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Abstract

We present a sequential Monte Carlo sampler variant of the partial rejection

control algorithm, and show that this variant can be considered as a sequen-

tial Monte Carlo sampler with a modified mutation kernel. We prove that the

new sampler can reduce the variance of the incremental importance weights

when compared with standard sequential Monte Carlo samplers. We provide

a study of theoretical properties of the new algorithm, and make connections

with some existing algorithms. Finally, the sampler is adapted for applica-

tion under the challenging “likelihood free,” approximate Bayesian computa-

tion modelling framework, where we demonstrate superior performance over

existing likelihood-free samplers.
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1 Introduction

Sequential Monte Carlo (SMC) methods have emerged out of the fields of engineer-

ing, probability and statistics in recent years. Variants of the methods sometimes

appear under the names of particle filtering or interacting particle systems (e.g.

Arulampalam et al. 2002; Andrieu et al. 2003; Del Moral 2004; Doucet et al. 2001),

and their theoretical properties have been extensively studied (Crisan and Doucet 2002;

Del Moral 2004; Kunsch 2005).

The standard SMC algorithm involves finding a numerical solution to a set of

filtering recursions, such as filtering problems arising from non-linear / non-Guassian

state space models. Under this framework, the SMC algorithm samples from a (often

naturally occurring) sequence of distributions πt, indexed by t = 1, . . . , T . Each

distribution is defined on the support Et = E×E×...×E. Del Moral et al. (2006) (see

also Peters 2005) generalize the SMC algorithm to the case where the distributions πt

are all defined on the same support E. This generalization, termed the SMC sampler,

adapts the SMC algorithm to the more popular setting in which the state space E

remains static.

In short, the SMC sampler generates weighted samples (termed particles) from

a sequence of distributions πt, for t = 1, . . . , T , where πT may be of particular in-

terest. We refer to πT as the target distribution. Procedurally, particles obtained

from an arbitrary initial distribution π1, with a set of corresponding initial weights,

are sequentially propagated through each distribution πt in the sequence via three

processes, involving mutation (or move), correction (or importance weighting) and

selection (or resampling). The final weighted particles at distribution πT are con-

sidered weighted samples from the target distribution π. The mechanism is similar

to sequential importance sampling (resampling) (Liu 2001; Doucet et al. 2001), with
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one of the crucial differences being the framework under which the particles are al-

lowed to move, resulting in differences in the calculation of the weights of the particles.

One of the major difficulties with SMC-type algorithms is particle depletion, in

which the weights of the majority of the particles gradually decrease to zero, while

a few particle weights dominate the population. This severely increases the vari-

ability of Monte Carlo estimates of expectations under π. In this article, we de-

velop an algorithm which incorporates the partial rejection control (PRC) strategy of

Liu (2001) into the SMC sampler framework. A particular motivation for this stems

from the recent developments in “likelihood-free” (or approximate Bayesian) com-

putation (Beaumont et al. 2002; Marjoram et al. 2003; Sisson et al. 2007), where an

extremely high proportion of mutated particles are expected to have very small, or

exactly zero, posterior weights.

In this article, we develop the SMC samplers PRC algorithm, in which the partial

rejection control mechanism is built directly into the mutation kernel of the SMC

sampler. In this manner, a particle mutation may be rejected if the resulting impor-

tance weight is below a certain threshold. We begin with a brief introduction to the

standard sequential Monte Carlo sampler in Section 2, and then present the SMC

sampler PRC algorithm. We also discuss implementational issues arising from the

inclusion of the PRC stage, including estimation for the resultant kernel normalizing

constant. Section 3 provides some theoretical results that justify the addition of PRC

in terms of improvements in the variance of the incremental importance weights. We

also discuss a central limit theorem and derive a recursive expression for the asymp-

totic variance of our algorithm. In addition, we make a novel connection between the

SMC sampler PRC algorithm and the AliveSMC algorithm from the rare-event lit-

erature developed in Le Gland and Oudjane (2004). In Section 4 we adapt the SMC

sampler PRC algorithm for application in the likelihood-free modelling framework,
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and demonstrate the computational gains achieved over existing likelihood-free al-

gorithms via a simulated example. Finally, we present a stochastic claims reserving

analysis using the developed methods in Section 5, and conclude with a discussion.

2 Sequential Monte Carlo and partial rejection

2.1 Sequential Monte Carlo sampler

Del Moral et al. (2006) introduced a modification of the sequential Monte Carlo al-

gorithm, termed the sequential Monte Carlo sampler. Consider a sequence of distri-

butions πt(x), t = 1, . . . , T , with x ∈ E, where the final distribution πT is the distri-

bution of interest. By introducing a sequence of backward kernels Lk, a new distribu-

tion π̃t(x1, . . . , xt) = πt(xt)
t−1∏
k=1

Lk (xk+1, xk) may be defined for the path of a particle

(x1, . . . , xt) ∈ Et through the sequence π1, . . . , πt. The only restriction on the back-

ward kernels is that the correct marginal distributions
∫
π̃t(x1, . . . , xt)dx1, . . . , dxt−1 =

πt(xt) are available.

Within this framework, one may then work with the sequence of distributions,

π̃t, under the standard SMC algorithm. In summary, the SMC sampler algorithm

involves three stages: mutation, whereby the particles are moved from xt−1 to xt

via a mutation kernel Mt(xt−1, xt) as described below (Doucet and Johansen 2009;

Del Moral et al. 2006); correction, where the particles are reweighted with respect to

πt via the incremental importance weight (1); and selection, where according to some

measure of particle diversity, commonly the effective sample size (ESS, Kunsch 2005;

Kitigawa 1996; Doucet et al. 2001; Liu and Chen 1998), the weighted particles may

be resampled in order to reduce the variability of the importance weights.

In more detail, suppose that at time t − 1, the distribution π̃t−1 can be approxi-

mated empirically by π̃N
t−1 using N weighted particles. These particles are first prop-
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agated to the next distribution π̃t using a mutation kernel Mt(xt−1, xt), and then

assigned new weights Wt = Wt−1wt (x1, . . . xt), where Wt−1 is the weight of a particle

at time t− 1 and wt is the incremental weight given by

wt (x1, . . . , xt) =
π̃t (x1, . . . , xt)

π̃t−1 (x1, . . . , xt−1)Mt (xt−1, xt)
=

πt (xt)Lt−1 (xt, xt−1)

πt−1 (xt−1)Mt (xt−1, xt)
. (1)

The resulting particles are now weighted samples from π̃t. Consequently from (1),

under the SMC sampler framework, one may work directly with the marginal dis-

tributions πt(xt) such that wt(x1, . . . , xt) = wt(xt−1, xt). While the choice of the

backward kernels Lt−1 is essentially arbitrary, their specification can strongly affect

the performance of the algorithm. See Del Moral et al. (2006) for detailed discussion.

