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Abstract

Using an asymmetric Laplace distribution, which provides a mechanism for Bayesian
inference of quantile regression models, we develop a fully Bayesian approach to fitting
single-index models in conditional quantile regression. In this work, we use a Gaussian
process prior for the unknown nonparametric link function and a Laplace distribu-
tion on the index vector, with the latter motivated by the recent popularity of the
Bayesian lasso idea. We design a Markov chain Monte Carlo algorithm for posterior
inference. Careful consideration of the singularity of the kernel matrix, and tractabil-
ity of some of the full conditional distributions leads to a partially collapsed approach
where the nonparametric link function is integrated out in some of the sampling steps.
Our simulations demonstrate the superior performance of the Bayesian method versus
the frequentist approach. The method is further illustrated by an application to the
hurricane data.

Keywords: Gaussian process prior; Markov chain Monte Carlo; Quantile regression;
Single-index models.

1 Introduction

Single-index models (SIM) provide an efficient way of coping with high-dimensional non-
parametric estimation problems (Härdle et al. (1993); Yu and Ruppert (2002)) and avoid
the “curse of dimensionality” in nonparametric problems by assuming that the response is
only related to a single linear combination of the covariates. Compared to fully nonparamet-
ric regression, it offers a nice tradeoff between simplicity and modelling power. The fitting of
single-index models, commonly based on splines or kernel methods, has found wide applica-
tion in the literature. For example, Härdle et al. (1993) used SIM to study the dependence
of the severity of side impacts on the velocity and acceleration of the automobile in an acci-
dent, and Xia et al. (2004) demonstrated that SIM provides a good fit in a study trying to
identify causal factors associated with the prevalence and incidence of depression. However,
efficient and stable estimation of SIMs is still a challenging problem and has inspired many
recent works in this area (Wang et al. (2010); Liang et al. (2010)).
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Although frequentist estimation of SIMs has a long history, the Bayesian approach to
fitting these models has only appeared quite recently. Antoniadis et al. (2004) and Wang
(2009) proposed a Bayesian approach using polynomial splines to model the nonparametric
link function, while Choi et al. (2011) and Gramacy and Lian (2011) use a Gaussian process
(GP) prior. As noted in Gramacy and Lian (2011), one advantage of using GPs as the
prior for the link function is that the index vector does not have to be normalized to have
unit norm, which makes the choice of prior easier, and subsequently the sampling algorithm
simplifies too.

However, the restriction of these works to mean regression, that is on estimating the
conditional mean regression function, may be a limitation. As a useful supplement to mean
regression, quantile regression produces a more complete description of the conditional re-
sponse distribution. In particular, it can uncover different structural relationships between
covariates and responses at the upper or lower tails, which is sometimes of significant interest
in econometrics applications. Furthermore, compared to mean regression, median regression
(which is a special case of quantile regression) is more robust to outliers or heavy-tailed
random errors.

In this article, we consider a single-index quantile regression model. For a given quantile
level τ ∈ (0, 1) and i.i.d. pairs (xi, yi), it is given by

Qyi|xi
(τ) = η(xi

Tβ), i = 1, 2, · · · , n.

Here yi is the response, xi = (xi1, · · · , xip)
T is the p-dimensional predictor vector, Qyi|xi

(.) =
F−1
yi|xi

(.) is the inverse cumulative distribution function of the response given the predictors,

η(.) is the unknown univariate link function, and β = (β1, β2, · · · , βp)
T is the index which

implicitly depends on the desired quantile τ . Dimension reduction is achieved specifically
by the index vector so that η is a univariate function instead of p-variate one, as in fully
nonparametric regression.

In this paper, we propose a Bayesian treatment of the single-index quantile regression
model. Recently, Wu et al. (2010) has considered a similar model using kernel regres-
sion, which will serve as a frequentist benchmark for our methods. We establish a hier-
archical Bayesian model by adopting the asymmetric Laplace distribution, which is one
common approach among a few alternatives in the Bayesian quantile regression literature
(Yu and Moyeed, 2001; Kottas and Krnjajić, 2009; Reich et al., 2010; Lancaster and Jun,
2010; Tokdar and Kadane, 2011). Following Gramacy and Lian (2011), we assign a Gaus-
sian process prior on the link function, to obtain a flexible nonparametric quantile regression
model. The posterior inference of all parameters is performed via Markov chain Monte Carlo
computations which automatically incorporates all sources of uncertainty.

The remainder of the paper proceeds as follows. In Section 2, we describe the structure
of our hierarchical Bayesian single-index quantile regression model and discuss our prior
choices. We also consider the posterior sampling algorithm focusing on a more efficient
partially collapsed sampler, where the link function is integrated out when drawing samples
of the index vector. This is explained in detail in the Appendix. Then, numerical illustrations
including simulation studies and a real data example are presented in Section 3. We conclude
the paper with a discussion in Section 4.
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2 Hierarchical Bayesian Modelling

At the τ -th quantile, we model the residual errors by the asymmetric Laplace distribution
(ALD, Yu and Moyeed (2001); Geraci and Bottai (2007); Luo et al. (2011)). More specifi-
cally, the probability distribution of y given µ = η(xTβ) is assumed to be

π(y|µ, σ) = τ(1− τ)

σ
exp

{

−1

σ
ρτ (y − µ)

}

,

where ρτ (u) = u(τ − I(u ≤ 0)) is the so-called check function, the quantile level τ is the
skewness parameter in the distribution, µ is the location parameter, and σ is the scale
parameter. In our context, with the setting µi = η(xT

i β), and y = (y1, y2, · · · , yn)T , the
conditional distribution for the observations is

π(y|β, η, σ) = τn(1− τ)n

σn
exp

{

−1

σ

n
∑

i=1

ρτ (yi − η(xi
Tβ))

}

. (1)

Quantile regression is typically based on minimization of the check loss function. How-
ever, direct use of the likelihood above is rather inconvenient for Bayesian inference. A
location-scale mixture representation of the ALD (Kozumi and Kobayashi (2011)) is helpful
here. We can write the observations satisfying (1) alternatively as

yi = η(xT
i β) + k1ei +

√

k2σeizi,

where ei ∼ exp(1/σ) is an exponential random variable with mean σ, zi is a standard normal
random variable and is independent of ei, k1 =

1−2τ
τ(1−τ)

, and k2 =
2

τ(1−τ)
. This suggests treating

the ei as latent variables, where the conditional distribution of y is rewritten as

π(y|β, η, σ, en) =
n
∏

i=1

(2πk2σei)
−1/2 exp

{

− 1

2k2σei
(yi − η(xT

i β)− k1ei)
2

}

∝ exp

{

−(y − ηn − k1en)
TE−1(y − ηn − k1en)

2

}

(det[E])−1/2.

