the distributiorD.7N(1, 1) 4+ 0.3N(8, 1). We apply the Single-model to the data

09r 1 0.9

0.8 1 0.8

Figure 1:Trace plot for the posterior af with (right) and without (left) the extra split/merge step

for model (4) for the simulated data set.

taking f(Yjs; 05, 5) to be a Nbj;, S), together with the rest of the prior distributions
in (9) (with ag = by = 0.5,mg = 0,4 = 10,¢ = 2.1,C = 2,¢ = 0.01 and

R = 0.0001) and use the MCMC sampler with and without the splittmergp.sThe
trace plots for the weight are shown in Figure 1. The posterior distributionsas
bimodal, with modes at 0 and 0.5 (the minimum of 0.7 and 0.%lissussed earlier).
The trace plots also illustrate a possible mixing problerthaalgorithm without the
split/merge step. The splitymerge step improves mixindnefdhain by increasing the
frequency of the jumps between the two modes.dfhe move has a 4.5% acceptance

rate of split steps and 4.6% acceptance of merge steps. Tthe at@ is quite large in
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this case. However, the mode could be much smaller with did@rand the algorithm
without split/merge moves might not visit the mode at zera nreasonable number of
iterations. As a result, we used the algorithm with the aoloti split/merge step in all

subsequent analyses.

R
]

Density

O P N W A 00 O N 00 ©
i T T
I

L L
0.2 0.4 0.6 0.8 1

o]

Figure 2:Posterior density of the weightfor model (4) for the simulated data set.

The posterior density for the weights shown in Figure 2, which puts most of its
mass on values around 0.5 (which is the minimum of 0.7 and Bd)this value fok,
note that we can perfectly reproduce the distribution geiveg the data by takingy
to be a point mass at oné; a point mass at -10, ankh, to put weight 0.4 on a point
mass at 1 and 0.6 on a point mass at 8. The predictive densitissssponding to the
component distributions’; (left) and the correlated distributiods’ (right) are shown
in Figure 3. Indeed, we notice from the predictives corresjitg to the components
that F is concentrated around the (correct) valuefy,is concentrated around -10
and F, is bimodal, with aboutt0% of the mass around 1 and the rest around 8. The
posterior ofe also has a smaller mode around 0. This value obrresponds to the
case without a common part and explains the small second atddfor F7.

The predictives for groug (corresponding taFs, j = 1,2) closely match the
distributions from which the data were generated. For caimpa purposes, the latter
distributions are also plotted on the same graph, usingedblafes.

The posterior mean, median and 95% credible intervals foptrameters in this
model are shown in Table 1. The values of the concentratioanpetersiZy, and M,
are quite small, indicating thaty and F;,j = 1,2 are quite far from their normal
centring distribution. Indeed, it turns out from the infece onk;, j = 0, 1, 2 that the

number of clusters is quite small indeed, with only onefgrand F; in the median,
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0.2r

Figure 3: Predictive densities for the component distributidis(top), £» (middle) andF; (bot-

tom) (left-hand panels) and df}" (top) andF; (bottom) (right-hand panels) using the Single-

model for the simulated data set. Dashed lines indicateitftieluitions that generated the data.

My M, K K Ky
Mean| 0.199| 0.221| 1.215| 1.319| 2.022
Median| 0.138| 0.168| 1 1 2
2.5th perc| 0.010| 0.013| - - -
97.5th perc 0.722| 0.746| - - -

Table 1: Posterior mean, median and 95% credible intervals for tmanpaters in the Single-

model for the simulated data set.

and two for F5, as expected. So the inference corresponds quite acgutatéhe

distribution that generated the data.

Results with the Normalisation model lead, as expectedemsities fors; andes

that concentrate most of their mass around 0.5 and 0.7,ceggg, and the resulting

predictive distributions are very similar to those foundhathe Single= model.

