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Iterative Numerical Methods for Sampling from High
Dimensional Gaussian Distributions

Erlend Aune1, Jo Eidsvik1 and Yvo Pokern2

1 Department of Mathematical Sciences, NTNU, Norway
2 Department of Statistics, University College, London, UK

Many applications require efficient sampling from Gaussian distributions. The method of choice depends
on the dimension of the problem as well as the structure of the covariance- (Σ) or precision matrix (Q). The
most common black-box routine for computing a sample is based on Cholesky factorisation. In high dimensions,
computing the Cholesky factor of Σ or Q may be prohibitive due to massive fill-in. We compare different methods
for computing the samples iteratively adapting ideas from numerical linear algebra. These methods assume that
matrix-vector products, Qv, are fast to compute. We show that some of the methods are competitive and faster
than Cholesky sampling and that a parallel version of one method on a Graphical Processing Unit (GPU) using
CUDA can introduce a speed-up of up to 30x. Moreover, one method is used to sample from the posterior
distribution of petroleum reservoir parameters in a North Sea field, given seismic reflection data on a large 3D
grid.
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1 Introduction

With the increased acquisition and storage of massive datasets much statistical research is focusing on inference
and sampling in very high dimensions. The machine learning community constructs models for identifying
information in such datasets, see e.g. Rasmussen and Wiliams (2006). In spatial statistics the introduction of
new scientific methods, such as global positioning, seismic data acquisition and information systems acquiring
massive datasets, are influencing the focus in models and methods, see e.g. Banerjee et al. (2008), Cressie and
Johannesson (2008) and Buland et al. (2003). The most common distribution for such high dimensional problems
is the Gaussian distribution. In diverse applications this model choice tends to give reasonable results, while
maintaining computational tractability. The requirements for inference are then evaluation of a quadratic form
and a determinant. For sampling based approaches we must be able to draw a variable with the right mean
and covariance structure. Sampling is one way to do inference using Markov chain Monte Carlo sampling, but
samples are also important for generating ensembles. Climate models, hydrological models, weather forecasting,
petroleum reservoir prediction, and many other dynamic applications, rely on the propagation of such ensembles
over time.

For applications which can be represented by a graphical structure, Gaussian Markov Random Fields (GM-
RFs), or conditional autoregresive (CAR) models, provide useful conditional independence representations of
Gaussian processes. For instance, spatio-temporal data on a grid or on a regionalized areal model, are often
modeled by a GMRF prior model, see e.g. Besag et al. (1991) and Rue and Held (2005). A GMRF is character-
ized by a sparse precision matrix obtained from the conditional formulation, giving non-zero entries only on the
diagonal and at entries within the neighbourhood structure of the related graph. This sparse structure allows
for efficient computations. In contrast, the covariance matrix (inverse precision matrix) tends to be almost full.
The sampling methods using the covariance matrix may thus be much less efficient in high dimensions, unless
one is able to utilize some approximation or basis representation of the process. For instance, one can use the
fast fourier transform for stationary Gaussian processes on a torus (Gray (2006)).

In this paper we explore iterative methods for sampling high dimensional Gaussian processes. We assume
that the precision matrix Q has a sparse Markov structure, or the matrix-vector product Qx is available as a
fast black-box procedure. Here, ’iterative methods’ mean iterative numerical linear algebra methods, see Saad
(2003), Golub and van Loan (1996) and Trefethen and Bau (1997). We do not refer to random iterative sampling
methods such as Markov chain Monte Carlo (MCMC). Our proposed sampling methods use numerical methods
to solve x = Q−1/2z, where z is a vector of iid normal variables. The error can be controlled using the accuracy
of the functional (numerical) approximation. This is very different from MCMC algorithms which study the
’error’ by checking the loss of any transient phase and the lack of autocorrelation in the Markov chain.

We outline three general procedures for sampling. All three are based on Krylov methods (Saad (2003))
and rational approximations to a specific matrix function (Higham (2008)). The first of these procedures is
the traditional Lanczos method and variations over that (Saad (2003)). The second is based on a quadrature
representation formula arising from Cauchy’s integral formula (for an accessible introduction to complex analysis,
see Stein and Shakarchi (2003)) and conformal mappings of regions U ∈ C, see Hale et al. (2008). The third is
a continuous deformation method based on a system of ODEs found in Allen et al. (2000). Iterative methods
are used for solving Qx = b many times. We employ variants of the conjugate gradient (CG) method of
Hestenes and Stiefel (1952) for this. The basis of these methods was developed by the numerical linear algebra
community, and they are common in many applications of large datasets with sparse structure. Our impression
is that their merits can be useful to statisticians, since their computational and mathematical properties can be
superior to the more classical (direct) linear algebra tools that are commonly used in statistics today. Moreover,
methods using sparse matrices can be implemented quite easily on the graphics card (GPU), allowing fast parallel
computing. A tutorial on using CUDA, a C++/C interface to the GPU, can be found on nVidias website
(http://www.nvidia.com/cuda/). Statisticians will certainly use more of these recent parallel developments in
the future. In our examples we get speed-ups of up to a factor of 30.

We briefly review recently proposed methods for iterative sampling utilizing and adapting ideas from nu-
merical linear algebra. Schneider and Willsky (2003) and Fox (2008) study Krylov subspace approximations,
where samples are the directions obtained by the CG method. Their realizations are fast to generate, but
they oversmooth the process and are impractical for large problems due to inherrent instability in the presence
in round-off error in the orthogonal vectors generated by the Krylov method. Simpson et al. (2007) describe
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restarted Lanczos routines for constructing a sample. For very high dimension the storage capacity seems very
large for this method, but this can be overcome using a so-called two-pass strategy described in Frommer and
Simoncini (2008). In the machine learning literature, Belabbas and Wolfe (2009) used iterative methods to
approximate the eigenvalues, and capture the most important feature of the Gaussian process. Their approach
seems to work well for moderate dimensions, but it is unclear what its properties are, and how to tune this
method in high dimensions.

The paper is organised as follows: Section 2 gives some background model assumptions and a review of direct
sampling methods. In Section 3 we present the iterative sampling procedures, which are applied to examples in
Section 4. In this example section, we compare timings for two different sparse models, and sample the posterior
model given seismic 3D data from a North Sea reservoir.

2 Modelling assumptions and direct sampling methods

The distribution of a k dimensional Gaussian random variable x = (x1, . . . , xk)
′, denoted x ∼ N (µ,Q−1) for an

invertible Q, is given by

p(x) =
|Q|1/2
(2π)k/2

exp(−1

2
(x− µ)TQ(x− µ))

∝ exp(−1

2
xTQx+ xTb), (1)

where covariance matrix Σ = Q−1, and Q is the precision matrix. The linear canonical parameter b = Qµ links
the mean µ and the precision matrix. For GMRFs the precision matrix Q is sparse, with Qi,j = 0 unless i, j
are neighbors on a graph. On a grid, the first order neighborhood is defined by the cells north, east, south and
west. For a map of regions, the neighbors have a common border. The extension to second and higher order
neighborhoods follows naturally (Rue and Held (2005)). We will treat the precision matrix and the mean as
fixed. In the application to seismic data one typically determines these parameters from auxiliary data sources.