Here en = (e1, e2, · · · en)T , E = k2σdiag(e1, e2, · · · en), and ηn = (η1, · · · , ηn)T =
(η(xT

1 β), · · · , η(xT
nβ))

T .
As in Choi et al. (2011) and Gramacy and Lian (2011), we model the link function by a

Gaussian process prior distribution. More specifically, η is a Gaussian process a priori, with
zero mean and a squared-exponential covariance function,

η ∼ GP(0, C(·, ·)), C(x, x′) = γ exp{−(x− x′)2/d}, (2)

where γ and d are hyperparameters. Writing this out in the single-index model framework
using the observed covariates xi, we have

π(ηn|β, γ) ∝ det[Cn]
−1/2 exp

{

−ηT
nC

−1
n ηn

2

}

,
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where Cn is an n× n matrix with entries C(xi,xj) = γ exp{−(xT
i β − xT

j β)
2/d}.

In the literature of single-index models, it is well-known that η and β are unidentifiable
since η(xTβ) = ηc(x

T (cβ)), c 6= 0, where ηc(.) = η(./c) and thus β is only identifiable up
to a constant scale. It is typically assumed that ‖β‖ = 1 so that β is identifiable up to
sign (β and −β leads to exactly the same model fit). Accordingly, Choi et al. (2011) also
suppose the support of the prior distribution for β is on the unit sphere. On the other hand,
Gramacy and Lian (2011) noted that without the constraint ‖β‖ = 1, only β/

√
d is identi-

fiable when using the Gaussian process prior, and thus one can remove the range parameter
d and also remove the unit norm constraint on β, which is mathematically equivalent to
imposing ‖β‖ = 1 and keeping the range parameter d. With the latter approach, we have
the advantage that the prior on β is more easily specified, and one fewer parameter (d) to
worry about. Note that the model leaves the sign of β unidentified under either specification.
In some cases when β is not of direct interest, it does not matter at all. When inference for
β is a primary goal, some simple heuristics for reconciling the signs in Gramacy and Lian
(2011) can be used.

We therefore adopt the approach in Gramacy and Lian (2011), so that the entries of
Cn are C(xi,xj) = γ exp{−(xT

i β − xT
j β)

2}. Since β is not constrained to have unit norm,
we are free to choose any prior for β. A typical choice is to put an independent Gaussian
prior on each component, which is sometimes called a ridge prior. One can also consider
the popular g-prior (Zellner, 1986; George and Foster, 2000). A generalization of the ridge
prior is the so-called Bayesian lasso, which has been of much interest in the recent literature
(Park and Casella (2008); Hans (2009)). Under this prior, βj , j = 1, . . . , p are independent
and identically Laplace,

π(β|σ, λ) =
p
∏

j=1

λ

2σ
e−λ|βj |/σ, λ > 0.

There are a suite of similar priors which share attractive properties and yet further gener-
alize the lasso. Examples include the normal–gamma prior (Griffin and Brown (2010)), the
Bayesian elastic set (e.g., Li and Lin (2010)) and the horseshoe (e.g., Carvalho et al. (2010)).
Our reasons for calling these “generalizations” have to do with the form of their hierarchical
latent variable representations, and corresponding data augmentation Gibbs samplers. We
focus on the Bayesian lasso as a representative case in this paper. Simplifications (to the
ridge) and further generalizations to the others are straightforward. Recognizing that esti-
mators for β are not equivariant under such priors (e.g., Park and Casella (2008)), we take
the common pre-processing step of scaling the inputs xi to have a unit L2-norm. This also
simplifies the choice of default priors for λ and σ.

To summarize, our Bayesian hierarchical formulation is provided below.

y|ηn, en, σ ∼ N(ηn + k1en,E),

ηn|xi, γ,β ∼ N(0,Cn),

β ∼ π(β|σ, λ), ei
i.i.d.∼ exp(1/σ),

σ ∼ π(σ), λ ∼ π(λ), γ ∼ π(γ).

The hyperpriors for σ, λ, γ are set to be IG(aσ, bσ), Ga(aλ, bλ) and IG(aγ , bγ), where IG
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denotes the inverse Gamma distribution and Ga denotes the Gamma distribution. All of
the hyperparameters aσ, bσ, aλ, bλ, aγ, bγ are set to be 0.5 in all our numerical experiments.
Sensitivity analyses reveal that our results are not sensitive to these choices.

The posterior distribution of various variables and parameters is found via MCMC, using
a partially collapsed version integrating out ηn. The details are left to the Appendix.

3 Numerical Illustrations

We present three simulation examples and a real data application to illustrate the proposed
method, the Bayesian quantile single-index regression model, which is denoted by BQSIM
for short in the rest of the article. The MCMC algorithm is implemented in R, and available
upon request.

3.1 Simulations

We illustrate the performance of the proposed method by comparing it with a non-Bayesian
single-index quantile regression approach described by Wu et al. (2010), based on kernel esti-
mation. This frequentist method is denoted by QSIM in the following. Since the frequentist
approach requires the identifiability constraint ‖β‖ = 1, we also normalized the Bayesian
estimate of the index vector to have unit norm and furthermore require the first component
of the index vector to be positive to resolve the sign indeterminacy. The following three
simulation examples are directly taken from Wu et al. (2010).

Example 1

Consider data generated from the following single-index model with homoscedastic errors,

y = η(xTβ) + 0.1Z, η(t) = sin

(

π(t− A)

C− A

)

,

with β = (β1, β2, β3)
T = 1√

3
(1, 1, 1)T , A =

√
3
2

− 1.645√
12
, C =

√
3
2

+ 1.645√
12
, Z ∼ N(0, 1).