2.2 Incorporating partial rejection control

It is well known that the performance of SMC methods are strongly dependent on

the mutation kernel (Cornebise et al. 2008). If Mt is poorly chosen, such that it

does not place particles in regions of the support of πt with high density, then many

importance sampling weights will be close to zero. This leads to sample degeneracy,

as a few well located particles with large weights dominate the particle population,

resulting in large variance for estimates made using these samples.

Liu (2001) (see also Liu et al. 1998) introduced the partial rejection control strat-

egy to overcome particle degeneracy in a sequential importance sampling setting.

Under this mechanism, when the weight of a particle at distribution πt falls below

a finite threshold, ct ≥ 0, the particle is probabilistically discarded. It is replaced

with a particle drawn from the previous distribution πt−1 which is then mutated to

πt. This new particle’s weight is then compared to the threshold, with this process

repeating until a particle is accepted. This approach is termed partial rejection, as

the replacement particle is drawn from πt−1, not π1 (Liu et al. 1998).
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Under the SMC sampler framework we modify this approach and incorporate

the partial rejection mechanism directly within the mutation kernel. Hence at time

t − 1, the particle xt−1 is moved via the mutation kernel Mt(xt−1, xt) and weighted

according to (1). This particle is accepted with probability p, determined by the

particle’s weight and the weight threshold ct. If rejected, a new particle is obtained

via the mutation kernel Mt, until a particle is accepted.

For the sequence of distributions πt, t = 1, . . . , T , the mutation and backward ker-

nels Mt and Lt−1, a sequence of weight thresholds ct, and PRC normalizing constants

r(ct, xt−1) (defined below), the SMC sampler PRC algorithm is given by:

SMC sampler PRC algorithm

Initialization: Set t = 1.

For i = 1, . . . , N , sample x
(i)
1 ∼ π1(x), and set weights W1(x

(i)
1 ) = 1

N
.

Resample: Normalize the weights
∑

iWt(x
(i)
t ) = 1. If [

∑
iWt(x

(i)
t )2]−1 < H resam-

ple N particles with respect to Wt(x
(i)
t ) and set Wt(x

(i)
t ) = 1

N
, i = 1, . . . , N .

Mutation and correction: Set t = t + 1 and i = 1:

(a) Sample x
(i)
t ∼Mt(x

(i)
t−1, xt) and set weight for x

(i)
t to

Wt(x
(i)
t ) = Wt−1(x

(i)
t−1)

πt(x
(i)
t )Lt−1(x

(i)
t ,x

(i)
t−1)

πt−1(x
(i)
t−1)Mt(x

(i)
t−1,x

(i)
t )

.

(b) With probability 1− p(i) = 1−min{1,Wt(x
(i)
t )/ct}, reject x(i)t and go to (a).

(c) Otherwise, accept x
(i)
t and set Wt(x

(i)
t ) =Wt(x

(i)
t )r(ct, x

(i)
t−1)/p

(i).

(d) Increment i = i+ 1. If i ≤ N , go to (a).

(e) If t < T go to Resample.

The above algorithm without the mutation and correction steps (b) and (c) is

equivalent to the standard SMC sampler algorithm (Del Moral et al. 2006). In the

resample stage, the degeneracy of the particle approximation is quantified through the
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usual estimate of the effective sample size, 1 ≤ [
∑

iWt(x
(i)
t )2]−1 ≤ N (Liu and Chen 1998).

We discuss the choice of the thresholds, ct, in later Sections.

The addition of a rejection step at each time t effectively modifies the mutation

kernel Mt. We denote the resulting kernel by M∗
t , where

M∗
t (xt−1, xt) = r(ct, xt−1)

−1min

[{
1,Wt−1(xt−1)

wt (xt−1, xt)

ct

}
Mt (xt−1, xt)

]
. (2)

The quantity r(ct, xt−1) denotes the normalizing constant for particle xt−1, given by

r(ct, xt−1) =

∫
min

{
1,Wt−1(xt−1)

wt (xt−1, xt)

ct

}
Mt (xt−1, xt) dxt. (3)

Note that 0 < r(ct, xt−1) ≤ 1 if (w.l.o.g.) the mutation kernel Mt is normalized, so

that
∫
Mt(xt−1, xt)dxt = 1, and if the PRC threshold 0 ≤ ct < ∞ is finite. Thus the

SMC sampler PRC algorithm can be considered as an SMC sampler algorithm with

the mutation kernel M∗
t (xt−1, xt), and the correction weight

Wt(xt) = Wt−1(xt−1)
πt (xt)Lt−1 (xt, xt−1)

πt−1 (xt−1)M∗
t (xt−1, xt)

. (4)

2.3 Estimation of the normalizing constant

As the normalizing constant r(ct, xt−1) in the weight calculation (4) in general depends

on xt−1, it must be evaluated. Where no analytic solution can be found, approximat-

ing (3) may be achieved by, for example, quadrature methods if the sample space E

is relatively low dimensional or Monte Carlo methods if E is high dimensional. For

example, for j = 1, . . . , m independent samples x
∗(j)
t sampled from Mt (xt−1, xt)

r̂(ct, xt−1) ≈
1

m

m∑

j=1

min



1,Wt−1(xt−1)

w
(
xt−1, x

∗(j)
t

)

ct



 .

An alternative, computationally more efficient approach is to select kernels Mt and

Lt−1 such that r(ct, xt−1) = r(ct) will be constant for all particles xt−1. In this case,
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the value of r(ct) may be absorbed into the proportionality constant of the weights,

and safely ignored. Equation (3) suggests that this can be achieved if Mt(xt−1, xt),

Wt−1(xt−1) and w(xt−1, xt) are independent of xt−1.

Specifying mutation kernelsMt such thatMt(xt−1, xt) =Mt(xt) amounts to choos-

ing a global kernel which is the same for all particles xt−1. This is common in practice

(e.g. West 1993). The particle dependent weight Wt−1(xt−1) can be set to 1/N for all

particles following a resampling (or preselection) step. Finally, consider for a moment

the backward kernel of the form

Lopt
t−1(xt, xt−1) =

πt−1(xt−1)Mt(xt−1, xt)∫
πt−1(xt−1)Mt(xt−1, xt)dxt−1

. (5)

This backward kernel is an approximation of the optimal backward kernel, in the sense

of the choice of Lt−1 that minimizes the variance of the importance sampling weights

(Del Moral et al. 2006). Under the backward kernel (5), the incremental weight can

be approximated by

wt(xt−1, xt) = πt(xt)/

∫
πt−1(xt−1)Mt(xt−1, xt)dxt−1

≈ πt(xt)/

N∑

i=1

Wt−1(x
(i)
t−1)Mt(x

(i)
t−1, xt).

