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Abstract
The analysis of survival endpoints subject to right-censoring is an important research area in
statistics, particularly among econometricians and biostatisticians. The two most popular
semiparametric models are the proportional hazards model and the accelerated failure time (AFT)
model. Rank-based estimation in the AFT model is computationally challenging due to
optimization of a non-smooth loss function. Previous work has shown that rank-based estimators
may be written as solutions to linear programming (LP) problems. However, the size of the LP
problem is O(n2 + p) subject to n2 linear constraints, where n denotes sample size and p denotes
the dimension of parameters. As n and/or p increases, the feasibility of such solution in practice
becomes questionable. Among data mining and statistical learning enthusiasts, there is interest in
extending ordinary regression coefficient estimators for low-dimensions into high-dimensional
data mining tools through regularization. Applying this recipe to rank-based coefficient estimators
leads to formidable optimization problems which may be avoided through smooth approximations
to non-smooth functions. We review smooth approximations and quasi-Newton methods for rank-
based estimation in AFT models. The computational cost of our method is substantially smaller
than the corresponding LP problem and can be applied to small- or large-scale problems similarly.
The algorithm described here allows one to couple rank-based estimation for censored data with
virtually any regularization and is exemplified through four case studies.
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1 Introduction
Survival analysis is a ubiquitous concept in statistics and widely used in biomedical, clinical,
and reliability studies. Various semiparametric models and estimators have been proposed
for survival analysis. Cox’s proportional hazards model (Cox, 1972), for example, has been
studied extensively for four decades and is widely used partly due to its ease of computation.
While the accelerated failure time (AFT) model (Cox and Oakes, 1984; Kalbeisch and
Prentice, 1980) is, as suggested by Sir David Cox, “in many ways more appealing because
of its quite direct physical interpretation” as compared to the more popular proportional
hazards model (Reid, 1994), it has not been adopted in practice because of theoretical and
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computational challenges. Over the past several years, there have been technical and
computational advances in this area and we build on this work to present a strategy for
simultaneous coefficient estimation and variable selection. The current paper provides a
detailed account of a fitting algorithm applied to regularized rank-based coefficient
estimation in the semiparametric AFT model for both small- and large-scale problems; that
is, where the dimension of the predictors can be smaller or larger than the sample size.

The AFT model asserts that the natural logarithm of the survival endpoint Ti is linearly
related to explanatory variables, i.e.,

(1)

where xi is a p-vector of fixed predictors for the ith subject, β is a p-vector of regression
coefficients, and (ζ1, …, ζn) are independent and identically distributed errors with an
unspecified distribution function. If Ci is a stochastic, subject-specific censoring variable,
then the observed data are , where Ui = min(Ti, Ci), δi = I(Ti ≤ Ci) and I(·) is
the indicator function. The goal is to estimate the regression coefficients β using the
observed data. Rank-based coefficient estimation was first proposed by Prentice (1978) but
the first general asymptotic theory was not developed for more than decade later (Tsiatis,
1990; Wei et al, 1990) and the most general theory under the weakest conditions appeared a
few years later (Ying, 1993). A detailed history of early rank-based methods for censored
data is provided elsewhere (Kalbeisch and Prentice, 1980).

From the beginning, rank-based coefficient estimation in the AFT model has been difficult
and statistical inference even more challenging. The difficulty in estimation arises from the
non-smooth nature of the estimating function. The difficulty in inference arises because the
asymptotic slope matrix of the estimating function depends on the hazard function of the
errors and cannot be directly estimated from the observed data; thus, the sandwich
covariance matrix cannot be directly estimated for statistical inference. The earliest
coefficient estimation techniques were based on direct search (Tsiatis, 1990; Wei et al, 1990;
Lin and Geyer, 1992) and only truly suitable for low-dimensional problems, i.e., small p. Jin
et al (2003) provided the the first reliable and accurate estimation procedure through explicit
use of linear programming (LP) techniques to compute the Gehan (1965) estimator, a special
version of the weighted logrank estimator. Compared to earlier approaches, this was a
substantial improvement due to the accuracy of the method and its availability in standard
software packages.

Unfortunately, the LP problem in Jin et al (2003) has O(n2 + p) unknown parameters subject
to n2 linear constraints and the size of optimization problem can quickly overwhelm many
standard LP solvers running on desktop computers. Furthermore, the inference procedure by
Jin et al (2003) was based on resampling which meant that a perturbed LP problem of the
same dimension as the original LP problem had to be solved multiple times (See Section 6).
The computational complexity of the inference procedure by Jin et al (2003) prompted
investigators to propose other methods. In particular, Heller (2007) proposed to directly
approximate the Heaviside function in the Gehan (1965) estimating function with a
distribution function while Brown and Wang (2005, 2007) proposed a pseudo-Bayesian
approach which effectively estimates the coefficients and sandwich covariance
simultaneously, again based on a smooth estimating function. In both cases, statistical
inference can be performed immediately after coefficient estimation because the sandwich
matrix is directly estimable.

Building on earlier work for smoothed rank-based methods and the need for practical
solutions, here we provide a general tutorial for regularized rank-based coefficient
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estimation based on smooth approximation. In particular, we are interested in the
optimization problem,

(2)

where f(β) is a smooth rank-based loss function, λ is a regularization parameter, and λ, β)
is a generic penalty function or regularization term. Optimizing (2) for general loss functions
is currently a hot topic in the areas of data mining, machine learning, engineering, and
computational statistics. One reason for this is that the minimizer of (2) leads to a sparse
solution for some convex but non-differentiable penalty functions with singularities at the
origin. As a result, the minimizer of (2) also serves the role of a variable selection and model
construction procedure at the same time. No author has tackled the specific problem here for
f(β) pertaining to smoothed rank-based loss functions and only three authors have
considered (2) for non-smooth f(β) (Johnson, 2008, 2009a; Xu et al, 2010; Cai et al, 2009).