2.1 Gaussian linear model

In many applications the GMRF constitutes a latent process, while the data are noisy, possibly indirect, mea-
surements of this process. Then p(x) takes the form of a prior model, while the data y = (y1, . . . , yn)

T are
represented via a likelihood model. Here, we consider a Gaussian linear likelihood model y|x ∼ N (Gx,R−1),
with n × k forward matrix G and noise covariance matrix R−1 determined by the data acquisition procedure.
The posterior distribution for the latent process x given the data y is

p(x|y) ∝ exp(−1

2
(x− µ)TQ(x− µ)−

1

2
(y −Gx)TR(y −Gx))

∝ exp(−1

2
xT (Q+GTRG)x+

xT (Qµ+GTRy)). (2)

This posterior is a Gaussian process with precision Q → Q+GTRG and canonical parameter b → b+GTRy,
compared with the prior distribution. The posterior mean is E(x|y) = (Q+GTRG)−1(Qµ+GTRy). Commonly,
the likelihood is modeled as conditionally independent, i.e. G andR are diagonal. For this situation, the posterior
p(x|y) inherits the neighborhood structure of the prior p(x), with a change in b and the diagonal entries of Q
alone. In some applications the likelihood might involve smoothing, either from G or R. This increases the
neighborhood of the posterior model, and some of the sparse computational benefits might be reduced.

We consider sampling methods for the prior in (1) and the posterior in (2). Posterior sampling can be done
either by sampling from the Gaussian process defined via the conditional p(x|y), or as a three-step procedure
which i) generates a variable from the prior Gaussian process, ii) draws a randomized data value from the
Gaussian likelihood, and iii) computes a linear combination of the two that maintains the correct conditional
mean and variance. The simpler strategy will depend on the situation.
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2.2 Direct sampling of Gaussian processes

In this section we review direct methods for sampling a Gaussian process. A key observation when sampling from
a Gaussian is the following: If the precision matrix Q = LLT , then the covariance is Σ = (LLT )−1 = L−TL−1.
If we want a sample v ∼ N (0,Q−1), it is enough to compute v = L−Tz for z ∼ N (0, I), since Cov(L−Tz) =
L−T Cov(z)L−1 = (LLT )−1. This approach is called the Cholesky sampling from a GMRF (Rue (2001) and Rue
and Held (2005)). In an autoregressive graph with first order neighborhood, L has non-zero entries only along
the diagonal and the first subdiagonal. The Cholesky factor is fast to compute from Q; more specifically for the
autoregressive graph, the computational cost is of order O(n). For a two dimensional grid the cost is O(n3/2), for
a three dimensional grid it is O(n2). Moreover, the storage requirements for computing L become enormous in
high dimensions because of the large fill-in between the non-zero structure of Q and the larger non-zero structure
of L. One can reduce the storage requirements by intelligent sorting of the n indices in the graph, but for a three
dimensional grid, the sortings we tried did not prove particularly helpful in our study. A remedy is to apply
Cholesky factorisation for block updating in an MCMC sampler (Roberts and Sahu (1997)), but the burn-in and
mixing of the resulting Markov chain can be quite slow.

A different point of view comes from considering Q−1/2 as the principal square root of the matrix Q. Since
Q is symmetric positive definite, Q = V DV T , where V is the orthogonal eigenvector matrix and D has the
eigenvalues of Q on its diagonal. Consequently, we have Q−1/2 = V D−1/2V T . Then for z ∼ N (0, I),

Cov(V D−1/2V Tz) = V D−1/2V T I(V D−1/2V T )T

= V D−1V T = Q−1, (3)

as desired. In high dimensions the eigenvalues and eigenvectors are very hard to compute directly, namely it is
O(n3), unless there is particular structure in the model. For instance, if the precision matrix Q is circulant or
is well approximated by a circulant matrix, the eigenvalues and eigenvectors are easy to compute using the fast
Fourier transform (Gray (2006)). This gives an algorithm of order O(n log n). Any stationary GMRF may be
approximated by a circulant Q through tapering.

It is important to note that Cholesky and matrix function sampling give different samples x, even though
they use the same input iid variable z. Still, both realizations are from the correct distribution, and correspond
to one another through an injective function. Even though the Cholesky method and the eigenrepresentation do
not allow direct sampling in very high dimensions, they are often used as building blocks for iterative sampling
methods. For instance, the fast fourier transform on circulant matrices and incomplete Cholesky factorization
are popular preconditioning methods for iterative numerical methods. Some of the iterative techniques presented
in Section 3 rely on approximating representation (3).

3 Iterative numerical methods for sampling

In our setting, the term ’iterative’ means that we build a Krylov subspace Km(Q, r0) = span{r0,Qr0,Q
2r0,

. . . ,Qmr0}, or a solution in that space in an iterative fashion. Here, r0 is the initial residual, r0 = z − Qx0,
where x0 is the initial guess. We use x0 = 0 and r0 = z, where z ∼ N (0, I). From representation (3), we note
that it is sufficient to consider function approximations of the inverse square root on the spectrum of Q. More
specifically, we use rational approximations to fN(Q)z ≈ Q−1/2z on the spectrum of Q. That is, we set

x = Q−1/2z ≈ fN (Q)z =

N
∑

j=1

αj(Q− σjI)
−1z, (4)

for σj ∈ R−, αj ∈ R. The specification of αj, σj differs between the various iterative methods in 3.1-3.3. Using
the rational approximation (4) requires that we solve the linear system

(Q− σjI)x = z, (5)

for many σjs. A straightforward way of solving these systems is the CG algorithm first published by Hestenes
and Stiefel (1952). This Krylov subspace method is summarised in Algorithm 1. See also Saad (2003). For
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Algorithm 1 Conjugate gradient algorithm for computing x = Q−1z

Set: rcur = z −Qx0, p = rcur
for j = 1... to converged do

qp = Qp

α = 〈rcur ,rcur〉
〈qp,p〉

x → x+ αp
rnew = rcur − α qp

β = 〈rnew ,rnew〉
〈rcur,rcur〉

p = rnew + βp
rcur = rnew

end for

these methods, the matrix vector product Qz is the computationally intensive part, and sparse matrices or fast
black-box matrix-vector product routines are essential for fast convergence in high dimensions. Convergence
speed also depends on the condition number, κ = λmax/λmin, of Q, see Saad (2003) and Golub and van Loan
(1996). If a matrix has a particularly bad condition number, a possible remedy is using a preconditioner, M .
Now, we solve, for instance, the system MQx = Mb instead of the original system, and hopefully this system
has spectrum better suited for CG iterations. Note that for this to be efficient the matrix-vector product Mr

must be fast to compute. Typically, M ≈ Q−1, but is much faster to compute than Q−1. We mention also that
apart from in the usual CG method, preconditioning can be difficult. Moreover, preconditioners can be hard to
parallelize. This needs to be considered when employing a method in practice.

We also mention that all the methods in this article can easily be modified to facilitate models in which the
matrix-vector product Σx is fast, where Σ is a covariance matrix.

3.1 Lanczos methods for the inverse square root

In the context of iterative methods for sampling x ∼ N (0,Q−1), the Lanczos method plays a prominent role. It
is the building block for self-adjoint Krylov methods and is one of the easiest ways of forming an orthonormal
basis for Km(Q, r0). The method for computing the inverse square root is basically: Obtain Km(Q, r0) and
compute the inverse square root on this subspace - stop when the approximation is good enough. The Lanczos
algorithm is presented in Algorithm 2. This algorithm is also the basis for the cg algorithm, and to deduce it,
use the LU factorisation sequentially on the tridiagonal matrix produced. In problems in which the matrices
are not symmetric, the non-symmetric counterpart to the Lanczos method is the Arnoldi method. In this case,
the Hessenberg matrix is not tridiagonal.