Under a global mutation kernel Mt(xt), and following a resampling step, then the in-

cremental weight under this backward kernel reduces to wt(xt−1, xt) = πt(xt)/Mt(xt),

which is independent of xt−1. Thus, the weight calculation in (4) becomes

Wt(xt) ∝ πt(xt)/

[
min

{
1,
w(xt−1, xt)

Nct

}
Mt(xt)

]

=





πt(xt)/Mt(xt) if min
{
1, w(xt−1,xt)

Nct

}
= 1

Nct otherwise.

Note that under this setting, the SMC sampler PRC algorithm can be considered as

a sequence of importance sampling strategies with partial rejection control.
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3 SMC Sampler PRC algorithm analysis

In this section we study theoretical properties of the SMC sampler PRC algorithm.

We firstly bound the variance of the importance weights, and then present a central

limit theorem for the sampler with a recursive expression for the asymptotic variance.

Finally, via a connection with an existing algorithm, we establish a condition for which

the number of rejection steps under the PRC mechanism is almost surely finite.

3.1 Variance of the incremental weights

We begin this section by establishing a bound on the variance of the importance

weights of the SMC sampler PRC algorithm.

Theorem 3.1 Let Wt (xt) denote the importance sampling weight at time t from a

standard SMC sampler with mutation kernel Mt, and let W ∗
t (xt) denote the equiv-

alent weight following a partial rejection control step under the SMC sampler PRC

algorithm, with resulting mutation kernel M∗
t . Then

VarM∗

t
[W ∗

t (xt)] ≤ VarMt
[Wt (xt)] .

Proof: See Appendix A.1.

Hence, applying partial rejection control within the SMC sampler framework will

not worsen, and may improve the variance of the importance weights, by reducing

the χ2-distance between the sampling and target distributions at each stage, t.

In the case where min
{
1, Wt(xt)

ct

}
= 1 for all xt, which is achieved when ct ≤

infxt
{Wt (xt)}, then from (3) we have r(ct, xt−1) = 1 for all xt−1. From (2), this

results in M∗
t (xt−1, xt) = Mt(xt−1, xt) and hence VarM∗

t
[W ∗

t (xt)] = VarMt
[Wt (xt)].

That is, the SMC sampler PRC algorithm reduces to the standard SMC sampler

when ct ≤ infxt
{Wt (xt)}, and in this case, the variance of the importance weights is

maximised. WhenWt(xt) ∈ [0,∞) this is realized for ct = 0 where we define 0/0 := 1.
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3.2 A central limit theorem

Central Limit Theorems (CLTs) for SMC and particle filtering algorithms have been

derived in various literatures (Del Moral 2004; Kunsch 2005; Chopin 2004; Del Moral et al. 2006;

Johansen and Doucet 2008). They are based on the observation that an SMC algo-

rithm introduces local errors (fluctuations) as a result of the approximations intro-

duced by sampling numerically from the transitions. Hence, at each stage t, one can

decompose the error between the target distribution πt and the N -particle approx-

imation πN
t . This turns out to be a sum of the local sampling fluctuations at each

discrete time in the past, propagated forwards in time to t.

In the setting of the SMC sampler algorithm, the existence of a CLT is established

by Del Moral (2004). Explicitly, under the assumption of multinomial resampling at

each stage of the algorithm, and the integrability conditions given in Chopin (2004)

[Theorem 1] and Del Moral (2004) [Section 9.4, pp.300-306], then for a suitable con-

tinuous and bounded test function ϕ ∈ Cb (E) we have

N1/2
(
EπN

t
(ϕ)− Eπt

(ϕ)
)
→ N (0, VSMC,t(ϕ)) (6)

as N → ∞, for each t = 1, . . . , T . Del Moral et al. (2006) obtain a recursive expres-

sion for the asymptotic variance VSMC,t(ϕ) as an explicit function of the backward

kernels Lt−1 and the sequence of distributions on path space, π̃t.

Following Del Moral et al. (2006), we obtain an analogous result for the SMC

sampler PRC algorithm. Under the same assumptions as the above, we have the

CLT (6) with asymptotic variance given by

VSMC−PRC,t (ϕ) =
∫
I1

eπ2
t (x1)

π1(x1)

(∫
ϕ (x1) π̃1 (xt|x1) dxt − Eπt

(ϕ)
)2
dx1

+
t−1∑
k=2

∫
Ik

(eπt(xk)Lk−1(xk,xk−1))
2

πk−1(xk−1)Mk(xk−1,xk)

(∫
ϕ (xt) π̃t (xt|xk) dxt − Eπt

(ϕ)
)2
dxk−1dxk

+
∫
It

(πt(xt)Lt−1(xt,xt−1))
2

πt−1(xt−1)Mt(xt,xt−1)
(ϕ (xt)− Eπt

(ϕ))2 dxt−1dxt

(7)
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with Ik =
[
r(ck, xk−1)

−1min
{
1, 1

N
πk(xk)Lk−1(xk,xk−1)

πk−1(xk−1)Mk(xk−1,xk)ck

}]−1

and I1 = 1.

The contribution of the PRC stage to the asymptotic variance is encapsulated in

the Ik terms. Under the standard SMC sampler algorithm we have ck ≤ infxt
{Wt(xt)}

so that Ik = 1 for all k = 1, . . . , t. In this setting, (7) reduces to the asymptotic

variance expression obtained by Del Moral et al. (2006).

3.3 Connections to an existing SMC algorithm

In rare event applications there is a high probability of generating particles with ex-

actly zero weights. The AliveSMC algorithm (Le Gland and Oudjane 2004; Le Gland and Oudjane 2005)

was developed to ensure that a particle population of a desired size persists at each it-

eration of a standard SMC algorithm (see Del Moral et al. 2001; Johansen et al. 2006

for related methods). In this setting, the number of particles at each time t is con-

sidered as a random variable Nct . That is, Nct is the number of particles required

to generate exactly N non-zero weighted particles. In this Section we reinterpret the

SMC sampler PRC algorithm in terms of the AliveSMC algorithm. As a consequence,

in Section 3.4 we are able to establish a condition under which the PRC resampling

stage will require a finite number of rejection attempts.