The objective of the current paper is to provide a tutorial on a general numerical algorithm
for smoothed rank-based loss functions f(β) and various penalty functions λ, β). Where
earlier proposals for ℓ1-regularized rank-based coefficient estimation provided exact
solutions (Johnson, 2009a; Xu et al, 2010; Cai et al, 2009), the motivation behind our
current approach is to provide a practical numerical solution of low computational
complexity. In order to maximize the efficiency of our procedure, we adopt gradient-based
Newton methods for minimizing smooth objective functions. In order to minimize
computational complexity for ill-posed problems, we adopt limited-memory quasi-Newton
algorithms. The algorithm outlined here applies to general smooth rank-based loss functions
f(β) (Heller, 2007; Brown and Wang, 2005, 2007; Johnson and Strawderman, 2009) and
current regularizations (Hoerl and Kennard, 1970; Tibshirani, 1996; Zou and Hastie, 2005;
Yuan and Lin, 2006; Tibshirani et al, 2005; Zou, 2006; Johnson et al, 2008; Candes and Tao,
2007; Wu et al, 2009).

The contribution of the current paper is two-fold. First, after a brief history of the problem in
Section 2, we provide in Section 3 a detailed tutorial on how to compute rank-based
coefficient estimates in the AFT model using a smoothed loss function. In addition to
reviewing recent trends in this area, we also propose a new estimator derived from
polynomial-based smoothing and complements other estimators based on a smoothed loss
function (Heller, 2007; Brown and Wang, 2005, 2007; Johnson and Strawderman, 2009).
Second, in Section 4, we review regularized rank-based coefficient estimation and provide a
tutorial on how to implement these procedures for rank-based estimators in a
computationally efficient manner. We demonstrate unregularized and regularized coefficient
estimation through three examples in Section 6. This tutorial is comprehensive for the topic
and the framework described here may be applied to other loss functions and
regularizations.

2 Background
Tsiatis (1990) proposed coefficient estimation through the weighted logrank estimating
function,
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where  and ϑ(·, β) is a user-specified, data-dependent, non-negative weight
function. Due to the discrete nature of the estimating function, the weighted logrank
estimator β̂ϑ is defined as a zero-crossing of Ψϑ(β); that is, β̂ϑ satisfies,

for all j = 1, …, p. The class of weighted logrank coefficient estimators has been studied
extensively in the statistics literature. It is well-known that the weighted logrank coefficient
estimator β̂ϑ is consistent and asymptotically normal, under certain regularity conditions
(Tsiatis, 1990; Wei et al, 1990; Ying, 1993). Unfortunately, the estimating function Ψϑ(β) is
not monotone, in general, and may contain multiple roots, thus, making parameter
estimation troublesome. Fygenson and Ritov (1994) showed that the weighted logrank
estimating function with Gehan (1965) weight, i.e.,

(3)

is monotone. In this case, it can be shown that the weighted logrank estimating function
simplifies to

(4)

which is often referred to as the Gehan estimating function. The Gehan estimating function
ΨG(β) in (4) is the p-dimensional quasi-gradient of the following convex loss function,

(5)

and the Gehan estimator is defined as the minimizer of the objective function fG(β),

(6)

The function fG(β) in (5) is a piecewise-linear convex function and the global minimizer β̂G
lies in a p-dimensional polytope. Hence, although the objective function is convex, its
minimizer may not be unique. Since fG(β) is a non-differentiable function, gradient-based
optimization methods cannot be applied directly to solve for β̂G. In order for the rank-based
estimator to be adopted in practice, efficient numerical methods are needed to solve the
optimization problem. There are basically three ways to solve (6): direct search, linear
programming, or smoothing.

Direct search methods are widely used in fields such as computational biology. Methods
such as evolutionary algorithms and the Nelder-Mead algorithm are easy to implement and,
therefore, very popular. In addition, bisection can be applied rather straightforwardly and
effectively for low-dimensional problems. However, these methods lack of a comprehensive
convergence theory and are well known to perform poorly on medium- to high-dimensional
problems (Nocedal and Wright, 2006).
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A second way to address optimization problem (6) is to reformulate it as a linear
programming (LP) problem. Jin et al (2003) were the first authors to make successful use of
the LP formulation,

(7)

subject to: uij = (ej − ei),

uij ≤ 0,

for i, j = 1, …, n.

Either simplex or interior point methods may be engaged to solve the LP problem in (7). The
advantage of the simplex method is that this method provides an exact solution after a finite
number of iterations. However, a major drawback is the rate at which the dimension of the
optimization problem increases. While the optimization problem (6) deals with p unknown
parameters, the LP problem (7) has O(n2 + p) parameters: one for every uij pair and one for
each coefficient parameter, βj, j = 1, …, p. Furthermore, the LP problem has n2 linear
constraints. When n and/or p are large, the complexity of the method increases and the
convergence rate drops dramatically (Nocedal and Wright, 2006). Interior point methods
belong to a class of inexact methods and, unlike simplex, they utilize gradient information.
While interior point methods are better than simplex for moderately-sized problems (in
terms of the sample size n and dimension of predictors p), they are computationally costly
for large n and moderate to large p.

3 Smooth Gehan Loss Functions
3.1 Induced Loss Functions

Several authors have noted practical challenges in inferential procedures for estimators
derived from non-smooth loss functions. Two recent germane contributions include the
monotone estimating function by Heller (2007) and the pseudo-Bayesian method by Brown
and Wang (2005, 2007). Both Heller (2007) and Brown and Wang (2005, 2007) cite
simplified standard error estimation as a principal motivation for their smoothing
procedures.