Algorithm 2 Lanczos algorithm for computing x = Q−1/2z

Set: r0 = z −Qx0, β0 = ‖r0‖, v1 = r0/β0
for j = 1 to m do

wj = Qvj − βjvj−1 (v0 = 0)
αj = 〈wj,vj〉
wj = wj − αjvj
βj+1 = ‖wj‖
vj+1 = wj/βj+1

end for

Set: Tm = tridiag(β, α, β), V = [v1, . . . ,vm]
Compute: x = x0 + β0V T−1/2e1

A challenge in this type of method is loss of orthogonality of the basis for Km(Q, r0) and also choosing
the number of basis vectors to store from iteration to iteration. Reorthogonalisation and restarting are ways to
address this, another way to circumvent the storage bloating is to use a so-called 2-pass strategy which essentially
entails computing the Lanczos approximation given in Algorithm 2 two times. This 2-pass strategy is mentioned
in Frommer and Simoncini (2008) and we implement a version of it here. The restarted Arnoldi method used
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in ARPACK is described in Lehoucq et al. (1998), a restarted Lanczos method for computing x = Q−1/2z is
found in Ilic et al. (2009), a reorthogonalisation procedure is for instance Algorithm 6.6 in Saad (2003). It has,
however, been showed that loss of orthogonality is not a big issue in practice (Simpson (2008)).

In the Lanczos algorithm m is typically much smaller than the dimension of the matrix. If m < 2000, it is
possible to compute the eigen decomposition of T and the resulting sample x in a reasonable amount of time.
An alternative approach comes from considering rational approximations, T−1/2e1 ≈ fN (T )e1, as in (4). This
essentially requires a fast tridiagonal solver, and such solvers have computational complexity of O(n).

In the 2-pass Lanczos algorithm (variant of Algorithm 2) we only need vj,vj−1 in each iteration to compute
αj , βj . We exploit this, and compute T ) first, discarding the older vis. In the next pass, we compute xj =
(T−1/2e1)jvj and sum the xs as we pass through the Lanczos iterations once more. The link between the Lanczos
procedure and the conjugate gradient algorithm (Saad (2003), chapter 6) gives an equivalence between looking
at Lanczos approximations coupled with rational approximations and rational approximations with solutions of
the shifted systems computed with Krylov methods.

Simpson et al. (2007) present a theorem for the error of the Lanczos approximation: Let Q be symmetric
positive definite with largest and smallest eigenvalues λmin, λmax respectively. Then

‖Q−1/2z − ‖z‖2V T−1/2e1‖2 ≤ λ
−1/2
min ‖r‖, (6)

where r is the residual after m iterations of conjugate gradients to solve Qx = z. This theorem essentially
says that we can use the residual of the CG algorithm to find the number of iterations required to obtain an
appropriate approximation. The CG coefficients are available essentially for free through explicit formulae (Saad
(2003)), and we can modify the algorithm to accomodate this. Since we want to compute several samples, it is
practically more efficient to precompute the number of Krylov dimensions required using the CG algorithm. We
do this precomputation on a number of samples N (0, In), and use the dimension of the largest Krylov subspace
needed in the Lanczos approximation of the inverse square root times a vector.

Another Lanczos-type algorithm we have implemented involves deflating some orthonormal vectors into the
Lanczos procedure. That is, given some orthonormal vectors {wi}si=1 (s < n,m) in the eigenspace of Q, we
construct a Krylov space Km(Q, r0) ⊥ wi ∀i ∈ 1, . . . , s. This has the effect of improving the conditioning
of the system as per a preconditioner Saad et al. (1999). Specifically, let W = [w1w2 · · ·ws] be the given
orthonormal eigenvectors, and λi, i = 1, . . . , s are the correponding eigenvalues. In order to construct a Krylov
basis which is orthogonal toW , let x0 = x−1+W× (W TQW )−1W Tr−1, with x−1 arbitrary (e.g. x−1 = 0) and
r−1 = z−Qx−1. This is a projection of the solution of Qx = z onto the space spanned by the wis. This initial
value, x0, ensures that the Krylov vectors vi are orthogonal to thewis. Now, compute the Lanczos decomposition
using a two-pass version, compute the approximation xKrylov = V T−1/2e1, and set xProj = WΛ−1/2W ′z.
Finally, the approximate solution is x = xKrylov + xProj. Note that if W has eigenvector columns we get
W TQW = diag(λ1, . . . , λs). The procedure is summarised in algorithm 3 (⊘ is element-wise division).

An obvious drawback of algorithm 3 is the additional storage requirements of the approximated eigenvectors of
Q. Also, there is some overhead in the matrix vector, matrix-matrix computations in the algorithm, but most of
this can be overcome by precomputing QW ,W TQ and (WQW T )−1. This comes at the cost of approximately
tripling the initial vector storage requirements. However, this precomputation seems necessary to make the
algorithm competitive.

The orthonormal vectors need not necessarily be eigenvectors, but can be a wavelet decomposition or any
other basis decomposition that contains much information with few vectors. We may optionally choose to focus
the projection on a subspace where we need more accuracy, and for that we need to deflate an orthonormal basis
of that subspace.

3.2 Optimal rational approximations with linear solves

One way of approaching rational approximations as in (4) is through numerical quadrature of a contour integral.
For functions that are analytic in some domain containing the spectrum of Q it is possible to compute f(Q)z
by Cauchy’s integral formula

f(Q)z =
1

2πi

∮

Γ
f(ζ)(ζI −Q)−1zdζ, (7)
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Algorithm 3 2-pass deflated eigenvector Lanczos algorithm for Q−1/2z

Input: W , z, Q, WQ = W TQ, QW = QW , λ = (λ1, . . . , λs)
T

Set: r−1 = z, x0 = W
(

(W Tr−1)⊘ λ
)

, r0 = z −Qx0, β1 = ‖r0‖ vcur = r0/β1,vold = 0

for j = 1 to m or converged (1st pass) do
if j = 1 then

w = Qvcur −QW (WQvcur ⊘ λ)
else

w = Qvcur −QW (WQvcur ⊘ λ)− βjvold
end if

αj = 〈w,vcur〉
w = w − αjvcur
βj+1 = ‖w‖
vold = vcur
vcur = w/βj+1

end for

Set: q ≈ β1 trid(β
m
2 , αm

1 , αm
2 )−1/2 e1 using (4) (here e1 = (1, 0, . . . , 0) ∈ R

m)
vcur = r0/β1, xKrylov = 0

for j = 1 to m (2nd pass) do
xKrylov = xKrylov + qjvcur
if j = 1 then

w = Qvcur −QW (WQvcur ⊘ λ)
else

w = Qvcur −QW (WQvcur ⊘ λ)− βjvold
end if

w = w − αjvcur
vold = vcur
vcur = w/βj+1

end for

x = W (λ−1/2 ⊙ (W Tz)) + xKrylov
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where Γ is a curve which encloses the spectrum of Q. In our case, we have

Q−1/2z =
1

2πi

∮

Γ
ζ−1/2(ζI −Q)−1zdζ. (8)

We have to make two important choices when approximating this integral: i) which curve Γ to use, ii) what type
of quadrature to employ. Davies and Higham (2005) show that direct quadrature is inefficient in the sense that
we need an enormous number of quadrature points to achieve good accuracy. For our function, f(ζ) = ζ−1/2, it
is possible to modify (8) and obtain quadrature points which are optimal. A thorough description of this can be
found in Hale et al. (2008). We next describe our particular method briefly.