The predictors x = (x1, x2, x3)
T are uniform in [0, 1]3. We consider sample sizes n = 100

and n = 200. For each sample size, we fit the models at seven different quantiles τ =
0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99. In each case, the MCMC algorithm is run for 20000 itera-
tions with a burn-in of 10000. For convergence diagnosis, we present trace plots of β, σ, λ
and γ in Figure 1 with two different sets of initial values using τ = 0.5. The plots suggest
that the constructed chains mix quickly.

For a Bayesian point estimator we consider both the posterior mean and posterior median
based on the sampled values after burn-in. The resulting estimates are summarized in Tables
1 and 2, together with the sample standard deviation (S.D.) and 2.5% and 97.5% quantiles of
the sampled values after burn-in. It is seen that both posterior mean and posterior median
estimators work well and give similar estimates. Thus we only focus on posterior mean as
our point estimate in the following.
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Figure 1: Trace plots of β1, β2, β3, σ, γ and λ at quantile 0.5 for simulation example 1, when
n = 100. Two chains with different starting values are illustrated.

Figure 2 displays the boxplots of the estimated index vectors, comparing BQSIM and
QSIM, with τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. To save space, cases with τ = 0.95 and 0.99 are
not presented. The plots are based on 100 independently generated datasets in each case
and show that the Bayesian estimates have smaller bias and lower variance. These plots
generally give the impression that BQSIM produces more precise and stable estimates than
QSIM. Mean squared errors (MSE) of the estimates based on these 100 replications in each
case are shown in Table 3 for both sample sizes and all seven quantile levels.

Figure 4 shows the fitted ηn values (posterior mean) by BQSIM at τ = 0.5 on a typical
run. In the left panel, the fitted ηn are plotted against the true index xT

i β where β is the
true value in the model. The true link function is also shown on the same figure. In the
right panel, the fitted ηn are plotted against the fitted index xT

i β̂, where β̂ is the posterior
mean estimate, leading to visually smoother fitted values.

Finally, to demonstrate that partial collapsing can significantly improve mixing, we show
the autocorrelation plots of the β series in Figure 3. Observe that the autocorrelation of
the series produced by the uncollapsed chain is much higher, implying the samples are much
“stickier”. As discussed in the Appendix, Cn is nearly singular which caused numerical
problems when using the uncollapsed Gibbs sampler. To avoid this numerical problem, a
small artificial nugget effect is added to the matrix (that is we use Cn + ǫI in place of Cn

in evaluating the full conditional density, with ǫ = 10−5).
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Table 1: Results of BQSIM for simulation example 1, n = 100.

n = 100 True Mean Median S.D. 2.5% 97.5%

τ=0.10
β1 0.5774 0.5666 0.5817 0.0157 0.5354 0.5970
β2 0.5774 0.5739 0.5749 0.0159 0.5420 0.6044
β3 0.5774 0.5741 0.5770 0.0164 0.5410 0.6052

τ=0.25
β1 0.5774 0.5785 0.5766 0.0154 0.5481 0.6084
β2 0.5774 0.5748 0.5734 0.0153 0.5442 0.6047
β3 0.5774 0.5773 0.5783 0.0155 0.5466 0.6071

τ=0.50
β1 0.5774 0.5773 0.5775 0.0157 0.5465 0.6080
β2 0.5774 0.5732 0.5741 0.0158 0.5426 0.6043
β3 0.5774 0.5802 0.5815 0.0159 0.5486 0.6118

τ=0.75
β1 0.5774 0.5756 0.5755 0.0156 0.5455 0.6067
β2 0.5774 0.5738 0.5740 0.0156 0.5429 0.6046
β3 0.5774 0.5812 0.5802 0.0157 0.5503 0.6118

τ=0.90
β1 0.5774 0.5760 0.5751 0.0157 0.5453 0.6071
β2 0.5774 0.5751 0.5762 0.0152 0.5458 0.6053
β3 0.5774 0.5790 0.5811 0.0155 0.5490 0.6102

τ=0.95
β1 0.5774 0.5819 0.5823 0.0159 0.5511 0.6127
β2 0.5774 0.5745 0.5754 0.0154 0.5443 0.6047
β3 0.5774 0.5730 0.5735 0.0157 0.5432 0.6045

τ=0.99
β1 0.5774 0.5771 0.5786 0.0212 0.5338 0.6142
β2 0.5774 0.5710 0.5668 0.0184 0.5362 0.6077
β3 0.5774 0.5729 0.5802 0.0225 0.5304 0.6124

Example 2

Now consider data generated as follows:

y = η(xTβ) +
√

(sin(xTβ) + 1)Z, where η(t) = 10 sin(0.75t),

and β = (β1, β2)
T = 1√

5
(1, 2)T , x = (x1, x2)

T , and Z is a standard normal random variable.

The xjs, (j = 1, 2) are drawn identically and independently from a normal distribution with
mean 0 and variance 0.252. We conduct simulations at τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99}
with n = 100 and n = 200, each with 100 replications. Figure 5 shows the boxplots for the
estimated index vector and Table 4 reports the mean squared errors.

Example 3

Next, we consider a regression model with exponentially distributed errors,

y = η(xTβ) + E , η(t) = 5cos(t) + exp(−t2),

where β = (β1, β2)
T = 1√

5
(1, 2)T ,x = (x1, x2)

T . xj
i.i.d.∼ N(0, 1), j = 1, 2, and E ∼ exp(1/2).

Using the same sample sizes and quantile levels as for the previous two examples, the results
are presented in Figure 6 and Table 5, which again demonstrate the superiority of BQSIM.