3.1.1 Brown and Wang (2005, 2007)—Brown and Wang (2005) proposed an intriguing
pseudo-Bayesian method of simultaneous coefficient and standard error estimation in non-
smooth parameter estimation problems. Brown and Wang (2007) considered the same
parameter estimation discussed here and is directly relevant. Recently, Johnson and
Strawderman (2009) reviewed the work by Brown and Wang (2005, 2007), provided
theoretical justification for the censored data problem (Brown and Wang, 2007), and
extended the method to clustered failure time data. Let Z ~ N(0, Ip) and Γ be a p-
dimensional matrix, such that ‖Γ‖ = O(1), Γ2 = Ω, and Ω is a symmetric, positive definite
matrix. Then, the Brown and Wang (2007) estimating function is the perturbed Gehan
estimating function, ΨB(β) = EZ{ΨG(β) + ΓZ}; that is,

(8)

Φ(t) is the standard normal cumulative distribution function, Φ̅(t) = 1 − Φ(t), and

. Furthermore, the Brown and Wang (2007) coefficient estimator, say
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β̂B, is consistent and  converges in distribution to a mean-zero random vector
with asymptotic covariance that is automatically computed as part of the estimation
procedure (Brown and Wang, 2005, 2007; Johnson and Strawderman, 2009).

The estimator by Brown and Wang (2007) can be shown to minimize a convex loss function
as well. Using integration by parts and facts about normal distribution functions, Johnson
and Strawderman (2009) showed that the estimating function ΨB(β) has an associated
convex loss function for which ∇fB(β) = ΨB(β); in particular,

(9)

3.1.2 Heller (2007)—Heller (2007) proposed a estimating function by smoothing the
indicator function in ΨG(β), i.e.,

(10)

where G(t) is a cumulative distribution function, G̅(t) = 1 − G(t), and ‘a’ is a tuning
parameter. Heller proved that, under suitable regularity conditions, the solution to 0 =

ΨH(β), say β̂H, was a consistent estimator of β0. Moreover, he showed that 
converges in distribution to a normal random vector with mean zero and whose covariance
could be directly estimated.

A common and convenient choice of the distribution function is the standard normal
distribution, i.e., G(t) ≡ Φ(t). With this distribution function, one can again use integration
by parts to show that ΨH(β) is the p-dimensional gradient of the following convex loss
function,

(11)

A straightforward calculation confirms that ∇fH(β) = ΨH(β).

3.2 The Polynomial-smoothed Gehan Loss Function
A third approach for the optimization problem (6), is to approximate the objective function
fG(β) directly by a smooth approximating function. This is a common technique in applied
mathematics and has been used for at least six decades (Huber, 1964). The gain of this
approach is that we can adopt computationally efficient gradient-based methods to minimize
a surrogate loss function.

Define the following smooth approximation to the Gehan loss function,

(12)

where cε is a sufficiently smooth real-valued function. Here, we choose a polynomial
smoothing function
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with sufficiently small but strictly positive ε (e.g., ε = 10−4). As shown in Figure 1, the
function cε(z) = −z for all z ≤ −ε and cε(z) = 0 for all z > ε and, hence, matches the Gehan
loss function exactly for |z| > ε. The smoothing takes place within the interval (−ε, ε].

Straightforward calculations reveal that the function cε and its first two derivatives  are
continuous in the points −ε and ε for any ε > 0. Hence the loss function fG,ε(β) is twice-
differentiable in β for ε > 0. Note, fG,ε(β) also inherits convexity from cε for every ε ≥ 0.
Given our definition of cε, it is evident that limε→0 fG,ε(β) = fG(β).

The estimator is defined as the minimizer of the polynomial-smoothed objective function,
i.e.,

(13)

The following theorem establishes the main consistency result.

Theorem 1 Under Conditions A1–A4 in Johnson and Strawderman (2009, p.586), β̂G,ε is a
strongly consistent estimator of β0.

The proof of Theorem 1 as well as other large sample results are outlined in the Appendix.
The result is a direct consequence of a strong law of large numbers for U-statistics.

Remark 1. Although asymptotic analysis suggests ε decreases as n increases, here, we
simply view ε as a tuning constant that weighs two objectives: numerical accuracy versus
the speed of algorithmic convergence. We used ε = 10−4 in numerous real and simulated
examples and found this value to a suitable rule-of-thumb. In statistical computing, it is not
uncommon that algorithms include fixed tuning constants; see, for example, MM algorithms
(Hunter and Lange, 2004).

3.3 Connections, Contrasts
To facilitate comparisons to other estimators, the first-order partial derivatives of fG,ε(β)
with respect to β leads to the monotone estimating function,

(14)

where ,

Evidently, Kε(z) is a weight function operating on the differences in residuals (ei − ej) : the
weight is 1 if (ei − ej) < −ε, 0 if (ei − ej) > ε, and values between 0 and 1 if −ε < (ei − ej) ≤ ε.
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When ε = 0, the polynomial-smoothed Gehan estimating function is exactly the Gehan
estimating function, ΨG,ε(β) = ΨG(β).Written in this way, the difference between ΨH(β)
and the polynomial-smoothed estimating function ΨG,ε(β) is how the weight is assigned to
the difference (ei − ej). This fact leads to a useful heuristic for standard error estimation for
the polynomial-smoothed estimator β̂G,ε and is outlined in the Appendix.

Compared with fH(β) or fG,ε(β), fB(β) is self-contained in the sense that there is no
independent tuning parameter a or ε, respectively. The price one pays for the automatic
data-dependent bandwidth rij is mostly computational: a sandwich matrix must be computed
at every iteration to update Ω. However, simultaneous coefficient and covariance estimation
is a principal motivation behind the method of Brown and Wang (2005, 2007) and one
expects a proportional increase in the computational burden.