First, observe that Q−1f(Q)z = 1
2πi

∮

f(ζ)ζ−1(ζI −Q)−1zdζ, and set ω2 = ζ, so that 2ωdω = dζ. We next

use f(ζ) = ζ1/2, and get

Q−1/2z =
1

2πi

∮

Γω

ω−2ω(ω2I −Q)−1z2ωdω

=
1

πi

∮

Γω

(ω2I −Q)−1zdω. (9)

Since Q has positive real spectrum, we may integrate over the imaginary axis to enclose the spectrum. In essence,
this is the contour we integrate over. To choose the quadrature points optimally, Hale et al. (2008) suggest a

conformal mapping of the Jacobi elliptic function ω = λ
1/2
minsn(t|k2) from the rectangle (−K,K) × (0,K ′) to

R, where sn(t|k2) adheres to standard notation for elliptic functions (see e.g. Akhiezer (1990)) and the second

co-ordinate is the imaginary part. Here k = (λmin/λmax)
1/2, where λmin, λmax are the smallest and largest

eigenvalues of Q respectively, and K,K ′ is implicitly determined by k and the logarithm of sn(·|k2). In this
transformation, quadrature points are sampled evenly on the line 0× (0,K ′) in the rectangle (−K,K)× (0,K ′).
The approximation resulting from using these contours rediscovers a result from Zolotarev concerning optimal
rational approximations of t−1/2 on defined intervals (see Zolotarev (1877) and Akhiezer (1990)). Using this
quadrature, we get an approximation as in (4):

Q−1/2z = − 1

πi

∮

R−

(Q− ω2I)−1zdω

≈
N
∑

j=1

αj(Q− σjI)
−1z (10)

The algorithm requires estimation of the extremal eigenvalues of Q, λmin, λmax. One should underestimate
λmin and overestimate λmax to cover the spectrum appropriately in the quadrature. In practice, however, the
rational approximations seem to be fairly robust in perturbing λmin, λmax: we tested several approximations,
some really coarse, and we did not lose so much in accuracy. Moreover, the number of terms, N , in the
rational approximations (4) must be chosen. The number of quadrature points grows logarithmically with the
condition number of the precision matrix. A more precise result is the following theorem by Hale et al. (2008),
which can also be used to choose the number of quadrature points, N . Let Q be a real or complex matrix
with spectrum contained in [λmin, λmax]. Then the rational approximations (4) with coefficients computed by
quadrature converge to Q−1/2 at the rate

‖Q−1/2 − fN (Q)‖ = O(eǫ−2πKN/K ′

), (11)

for any ǫ > 0 for K,K ′ defined by the conformal maps above. The constant in the exponent is asymptotically
πK ′/(2K) ∼ 2π2 log(λmax/λmin), as λmax/λmin → ∞. For any λmin, λmax ∈ R+ we have

‖Q−1/2 − fN (Q)‖ = O(e−2π2N/(log(λmax/λmin)+3)). (12)

For a matrix with λmax/λmin = 104, which is common in our examples, this yields a convergence rate of O(5−N )
for the entire matrix function. In practice, N between 2 and 9 is sufficient. Note that ‖Q−1/2z − fN (Q)z‖ ≤
‖Q−1/2 − fN (Q)‖‖z‖, and therefore the theorem holds functions of a matrix times a vector as well.
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For computing (ω2I −Q)−1z or equivalently −(Q−ω2I)−1z to identify ω and σi in (4), we employ versions
of the conjugate gradient algorithms. Since ω2 lies on the negative real axis, the conditioning of the system
improves and this works as a stabilising agent for the sampling algorithm. When choosing the tolerance for
our iterative solvers, we need them to be approximately the error we have in the approximation given by (12),
divided by N . This can be regarded as tuning parameters in the algorithms.

The rational approximations have the property that all the systems that need to be solved are shifts of the
initial system Qx = z. In relation to Krylov methods we have Km(Q, r0) = Km(Q − σj, r0), for σj ∈ C. This
property is exploitable and Krylov methods for such shifts are developed in, e.g. van den Eshof and Sleijpen
(2003) and Frommer and Simoncini (2008). The computational advantage in employing such a method comes
from the fact that the coefficients in the CG algorithm for Qσj−I can be computed for all the σj simultaneously.
We pay by storing some additional vectors compared to the classical CG algorithm. We give here a version of
CG-M developed in Jegerlehner (1996). We use it for computing rational approximations of Q−1/2z. The main
advantage of using this strategy is that the cost of producing a sample is essentially the the cost of solving one
linear system.

Algorithm 4 CG-M for Q−1/2z according to (4)

Set: r = z,p = r, βold = 1, α = 0, ccur = 〈r, r〉,xσ = 0, ζσcur = 1, ζσold = 1, pσ = z
for j = 1 to m or hardest system converged do

pQ = Qp

βcur = − ccur
〈p,pQ〉

for k = 1 to nσ do

ζknew = βold
ζkcurζ

k
old

βcurα(ζkold−ζkcur)+βoldζ
k
old

(1−σkβcur)

βk = βcur
ζknew

ζkcur

xk = xk − βkpk

end for

r = r + βcurpQ

cnew = 〈r, r〉
α = cnew

ccur
p = r + αp

for k = 1 to nσ do

αk = α ζknewβk

βcurζkcur

pk = ζknewr + αkpk

end for

Set: ζσold = ζσcur, ζ
σ
cur = ζσnew, βold = βcur and ccur = cnew

end for

Set: x = 0

for k = 1 to nσ do

x = x+ wkx
k according to (4)

end for

Note that the shift in Algorithm 4 only appears in the computation of ζσnew, and the corresponding coefficients
are those that would be obtained from running CG on the shifted systems. Algorithm 3 ( with no deflated vectors)
and Algorithm 4 are equivalent because of the invariance of Krylov subspaces under shifts. Algorithm 4 has the
advantage that no two-pass strategy is required, and it can use a stopping criterion for the CG algorithm.
The total number of matrix vector products required for convergence should therefore in theory be half that of
two-pass Lanczos - in practice the story is a bit different.
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3.3 Continuous deformation method

The continuous deformation method is based on solving the following ODE Allen et al. (2000)

dz/dt = r(Q− I)(t(Q− I) + I)−1z, t ∈ [0, 1], (13)

with z(0) ∼ N (0, I) and r = −1/2. The solution at the endpoint, z(1) = x is a sample from N (0,Q−1). This
can for instance be shown by considering the eigen decomposition of the system as in Allen et al. (2000). Let
V ,Λ be the eigenvectors and eigenvalues of Q respectively, and let further z(t) =

∑

j αj(t)vj , where vi is the
i’th column of V . Inserting this representation in (13) and taking the i′th component gives

d

dt
αi(t)vi = rαi(t)(Q− I)(t(Q− I) + I)−1vi. (14)

This corresponds to the equation

d

dt
αi(t) = rαi(t)(λi − 1)(t(λi − 1) + 1)−1, (15)

with initial condition αi(0) =
z(0)T vi

v
T
i vi

. The first order ODE above is solved by separation of variables and gives

αi(t) = (1 + t(λi − 1))r
z(0)Tvi

vT
i vi

. (16)

Setting t = 1, r = −1/2, αi(1) = λ
−1/2
i and summing over the i′s, we get

z(1) =
∑

i

λ
−1/2
i

z(0)T vi

vT
i vi

vi = Q−1/2z(0). (17)

This ODE, when discretised, leads to rational approximations which are different from those of the previous
section, but can be reduced to a form similar to that of (4). Equation (17) shows in an explicit way that we only
need to interpolate the inverse square root on the spectrum of Q.