4.2 Hospital efficiency data

Stochastic frontier models were introduced by Aigner e{77) and Meeusen and

van den Broeck (1977) to model the efficiency of firms. We valhsider a cost frontier

for hospitals. The frontier corresponds to the minimum @dgbroducing a certain

level of outputs, given specific input prices and repres#mtstheoretical scenario

18

CRiSM Paper No. 10-22, www.warwick.ac.uk/go/crism



where a hospital is fully efficient. The observed cost is nledeby
Yije = a + X0 + uij + vige, 1<i<N;, 1<t<T,j=12 (10)

whereY;;; is the logarithm of cost and;;; is a vector of output levels and input prices
for the-th hospital in thej-th group in time period, while o + X{jtﬁ is the frontier.
We have two types of error terms in (10). The first ertgy;, accounts for the uncer-
tainty regarding the location of the frontier and is assutioelde normally distributed
with mean 0 and variance®. The second error termy,;, captures hospital-specific
disturbances and represents the loss with respect to fidiezfcy. This inefficiency
error can only take positive values, and is assumed to reamgistant over time (the
implications of relaxing the last assumption are discusseBernandez et al., 1997).
The two sets of error terms are taken to be independent of@aeh The efficiency
for firm 4 in groupy is then defined asxp {—u;;}, i =1,2,...,n,j = 1,2.
Understanding the effect of firm characteristics, such asag@ment structure or
regulatory framework, on the efficiency distribution is emgortant aim of stochastic
frontier models. If the firm characteristics are discrele, firms can be divided into
groups and the problem then reduces to modelling the eftigidistribution for each
group. Griffin and Steel (2004) describe a Product of Digtirocesses model for a
Bayesian nonparametric analysis in this case. An altemnafpproach, based on the

methods developed in this paper, uses the following model:

ind.

Yije ‘=" N(a + X[;,8 + ugj,07), 1<i<N;, 1<t<T, j=1,2,

uijNF;:EFoﬁ—(l_E)Fj, 1SZ§NJ7,]:1727

ind.

Fk ~ DP(Mk7H)7 k= 07 1727 H ~ Exp()\)a
My/mo “ InvBe(n,n),  k=0,1,2,
and
fa,8,0%) occo™?, X~ Exp(—log(r")).

The prior for A (the inverse mean off) is chosen so that prior predictive median
efficiency isr* (as in Griffin and Steel, 2004) and a noninformative prior(ter3, o2)

is assumed, which leads to a proper posterior distributienshown in Fernandez et
al., 1997). An inverted beta (gamma-gamma) distributioar(rdo and Smith, 1994)

for the precision parameterg, M, andM-> (each divided by a hyperparametgy,
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which is the prior median) was adopted, as in Griffin and S&@04). For the Single-
¢ and the Normalisation models we assume the same prioesaiod~y,,y; andy, as
before.

The data refer to 268 nonteaching hospitals in the U.S.Aafperiod of " = 5
years, from 1987 to 1991, which are a subset of those analyg&ttiffin and Steel
(2004) and Koop et al. (1997). The same frontier as Koop €t18B7) is used and
the interested reader should consult that paper for itsifsggon. In particular, we
focussed on non-profit hospitals, which were divided into tategories according
to the number of clinical workers per patient, which is tednistaff ratio”: a binary
variable taking the value 1 if the average (over the yearf)efatio of clinical workers
per patient for a specific hospital is higher than the medfdhase averages of all 382
hospitals in the full sample, and 0 otherwise. This led torapa of 141 hospitals
with staff ratio of O (group 1) and 127 hospitals with statigaof 1 (group 2).

The models were fitted with* = 0.8, n = g = 1. The value ofy, implies a prior
median value of 1 fotM, My andM,. The posterior distributions were simulated
using the MCMC algorithm with the split/merge move.

We first considered the Singtemodel applied in this setting. The acceptance rate
of the split steps in the split/merge step was aro2hd%, whereas for merge steps

the corresponding rate was aroun@l8%. The posterior distribution of the weight

POSIErior aistripution or MU
T T T T T T

/ \\\T“#

0 2 4 6, ; U 2 1‘4 1‘5 18
Posterior distribution of M1

Figure 4: Posterior distribution of (left), M (top-right) andM; (bottom-right) for the Single-

model applied to the non-profit hospitals.

parametek is shown in the left panel of Figure 4. There is a very small enatd0
(which corresponds té}" and F; not having a common part) and two larger modes at
1 (the case of}" andFy coinciding) and around 0.88 (roughly speakidg, and F;
sharing around 88 of their mass). The distribution illustrates the impor&mnd the

split-merge move. The mode at O is unlikely to be sampled auittthe split/merge
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merge.
The right-hand side panels of Figure 4 show the posteriositles of My and M; .
The posterior distribution ol{ is flatter than the one af/;, which is peaked below

1, indicating thatt, and F;, are very far from their expected centring distribution.

FPTEQICUVE (ENSITy Tor tne EmCIENCIES N e WO groups Predictive cdf for the efficiencies in the two groups
T T T T T T T T T T T T T

00251

0021

00151

Density

001

00051

Figure 5: Predictive densities (left) and cumulative distributidright) for the efficiency of firms
in the low staff ratio (solid line) and the high staff raticogp (dashed line) for the Singlemodel

applied to the non-profit hospitals.