3.4 Inference Procedures
Tsiatis (1990) showed that, under suitable regularity conditions, the Gehan estimator is
asymptotically normal, i.e. n1/2(β̂G − β0) converges in distribution to a mean-zero normal
random vector with covariance

where

ϑ(t, β) is the Gehan weight in (3), hζ(t) is the hazard function of the errors ζi in (1),

, and v⊗2 = vv⊤. For the inference procedures here, it is assumed that AG is
full-rank. Because the matrix AG involves the hazard function of the errors, it cannot be
directly evaluated without non-parametric smoothing or numerical differentiation, but these
techniques can incur substantial instability in finite samples. This was the impetus for the
resampling technique by Jin et al (2003). The idea is to generate n independent,
exponentially-distributed random variables Zi ~ Exp(1), i = 1, …, n, and define

where fG(β)* is the perturbed loss function,
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The perturbation is repeated a large number of times, say M, and an estimate of var(β̂G) is

the sample covariance of the M resampled vectors . The key to the success of perturbing
the minimand is that E(Zi) = var(Zi) = 1 and the mechanism that generates Zi is completely
independent of the data-generating mechanism for {(xi, Ui, δi), i = 1, …, n}. Note, that
perturbing the minimand is a general technique and it applies to any of the smooth loss
functions, fG,ε(β), fB(β) or fH(β).

Of course, resampling is computationally demanding and a direct solution is preferable.
Similar to the Gehan estimator, the asymptotic covariance of the smooth estimators β̂• takes
the usual sandwich form,

where B• is the asymptotic covariance of n1/2Ψ•(β0) and A• is the asymptotic slope matrix of
limn→∞ Ψ•(β0). However, unlike the original Gehan estimator whose asymptotic slope
matrix could not be directly evaluated, the derivative of the smoothened estimating function
may be evaluated analytically and A• = limn→∞ −(∂/∂β)Ψ•(β0). The sample estimator for A•
is

where wij is a weight on the difference (ei − ej). If ϕ(z) is the normal probability density
function evaluated at z, then for Brown and Wang, wij = ϕ{(ei − ej)/rij)}/rij; Heller, wij =
ϕ{(ei − ej)/a)}/a; polynomial-smoothed, wij is obtained by straightforward differentiation of
Kε(z). We also need an estimator for B•. Due to the asymptotic equivalence of n1/2Ψ•(β0)
and n1/2ΨG(β0), we may use the sample estimator of the asymptotic covariance of
n1/2ΨG(β0) for the smoothened estimators β̂• (cf. Brown and Wang, 2005, 2007; Johnson
and Strawderman, 2009); namely,

Both Heller (2007) and Brown and Wang (2005, 2007) provide other estimators for B• based
a theory of U-statistics. The estimator by Johnson and Strawderman (2009) reduces to B̂•
when the survival times are independent as we have here. Consequently, our estimator of the
asymptotic covariance Ω• is

4 Regularized Rank-based Estimation in AFT Models
Regularized regression has drawn substantial interest among researchers in statistics and
biostatistics in recent years because it achieves simultaneous model selection and parameter
estimation (Tibshirani, 1996; Zou and Hastie, 2005; Tibshirani et al, 2005; Yuan and Lin,
2006). A second reason regularized regression has gained popularity is due to high-
dimensionality of today’s data sets. In particular, when the dimension of the predictors p
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exceeds the sample size n, the estimation problem is said to be ill-posed. In 1902, Hadamard
defined a mathematical problem to be well-posed if a solution exists, the solution is unique,
and depends continuously on the data in some reasonable topology (Hadamard, 1902). In
general, every least-squares-based or likelihood-based estimation problem will be ill-posed
with no unique solution when n < p. In order to construct a well-posed parameter estimation
problem for high-dimensional data, one needs to incorporate prior knowledge to overcome
the ambiguity of the global minimizers. In the Bayesian framework, the prior knowledge is
reflected by a-priori information on the estimators, leading naturally to additive
regularization terms (Vogel, 2002; Kaipio and Somersalo, 2005).

4.1 Exact Solutions
Few authors have offered algorithms for regularized rank-based coefficient estimation for
censored outcomes. To clarify the challenges, the familiar Lagrangian form of the ℓ1-
regularized Gehan estimator is:

(15)

Building on the earlier LP problem for the unregularized optimization in (7) and noting that

, the optimization problem in (15) can be rewritten as the following LP problem:

subject to: uij = (ej − ei),

uij ≤ 0,

for i, j = 1, …, n,

for k = 1, …, p,

where τ is a regularization parameter. Johnson (2008) was the first to attempt to solve a
class of general problems related to (15) through direct search methods. In that paper, he
noted that the optimization in (15) was of the form, ℓ1 loss plus ℓ1 penalty, and could be
written as another LP problem but provided no algorithm to produce an exact solution.
Then, Johnson (2009a) developed a practical solution for the ℓ1-regularized Gehan estimator
that made explicit use of linear programming. In independent work, Xu et al (2010) offered
the same algorithm as in Johnson (2009a) and extended it to correlated survival times.

Both Johnson (2009a) and Xu et al (2010) extended an earlier algorithm by Jin et al (2003)
to accommodate the ℓ1 penalty. Their procedures use the ubiquitous quantreg package in R,
developed by Roger Koenker and coauthors (Koenker and Bassett Jr, 1978; Koenker and
D’Orey, 1987; Koenker and Ng, 2005), and were primarily developed for problems where n
> p. As mentioned earlier in Section 1, it is possible to use interior point methods to solve
large-scale LP problems with p > n. But our experience is that procedures built on
quantreg in R will not suffice and another solution is needed. Two alternatives are (a) to
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use another LP solver, or (b) to write new code to solve the specific LP problem. A caveat to
(a) is that many off-the-shelf LP solvers used to solve large-scale problems are unfamiliar to
most statisticians and would be rarely adopted in practice. Cai et al (2009) chose the second
route (b) and developed a path-finding algorithm that computes the entire ℓ1-regularized
coefficient path. Unfortunately, this path-finding algorithm cannot be easily extended to
general penalty functions.