An alternative viewpoint comes from looking at a deformation matrix, B(t) = (1− t)I + tQ, take the inverse
square root, and differentiate to see that we get the matrix ODE below.

dB−1/2

dt
=

d

dt
((1 − t)I + tQ)−1/2

=
1

2
(Q− I)B−1/2−1 (18)

Projecting the matrix equation onto the start vector, z(0) = N (0, I) yields (13).
The critical points for implementing this ODE routine are: i) a good solver for (t(Q − I) + I)b = z for all

t ∈ [0, 1] and ii) an appropriate ODE solver. We use Krylov methods (CG) to solve (t(Q− I)+ I)b = z at every
time step. The ODE is solved by matlabs ODE45 discretisation scheme. Natural tuning/accuracy parameters
for this method are relative and absolute tolerances in the ODE-solver. If the matrix Q is badly conditioned, the
ODE (13) becomes stiff. This can slow down the ODE solver for time steps close to t = 1 in our implementation,
but is partially overcome by ODE45’s adaptive timestepping. An advantage of this implementation over that of
the previous section is, however, that the extremal eigenvalues of Q need not be estimated.

A natural extension of this method comes from looking at the class of ODEs defined by

z′(t) = r(Q− I)(I + g(t)(Q− I))−1g′(t)z(t), (19)

with the constraints g ∈ C1[0, 1], g(0) = 0, g(1) = 1 and r = −1/2. This may lead to better performance for

some systems. Two examples are g(t) = ln(t+1)
ln(2) and g(t) = t2.
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Table 1: Timings in seconds, random structure precision matrices
83, κ = 5.4 163, κ = 10.3 323, κ = 12.9 643, κ = 15.3 1283, κ = 27.3

CHOL 3.57 · 10−4 3.29 · 10−2 1.71 N/A N/A
SEC-CG 1.36 · 10−3 9.19 · 10−3 1.10 · 10−1 1.08 30.1
RAT-CG-M 1.11 · 10−3 4.70 · 10−3 4.54 · 10−2 0.496 15.5
2pLANC 4.52 · 10−4 3.40 · 10−3 4.10 · 10−2 0.458 16.4
CONT-D 3.20 · 10−2 3.71 · 10−1 2.78 30.7 6.01 · 102
CU-CG-M 2.47 · 10−3 2.83 · 10−3 8.08 · 10−3 6.99 · 10−2 0.743

Table 2: Matrix vector products, random structure precision matrices
83, κ = 5.4 163, κ = 10.3 323, κ = 12.9 643, κ = 15.3 1283, κ = 27.3

SEC-CG 4 5 5 5 5
RAT-CG-M 4 6 5 6 7
2pLANC 2× 3 2× 4 2× 4 2× 4 2× 4
CONT-D ∼ 100 ∼ 100 ∼ 80 ∼ 100 ∼ 100
CU-CG-M 7 7 8 8 8

3.4 GPU implementiation

The advent of CUDA by the nVidia corporation gives us the possibility to implement massively parallel algorithms
on the GPU in ”high level languages”. It is natural to see if we can get speedup using such massively parallel
computing hardware. In statistics, GPU implementations of Monte Carlo algorithms have been successful, see
e.g. Lee et al. (2009). The basic idea using CUDA as an entry point for using such hardware is to have a
built-in fine grain independent structure in the computations and then assign threads to these computations
automatically using special code constructs.

For Krylov methods, the needed ingredient to implement the presented algorithms is a sparse matrix vector
multiplication, Qz. The cublas library by nVidia provides fast dense matrix operations. For sparse matrix vector
products, we use the cusp-library, which is a further development of the work of Bell and Garland (2009) made
available through google code. Both hardware and compilers have evolved since that point.

The above mentioned cusp library has a CG-M implementation available. With some work, it is possible
to modify the CG-M code to facilitate the rational approximations in (4) - we have coded these modifications.
The possible performance gain then essentially comes from faster matrix vector products and inner products of
vectors. The performance of this CUDA implementation is presented in the examples below.

4 Examples

In Section 4.1 we present a random precision matrix model inspired by a space-time application of infectious
disease count (see Held and Paul (2009)). In Section 4.2 and 4.3 we consider an application with seismic data.
Section 4.2 is a comparative study of the computation time, while Section 4.3 samples elastic model parameters
given seismic 3D reflection data from a North Sea reservoir.

The different algorithms we test are:

• CHOL: Cholesky sampling.

• SEC-CG: Sequential use of CG on each term in (4) using the coefficients developed in Section 3.2.

• P-SEC-CG: Preconditioned version of SEC-CG using a circulant preconditioner from a circulant approx-
imation of the precision matrix.

• RAT-CG-M: Algorithm 4.

• 2pLANC: 2-pass Lanczos sampling.

12



• DEF-2pLANC: The deflated version of 2-pass Lanczos, Algorithm 3.

• COND-D: The continuous deformation method.

• CU-CG-M: The GPU implementation, using CUDA, of algorithm RAT-CG-M.

In all our comparisons, we have used a relative tolerance of 0.005, which also defines our stopping criterion.
There is one important aspect that must not be ignored when comparing the algorithms: are the comparisons

fair? That is to say, is, for instance, one of the algorithms favoured in implementation compared to the others?
We have tried to implement the algorithms on equal grounds, but the deformation method (Section 3.3) may
have quite superior implementations using a better ODE-solver for the problem at hand. We have chosen to use
the fairly standard ODE45 solver (existing in Matlab).

Table 3: Timings for D-2pLANC, random structure precision matrix. The first column indicates number of
deflated vectors.

83 163 323 643

5 4.91 · 10−4 4.81 · 10−3 6.78 · 10−2 0.726
10 5.02 · 10−4 4.96 · 10−3 7.44 · 10−2 0.775
15 5.15 · 10−4 5.17 · 10−3 8.15 · 10−2 0.849
20 5.27 · 10−4 5.41 · 10−3 8.91 · 10−2 0.916

Lastly, we use an alternative, non-standard criterion for convergence in the 2pLANC methods, namely we
look at a large number of samples and see what dimension of the Krylov subspace is needed to make a sample
converge on average and use this as a fixed m in Algorithm 2.

All the timings presented in the following sections are given in seconds, and the abbreviations given in the
list above are also used in the tables.

On top of Table 1, 2, 4, 5, 7 and 8, κ = λmax/λmin denotes the condition number of the corresponding
matrix. It is a well known fact that the number of matrix-vector products required for a Krylov is dependent on
the condition number of a matrix; in fact, the following bound holds for the CG algorithm (Saad (2003))

‖x− xm‖ ≤ 2

(√
κ− 1√
κ+ 1

)m

‖x− x0‖ (20)

where m is the dimension of the Krylov subspace. Hence, as κ grows, (
√
κ− 1)/(

√
κ+ 1) → 1 and convergence

is slow.