7



Table 2: Results of BQSIM for simulation example 1, n = 200.

n = 200 True Mean Median S.D. 2.5% 97.5%

τ=0.10
β1 0.5774 0.5742 0.5745 0.0104 0.5543 0.5947
β2 0.5774 0.5749 0.5768 0.0010 0.5567 0.5959
β3 0.5774 0.5821 0.5789 0.0104 0.5592 0.6002

τ=0.25
β1 0.5774 0.5761 0.5756 0.0106 0.5552 0.5968
β2 0.5774 0.5764 0.5782 0.0105 0.5562 0.5972
β3 0.5774 0.5788 0.5771 0.0106 0.5575 0.5991

τ=0.50
β1 0.5774 0.5771 0.5779 0.0106 0.5561 0.5971
β2 0.5774 0.5760 0.5779 0.0106 0.5561 0.5976
β3 0.5774 0.5783 0.5766 0.0104 0.5571 0.5979

τ=0.75
β1 0.5774 0.5769 0.5752 0.0107 0.5567 0.5987
β2 0.5774 0.5754 0.5746 0.0109 0.5548 0.5973
β3 0.5774 0.5790 0.5803 0.0109 0.5568 0.5992

τ=0.90
β1 0.5774 0.5817 0.5802 0.0108 0.5600 0.6027
β2 0.5774 0.5816 0.5802 0.0098 0.5630 0.6017
β3 0.5774 0.5675 0.5644 0.0106 0.5471 0.5881

τ=0.95
β1 0.5774 0.5754 0.5766 0.0109 0.5546 0.5959
β2 0.5774 0.5810 0.5809 0.0114 0.5599 0.6037
β3 0.5774 0.5743 0.5738 0.0105 0.5543 0.5951

τ=0.99
β1 0.5774 0.5590 0.5749 0.0241 0.5244 0.6029
β2 0.5774 0.5700 0.5780 0.0155 0.5425 0.5983
β3 0.5774 0.5601 0.5722 0.0218 0.5277 0.5984

Example 4

Here we follow a similar setup as in Example 1, except that the additive errors follow the
ALD with σ = 0.05. That is we generate data sets from the model (1), independently for
each value of τ . This example mainly serves as an illustration that when the errors indeed
follow ALD, so that estimation of σ becomes meaningful, we can indeed estimate its value
satisfactorily. These results are presented in Tables 6 and 7 for n = 100 and n = 200
respectively. We emphasize that the estimated σ is meaningful only if the true ALD is
used in estimation. As an illustration of this point, we consider data generated from (1)
using τ = 0.5 and fitted using BQSIM at quantile level τ = 0.75. In this case, the index
vector β can still be estimated very close to the true values, while the estimated σ is about
0.01. In general, BQSIM cannot be used to estimate the error distribution directly. This
limitation is discussed further in Section 4. In this example, the performance at τ = 0.99 is
less satisfactory than in previous examples.

Example 5

Finally, we increase the dimension in Example 1 to p = 10 to demonstrate the performance
in higher dimensions. The only difference in the setup from Example 1 is that we now
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Figure 2: Summarizing estimators of β for n = 100, 200 in example 1. ‘B100’ (‘Q100’)
denotes BQSIM (QSIM) with n = 100, for example.

set β = (1, 1, 1, 0, . . . , 0)T and β = 1√
10
(1, 1, 1, 1, . . . , 1)T , and only consider n = 100. For

these two cases, the estimation results are shown in Tables 8 and 9 respectively. To save
space, boxplots comparing BQSIM and QSIM are not shown now that we are estimating 10
coefficients. Our methods still perform much better than QSIM in these cases with higher
dimensions.
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Table 3: Comparison of MSE for BQSIM (using posterior mean as the estimator) and QSIM
based on 100 replications in each case for simulation example 1.

MSE (n = 100) MSE (n = 200)

β1 β2 β3 β1 β2 β3

τ=0.10
QSIM 0.00239 0.00447 0.00886 0.00346 0.00473 0.00052
BQSIM 0.00041 0.00051 0.00045 0.00017 0.00023 0.00020

τ=0.25
QSIM 0.00169 0.00312 0.00303 0.00276 0.00138 0.00310
BQSIM 0.00029 0.00029 0.00030 0.00012 0.00014 0.00019

τ=0.50
QSIM 0.00269 0.00154 0.00254 0.00058 0.00053 0.00089
BQSIM 0.00023 0.00025 0.00029 0.00013 0.00013 0.00018

τ=0.75
QSIM 0.00340 0.00601 0.00291 0.00039 0.00028 0.00048
BQSIM 0.00026 0.00029 0.00038 0.00017 0.00016 0.00016

τ=0.90
QSIM 0.00424 0.00794 0.00641 0.00139 0.00100 0.00192
BQSIM 0.00040 0.00049 0.00059 0.00023 0.00028 0.00030

τ=0.95
QSIM 0.00857 0.00739 0.00951 0.00157 0.00183 0.00245
BQSIM 0.00051 0.00075 0.00094 0.00042 0.00029 0.00041

τ=0.99
QSIM 0.05034 0.04259 0.06166 0.00494 0.09708 0.07046
BQSIM 0.00083 0.00098 0.00125 0.00062 0.00192 0.00099

Table 4: Comparison of MSE for BQSIM (using posterior mean as the estimator) and QSIM
based on 100 replications in each case for simulation example 2.

MSE (n = 100) MSE (n = 200)

β1 β2 β1 β2

τ=0.10
QSIM 0.02510 0.02991 0.00744 0.00238
BQSIM 0.00841 0.00197 0.00451 0.00115

τ=0.25
QSIM 0.01997 0.00396 0.00823 0.00645
BQSIM 0.00401 0.00095 0.00220 0.00059

τ=0.50
QSIM 0.01098 0.00409 0.00214 0.00058
BQSIM 0.00225 0.00056 0.00179 0.00041

τ=0.75
QSIM 0.02025 0.00868 0.00345 0.00089
BQSIM 0.00222 0.00059 0.00021 0.00056

τ=0.90
QSIM 0.01983 0.01227 0.00584 0.00196
BQSIM 0.00393 0.00104 0.00393 0.00104

τ=0.95
QSIM 0.02048 0.00974 0.01044 0.01279
BQSIM 0.00647 0.00150 0.00488 0.00126

τ=0.99
QSIM 0.06640 0.04652 0.05911 0.03972
BQSIM 0.00953 0.00226 0.00997 0.00210
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Figure 3: The autocorrelation plots for β1, β2, β3. The left column represents the series
produced by our partially collapsed sampler and the right column represents the uncollapsed
sampler.