4.2 Newton-type Solutions
For large-scale problems, it becomes almost imperative to utilize efficient algorithmic
methods to solve optimization problem (15) and gradient-based optimization algorithms are
efficient. However, for the same reason that gradient-based algorithms cannot be applied to
minimize fG(β) alone, gradient-based optimization cannot be applied directly to minimize
(15) because of the non-differentiability of ℓ1-norm at zero. A natural way to proceed here is
to approximate the absolute value function with a piecewise quadratic function. For
example, the Huber function (Huber, 1964) is often used to smoothen the ℓ1-norm and is
given by

(16)

as illustrated in Figure 2. Let f•(β) be short-hand for any smoothed rank-based loss function:
fB(β), fH(β), or fG,ε(β). So, by substituting f•(β) for fG(β) and the Huber ε-approximation
hε(βj) for |βj| in (15), we arrive at a new optimization problem,

(17)

Because the convex objective function in (17) is twice-differentiable in β, we may use
gradient-based algorithms to minimize it. Newton-type algorithms possess quadratic
convergence rates and are, thus, very efficient.

The current literature provides various types of regularization methods and penalty
functions, say λ, β), where is a convex function and λ ≥ 0 is a regularization parameter.
Many methods depend on the ℓ1-norm and Huber’s ε-approximation provides a recipe for
smoothing. Along the lines discussed above, we will replace a non-differentiable function 
λ, β) with a smooth approximation ε(λ, β). Then, we characterize the family of
regularized smooth Gehan estimators as

(18)

While it is impossible to provide a comprehensive list of all available penalty functions, we
enumerate below a list of seven common regularization methods, i.e., λ, β), which have
been proposed for penalized least squares and penalized likelihood problems. In Table 1, we
exemplify the smoothed penalty function ε(λ, β) alongside the original function λ, β)
for all seven penalty functions.

1. The  regularization (Hoerl and Kennard, 1970) with  penalizes β
quadratically, leading to greater penalties for large values of β, and straightforward
numerical algorithms can be used to handle the optimization problem (18).
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2. The ℓ1 regularization, a. k. a. lasso (Tibshirani, 1996), with λ, β) = λ ‖β‖1
penalizes all parameters β linearly and leads to sparse representations (Boyd and
Vandenberghe, 2004). ℓ1 regularization methods are broadly used such as in signal
processing, statistics and geophysical applications. Since ℓ1 regularization is not
differentiable at 0 (i.e., for any βj = 0), computationally this approach needs special
attention. Applicable methods to solve the optimization problem (18) include linear
programming, interior point, and iterative re-weighted least squares methods.

3. The elastic net (Zou and Hastie, 2005) , with λ = (λ1, λ2)⊤

combines the ℓ1 and  regularization. Dependent on the sizes of λ1 and λ2 this
regularizer penalizes large values quadratically and small values linearly.

4. A regularizer of “opposite” behavior to the elastic net is the Berhu regularizer
(Owen, 2006), λ, β) = ∑j j(λ, βj), and

penalizing small values of β quadratically and large values linearly.

5.
The discrete total variation type regularizer  induces
smoothness in the parameters β. Note, this regularizer presumes a neighboring/
ordering structure of the βj’s, j = 1, …, p.

6. To induce sparsity and smoothness at the same time the two dimensional fused

lasso regularization  has been introduced by
Tibshirani et al (2005).

7. Let the Gk’s be the mutually exclusive subsets of {1, …, p}. The group lasso can
now be seen as the grouped ℓ2 regularization,

where ℵ(Gk) is the cardinality of Gk (Yuan and Lin, 2006; Meier et al, 2008) and
reduces to ℓ1 regularization when ℵ(Gk) = 1. Note, βGk is the vector of elements βk
for which k ∈ Gk. Group lasso requires prior knowledge on the grouping of the
parameters βk. Note, ‖ · ‖2 is not differentiable in a singular point, i.e., 0. Typically,
this is neglected in numerical investigations using gradient-based methods.

5 Algorithm
Every regularization procedure consists of two parts: (a) estimating the regression
parameters β for fixed regularization parameter λ, and (b) tuning λ for optimal
performance. For coefficient estimation in part (a), the computational advantage of our
approximation lies in the smoothness and convexity of fG,ε(β) and ε(λ, β). Due to these
properties, we may use gradient-based optimization algorithms for which the optimization
theory provides numerous iterative methods. One of the foremost gradient-based
optimization algorithm is Newton’s method, which converges locally at a quadratic rate and
uses the gradient and Hessian to form the search direction and step length at each iteration.
In our experiments, we observe that the numerical calculations of the Hessian of the
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smoothed Gehan estimator and solving the inner system are at unreasonable costs (in
particular for large scale problems) and we try to avoid utilizing Hessian information, i.e.,
curvature information; as a result, we prefer quasi-Newton methods in our investigations.
The fundamental concept behind quasi-Newton methods is to provide curvature information
of a loss function fG,ε(β) and the regularizer ε(λ, β) in order to calculate an efficient
search direction at each iteration without calculating the Hessian matrix explicitly and
solving the inner system.

Algorithm 1

L-BFGS method

Require:

    fε {smooth model function}

    ε {smooth regularizer function}

    β0 {initial guess}

    d {data}

    λj {regularization parameter}

  1: while ∇ J(β) ≠ 0 do

  2:    calculate J(β) = fε(β) + ε(λj, β) and ∇ J(β)

  3:    estimate Hessian inverse approximation ℋ by last K update steps

  4:    s = −ℋ⊤ ∇ J(β) {quasi Newton search direction}

  5:    calculate α via Armijo line search

  6:    β = β + αs {update step}

  7: end while

  8: β̂ = β

Ensure:

      β̂ {optimal parameter}

The limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is one such
quasi-Newton method, which is designed to target large scale optimization problems. The L-
BFGS method avoids forming the Hessian and solving the inner linear system and only
incorporates curvature information of the last few iterates, as outlined in pseudo-code in
Algorithm 1. Throughout this work, we use the L-BFGS with an Armijo line search
algorithm. For all our experiments we use a relative tolerance of 10−6 for the stopping
criteria of the optimization algorithm (Gill et al, 1981).