4.1 Random pattern precision matrices

The random pattern precision matrices of this section are generated by the following heuristic algorithm:

1. Pick a random entry, i, j ∈ {1, . . . , n}

2. Add to Q(i, j), Q(j, i) a realisation of N (0, 1)

3. Add this realisation to the diagonal of Q

4. Loop until enough non-zero entries.

5. Assert that Q is positive definite using a Hadamard criterion. If not, add another random entry.

This gives rise to an unstructured matrix. A similar unstructured pattern may emerge from using a non-
standard spatio-temporal model (Held and Paul (2009)), where the spread of disease is simulated based on the
neighborhood pattern obtained from airline routes across the world. An illustration of a matrix with such sparsity
pattern can be found on the right in Figure 1. We generate matrices of size n3 × n3 for n = 8, 16, 32, 64, 128 in
order to have comparable results with the matrices in Section 4.2 and also with a comparable amount of non-
zero entries. For these type of matrices, circulant preconditioners are inappropriate since the Q is completely

13



Table 4: Timings in seconds, prior seismic precision matrices
83, κ = 2.3 · 102 163, κ = 2.9 · 102 323, κ = 5.6 · 106 643, κ = 1.5 · 104

CHOL 1.20 · 10−4 7.55 · 10−2 1.19 N/A
SEC-CG 5.90 · 10−3 0.364 41.9 23.9
P-SEC-CG 4.01 · 10−3 4.70 · 10−2 1.34 6.08
2pLANC 1.40 · 10−3 0.228 35.5 19.7
RAT-CG-M 4.27 · 10−3 0.300 26.5 16.6
CU-CG-M 9.21 · 10−3 0.175 2.24 0.502

Table 5: Matrix vector products, prior seismic precision matrices
83, κ = 2.3 · 102 163, κ = 2.9 · 102 323, κ = 5.6 · 106 643, κ = 1.5 · 104

SEC-CG 25 448 3990 273
P-SEC-CG 12 41 132 58
2pLANC 2× 15 2× 268 2× 1880 2× 151
RAT-CG-M 25 610 4498 344
CU-CG-M 25 591 4386 311

non-stationary, and hence P-SEC-CG is not included in the comparison. Incidentally, the matrices constructed
by this method are extremely ill-suited for Cholesky factorisations as the amount of fill-in (even after reordering)
is enormous. Additionally, by construction, the condition number of a particular matrix is independent of the
dimension. This makes these matrices particularly well suited for Krylov methods.

In Table 1 the timings of the different methods are displayed, while Table 2 shows the number of matrix vector
products needed for the iterative methods. The number of matrix vector products for CONT-D is approximate,
as our implementation does not allow for exact counts. An entry N/A means that the memory requirements are
larger than 8Gb. We use a separate table for D-2pLANC with different degrees of deflation. This is sumarised
in Table 3. The number of matrix vector products is the same as for 2pLANC in Table 2.

The timings given in Table 1 show that in low dimensions, i.e. 83 and 163, the sampling method is not
particularly important. We get samples fast and at a comparable rate whatever method we choose. Note, however,
that even in dimensions 83, the timings of all the Krylov methods are comparable to that of Cholesky sampling.
As has been mentioned before, these random matrices are particularily ill-suited for Cholesky sampling, but
nonetheless, if this structure information is available a priori, choosing a Krylov method seems very reasonable.
The scaling of timings is much better using Krylov methods, which can be seen in the last three columns in Table
1. We believe this is mainly due to the approximate invariance of the condition number of the matrices as the
number of dimensions increase.

The effects of RAT-CG-M requiring only one pass of the matrix vector products are seen in the last column,
since the cost of the matrix vector products compared with the other operations increase more with dimension.
This is also reflected in Table 2, comparing 2pLANC to RAT-CG-M.

The GPU-implementation of RAT-CG-M, namely CU-CG-M, shows different degrees of speedup/-down de-
pending on the size of Q. For 83, CU-CG-M performs worse than the bulk of algorithms, but from 163 and
up, we have different degrees of speedup; from a speedup of 1.3x in dimensions 163 to a speedup of 20.9x in
dimensions 1283. We believe this can be explained by the increasing importance of fast matrix-vector products
as we increase the dimensions of the precision matrix.

For deflation, the results are summarised in Table 3. It appears that deflation is not a good choice for this
particular type of matrices, and the most natural explanation is that the small eigenvalues of Q cluster together
in a relative sense.

The CONT-D method compares unfavourably to the others, but one could possibly improve this by using a
more favourable ODE-solvers for the equation (13). It is also one of the methods for the (inverse) square-root
mentioned in Higham (2008).
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Figure 1: Structure of posterior seismic- (left) and random structure (right) precision matrices
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Table 7: Timings in seconds, posterior seismic precision matrices
83, κ = 4.5 · 10 163, κ = 1.6 · 102 323, κ = 3.7 · 103 643, κ = 2.7 · 103

CHOL 1.20 · 10−4 7.41 · 10−2 1.13 N/A
SEC-CG 3.72 · 10−3 3.59 · 10−2 1.79 18.1
P-SEC-CG 3.60 · 10−3 2.83 · 10−2 0.918 13.2
2pLANC 1.11 · 10−3 1.10 · 10−2 0.736 8.12
RAT-CG-M 4.67 · 10−3 1.19 · 10−2 1.16 10.3
CU-CG-M 4.91 · 10−3 1.10 · 10−2 9.50 · 10−2 0.431

Table 6: Timings for D-2pLANC, seismic prior. The first column indicates number of deflated vectors.
163 323 643

5 0.211 23.7 22.8
10 0.157 20.2 25.4
15 0.140 18.6 28.0
20 0.138 19.5 29.4
30 0.114 16.9 N/A

4.2 Seismic prior/posterior precision structures

Seismic data play an extremely important role in the exploration for oil and gas resources. The inversion of
seismic reflection data to elastic parameters in transversely isotropic media is a well studied problem. The basic
physical model is governed by the Zoepritz equations, see e.g. Stovas and Ursin (2003). We consider a linear
approximation of the Zoeppritz equations (Buland and Omre (2003) and Rabben et al. (2008)). More precisely,

Table 8: Matrix vector products, posterior seismic precision matrices
83, κ = 4.5 · 10 163, κ = 1.6 · 102 323, κ = 3.7 · 103 643, κ = 2.7 · 103

SEC-CG 25 70 193 186
P-SEC-CG 11 19 74 99
2pLANC 2× 9 2× 17 2× 67 2× 65
RAT-CG-M 17 30 155 141
CU-CG-M 15 29 152 137
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for reflection angle θ, and north, east and depth reference (i, j, k), we have the following model

yp = f(θ, x(i, j, k)) =
1

2 cos2 θP

△IP

IP
(i, j, k)−

4 sin2 θS
△IS

IS
(i, j, k)

− 1

2
tan2 θP

(

1− 4γ2(k) cos2 θP
) △ρ

ρ
(i, j, k), (21)

where △·
· denotes relative change in the corresponding elastic P-impedance IP , S-impedance IS and density ρ,

and γ is a background (average) vP /vS-trend. The response is a convolved signal of the physical reflections yp,
and Buland and Omre (2003) defined the following statistical model to describe the data at one angle:

y = W (Ax+ ǫ1) + ǫ2, (22)

with ǫ1 ∼ N (0, c1Q
−1
1 ), ǫ2 ∼ N (0, c2Q

−1
2 ) and x ∼ N (µ,Q−1). Here, the coefficients in A are obtained using

(21), and the matrix W contains the convolution model. We assume that all precision matrices Q, Q1 and Q2

are sparse Markov.
In this section, we will use a simplified version of (22) to compare the different sampling algorithms. We do

an inversion on real seismic data from the North Sea in the next section. The simplification does not impose any
change in the 3D spatial correlation, but includes a zero mean, uses only one of the elastic parameters and only
one reflection angle θ. This simplification can be obtained directly from the full model by using only θ = 0, so
that we only are given information on P -impedances.