In Le Gland and Oudjane (2005), at iteration t, a fitness function is applied to

select particles satisfying a desired criteria. Those particles not satisfying the criteria

receive a zero weight. In an SMC sampler PRC setting, the fitness function can be

interpreted as selecting those particles with a weight that is immediately accepted

under the PRC acceptance probability. As such, we may rewrite the SMC sampler

PRC algorithm with a modified mutation and correction step:
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Reinterpreted SMC sampler PRC/AliveSMC algorithm

Mutation and correction: Set t = t + 1 and j = 1. For i = 1, . . . , Nct:

(a) Sample x
(i)
t ∼Mt(x

(j)
t−1, xt) and calculate W = Wt−1(x

(j)
t−1)

πt(x
(i)
t )Lt−1(x

(i)
t ,x

(j)
t−1)

πt−1(x
(j)
t−1)Mt(x

(j)
t−1,x

(i)
t )

.

(b) Set weight for x
(i)
t as

Wt(x
(i)
t ) ∝





Wr(ct, x
(j)
t−1)/p

(i) with probability p(i) = min{1,W/ct}

0 otherwise.

(c) If Wt(x
(i)
t ) 6= 0, increment j = j + 1.

If t < T go to Resample.

Note that j = 1, . . . , N indexes the particles x
(j)
t−1 at time t− 1 such that particle

mutations from x
(j)
t−1 generate a non-zero weight exactly once. Also, under the fitness

function, particle x
(i)
t has a probability 1 − p(i) = 1 −min{1,W/ct} of being exactly

zero. Given that it is possible to express the SMC sampler PRC algorithm within the

AliveSMC framework, we may adapt the results of Le Gland and Oudjane (2004) and

Le Gland and Oudjane (2005), to obtain a condition under which the SMC sampler

PRC algorithm is guaranteed to require a finite number of attempts, Nct < ∞, to

obtain exactly N non-zero weighted particles.

3.4 Analysis of the number of rejection attempts

Following Le Gland and Oudjane (2004) and Le Gland and Oudjane (2005), we de-

fine the random variable Nct as

Nct , inf

{
N∗ > 1 :

N∗∑

i=1

W
(i)
t (xt) > N sup

xt∈E
Wt(xt)

}

Le Gland and Oudjane (2005) proved for the AliveSMC algorithm that the random

number of particles Nct is almost surely finite with Nct > N , under the condition

that 〈πt−1Mt,Wt〉 =
R

Wt(xt)
R

πt−1(xt−1)Mt(xt−1,xt)dxt−1dxt
R

πt−1(xt−1)Mt(xt−1,xt)dxt−1
> 0. A sufficient condition for
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this to hold is EMt
[Wt (xt) | xt−1 = x] > 0, for all x ∈ E. Thus for the SMC sampler

PRC algorithm, we have the following theorem:

Theorem 3.2 Under the SMC sampler PRC algorithm, the number of rejection at-

tempts at each stage of the algorithm, Nct > N , is almost surely finite if ct <∞.

Proof: See Appendix A.2.

Corollary 5.1 The following convergence in probability holds, with a rate of 1/
√
N :

Nct

N
→ supxt∈E Wt(xt)

〈πt−1Mt,Wt〉
<∞.

See Le Gland and Oudjane (2005) for further details. Hence, the SMC sampler PRC

algorithm possesses an almost surely finite number of rejection attempts if the PRC

threshold ct is finite, with the above rate of convergence.

4 Approximate Bayesian computation

With the aim of posterior simulation from π(x|D) ∝ π(D|x)π(x) for parameters x

and observed data D, “likelihood-free,” approximate Bayesian computation (ABC)

methods are often utilised when the likelihood function, π(D|x), is computationally

intractable or when its evaluation is computationally prohibitive. ABC methods can

be based on rejection sampling (Tavaré et al. 1997; Beaumont et al. 2002), Markov

chain Monte Carlo (Marjoram et al. 2003; Bortot et al. 2007; Ratmann et al. 2009)

and SMC-type samplers (Sisson et al. 2007; Toni et al. 2009; Beaumont et al. 2009;

Del Moral et al. 2008). While currently among the most efficient ABC methods, the

underlying practical issue with SMC-type algorithms is in avoiding sample degeneracy

through extreme numbers of particles with low or exactly zero weights. In this Section,

we will demonstrate that the SMC sampler PRC algorithm applied within the ABC
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framework can achieve significant performance gains and greater modelling flexibility

over existing SMC-type ABC methods.

The underlying approach of ABC methods is to augment the (intractable) pos-

terior to π(x,D′|D) ∝ π(D|D′, x)π(D′|x)π(x), where the auxiliary parameter is an

artificial data set distributed according to the model D′ ∼ π(·|x). An approximation

of the target posterior π(x|D) is then given by

πABC(x|D) ∝
∫
π(D|D′, x)π(D′|x)π(x)dD′. (8)

The weighting distribution π(D|D′, x) takes high density in regions where the datasets

D andD′ are similar, and low density otherwise. Comparison of the datasets is usually

achieved through low-dimensional summary statistics T (·), so that, for example

π(D|D′, x) ∝





1 if ρ(T (D), T (D′)) ≤ ǫ

0 else,
(9)

for some small tolerance value ǫ > 0 and distance measure ρ. If T (·) are sufficient

statistics, and ǫ → 0 so that π(D|D′, x) reduces to a point mass at T (D) = T (D′)

then πABC(x|D) = π(x|D) is recovered exactly, otherwise the ABC approximation to

π(x|D) is of the form (8), with greater accuracy for smaller ǫ. The computational

overhead of all ABC samplers increases as ǫ decreases, producing a trade off be-

tween computation and accuracy. ABC methods either sample from the joint density

π(x,D′|D) by arranging to cancel out the intractable likelihood in a weight or accep-

tance probability, or sample from πABC(x|D) directly via Monte Carlo integration

πABC(x|D) ≈ π(x)

S

S∑

s=1

π(D|D′
s, x), (10)

where D′
1, . . . ,D′

S ∼ π(D′|x) are draws from the likelihood given x. Almost all current

ABC methods have the weighting density (9) written directly into the algorithm.