3.2 Real data analysis

Finally, we apply the proposed method to the tropical cyclone (TC) data. Coastal tropical
cyclones pose a serious threat to social and economic institutions. It is necessary and useful to
provide a statistical way to analyze the TC data and evaluate the risk of the next catastrophic
cyclone. Here we consider a dataset consisting of a sample of 422 TCs occurring near the
US coastline over a 108-year period (1899-2006). Following Jagger and Elsner (2009) and
Bondell et al. (2010), we model the wind speeds from TCs with four climate variables: the
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Figure 4: The estimated link functions. On the left panel, the values of estimated ηn are
plotted against the true index, while for the right panel the values of estimated ηn are plotted
against the estimated index.

Table 5: Comparison of MSE for BQSIM (using posterior mean as the estimator) and QSIM
based on 100 replications in each case for simulation example 3.

MSE (n = 100) MSE (n = 200)

β1 β2 β1 β2

τ=0.10
QSIM 0.00767 0.00447 0.00174 0.00114
BQSIM 0.00033 0.00008 0.00018 0.00005

τ=0.25
QSIM 0.00421 0.00175 0.00647 0.00384
BQSIM 0.00074 0.00020 0.00035 0.00009

τ=0.50
QSIM 0.00843 0.00306 0.00631 0.00351
BQSIM 0.00173 0.00044 0.00090 0.00022

τ=0.75
QSIM 0.03992 0.05156 0.01429 0.00690
BQSIM 0.00221 0.00050 0.00573 0.00098

τ=0.90
QSIM 0.06118 0.08449 0.06311 0.07486
BQSIM 0.04856 0.01129 0.04571 0.00219

τ=0.95
QSIM 0.07744 0.05669 0.09499 0.17752
BQSIM 0.07094 0.05106 0.08097 0.05106

τ=0.99
QSIM 0.10262 0.10510 0.12993 0.13203
BQSIM 0.10064 0.05996 0.12071 0.06277

North Atlantic Oscillation Index (NAO), the Southern Oscillation Index (SOI), the Atlantic
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Figure 5: Summarizing estimators of β for n = 100, 200 in example 2.

sea-surface temperature (SST) and the average sun spot number (SSN). The values of SOI,
SST, and SSN are averaged values over the peak season of August through October and the
values of NAO are averaged over the preseason and early season months of May and June.
Both Jagger and Elsner (2009) and Bondell et al. (2010) used linear quantile regression to
analyze this data. Here we apply our BQSIM to analyze how these climate variables influence
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Figure 6: Summarizing estimators of β for n = 100, 200 in example 3.

the wind speeds of TCs. We also fitted QSIM described in Wu et al. (2010) for comparison.
The particular focus for this type of data is on the upper quantiles, as these extreme

hurricane-strength storms are of considerable importance. We consider three different quan-
tile levels τ = (0.5, 0.75, 0.9, 0.95, 0.99). All covariates are scaled to have mean zero and
standard deviation one.
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Table 6: Results of BQSIM for simulation example 4, n = 100.

n = 100 True Mean Median S.D. 2.5% 97.5% MSE

τ=0.10

β1 0.5774 0.5805 0.5818 0.0353 0.5084 0.6476 0.00117
β2 0.5774 0.5814 0.5771 0.0338 0.5123 0.6463 0.00069
β3 0.5774 0.5641 0.5615 0.0350 0.4923 0.6304 0.00132
σ 0.0500 0.0521 0.0527 0.0054 0.0430 0.0637 0.00002

τ=0.25

β1 0.5774 0.5809 0.5823 0.0215 0.5377 0.6227 0.00055
β2 0.5774 0.5762 0.5760 0.0212 0.5341 0.6171 0.00043
β3 0.5774 0.5723 0.5704 0.0218 0.5290 0.6145 0.00063
σ 0.0500 0.0520 0.0520 0.0054 0.0427 0.0638 0.00003

τ=0.50

β1 0.5774 0.5787 0.5786 0.0176 0.5432 0.6129 0.00030
β2 0.5774 0.5740 0.5759 0.0176 0.5394 0.6084 0.00026
β3 0.5774 0.5778 0.5783 0.0179 0.5425 0.6127 0.00030
σ 0.0500 0.0514 0.0515 0.0053 0.0421 0.0631 0.00003

τ=0.75

β1 0.5774 0.5750 0.5765 0.0208 0.5346 0.6165 0.00041
β2 0.5774 0.5745 0.5750 0.0210 0.5330 0.6155 0.00047
β3 0.5774 0.5802 0.5780 0.0212 0.5384 0.6219 0.00043
σ 0.0500 0.0519 0.0514 0.0053 0.0423 0.0634 0.00004

τ=0.90

β1 0.5774 0.5734 0.5682 0.0342 0.5055 0.6401 0.00083
β2 0.5774 0.5685 0.5672 0.0336 0.5020 0.6343 0.00094
β3 0.5774 0.5842 0.5829 0.0342 0.5178 0.6521 0.00131
σ 0.0500 0.0514 0.0517 0.0054 0.0422 0.0633 0.00003

τ=0.95

β1 0.5774 0.5455 0.5652 0.0851 0.3827 0.6887 0.01151
β2 0.5774 0.5611 0.5658 0.0611 0.4412 0.6818 0.00352
β3 0.5774 0.5676 0.5912 0.0714 0.4175 0.6979 0.01261
σ 0.0500 0.0518 0.0518 0.0053 0.0422 0.0640 0.00003

τ=0.99

β1 0.5774 0.1115 0.1589 0.4957 -0.7874 0.8895 0.28021
β2 0.5774 0.4797 0.4677 0.2595 0.0817 0.9325 0.02603
β3 0.5774 0.1051 0.1513 0.4771 -0.7418 0.8867 0.27783
σ 0.0500 0.0529 0.0530 0.0054 0.0433 0.0646 0.00003