The choice of the regularization parameter λ in part (b) is also crucial. To get a good
estimate of the regularization parameter λ one may utilize information-based rules, cross
validation, generalized cross validation, discrepancy principle and statistical learning
techniques (Chung et al, 2011). In the interest of space, we refer readers to Hastie et al
(2009) for a detailed description of cross-validation but provide a summary in our pseudo-
code in Algorithm 2. The whole procedure, including coefficient estimation in part (a) and
parameter tuning in part (b), is described in Algorithm 3. Our general framework is
implemented in Matlab and is available upon request.

6 Worked Examples
As discussed previously, we divide the rank-based estimation problems for AFT models into
two categories. First, the problems deal with low-dimensional predictors x relative to the
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number of the observation n, where n could be small or large. These problems are typically
well-posed. The other case is when we have p > n or even p ≫ n. These problems are
typically ill-posed and a regularization ε, often driven by prior knowledge on x, is used.

In this section we present four data examples where the AFT model relates lifetime or
survival to risk factors. The first three examples have low-dimensional predictors and
intended to compare accuracy, computational complexity, and inference between the
original Gehan estimator β̂G and the smoothened estimators, β̂•: β̂B, β̂H, and β̂G,ε. For
smoothing in ΨH(β), we use Heller’s suggested estimate and rate, â = σ̂n−0.26, where σ̂2 is
the sample variance of the uncensored residuals based on an initial Gehan fit. We estimate
standard errors for β̂H and β̂B directly through a sandwich estimator Ω̂• for the asymptotic
covariance Ω•. For the polynomial-smoothed estimator, β̂G,ε, our experience is that
perturbing the loss function works better in this case and, hence, results from resampling are
presented below. Finally, in the fourth example, we present a data analysis of high-
dimensional microarray data using the group lasso regularization. In this last example, no
standard error estimates are presented because, at the time of this writing, there is no
theoretically-justified inference procedure for the class of regularized estimators considered
here.

Algorithm 2

Cross Validation

Require:

    fε {smooth model function}

    ε {smooth regularizer function}

    β0 {initial guess}

    d {data}

    λj {regularization parameter}

  1: choose n cross validation sample sets {di}i=1, …,n

  2: for i = 1 to n do

  3:    extract sub-sample set

  4:     using di

{optimization method see Algorithm 1}

  5:    calculate 

  6: end for

  7: calculate Vj = mean (fi’s)

Ensure:

      Vj

Algorithm 3

Driver for Smooth Statistical Models

Require:

    fε {smooth model function}

    ε {smooth regularizer function}

Chung et al. Page 14

Stat Comput. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



    β0 {initial guess}

    d {data}

    {λ1, …, λm} {set of regularization parameters}

  1: for j = 1 to m do

  2:    β̂j = arg minβ fε (β) + ε(λj, β)

{optimization method, see Algorithm 1}

  3:    calculate fj

{Cross-Validation method, see Algorithm 2}

  4: end for

  5: ĵ = arg minj=1, …, m Vj

{choose minimal cross validation set}

  6: set β̂= β̂ĵ

Ensure:

      β̂ {optimal parameter}

6.1 Multiple Myeloma Data
First, we exemplify the methods using multiple myeloma data set, given in the online SAS/
STAT User’s Guide. This is the primary example in the PHREG procedure and was also used
for illustration in Jin et al (2003). The data consist of survival outcomes and two
independent variables, hemoglobin (HGB) and the natural logarithm of blood urea nitrogen
(BUN), for a total of n = 65 patients. The covariates are standardized to have mean zero and
unit variance. For HGB and log(BUN), Jin et al (2003) report estimated coefficients β̂G as
−0.532 and 0.292 with estimated standard errors 0.146 and 0.169, respectively. Using our
polynomial-smoothed estimator β̂G,ε, the coefficient estimates are −0.532 and 0.292 with
estimated standard errors 0.149 and 0.164. The Brown and Wang coefficient estimates are
−0.510 and 0.304 with standard error estimates 0.212 and 0.208. Using a smoothing
parameter â = 0.987, Heller’s estimates are −0.510 and 0.302 and standard error estimates
0.190 and 0.196, respectively. In short, the polynomial-smooth estimate β̂G,ε is similar to the
original Gehan estimate β̂G in both point estimate and standard error estimate. The point and
standard error estimates of β̂B and β̂H are similar to one another, but the point estimates are
3–4% different in absolute magnitude than the Gehan coefficient estimates and the standard
error estimates 20–30% larger than resampling. When a different covariance estimator is
used, Brown and Wang (2007) find standard error estimates of the same magnitude as in Jin
et al (2003).

6.2 Mayo PBC Data
The Mayo primary biliary cirrhosis (PBC) data set (Fleming and Harrington, 1991) contains
information about the survival time and prognostic variables for 418 patients who were
eligible to participate in a randomized study of the drug D penicillamin. Of 418 patients who
met standard eligibility criteria, a total of 312 patients participated in the randomized portion
of the study. Using the smaller randomized cohort, the study investigators used stepwise
deletion to build a Cox proportional hazards model for the natural history of PBC (Dickson
et al, 1989). Of the original ten predictors, stepwise deletion selected five significant
variables: age, albumin, bilirubin, edema, and prothrombin time (protime). We take the
natural logarithmic transformation of albumin, bilirubin, and prothrombin time to conform
to the analysis in Fleming and Harrington (1991). These five variables constitute the natural
history model for PBC (Dickson et al, 1989).
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We present in Table 2 the coefficient estimates β̂B, β̂H, β̂G,ε (here we set ε = 10−4) based on
(13), and β̂G based on (6) using linear programming. We note that the coefficient and
standard error estimates between β̂G and β̂G,ε are nearly identical. The proposed BFGS
algorithm runs in less than one-half of one second and the linear programming method of Jin
et al (2003) is still reasonable at 5.3 seconds (on our MacBook Pro running R 2.9.1) given
the moderate sample size. Heller’s smoothing parameter is â = 1.607 and the resulting
coefficient estimates tend to be stronger, i.e. farther from the null; the corresponding
standard error estimates are larger. The coefficient estimates from Brown and Wang
generally differ from the other estimators and the standard error estimates lie between those
computed for β̂H and β̂G,ε.