We apply the SMC sampler PRC algorithm in the ABC framework as follows: The

target πt(xt) = πABC,t(xt|D) is given by (8), with the weighting function πt(D|D′, x)
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parameterized by a different scaling parameter ǫt for each t, where ∞ = ǫ1 ≥ . . . ≥ ǫT ,

produces increasing accuracy at each step, t. The ǫt sequence and its length, T , may

be determined a priori or dynamically. Evaluation of πt(xt) is defined by (10) through

S Monte Carlo draws. Given the high computational overheads of ABC methods, we

avoid evaluating the PRC normalizing constant (as demonstrated in Section 2.3),

through a global mutation kernel Mt(xt), the backward kernel Lopt
t−1 (c.f. 5) and

enforced resampling.

SMC sampler PRC-ABC algorithm

Initialization: Set t = 1.

For i = 1, . . . , N , sample x
(i)
1 ∼ µ(x), and set weightsWt(x

(i)
1 ) = πABC,1(x

(i)
1 |D)/µ(x

(i)
1 ).

Resample: Resample N particles with respect to Wt(x
(i)
t ) and set Wt(x

(i)
t ) = 1

N
,

i = 1, . . . , N .

Mutation and correction: Set t = t + 1 and i = 1:

(a) Sample x
(i)
t ∼Mt(xt) and set weight for x

(i)
t to

Wt(x
(i)
t ) = πABC,t(x

(i)
t |D)/Mt(x

(i)
t ).

(b) With probability 1− p(i) = 1−min{1,Wt(x
(i)
t )/ct}, reject x(i)t and go to (a).

(c) Otherwise, accept x
(i)
t and set Wt(x

(i)
t ) =Wt(x

(i)
t )/p(i).

(d) Increment i = i+ 1. If i ≤ N , go to (a).

(e) If t < T then go to Resample.

The density µ(x) is an initial sampling distribution, from which direct sampling

is available. As with the tolerance ǫt, the PRC thresholds ct may also be deter-

mined dynamically (see below for an illustration). Note that as the resampled par-

ticles in the Resample step play no subsequent part in the sampler, in practice this

step can be omitted. The path of each particle (x
(i)
1 , . . . , x

(i)
T ) ∈ ET can be recon-
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structed post-simulation, if required, by resampling the recorded marginal populations

(Wt(x
(i)
t ), x

(i)
t ).

The above algorithm has a number of benefits over existing SMC-type ABC sam-

plers (Sisson et al. 2007; Toni et al. 2009; Beaumont et al. 2009; Del Moral et al. 2008).

Firstly, the weighting density π(D|D′, x) can take any form – we suggest any smooth-

ing kernel, following Blum (2009). Existing samplers in the literature are restricted

to the uniform function (9). Secondly, there is complete control over the PRC thresh-

old, ct, unlike Sisson et al. (2007) who impose a specific value. Thirdly, in estimating

πABC(xt|D), as long as the Lopt
t−1 backward kernel is used, any number S ≥ 1 of Monte

Carlo draws can be used in (10). Existing samplers only use S = 1, and so there is less

control over the variability of the weights. Finally, providing that the computation

required to estimate the PRC normalizing constants, r(ct, xt−1), is acceptable, a form

of the SMC sampler PRC-ABC sampler may be constructed which uses arbitrary mu-

tation and backward kernels, allowing the user to select the most appropriate tools

for a given problem.

4.1 Simulation study

We now demonstrate the superior performance of the SMC sampler PRC-ABC algo-

rithm through a controlled study. Specifically, we specify the true posterior π(x|D)

as N(0, 1) by defining the likelihood and prior as D ∼ N(x, 1) and π(x) ∝ 1, with

a single observed datum, D = 0. For this model, a sufficient statistic is T (D) = D.

From (8), for the uniform weighting density (9) with ρ(a, b) = |a− b| and ǫ = ǫu, or

for π(D′ | D, x) = N(D, ǫ2g), then πABC(x|D) may be obtained in closed form as

πABC(x|D) ∝ Φ(ǫu − x)− Φ(−ǫu − x)

2ǫu
or πABC(x|D) = N(0, 1 + ǫ2g)
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respectively, where Φ(·) denotes the standard Gaussian CDF. In both cases πABC(x|D) →

N(0, 1) as ǫ → 0. In order to directly compare the two approximate posteriors we

impose equal variances on the two weighting functions, so that ǫg =
√
3ǫu

We adopt the following sampler specifications: A particle population of size N =

1000 was drawn from the initial sampling distribution µ(x) ∼ U(−5, 5), and the se-

quence of distributions, π1, . . . , π10, is defined by {ǫt} = {∞, 10, 5, 2, 1, 0.5, 0.2, 0.1, 0.05, 0.05},

on the ǫg scale. The mutation kernel Mt(xt) =
∑N

j=1W
(j)
t−1ψ(xt|x(j)t−1, τ

2) is taken as

a Normal kernel density estimate of πt−1(xt−1), with τ 2 = 1 and where ψ(x|µ, σ2)

denotes the PDF of a N(µ, σ2) distribution evaluated at x. We initially use S = 1

Monte Carlo draws to approximate πABC(x|D) (c.f. 10).

Figure 1 examines the effect of PRC on the effective sample size (ESS), the

variance of the importance weights and the mean number of rejections per par-

ticle. The PRC threshold was determined dynamically at each iteration as ct =

Q(W+
t (xt), q), the q-th quantile of the non-zero weights at time t (obtained by mu-

tating all xt−1 particles under Mt before implementing the PRC stage), for q =

0, 0.5, 0.75, 0.85, 0.9, 0.95, 0.99, 0.995, 0.999. Results are shown using the Gaussian

(left plots) and uniform (right plots) weighting density, based on 250 sampler repli-

cations. Note that the PRC threshold with q = 0 approximately corresponds to a

standard SMC sampler (“No-PRC”) only for the Gaussian weighting function, as the

uniform weighting function permits exactly zero importance weights. Setting q = 0

for the uniform weighting density corresponds to existing SMC-type ABC samplers

(Sisson et al. 2007; Toni et al. 2009; Beaumont et al. 2009).

For both weighting densities, the effective sample size increases as ct increases,

and the variance of the importance weights decreases. Naturally, the higher the PRC

threshold, the more rejections occur, quantifying the extra computation required for

the gains in sampler performance. However, there is a notable difference in the
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Figure 1: Effective sample size (a,b), variance of normalized importance weights (c,d)

and mean number of rejections per particle (e,f) as functions of PRC threshold ct. PRC

threshold is defined dynamically as a quantile of the non-zero weights at time t (x-axis). Left

plots (a,c,e) and right plots (b,d,f) are obtained under the Gaussian and uniform weighting

densities π(D|D′, x) respectively. Boxplots are based on 250 sampler replications.

transition from poor (no PRC) to improved (under PRC) performance between the

two different weighting densities. This occurs as the uniform weighting density only

permits 0/1 weights, compared to the smoother scale under the Gaussian. As a result,

the uniform weighting density (which is the only choice under existing ABC samplers)

has a fixed, albeit strong, performance gain over not implementing PRC, but at a

very high computational cost (Figure 1,f). Comparison with panels (a,c,e) suggests

that considerable computational gains can be achieved with alternative weighting

functions, without sacrificing sampler performance. This is easily permitted under
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the SMC sampler PRC framework.
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Figure 2: The effect of the number of Monte Carlo draws, S, on sampler performance.