Table 10 compares the obtained index vectors estimated by BQSIM and QSIM and Figure
7 shows the estimated quantile curves of TC intensity at different levels. From the table, we
can see that TC intensity heavily depends on SOI. The index vectors obtained by BQSIM
and QSIM are qualitatively similar at lower quantiles, with more obvious deviations at levels
above 0.9. This suggests that the estimates are not reliable for high quantile levels, especially
for τ = 0.95 and τ = 0.99. The boxplots in Figure 8 (left columns) show the samples collected
from the posterior distribution of β which are normalized to have unit norm. The histograms
in Figure 8 show the implied distribution of d (see equation (2)). For Gaussian processes,
larger values of d correspond to smoother functions. While it is generally hard to compare
the performance of BQSIM and QSIM for real data, our previous simulations suggest that
BQSIM is more trustworthy. We also performed model fitting on bootstrapped data and
observed that the BQSIM estimates are more stable across bootstrap samples, except for
τ = 0.99 where estimates obtain from both BQSIM and SIM are quite unstable.
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Table 7: Results of BQSIM for simulation example 4, n = 200.

n = 200 True Mean Median S.D. 2.5% 97.5% MSE

τ=0.10

β1 0.5774 0.5813 0.5797 0.0209 0.5389 0.6213 0.00042
β2 0.5774 0.5742 0.5736 0.0221 0.5299 0.6167 0.00041
β3 0.5774 0.5742 0.5753 0.0217 0.5301 0.6159 0.00041
σ 0.0500 0.0521 0.0519 0.0037 0.0430 0.0637 0.00002

τ=0.25

β1 0.5774 0.5799 0.5798 0.0135 0.5534 0.6057 0.00020
β2 0.5774 0.5764 0.5806 0.0138 0.5493 0.6028 0.00025
β3 0.5774 0.5747 0.5754 0.0139 0.5476 0.6018 0.00025
σ 0.0500 0.0515 0.0528 0.0037 0.0427 0.0638 0.00002

τ=0.50

β1 0.5774 0.5816 0.5830 0.0119 0.5584 0.6045 0.00030
β2 0.5774 0.5748 0.5738 0.0118 0.5516 0.5980 0.00026
β3 0.5774 0.5749 0.5752 0.0118 0.5517 0.5978 0.00030
σ 0.0500 0.0522 0.0517 0.0038 0.0447 0.0592 0.00001

τ=0.75

β1 0.5774 0.5771 0.5789 0.0136 0.5511 0.6035 0.00027
β2 0.5774 0.5769 0.5774 0.0138 0.5503 0.6039 0.00023
β3 0.5774 0.5770 0.5751 0.0135 0.5505 0.6029 0.00022
σ 0.0500 0.0512 0.0512 0.0037 0.0448 0.0594 0.00002

τ=0.90

β1 0.5774 0.5774 0.5760 0.0213 0.5363 0.6201 0.00057
β2 0.5774 0.5800 0.5788 0.0217 0.5370 0.6224 0.00044
β3 0.5774 0.5720 0.5697 0.0217 0.5295 0.6152 0.00047
σ 0.0500 0.0511 0.0518 0.0037 0.0447 0.0593 0.00001

τ=0.95

β1 0.5774 0.5766 0.5739 0.0374 0.5009 0.6447 0.00197
β2 0.5774 0.5795 0.5841 0.0337 0.5128 0.6471 0.00099
β3 0.5774 0.5679 0.5688 0.0354 0.5003 0.6385 0.00145
σ 0.0500 0.0518 0.0529 0.0038 0.0450 0.0649 0.00002

τ=0.99

β1 0.5774 0.3256 0.3507 0.3545 -0.3724 0.8083 0.12130
β2 0.5774 0.5350 0.5428 0.1791 0.2028 0.8372 0.02907
β3 0.5774 0.3318 0.3344 0.2977 -0.2720 0.7914 0.12535
σ 0.0500 0.0524 0.0520 0.0038 0.0433 0.0646 0.00002

4 Discussion

In this article, we have proposed a Bayesian quantile regression method for single-index
models based on a Gaussian process prior for the unknown link function. As detailed in
the Appendix, we designed an efficient MCMC algorithm for posterior inference and demon-
strated the superiority of the Bayesian approach to a modern non-Bayesian one. We carefully
considered the possibility of marginalizing over the link function in some of the sampling
steps, which leads to a partially collapsed sampler that balances sampling efficiency and
implementation expediency. The performance of the proposed approach in our simulations
is quite encouraging.

We used zero-mean Gaussian process with squared exponential kernel. It is also possible
to explicitly incorporate a mean function in the Gaussian process. This could add some
flexibility to the model. For example, if a linear mean function is used, under independent
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Table 8: Comparison of MSE for BQSIM and QSIM based on 100 replications in each case
for simulation example 5, where β = (1, 1, 1, 0, . . . , 0)T .