The predictive density of the efficiency of a new firm in eachlad two groups
and the corresponding cumulative distribution functiocdf) are plotted in Figure 5.
The results resemble those of Griffin and Steel (2004). Fawmd, there is a mode at
1, an antimode around 0.95, a “bump” around 0.86, a largerenad®.7 and a bump
around 0.75. One difference is the mode around 0.67 of Guifid Steel (2004),
which is now transposed to the left, around 0.6, and looksertike a bump. For the
second group, we have the same large mode at 0.7 and bumpsl &&7 and 0.75.
In this case, there is also a tiny mode around 0.47. For tlgik kiaff ratio group,
the main difference with the results in Griffin and Steel (203 the behaviour close
to full efficiency, as in Griffin and Steel (2004) the mass & tiredictive density is
decreasing as the efficiency approaches 1, whereas heegdteesmall mode around
1. However, overall the results are very similar. The rigtapip of Figure 5 clearly
demonstrates that the first group (non-profit hospitals \ath staff ratio) is more
efficient than the second group (non-profit hospitals witthhétaff ratio). It is also
interesting that this occurs in a rather specific way withramméase of probability of
about 0.06 around 0.65, and this difference is more or lessepved up to 0.9 or so,

where the two cdf’s start to coincide.
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Another interesting point here is that, comparing the mtaa densities corre-
sponding taF} and F, it becomes clear that their main differences are in thevate
(0.6,0.7) (whereF'y has more mass) and the interval (0.8,0.9) (where the oppissit
true). In other words, it can be said that some mags;aih (0.8,0.9) has been moved
to (0.6,0.7) forFy. This difference is also clear from the predictive densité the
component distributiong’, £, and Fy in Figure 6. This graph is helpful in providing
a better insight as to where the characteristics of thosdiqinees come from: the
large mode at 1 and the bump around 0.86jnare due to the idiosyncratic pak,
whereas the mode around 0.7 and the bumps around 0.75 anoh@e&iom the com-
mon partFy. As for F5, the small mode at 0.47 is due to its idiosyncratic gastthe
mode at 1 and the bump at 0.85 are duégpthe bump around 0.75 is mostly (but not

completely) due tdy, whereas the bump around 0.67 is duéto

Predictive density for the efficiencies in F1
0.04 T T T T T T
_éﬂooa— —
2 0.02— _
[<5)
0O o.o1f-

%3 04 s, o 07 . o5 . 09 1
Predictive density for the efficiencies in F2
0.04 T T T T

2 o0al- J

c 002 B
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0 ooi B
° .
0.3 0.4

I
0.9 1

0.5 0.‘6 0.7 0.8
Predictive density for the efficiencies in F0
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£ 0021 —
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Figure 6:Predictive densities for the efficiency of a firmif (above),F» (centre) andy (below)

for the Singles model applied to the non-profit hospitals.

Next, we applied the Normalisation model on the same data.atheptance rates
were around5.1% for the split steps and arourid.6% for the merge steps, and the
results presented below are taken with this extra step. Asnargl comment, the
results are very similar to the ones of the Singlaodel. The posterior distributions
for the M's were similar, and so were the predictive distributions %, F; and the
component distributiony, Fy, F>, with the only difference worth mentioning being
a larger mode at 1 for all of them. The only practically diffiet posterior result is
regarding the weights, since here we have two, instead ofrotie previous model.

The posterior distribution of the weights is shown in Figdrén both cases, the mode
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Kernel density estimate for =
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&1

Kernel density estimate for £,

(o] 0.2 0.4 0.6 0.8 1

Figure 7:Posterior distribution of; (top) andss (bottom) for the Normalisation model.

at 0 is smaller than before. The largest mode at 1 is presebbfb s, ande,, while
for 1 we have another mode around 0.85.

Finally, we applied the model of Milller et al. (2004) (withr@ughly comparable
prior for the weight) in the same context and on the same t&tding to very similar

results as with the Single-model.