Panels show (a) effective sample size (ESS), (b) variance of the importance weights, (c) the

mean number of rejection attempts, and (d) estimates of the posterior variance (true value

≈ 1), as a function of the number of Monte Carlo draws in the estimation of πABC(x|D).

When using the Lopt
t−1 backward kernel (5), any number S ≥ 1 of Monte Carlo

draws may be used to approximate πABC(x|D) via (10). While S = 1 is near universal

under existing ABC algorithms, one would expect to realize less variable importance

weights for S > 1. Figure (2) illustrates the effect of increasing S, under the Gaussian

density function, based on the PRC threshold ct = Q(W+
t (xt), 0.95). An increase in

the effective sample size (panel a) is reflected by the reduction in the variability of the

importance weights (panel b), as is the variability in the estimates of the posterior

variance (panel d). This in turn results in lower numbers of rejections at the PRC
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stage (panel c). Of course, these performance gains are again balanced by the strong

increases in computation required for S > 1. It would appear that unless the data-

generation procedure D′
s ∼ π(D|x) is computationally inexpensive, 1 ≤ S ≤ 10

would seem to be the most useful choice in practice. Regardless, the greatest gains in

sampler performance under the SMC sampler PRC algorithm are achieved for S = 1.

5 A stochastic claims reserving analysis

We present an analysis of an important and popular class of statistical models in actu-

arial science using stochastic claims reserving. We consider a time series formulation

of the distribution-free chain ladder model (Mack 1993; Gisler and Wüthrich 2008;

Peters et al. 2008). For a claim on an insurance company for an accident in year i,

Ci,j denotes the cumulative claim in subsequent years j ≥ i. Cumulative claims can

refer to payments, claims incurred and other expenses. At time I, we have obser-

vations DI = {Ci,j; i+ j ≤ I}, and for reserving against future claims we wish to

predict Dc
I = {Ci,j; i+ j > I, i ≤ I}. One such dataset is illustrated in Table 1.

Under a time series formulation, cumulative claims Ci,j in different accident years

i are independent and satisfy, for j = 0, . . . , I − 1,

Ci,j+1 = fjCi,j + σj
√
Ci,jεi,j+1, (11)

where f = (f0, . . . , fI−1) and σ = (σ0, . . . , σI−1) are respectively the chain ladder fac-

tors and standard deviations, and the residuals εi,j are i.i.d. with mean 0 and variance

1. The model is constrained such that P (Ci,j > 0|{Ck,0}jk=1, f ,σ) = 1 for all i, j (see

Peters et al. 2008). If distributional assumptions are made on the residuals εi,j (e.g.

Yao 2008), the posterior distribution can be made computationally tractable. How-

ever, a primary intention of this model is to work with distribution-free assumptions

on the residuals, and therefore on the cumulative claims. Within this distribution-free
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context one wishes to quantify popular risk metrics such as value-at-risk and expected-

shortfall to be calculated for the predicted claims distribution, both of which are

highly relevant to regulatory reporting. Alternative approaches, based on credibility

results, can relax such distributional assumptions, but can only provide statements

on posterior first and second moments in limiting cases (Gisler and Wüthrich 2008).

Previously, actuaries have proceeded by predicting claims via a deterministic

model known as the classical chain ladder algorithm. This approach predicts un-

observed future cumulative claims by the recursion Ĉi,I−i = Ci,I−i, and for j > I − i

Ĉi,j = Ĉi,j−1f̂
(CL)
j−1 where f̂

(CL)
j−1 =

∑I−j
i=0 Ci,j∑I−j

i=0 Ci,j−1

, (12)

and where, in the time series formulation, the variances are estimated by

σ̂
2(CL)
j =

1

I − j − 1

∑I−j−1

i=0
Ci,j

(
Ci,j+1

Ci,j
− f̂

(CL)
j

)2

.

See Mack (1993) for an estimator of σ̂
2(CL)
I−1 . As this algorithm is deterministic there is

strong interest in stochastic chain ladder models, which naturally allow the quantifica-

tion of uncertainty, such as the mean square error of prediction. In the claims reserving

setting the most popular stochastic models are those with estimators which recover

the classical chain ladder estimators. We consider one such Bayesian stochastic model

which has the property that as the diffusivity of the priors π(f ,σ) tends to infinity

f̂ (MMSE) → f̂ (CL) whereMMSE denotes the posterior mean (Gisler and Wüthrich 2008).

Hence by (12) the posterior mean E[Ci,J |DI ] = Ĉi,J recovers the classical estimators,

thereby justifying the classical model. We sample from the intractable posterior

πABC(f ,σ|DI) using the SMC sampler PRC-ABC algorithm.

5.1 Analysis and results

This model is interesting as the intractability of the likelihood directly impacts the

ability to generate synthetic data sets, D′
I , from the model. That is, if the distri-
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butional form of the residuals were known, data-generation from the model would

be trivial. To retain a distribution-free setting we alternatively utilise a conditional

bootstrap approach (Peters et al. 2008). Conditional upon proposed parameters f

and σ, the residuals ǫ̃i,j|f ,σ are iteratively obtained by inversion of (11). Then,

by independently drawing resampled residuals from the empirical conditional resid-

ual distribution, a bootstrap sample of the cumulative claims D′
I is then available

through recursion on (11).

In analyzing the real claims reserving data in Table 1 we specify independent

priors fj ∼ Gamma(αj , βj) with mean αjβj = f̂
(CL)
j and σj ∼ IGamma(aj , bj) with

mean bj/(aj − 1) = σ̂
(CL)
j for j = 0, . . . , I − 1, each with large variance. For summary

statistics we adopt T (D′) = (D′
I , µ

′(ǫ̃), s′(ǫ̃)) where µ′(ǫ̃) and s′(ǫ̃) denote the sample

mean and standard deviation of the conditionally resampled residuals ǫ̃′i,j |f ,σ. The

observed summary statistics are given by T (D) = (DI , 0, 1) following the zero mean

and unit variance assumptions on the true residuals.