n = 100 β1 β2 β3 β4 β5

τ=0.10
QSIM 0.03051 0.06458 0.09402 0.03894 0.03484
BQSIM 0.01000 0.00251 0.03926 0.00068 0.00460

τ=0.25
QSIM 0.00822 0.01876 0.04851 0.01342 0.00825
BQSIM 0.00054 0.00046 0.00064 0.00045 0.00038

τ=0.50
QSIM 0.01385 0.00483 0.00308 0.00617 0.00417
BQSIM 0.00031 0.00039 0.00043 0.00033 0.00039

τ=0.75
QSIM 0.00106 0.03489 0.03508 0.00102 0.00396
BQSIM 0.00046 0.00039 0.00058 0.00063 0.00068

τ=0.90
QSIM 0.00532 0.03687 0.03949 0.01752 0.00940
BQSIM 0.00148 0.00106 0.00116 0.00156 0.00151

τ=0.95
QSIM 0.03913 0.06571 0.10765 0.03061 0.030221
BQSIM 0.00698 0.00368 0.00401 0.00178 0.00287

τ=0.99
QSIM 0.04228 0.05799 0.06567 0.06315 0.06315
BQSIM 0.02259 0.01966 0.03773 0.02252 0.01228

n = 100 β6 β7 β8 β9 β10

τ=0.10
QSIM 0.02318 0.02520 0.02052 0.03534 0.04236
BQSIM 0.01572 0.00628 0.00214 0.00194 0.00432

τ=0.25
QSIM 0.01096 0.01086 0.00622 0.00749 0.01302
BQSIM 0.00056 0.00034 0.00038 0.00054 0.00036

τ=0.50
QSIM 0.00717 0.01045 0.00452 0.00622 0.00974
BQSIM 0.00043 0.00047 0.00029 0.00049 0.00032

τ=0.75
QSIM 0.00117 0.00386 0.00157 0.01653 0.00803
BQSIM 0.00035 0.00055 0.00049 0.00064 0.00046

τ=0.90
QSIM 0.00766 0.04293 0.01118 0.01324 0.02452
BQSIM 0.00118 0.00167 0.00065 0.00133 0.00181

τ=0.95
QSIM 0.02806 0.03451 0.02941 0.03739 0.02923
BQSIM 0.00288 0.00200 0.00451 0.00305 0.00263

τ=0.99
QSIM 0.08010 0.06853 0.05461 0.06722 0.05835
BQSIM 0.01346 0.01363 0.01514 0.01219 0.01140

zero-mean normal prior on the linear coefficients, the resulting process would be equivalent
to a zero-mean Gaussian process with an additional quadratic term in the kernel function,
as shown by MacKay (1998). Thus the consideration on whether to use a non-zero mean is
similar to deciding what kind of kernel to use. We take the view that a zero-mean Gaussian
process with the quadratic exponential kernel function is already flexible enough to model a
variety of curves and thus do not consider these additional possibilities in modelling.

It is worth noting that we mainly regard ALD as a tool for estimating the conditional
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Table 9: Comparison of MSE for BQSIM and QSIM based on 100 replications in each case
for simulation example 5, where β = 1√

10
(1, 1, 1, 1, . . . , 1)T .

n = 100 β1 β2 β3 β4 β5

τ=0.10
QSIM 0.00124 0.00149 0.00114 0.00133 0.00140
BQSIM 0.00066 0.00085 0.00067 0.00079 0.00078

τ=0.25
QSIM 0.00101 0.00077 0.00072 0.00089 0.00050
BQSIM 0.00047 0.00035 0.00040 0.00039 0.00038

τ=0.50
QSIM 0.00086 0.00062 0.00367 0.00061 0.00567
BQSIM 0.00048 0.00032 0.00026 0.00048 0.00055

τ=0.75
QSIM 0.00102 0.01325 0.00135 0.00122 0.00173
BQSIM 0.00064 0.00048 0.00045 0.00053 0.00048

τ=0.90
QSIM 0.00308 0.00256 0.01116 0.00666 0.00280
BQSIM 0.00095 0.00082 0.00058 0.00081 0.00061

τ=0.95
QSIM 0.01535 0.01194 0.03278 0.02291 0.02617
BQSIM 0.00129 0.00144 0.00125 0.00162 0.00129

τ=0.99
QSIM 0.01629 0.05267 0.02109 0.04479 0.04052
BQSIM 0.01493 0.00967 0.01255 0.01236 0.01534

n = 100 β6 β7 β8 β9 β10

τ=0.10
QSIM 0.00123 0.00160 0.00141 0.00151 0.00100
BQSIM 0.00096 0.00086 0.0065 0.00107 0.00066

τ=0.25
QSIM 0.00074 0.00101 0.00069 0.00067 0.00084
BQSIM 0.00054 0.00048 0.00052 0.00043 0.00033

τ=0.50
QSIM 0.00098 0.00058 0.00180 0.00178 0.00064
BQSIM 0.00037 0.00048 0.00033 0.00037 0.00029

τ=0.75
QSIM 0.00283 0.00123 0.00428 0.00093 0.00123
BQSIM 0.00057 0.00049 0.00057 0.00041 0.00041

τ=0.90
QSIM 0.00385 0.00258 0.01294 0.00964 0.00341
BQSIM 0.00070 0.00071 0.00079 0.00105 0.00064

τ=0.95
QSIM 0.02083 0.02902 0.04447 0.02839 0.05003
BQSIM 0.00132 0.00170 0.00077 0.00142 0.00104

τ=0.99
QSIM 0.04999 0.04875 0.07079 0.06024 0.05711
BQSIM 0.01191 0.01088 0.01134 0.02032 0.01921

quantile, much like in the frequentist approach. By assuming the errors follow ALD, the
posterior can give spurious confidence if the underlying data come from a different model
than ALD. This is like using a quasi-likelihood to replace the true likelihood in frequentist
estimation. In particular, the error distribution may not be accurately estimated by our
approach. As we demonstrated, the method does accurately estimate the index vector and
the link function. Finally we remind the readers that ALD can lead to incoherent inferences
in the sense that quantile curves are permitted to intersect each other. This is because the
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Table 10: Estimates from BQSIM and QSIM for the TCs data.

BQSIM QSIM

τ=0.50

NAO(β1) 0.46300 0.49633
SOI(β2) -0.58446 -0.59011
SST(β3) 0.01665 -0.06932
SSN(β4) 0.51756 0.47965

τ=0.75

NAO(β1) 0.37840 0.51400
SOI(β2) -0.87369 -0.73418
SST(β3) -0.19373 -0.20965
SSN(β4) 0.07462 0.39093

τ=0.90

NAO(β1) -0.13451 0.36110
SOI(β2) -0.83952 -0.62212
SST(β3) -0.40714 -0.58222
SSN(β4) -0.18082 -0.37594

τ=0.95

NAO(β1) -0.16689 0.10274
SOI(β2) -0.90598 -0.11676
SST(β3) -0.30985 -0.83128
SSN(β4) -0.08797 -0.53364

τ=0.99

NAO(β1) -0.03822 0.10860
SOI(β2) -0.41609 -0.12104
SST(β3) 0.88491 -0.83293
SSN(β4) 0.13593 -0.52894

inference for distinct quantiles would proceed separately/independently and there is nothing
to prevent them from overlapping.

In terms of computational speed, on an ordinary PC, fitting the BQSIM on a single
generated dataset under our simulation setup would take about 10-20 minutes. This is less
of a problem for our real data but is quite a burden for simulations. Due to the relatively
slow computational speed which is a common problem that plagues MCMC algorithms, some
approximation methods such as variational Bayes might be desirable, but this is outside the
scope of the current paper.