The matrices Q1,Q are constructed as follows: We use an exponential correlation function and optimise
for parameters in a 3 × 3 × 3-neighbourhood in the Markov graph for Q. For exponential correlation, this
approximation is very good (Rue and Tjelmeland (2002)). Note, however, that this choice is of minor importance
when it comes to relative performance between the sampling procedures. We have used an effective correlation
length of 10 cells. We may alternatively choose our parameters freely in a different way if we have convenient
procedures for doing so. Q1 is a diagonal matrix with linearly decreasing precision with depth. Since we are
dealing with a field of size nx × ny × nt, where nx, ny are lateral coordinates and nt is a depth coordinate, this
linear decrease comes in diagonal blocks of size nt embedded in the larger matrix Q1. Choosing Q2 = I gives
the posterior precision matrix for the simplified model

Qpost = Q+Qlik. (23)

with Qlik = (c1WQ−1
likW

T + c2I)
−1.

Sampling results for sampling from Q and Qpost as in (23) are given in Table 4,6 and 7. In all these cases,
the sampling methods based on rational approximations and Krylov methods work really well. The structure of
this posterior precision matrix can be found on the left in Figure 1. The prior precision matrix Q has similar
structure to that of the posterior precision matrix, but has a narrower band close to the diagonal due to the
exclusion of the convolution.

In Table 4, we see that Cholesky sampling remains competitive until it is impossible to do it due to memory
constraints. This occurs between 323 and 643 in our model. The band 3D band structure makes Cholesky
sampling a bit more forgiving than the structure of the matrices in the previous section. While Cholesky
sampling is faster in all cases except the 163 case, we suspect that if Cholesky sampling was possible in the 643

case, it would perform relatively worse as the conditioning of the matrix improved in that case.
At this point, a comment regarding the conditioning of the 643 matrix is in place. We clearly see the condition

number for the 643 matrix is better than that of the 323 matrix, and this explains why both the timing is better
for the 643 case and that the number of matrix-vector product is less.

The Krylov methods with no preconditioning are very comparable to each other, with RAT-CG-M having
an edge in higher dimensions, as expected. The prior precision matrix is by design close to circulant, and that is
why we see a massive improvement in the P-SEC-CG row. Note that P-SEC-CG computes the solution of several
linear systems and RAT-CG-M essentially only computes the solution of one. If we have a good preconditioner
that can be extended to shifts, it is natural to use it, but implementation and parallelism can be major issues.
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Figure 2: Vertical (top) and horisontal (bottom) slice of Norne data (left) and inverted mean (right)
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Figure 3: Samples from the posterior, vertical slice, Norne
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Optimally, we could imagine a preconditionen RAG-CG-M, but this may be very difficult to obtain in practice.
The D-2pLANC perform favourably for both 163 and 323 dimensions in this example.

For the GPU implementation, the story is a bit different from that of the random precision structure matrices.
We do not have a clear improvement over all other methods before the 643 case. CU-CG-M remains competitive,
however, with both CHOL and P-SEC-CG in all cases except in dimensions 83, and in dimensions 643 it gives
a speedup of 12.1x over P-SEC-CG and a overwhelming speedup 33.1x over the similar CPU implementation,
RAT-CG-M. In Table 7 for the posterior precision matrices, the condition numbers of the matrices are a bit
better and we have more fill-in due to bandwith increase. Here Cholesky sampling quickly falls behind compared
to the Krylov methods. We also see that the preconditioned version does not offer as much of an improvement
as in the prior precision counterpart, and this is caused by the strong deviation from stationarity incurred by
the likelihood. Additionally, the potential condition number improvement is not as huge as in the prior case.

One counter-intuitive result is that 2pLANC performs better that RAT-CG-M. This may be, as hinted in the
introduction of Section 4, related to the different convergence criteria.

The CU-CG-M starts to outperform the other methods in dimensions 163, where it performs exactly as good
as 2pLANC, and the speedup increases to 18.8x over 2pLANC. Not as good as for the prior precision matrices,
but still a massive performance boost.

The question of whether we should deflate approximate eigenvectors (or other vectors) or not does not have
an obvious answer. Comparing the results in Table 6 and Table 3, we see that in one case, deflating is really
a good idea, while in the other, it hampers the performance of the sampling procedure. Heuristically speaking,
there are two reasons to deflate vectors; one is increasing the performance of the sampling procedure, the other is
the following: suppose we have a region of interest U ⊂ D, where D is the domain for the sampling, and we need
more accurate sampling results in that region. Then we may deflate some orthogonal basis vectors pertaining to
that region. The first of these two is the more natural, and in this one it is possible to address the question on
whether we should deflate or not. In the article Saad et al. (1999) a detailed analysis on how deflating is related
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Figure 4: Samples from the posterior, horisontal slice, Norne
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to preconditioning is presented. So suppose that Km(Q, r0) ⊥ w1,w2, . . . ,ws for eigenvectors wi. Then whether
we should deflate a new vector, w(i+1), depends on the associated fraction of eigenvalues κ(i+ 1) = λ(i+1)/λ(i),

where λ(i) = min(λi|λi ∈ σ(Q)−{⋃i−1
k=1 λ(k)}), where σ(Q) is the set of eigenvalues of Q. Note that κ(i+1) ≥ 1,

and if κ(i + 1) is large enough, we deflate w(i+1). ”Large enough” is dependent on the implementation of the
algorithm, specifically, the cost of dot products and populating vectors. In practice, it is easy to deflate more
and more vectors, so we stop as soon as they are difficult to compute or the performance gain is trivial.

4.3 Inversion of Norne-data and sampling from the posterior

In this section we will look at inversion of seismic data, and sampling from its posterior. The model is the
same as in Section 4.2, but here we include the full version of the A-matrix in (22), and we assume correlation
between the elastic parameters in the prior model. It is straight forward to construct Q in this situation: we
have Q := Q⊗Q0, where Q0 is the 3× 3 precision matrix for the elastic parameters. The relevant least squares
problem, then becomes

(ATW TQlikWA+ c1Q)E(x|y) = c1Qµ+ATW TQ1y. (24)

We solve for E(x|y) here, and we sample from the posterior precision matrix given on the left side of (24). The
data we consider is from the Norne field in the North Sea. It consists of seismic reflection data gathered in three
angles of resolution and on a 3D grid of size 111× 111× 510. We take the slice 111× 111× 128 and resample it
to 64 × 64 × 64 in order to fit the posterior matrix in memory. Alternatively, a routine for each matrix vector
product may be constructed and applied in sequence. A typical vertical slice of this data y along with its inverted
acoustic impedance can be visualised as in Figure 2.

The parameters in the prior mean µ, precision matrices Q1 and Q, for the γ-parameter in the A-matrix and
the convolution model (W ) are typically assigned from auxiliary data. This consists of well log information from
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Figure 5: Posterior means with different prior levels, vertical (left) and horisontal (right)
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neighbouring reservoirs, lab measurements used to build geophysical relationships, and geological knowledge of
the subsurface. Well logs are used to specify many of the prior parameters within the context of a geological de-
positional environment. Moreover, the well observations constitute relatively perfect observations of the reservoir
properties as compared with the seismic data. Thus, a well log and seismic data at the same location are used
to assess the seismic likelihood parameters, within the modeling assumptions defined from years of geophysical
lab experiments. The large angle seismic data is noisier than that at small angles. Also, the noise level increases
as a function of depth. The spatial correlation parameters are tuned from geological modeling.