6.3 Nursing Home Data
From 1980–1982, the National Center for Health Services Research conducted a study to
determine the effect of financial incentives on variation of patient care in nursing homes. In
particular, 18 out of 36 nursing homes from San Diego, California, received higher per diem
payments for accepting and admitting Medicaid patients and additional bonuses when the
patient’s prognosis improved. The study collected data from an additional 18 control nursing
homes where no financial incentives were used. A complete description is given in Morris et
al (1994). The total sample size from all 36 nursing homes is n = 1601. Our data set consists
of seven co-variables: treatment (trt), age, sex, marital status, and three health status
indicators (h1–h3), ranging from the best health to the worst health. For the polynomial-
smoothed estimator, we used ε = 10−4. Our results are presented in Table 3.

In Table 3, coefficient estimates for all four estimators are displayed. For the nursing home
data set, we computed Heller’s smoothing parameter as â = 0.7056. In this data set, we
found very minor differences among the coefficient and standard error estimates. Among the
three smoothened estimators, the polynomial-smoothed estimator took the longest took
converge at 35 iterations. Both β̂H and β̂B converged in less than 10 iterations.

The sample size of the nursing home data is sufficiently “large” where the smoothing
algorithm makes a significant impact. Using the algorithm of Jin et al (2003) along with
Barrodale-Roberts simplex optimization (Koenker and D’Orey, 1987) via quantreg in R,
the computation fails. However, the improved Frisch-Newton (Koenker and Ng, 2005)
algorithm performs better and finishes in just under two minutes (i.e., 1.75 minutes on our
MacBook Pro running R 2.9.1). For the nursing home data set, our quasi-Newton algorithm
runs in five seconds. To highlight the differences in CPU times, consider computing
standard error estimates using the resampling scheme by Jin et al (2003) with M = 1000
resamples. In this case, their resampling procedure would take more than one day on our
desktop computer. In order to compute the standard error estimates for β̂G in Table 3, we
submitted our job to the Emory University Rollins School of Public Health high
performance computing cluster. On our cluster, the resampling procedure of Jin et al (2003)
applied to the nursing home data took 4 hours for M = 500 resamples. All of the other
standard error estimates can be computed on an ordinary desktop computer in a matter of
seconds.

6.4 CAMDA Data
We investigate a large scale data analysis using data from the Critical Assessment of
Microarray Data Analysis (CAMDA) 2003 program, the details of which can be found on
their website (CAMDA, 2003). For this analysis, we use gene expression data that were
obtained through microarray experiments and the outcome of interest is a survival endpoint
measured as time-to-death (in months) due to lung andenocarcinoma. The sample includes n
= 200 subjects and gene expression data for 1036 gene probe sets; we refer to the probe sets
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as “gene biomarkers.” Our goal is to identify the gene biomarkers that are associated with
survival of patients with lung andenocarcinoma using the AFT model with the group lasso
penalty (see Table 1).

To identify the group structure, we first perform k-mean clustering to divide the gene
biomarkers into 50 groups and rearrange the biomarkers so that the biomarkers in the same
group have consecutive indices; of note, the group size ranges from 1 to 66. When fitting the
AFT model with f•(β) ≡ fG,ε(β) and the group lasso penalty, we use a five-fold cross
validation technique as presented in Algorithm 2 to select the optimal regularization
parameter λĵ = 0.01773. The resulting sparse model includes 78 biomarkers with nonzero
regression coefficient estimates from 13 different groups and the regression coefficient
estimates are presented in Figure 3.

7 Conclusions
In this paper, we present a general framework to efficiently compute rank-based coefficient
estimates for semiparametric AFT models in small- or large-scale problems. Exact rank-
based estimates are computed by optimization a linear programming (LP) problem.
Although computing exact solutions is a laudable goal and may be required in some unusual
settings, it is rarely needed in practical work. For those instances when an accurate Gehan
estimate is required, our polynomial-based smoothing yields coefficient estimates nearly
identical to Gehan estimates but only take a fraction of the computational resources
compared to solving the LP problem. Moreover, the same ideas to smoothen the non-smooth
loss function can be applied to the smoothing non-differentiable regularizations as well.

In addition to the polynomial-smooth Gehan estimator, Brown and Wang (2005, 2007) and
Heller (2007) have each offered alternative rank-based coefficient estimators that are
consistent, asymptotically normal, and whose asymptotic covariance matrix is directly
estimable. Hence, one can estimate standard errors easily for large data set without resorting
to computationally-intensive resampling. We reviewed standard error estimation for non-
regularized Gehan estimators but not for regularized Gehan estimators. At the time of this
writing, this is still an open question. If future researchers find that perturbing the minimand
is a theoretically-sound resampling technique for regularized estimators, then our description
in Section 3.4 will be germane for all estimators reviewed in this paper.

The fact that many constrained optimization problems can be closely approximated by an
unconstrained optimization problem with a smooth objective function is an old idea.
However, the application to regularized rank-based estimation for censored data is new and
relevant to emerging data sets. We can apply our algorithm to penalty functions that have
been proposed in the least squares framework but not yet extended to rank-based estimators,
e.g. large-scale rank-based coefficient estimation with group lasso penalty. The general form
of the computational framework makes it applicable for a wide range of optimization
problems beyond the survival analysis applications discussed here.