As an extension of the current study, one can consider multiple-index models in quantile
regression. However, sampling the index matrix poses some serious challenges and is outside
the scope of the current investigation.
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Figure 7: The estimated link functions by BQSIM (left column) and QSIM (right column),
for TC intensity at different quantiles.

Appendix: MCMC algorithm details

The posterior distribution for all of the unknown parameters and latent variables is propor-
tional to the joint distribution, given by
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Figure 8: The boxplots on the left shows the posterior distribution of β (after normalization
to unit norm). The histograms on the right shows the posterior distribution of d = 1/‖β‖2.
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π(β,ηn, en, σ, λ, γ|y)

∝ exp

{

−(y − ηn − k1en)
TE−1(y − ηn − k1en)

2

}

×(det[E])−1/2 det[Cn]
−1/2 exp

{

−ηT
nC

−1
n ηn

2

}

×
p
∏

j=1

λ

2σ
e−λ|βj |/σ

n
∏

i=1

1

σ
exp

{

−ei
σ

}

×
(

1

σ

)aσ+1

exp

{

−bσ
σ

}(

1

γ

)aγ+1

exp

{

−bγ
γ

}

λaλ−1 exp{−bλλ}.

The Metropolis-within-Gibbs algorithm may be used to sample from the posterior distri-
bution. Mathematically speaking, it is possible to integrate out ηn before sampling, and it
is well-known that marginalization can improve the mixing of the chain (Liu, 2008). How-
ever, if ηn is not sampled, then the full conditional distributions for ei and σ are no longer
well-known distributions which leads to extra difficulty in sampling. On the other hand, we
note the full conditional distribution of β is

π(β|ηn, λ, σ,y) ∝ det[Cn]
−1/2 exp

{

−ηT
nC

−1
n ηn

2

}

×
p
∏

j=1

λ

2σ
e−λ|βj |/σ,

and thus the evaluation of the density involves the inverse of Cn. Unfortunately, since Cn is
a kernel matrix, in many simulations we found it is nearly singular. When ηn is integrated
out, this singularity problem is avoided since we only have to compute the inverse of the
matrix Cn +E, where E is a diagonal matrix (see (3) below).

The conditional posterior densities of all the parameters and variables, except for β and γ,
are common distributions. The conditional distributions used in the sampling are presented
below. ηn is marginalized out when considering the posterior conditional distribution of β
and γ.

π(β|en, σ, λ, γ,y) ∝
∫

π(y|en, σ,ηn)π(ηn|β, γ)dηn × π(β|σ, λ)

∝ exp

{

−(y − k1en)
T (E +Cn)

−1(y − k1en)

2

}

× (det[Cn +E])−1/2 ×
p
∏

j=1

e−λ|βj |/σ,

(3)
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π(γ|β, en, σ, λ,y) = π(γ|β, en, σ,y)

∝
∫

π(y|en, σ,ηn)π(ηn|β, γ)dηn × π(γ)

∝ exp

{

−(y − k1en)
T (E +Cn)

−1(y − k1en)

2

}

× (det[Cn +E])−1/2

(

1

γ

)aγ+1

exp

{

−bγ
γ

}

,

(4)

π(ηn|β, en, σ, λ, γ,y) = π(ηn|β, en, σ, γ,y) ∼ N(µn,Σn),

µn = Cn(Cn +E)−1(y − k1en),

Σn = Cn(Cn +E)−1E,

(5)

π(σ|β,ηn, en, λ, γ,y) = π(σ|ηn,βn, en, λ,y) ∼ IG(ασ, νσ),

ασ =
3n

2
+ p+ aσ,

νσ =
n

∑

i=1

(

(yi − η(xi
Tβ)− k1ei)

2

2k2ei
+ ei

)

+

p
∑

j=1

λ|βj|+ bσ,

π(λ|σ,β,ηn, en, γ,y) = π(λ|σ,β) ∼ Ga(aγ + p, bγ +

p
∑

j=1

|βj|/σ2).

The full conditional distribution for ei is a generalized inverse Gaussian distribution
(GIG),

π(ei|σ,β,ηn, λ, γ,y) = π(ei|σ,ηn,y) ∼ GIG





1

2
,

√

(yi − η(xi
Tβ))2

k2σ
,

√

k2
1

k2σ
+

2

σ



 ,

where the probability density function of GIG(ρ,m, n) is

f(x|ρ,m, n) =
(n/m)ρ

2Kρ(mn)
xρ−1 exp

{

−1

2
(m2x−1 + n2x)

}

,

x > 0,−∞ < ρ < ∞, m ≥ 0, n ≥ 0,

and Kρ is the modified Bessel function of the third kind (Barndorff-Nielsen and Shephard,
2001).
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We use a superscript (.)(t) to denote the sampled values of different quantities at iteration

t. The variables η
(t)
n , λ(t), γ(t), e

(t)
n can be directly generated in R based on the respective full

conditional distributions. For β(t), we use a Metropolis step with proposal distribution
N(β(t−1), σ2

βI), and for γ(t), we propose the new value from log γ(t) ∼ N(log γ(t−1), σ2
γ). In

practice, σβ and σγ are manually tuned to ensure the acceptance rate to be within 10% ∼
30%. This manual tuning is simplified by transforming all predictors and responses to have
mean 0 and variance 1 before running the MCMC algorithm.

Our sampling strategy is “partially collapsed” in the sense of van Dyk and Park (2008),
and in particular is similar to Sampler 7 in that paper. It is easy to see the validity of
the constructed sampler (that is, it does not change the stationary distribution). More
specifically, to obtain this partially collapsed sampler by modifying the Gibbs sampler, we
first marginalize the full conditional distributions for β and γ to get π(β,ηn|en, σ, λ, γ,y)
and π(γ,ηn|β, en, σ, λ,y), by moving ηn from being conditioned to being sampled. Since
ηn is sampled again in (5) immediately following β and γ, the two intermediate ηn’s are
redundant and thus can be trimmed, resulting in (3) and (4) respectively. It was shown
in Theorem 1 of van Dyk and Park (2008) that the marginalization step can only improve
the autocorrelation of the chain. As shown in our simulation examples, this improvement is
dramatic for our specific problem.
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