5 Discussion

This paper discusses the use of nonparametric mixture séaletwo correlated dis-
tributions. Several models are developed for representirgrelationship between
two nonparametric distributions, inspired by normalistagdom measures. We also
develop and discuss efficient computational methods whighaunovel split/merge
move to improve mixing. We concentrate on a Dirichlet preeeased framework
which simplifies the derivation and the methodology leadartceffective borrowing
of strength between the distributions. The modelling agpihocould be immediately
extended to more distributions by extending the repretientaf Lemma 1. By mak-
ing similar assumptions, the models proposed in this papeldadhen be extended
to accommodate larger numbers of groups. This is a resedm@ttidn that we are

currently pursueing further.
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A Appendix

A.1 Proof of Lemma 1l
Let F' = 221 wfiéﬁfi’ Fy = Zilwgié%i’ 07 = (07y,075,073,...) and 3 =

(03,,05,,0%,...). Let A = 6% N 65. Then we can write

* * *
Iy = Z wkjjéej + Z wkj(;gzj, k=12
0,€A 07,07 —A

Letw! = min{w};, w3, } for 6; € A, then

Fo= Y uli Yl wli Y iy, k=12
0;€A g;€A 0f €01 —A

and it is clear that the result follows from takiag= ZejeA wj,

* T T
o ZGjGA(wkj - wj) o zgjeA wj59j
k= 0= ——"""+"
* T x 1
2 0;en(wi; — wjy) + zg;;jee;—A Wi 26,64 W)
* T * "
(0 _ zt%EA(wkj - wj)é@j o E%EBE—A wkjéekj
k - ( * T) ’ k= z " " W
ZGJEA Wy; — Wy 0, €05 —A kI
fork =1,2. O
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A.2 Proof of equation (5)

Let A € F and letZ denote equality in distribution. Fdr;"(A), we have that:

Ff(A) = eFy(A)+ (1 —¢e)Fi(A)
-2 bgzgg; . i bgigéi wherea ~ Ga(My, 1), b ~ Ga(Mi, 1)
Go(A) + G1(A)
a-+b
Go(A) + G1(A)
(Go +G1)(92)
~ DP(M() + My, H(A)).

Il

, since als@o(Q) ~ GdM(], 1), Gy (Q) ~ Ga(Ml, 1)

Il

, since(Go + G1)(Q) L a+1b

The same procedure can be useddp(A). O

A.3 Proof of Theorem 1

The first two expressions are a direct result of the fact to# b and £ are dis-
tributed as DPM, + My, H).

For the last expression, first calculate the covariance dstvthe two:

Cov(Fy (A), F3 (A)) =Cov(eFy(A) + (1 —e)Fi(A),eFo(A) + (1 — €)F2(4))
=Var(eFy(A)) + Cov(eEFy(A), (1 — e)Fr(A))

+Cov((1 — €)F1(A),eFp(A)) + Cov((1 — ) F1(A), (1 — &) F2(A))
MoH(A)(1 — H(A))
_(M() + M) (Mo + My + 1)'

Then, by dividing the expression above with the product efd¢tandard deviations of

Ff(A) andFy (A), we get the desired expression. O
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A.4 Proof of Proposition 1

The probability mass function of the indicators, givify andM;, and after having

integrated out the weight is:
1

p(s,r\Mo,Ml)z/ p(sle,r, M)p(r|e) f(e|M)de
0

1
:p(SIT,M)/O p(rle) f(e|M)de
= ' 0 ni+ng IW(ZWO"’_]Wl) 0—
=plotr M) [ <1 — e et

My + Ml)P(M() + no)P(Ml + nq + ng)
['(Mo)T'(My)I'(Mo + My + N)

(1—e)M~1ge

= p(slr, )L

Using the independence ef; in the three components (given the indicateyg and

applying expression (6) to each of them, the EPPF for modealg@ be derived. O

A.5 Proof of Proposition 2

To derive the Poélya-urn scheme, we first derive the Chines&urant representation.
Letc;; = (sj;,75:) andc be the set of al{ c;; }. Suppose that the new observation falls

in groupk, thency, pew = (Sk,N,+1, 7k, N,+1)- The conditional probability formula,

P(Ck,new €| Mo, My
p(ck,new‘caMOaMl): ( o ’ )

p(c| Mo, My)
and equation (7) implies that
My

— | = Ko + 1, 1=0

My +nM1 + N J 0
0,j . .

SR E— 1<j<Ky i=0
Mo+ My + N =7 ="

P(Ck,new = (j,z')|c, MOle) = My Mi+ N —ng

My 4+ ny My + M; + N’
Nk j ]\40—1—]\71—710
Ml—l-nkMo—l-Ml—l-N’

j=Kp+1, i=1

The Pélya-urn scheme can then be derived by adding thespameling probabilities.
O
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