We implement the SMC sampler PRC-ABC algorithm with uniform weighting

density (9) and ρ(T (DI), T (D′
I)) = [(T (DI)−T (D′

I))
⊤Σ−1(T (DI)−T (D′

I))]
1/2 defined

as Mahalanobis distance, where the covariance Σ is estimated following Peters et al. (2008).

We use N = 5000 particles, PRC threshold ct = Q(W+
t (xt), 0) and a deterministic

distribution schedule {ǫt} = {∞, 10, . . . , 0.00001} with T = 22. The mutation kernel

Mt(xt) =
∑N

i=1W
(i)
t−1(x

(i)
t−1)Gamma(a(x

(i)
t−1), b(x

(i)
t−1)) is a mixture of gamma densities,

with mean a(x
(i)
t−1)b(x

(i)
t−1) = x

(i)
t−1 and large variance.

Table 2 presents a comparison of the parameter estimates f̂ and σ̂, and predicted

cumulative claims, Ĉi,j under classical and Bayesian models. Given the uninformative

priors, the posterior mean estimates and resulting predicted claims agree well with

those obtained under the classical model. This provides some validation for the

deterministic classical model estimates under the Bayesian stochastic interpretation.
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Perhaps more usefully for inference, the full posterior πABC(f ,σ|DI) is available.

Figure 3 illustrates how the estimated marginal densities of the first chain ladder

factor, πABC,t(f0|DI), and the associated standard deviation, πABC,t(σ0|DI), evolve as

ǫt decreases. The precision of the densities clearly improves, as decreasing ǫt imposes

stricter restrictions on the permissible deviations of the ABC approximate posterior

πABC(f ,σ|D) from the target posterior π(f ,σ|D). A full predictive analysis may now

follow, including upper and lower credible bounds on predicted future claims.

6 Discussion

When used in challenging settings, sequential Monte Carlo samplers often suffer from

severe particle degeneracy. In this article we have provided a practical approach

to tackling this problem, by incorporating the partial rejection control mechanism

of Liu (2001) directly into the mutation kernel of the SMC sampler. The resulting

sampler will not worsen, and can improve the variance of the importance weights,

sometimes substantially so. By establishing clear relationships with existing sam-

plers (Del Moral et al. 2006; Le Gland and Oudjane 2004), many theoretical proper-

ties may be extended to the SMC sampler PRC algorithm, including a central limit

theorem, and a proof of an almost sure finite number of PRC rejection attempts.

There is much opportunity for the specification of the sequence of PRC thresholds

to be further automated, if desired. For example, by dynamically determining ct >

ct−1 if the effective sample size of the particle population at time t− 1 falls too low,

and conversely allowing ct < ct−1 if the level of PRC resampling is too high, in order

to reduce computational overheads.

As the SMC sampler PRC algorithm allows practical inference in challenging sit-

uations in which particle weights are highly variable, we anticipate that a primary
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application of the sampler will be within the rapidly developing “likelihood-free” ap-

proximate Bayesian computation framework. The presented sampler is more flexible

and efficient than existing SMC-type ABC samplers, allowing a previously unavailable

degree of control over the computation utilised for a given analysis. Perhaps more

importantly, the extra flexibility achieved by allowing arbitrary weighting densities

(unlike existing ABC samplers) enables the analysis of improved models within the

ABC framework, in line with recent non-parametric interpretations (Blum 2009).
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Appendix

A.1: Proof of Theorem 3.1

The proof follows the arguments presented by Liu et al. (1998). In particular we

study the SMC sampler PRC algorithm in terms of χ2 distance between the sampling

distribution and the target distribution at stage t. Let

Wt (xt) ∝ Wt−1(xt−1)
πt (xt)Lt−1 (xt, xt−1)

πt−1 (xt−1)Mt (xt−1, xt)
and W ∗

t (xt) ∝ Wt−1(xt−1)
πt (xt)Lt−1 (xt, xt−1)

πt−1 (xt−1)M∗
t (xt−1, xt)

.

Recall that the normalising constant for the mutation kernel M∗
t at time t is

r(ct, xt−1) =

∫
min

{
1,
Wt(xt)

ct

}
Mt (xt−1, xt) dxt =

1

ct
EMt

[min {ct,Wt(xt)}] .

The variance of the importance weight at time t from a standard SMC sampler, with

respect to Mt, is given by

VarMt
[Wt(xt)] =

∫
[Wt(xt)]

2Mt (xt−1, xt) dxt − µ2,

and similarly, the variance of the equivalent importance weight at time t following a

PRC step under the SMC sampler PRC algorithm, with respect to M∗
t , is given by

VarM∗

t
[W ∗

t (xt)] =

∫
[W ∗

t (xt)]
2M∗

t (xt−1, xt) dxt − µ2,

where

µ = EM∗

t
[W ∗

t (xt)] = EMt
[Wt(xt)].
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We also have that

∫
[W ∗

t (xt)]
2M∗

t (xt−1, xt) dxt =
∫ [

Wt−1(xt−1)
π(xt)Lt−1(xt,xt−1)

πt−1(xt−1)M∗

t (xt−1,xt)

]2
M∗

t (xt−1, xt) dxt

= r(ct, xt−1)
∫ W 2

t−1(xt−1)

min{1,
Wt(xt)

ct
}

π2
t (xt)L2

t−1(xt−1)

π2
t−1(xt−1)M2

t (xt−1,xt)
Mt(xt−1, xt)dxt

= r(ct, xt−1)
∫
max{W 2

t (xt), ctWt(xt)}Mt(xt−1, xt)dxt

= r(ct, xt−1)EMt
[max{Wt(xt), ct}Wt(xt)]

= 1
ct
EMt

[min {ct,Wt(xt)}]EMt
[max{Wt(xt), ct}Wt(xt)]

≤ 1
ct
EMt

[min {ct,Wt(xt)}max{Wt(xt), ct}Wt(xt)]

= 1
ct
EMt

[ctW
2
t (xt)] = EMt

[W 2
t (xt)] .

The above inequality holds since the random variables min {ct,Wt(xt)} and max{Wt(xt), ct}Wt(xt)

are positively correlated (see Liu 2001), and so

EMt
[min {ct,Wt(xt)}max{Wt(xt), ct}Wt(xt)]

−EMt
[min {ct,Wt(xt)}]EMt

[max{Wt(xt), ct}Wt(xt)] ≥ 0.

Hence

VarM∗

t
[W ∗

t (xt)] ≤ EMt

[
W 2

t (xt)
]
− µ2 = VarMt

[Wt(xt)].