For interpretation purposes, it can be argued that it is better to look at an ensemble of samples instead of only
the inverted mean; what if there are regions with features that can be significantly perturbed for interpretation
purposes that only show up in some of the samples from the posterior? This is valuable information for the
contractor and should be present in evaluation of assets. Four samples from the posterior are given in Figure 3.
In our example the horizontal slice in Figure 4 are a bit more perturbed than the lateral one, but there are no
huge differences on the scale we are looking at here. To see the effect of the prior, we have included inversion
results with different prior levels in Figure 5. This figure shows that as the prior level increases, we have more
smoothing and hence more boundary effects, and less dependency on the data, as expected.

The timings for these samples are comparable to that of Section 4.2. Howewer, in the multivariate setting,
the number of non-zero entries in the posterior precision matrix is approximaterly 10 times that of the posterior
generated in the previous section. In our implementation the sampling takes about 5 minutes. This computation
time is too large to attempt MCMC solutions, but is useful for visualizing an ensemble of seismic inversion
results.

5 Discussion

In this article we have looked at several algorithms stemming from combinations of Krylov subspace methods
combined with rational approximations for Gaussians in which it is easy to either compute the matrix vector
product of its precision matrix or its covariance matrix. In particular, we have found that these methods are not
prohibitively expensive in problems in which traditional Cholesky sampling is infeasible, and that the methods
compare relatively well with Cholesky sampling in lower dimensions. In addition, we have seen that a considerable
speedup in employing these methods is possible by utilising the GPU. This may lead to possibilities of sampling
based inference in higher dimensional problems than have previously been considered for problems in which
Gaussian proposal distributions are natural.

6 Acknowledgments

We thank Statoil for permission to use the Norne dataset, and Daniel P. Simpson for insightful discussions upon
the use of Krylov methods for computing matrix functions.

References

Akhiezer, N. I. (1990). Elements of the Theory of Elliptic Functions. American Mathematical Society.

Allen, E. J., Baglama, J., and Boyd, S. K. (2000). Numerical approximation of the product of the square root
of a matrix with a vector. Linear Algebra and its Applications, 310:167–181.

Banerjee, S., Gelfand, A. E., Finley, A., and Sang, H. (2008). Gaussian predictive process models for large spatial
data sets. Journal of the Royal Statistical Society, Series B, 70:209–226.

Belabbas, M. and Wolfe, P. (2009). Spectral methods in machine learning and new strategies for very large
datasets. Proceedings of the National Academy of Sciences, 106(2):369.

Bell, N. and Garland, M. (2009). Implementing sparse matrix-vector multiplication on throughput-oriented
processors. In SC ’09: Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, pages 1–11, New York, NY, USA. ACM.

21



Besag, J., York, J., and Mollie, A. (1991). Bayesian image restoration, with two applications in spatial statistics.
Annals of the Institute of Statistical Mathematics, 43:1–59.

Buland, A., Kolbjørnsen, O., and Omre, H. (2003). Rapid spatially coupled avo inversion in the fourier domain.
Geophysics, 68:824–836.

Buland, A. and Omre, H. (2003). Bayesian linearized avo inversion. Geophysics, 68:185–198.

Cressie, N. and Johannesson, G. (2008). Fixed rank kriging for large spatial datasets. Journal of the Royal
Statistical Society, Series B, 70:209–226.

Davies, P. I. and Higham, N. J. (2005). QCD and Numerical Analysis III, chapter Computing f(A)b for Matrix
Functions f, pages 15–24. Springer-Verlag.

Fox, C. (2008). Conjugate direction sampling. Technical report, University of Otago, New Zealand.

Frommer, A. and Simoncini, V. (2008). Model Order Reduction: Theory, Research Aspects and Applications,
chapter Matrix functions, pages 275–304. Springer.

Golub, G. H. and van Loan, C. F. (1996). Matrix Computations, 3rd Ed. John Hopkins University Press.

Gray, R. (2006). Toeplitz and circulant matrices: A review. E-book.

Hale, N., Higham, N. J., and Trefethen, L. N. (2008). Computing Aα, log(A) and related matrix functions by
contour integrals. SIAM Journal of Numerical Analysis, 46:2505–2523.

Held, L. and Paul, M. (2009). Predictive validation of a non-linear model with random effects for infectious disease
counts. Technical report, Institute of Social and Preventive Medicine, University of Zurich, Switzerland.

Hestenes, M. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of
Research of the National Bureau of Standards, 49:409–436.

Higham, N. J. (2008). Functions of Matrices: Theory and Computation. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA.

Ilic, M., Turner, I. W., and Simpson, D. P. (2009). A restarted lanczos approximation to functions of a symmetric
matrix. IMA Journal of Numerical Analysis Advance Access.

Jegerlehner, B. (1996). Krylov space solvers for shifted linear systems. arXiv.org, arXiv:hep-lat/9612014v1,
NA:NA.

Lee, A., Yau, C., Giles, M. B., Doucet, A., and Holmes, C. C. (2009). On the utility of graphics cards to perform
massively parallel simulation of advanced monte carlo methods. arXiv.org, arXiv:0905.2441v3, NA:NA.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. (1998). ARPACK, user’s guide. SIAM.

Rabben, T. E., Ursin, B., and Tjelmeland, H. (2008). Non-linear bayesian joint inversion of seismic reflection
coefficients. Geophysical journal international, 173:265–280.

Rasmussen, C. and Wiliams, C. (2006). Gaussian processes for machine learning. MIT Press, MA.

Roberts, G. and Sahu, S. (1997). Updating schemes, correlation structure, blocking and parameterization for the
Gibbs sampler. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(2):291–317.

Rue, H. (2001). Fast sampling of gaussian markov random fields. Journal of the Royal Statistical Society, Series
B, 63:325–338.

Rue, H. and Held, L. (2005). Gaussian Markov Random Fields. Chapman & Hall.

Rue, H. and Tjelmeland, H. (2002). Fitting gaussian markov random fields to gaussian fields. Scandinavian
Journal of Statistics, 29:31–49.

22



Saad, Y. (2003). Iterative Methods for Sparse Linear Systems, 2nd Ed. SIAM.

Saad, Y., Yeung, M., Erhel, J., and Guyomarc’h, F. (1999). A deflated version of the conjugate gradient
algorithm. SIAM Journal of Scientific Computing, 21:1909–1926.

Schneider, M. and Willsky, A. (2003). A krylov subspace method for covariance approximation and simulation
of random processes and fields. Multidimensional systems and signal processing, 14:295–318.

Simpson, D. (2008). Krylov subspace methods for approximating functions of symmetric positive definite matrices
with applications to applied statistics and anomalous diffusion. PhD thesis, School of Mathematical Sciences,
Queensland Univ of Tech.

Simpson, D., Turner, I., and Pettitt, A. (2007). Fast sampling from a gaussian markov random field using krylov
suspace approaches. Technical report, School of Mathematical Sciences, Queensland Univ of Tech.

Stein, E. M. and Shakarchi, R. (2003). Complex Analysis. Princeton University Press.

Stovas, A. and Ursin, B. (2003). Reflection and transmission responses of layered transversely isotropic viscoelas-
tic media. Geophysical Prospecting, 51:447–477.

Trefethen, L. and Bau, D. (1997). Numerical linear algebra. SIAM Publications, Philadelphia, PA.

van den Eshof, J. and Sleijpen, G. (2003). Accurate conjugate gradients methods for families of shifted systems.
Applied Numerical Mathematics, 49:17–37.

Zolotarev, E. I. (1877). Applications of elliptic functions to questions of functions deviating least and most from
zero. Zap. Imp. Nauk St. Petersburg, 30:xx.

23