✷

A.2: Proof of Theorem 3.2

To satisfy the condition EMt
[Wt (xt) | xt−1 = x] > 0, ∀x ∈ E, for the SMC sampler

PRC algorithm, we require

∫

E

Wt−1(x)wt(x, xt)r(ct, x)

[
min

{
1,
Wt−1(x)wt (x, xt)

ct

}]−1

Mt (x, xt) dxt > 0. (13)

For a particle xt−1 = x, the proposed state xt can take values in a support which

can be split into two regions, A(x) and Ac(x), such that A(x) ∪ Ac(x) = E. These

respectively correspond to when min
{
1, Wt−1(x)wt(x,xt)

ct

}
= 1 (i.e. particle acceptance

probability under PRC is 1) and when min
{
1, Wt−1(x)wt(x,xt)

ct

}
= Wt−1(x)wt (x, xt) /ct
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(i.e. the particle may be rejected under PRC). Note that in the extreme cases,

ct ≤ Wt−1(x)wt(x, xt) ⇒ Ac(x) = ∅ reduces to the SMC sampler algorithm, and

ct > supxt
Wt−1(x)wt(x, xt) ⇒ A(x) = ∅. More generally, (13) may be expanded as

r(ct, x)Wt−1(x)

πt−1 (x)

∫

A(x)

πt (xt)Lt−1 (xt, x) dxt + ctr(ct, x)

∫

Ac(x)

Mt(x, xt)dxt > 0

which is always greater than zero for finite ct <∞ as 0 < r(ct, x) ≤ 1.

✷

Accident Development Year, j

Year, i 0 1 2 3 4 5 6 7 8 9

0 594.6975 372.1236 89.5717 20.7760 20.6704 6.2124 6.5813 1.4850 1.1130 1.5813

1 634.6756 324.6406 72.3222 15.1797 6.7824 3.6603 5.2752 1.1186 1.1646

2 626.9090 297.6223 84.7053 26.2768 15.2703 6.5444 5.3545 0.8924

3 586.3015 268.3224 72.2532 19.0653 13.2976 8.8340 4.3329

4 577.8885 274.5229 65.3894 27.3395 23.0288 10.5224

5 618.4793 282.8338 57.2765 24.4899 10.4957

6 560.0184 289.3207 56.3114 22.5517

7 528.8066 244.0103 52.8043 to be predicted Yi,j

8 529.0793 235.7936

9 567.5568

Table 1: A claims development triangle. Upper triangle denotes observed annual claims

Yi,j from which Ci,j =
∑j

k=0 Yi,k ∈ DI may be obtained; lower triangle denotes annual Yi,j

and cumulative claims Ci,j ∈ Dc
I to be predicted. Data are real insurance figures in units of

$10,000 (c.f. Wüthrich and Merz, 2008). The triangle assumes that the number of accident

years is equal to the number of observed development periods.
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Figure 3: Evolution of the marginal posterior density estimates of the chain ladder factor

πt(f0|DI) (left) and the associated standard deviation πt(σ0|DI) (right) as a function of ǫt.
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Parameters Year 0 1 2 3 4 5 6 7 8 9 bCi,I − Ci,I−i

`

f (CL)
´

0 0
`

f (MMSE)
´

0
`

f
(CL)

´

1 10, 663, 318 15, 126
`

f
(MMSE)

´

10, 664, 164 15, 972
`

f (CL)
´

2 10, 646, 884 10, 662, 008 26, 257
`

f (MMSE)
´

10, 645, 322 10, 661, 290 25, 540
`

f
(CL)

´

3 9, 734, 574 9, 744, 764 9, 758, 606 34, 538
`

f (MMSE)
´

9, 736, 710 9, 745, 473 9, 760, 092 36, 023
`

f (CL)
´

4 9, 837, 277 9, 847, 906 9, 858, 214 9, 872, 218 85, 302
`

f
(MMSE)

´

9, 840, 743 9, 853, 536 9, 862, 404 9, 877, 198 90, 283
`

f (CL)
´

5 10, 005, 044 10, 056, 528 10, 067, 393 10, 077, 931 10, 092, 247 156, 494
`

f (MMSE)
´

10, 019, 212 10, 074, 318 10, 087, 415 10, 096, 493 10, 111, 638 175, 886
`

f
(CL)

´

6 9, 419, 776 9, 485, 469 9, 534, 279 9, 544, 580 9, 554, 571 9, 568, 143 286, 121
`

f
(MMSE)

´

9, 422, 181 9, 501, 327 9, 553, 584 9, 566, 004 9, 574, 613 9, 588, 975 306, 953
`

f (CL)
´

7 8, 445, 057 8, 570, 389 8, 630, 159 8, 674, 568 8, 683, 940 8, 693, 030 8, 705, 378 449, 167
`

f (MMSE)
´

8, 448, 582 8, 576, 155 8, 648, 195 8, 695, 760 8, 707, 065 8, 714, 901 8, 727, 973 471, 761
`

f
(CL)

´

8 8, 243, 496 8, 432, 051 8, 557, 190 8, 616, 868 8, 661, 208 8, 670, 566 8, 679, 642 8, 691, 971 1, 043, 242
`

f (MMSE)
´

8, 229, 268 8, 421, 009 8, 548, 167 8, 619, 971 8, 667, 381 8, 678, 649 8, 686, 460 8, 699, 489 1, 050, 760
`

f (CL)
´

9 8, 470, 989 9, 129, 696 9, 338, 521 9, 477, 113 9, 543, 206 9, 592, 313 9, 602, 676 9, 612, 728 9, 626, 383 3, 950, 814
`

f
(MMSE)

´

8, 477, 596 9, 121, 045 9, 333, 566 9, 474, 503 9, 554, 088 9, 606, 636 9, 619, 125 9, 627, 782 9, 642, 223 3, 966, 655

bf
(CL)
j 1.4925 1.0778 1.0229 1.0148 1.0070 1.0051 1.0011 1.0010 1.0014 6, 047, 061

σ
(CL)
j 135.253 33.803 15.760 19.847 9.336 2.001 0.823 0.219 0.059

bf
(MMSE)
j 1.4937 1.0759 1.0233 1.0151 1.0084 1.0055 1.0013 1.0009 1.0015 6, 139, 834

σ
(MMSE)
j

132.917 34.566 14.742 21.972 8.547 2.736 0.789 0.159 0.061

Table 2: Predicted parameter estimates, f̂ , σ̂, cumulative chain ladder claims, Ĉi,j, and estimated chain ladder reserves

under the classical (CL) and Bayesian (MMSE) models.
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