Finally, as with most scientific problems, there is more than one approach, more than one
technique to achieve the scientific objective. Rank-based estimation in the AFT model is but
one technique and competing methods include those based on least squares, imputation, or
inverse weighting. Over the past decade, several authors have advanced these competing
methods to the regularized estimation setting yet were not discussed here (cf. Huang et al,
2006; Johnson, 2008; Johnson et al, 2008; Johnson, 2009b; Johnson et al, 2011). This
omission is unabashedly self-serving and partly reflects our bias for rank-based estimators in
the AFT model. Compared with least-squares estimators, rank-based estimators lose only a
small amount of efficiency for (log)-normal errors but are more efficient for skewed and
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heavy-tailed error distributions. Inverse weighting is a powerful and convenient technique
but whose finite sample behavior can be tied closely to the magnitude of the weights and
hence the tail of the censoring distribution. This tutorial aims to be more or less
comprehensive for unregularized and regularized rank-based estimation in the AFT model
but falls well short as a comprehensive review of small- or large-scale coefficient estimation
in the AFT model, in general. Nevertheless, we hope researchers interested in robust
coefficient estimation in the AFT model find this tutorial helpful.
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Appendix

Operating Characteristics of Polynomial-smoothed Gehan Estimator
In this section, we outline the large sample properties of the estimator β̂G,ε. Let the
parameter β belong to a parameter space  a compact subset of ℜp and let f0(β) be a convex
function for β ∈  The proof of Theorem 1 relies on the following two facts regarding the
loss functions fG(β) and fG,ε(β).

Lemma 1 Under Conditions A1–A3 in Johnson and Strawderman (2009, p.586),

Lemma 2 Under Conditions A1–A3 in Johnson and Strawderman (2009, p.586),

Lemma 1 is also Lemma 1 in Johnson and Strawderman (2009) under exactly the same
conditions and stated without proof.

Outline proof of Lemma 2. By the triangle inequality, we have

(19)

By Lemma 1, the second term in (19) can be made arbitrarily small, uniformly for all β ∈ 
except on a set of probability measure zero. The first term in (19) is

Hence, the absolute difference between the Gehan loss and its smooth approximation can be
made arbitrarily small, for every β ∈  The conclusion then follows.

Proof of Theorem 1. Under Conditions A1–A3 of Johnson and Strawderman, fG(β) and
fG,ε(β) converge uniformly to the convex function f0(β) by Lemmas 1 and 2, respectively.
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By Condition A4, f0(β) is strictly convex at its unique minimizer, β0. Thus, the minimizers
of the random convex functions fG,ε(β) and fG(β) converge almost surely to β0.

Asymptotic Distribution The polynomial-smoothed Gehan estimator bears a close similarity
to Heller’s (2007) estimator and one expects the asymptotic distribution theory follows
similarly. A straightforward calculation confirms that Kε(z) in ΨG,ε(β) in (14) is a survivor
function and kε(z) = (d/dz)Kε(z) is symmetric about zero with finite second moment (that is,
Heller’s, 2007, Condition C3, p. 553). Define the asymptotic slope matrix Aε(β) and
asymptotic covariance Bε(β),

Then, assuming the covariate matrix has finite second moment and the non-singularity of

Aε(β) in a neighborhood of the true value β0, one can show  converges in
distribution to a mean-zero normal random vector with asymptotic covariance

(see Heller, 2007, Appendix). As with Heller’s estimator, both Aε(β) and Bε(β) are directly
estimable from the data, the latter derived from a theory of U-statistics.

References
Boyd, SP.; Vandenberghe, L. Convex optimization. Cambridge Univ Pr; 2004.

Brown BM, Wang YG. Standard errors and covariance matrices for smoothed rank estimators.
Biometrika. 2005; 92:149–158.

Brown BM, Wang YG. Induced smoothing for rank regression with censored survival times. Statist
Med. 2007; 26:828–836.

Cai T, Huang J, Tian L. Regularized estimation for the accelerated failure time model. Biometrics.
2009; 65:394–404. [PubMed: 18573133]

CAMDA. Critical assessment of microarray data analysis. 2003 http://www.camda.duke.edu/
camda03.html.

Candes E, Tao T. The dantzig selector: Statistical estimation when p is much larger than n. The Annals
of Statistics. 2007; 35(6):2313–2351.

Chung J, Chung M, O’Leary D. Designing optimal filters for ill-posed inverse problems. SIAM
Journal on Scientific Computing. 2011; 33(6):3132–3152.

Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society Series B. 1972;
34:187–220.

Cox, DR.; Oakes, D. Analysis of Survival Data. London: Chapman and Hall; 1984.

Dickson ER, Grambsch PM, Fleming TR, Fisher LD, Langworthy A. Prognosis in primary biliary
cirrhosis: model for decision making. Hepatology. 1989; 10(1):1–7. [PubMed: 2737595]

Fleming, TR.; Harrington, DP. Counting processes and survival analysis. Vol. vol 8. New York:
Wiley; 1991.

Fygenson M, Ritov Y. Monotone estimating equations for censored data. The Annals of Statistics.
1994; 22:732–746.

Chung et al. Page 19

Stat Comput. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.camda.duke.edu/camda03.html
http://www.camda.duke.edu/camda03.html


Gehan EA. A generalized wilcoxon test for comparing arbitrarily single-censored samples. Biometrika.
1965; 52:203–223. [PubMed: 14341275]

Gill, PE.; Murray, W.; Wright, MH. Practical optimization. Academic press; 1981.

Hadamard J. Sur les problèmes aux dèrivèes partielles et leur signification physique. 1902

Hastie, T.; Tibshirani, R.; J, F. 2nd Edition. New York: Springer; 2009. The Elements of Statistical
Learning.

Heller G. Smoothed rank regression with censored data. Journal of the American Statistical
Association. 2007; 102(478):552–559.

Hoerl AE, Kennard RW. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics. 1970:55–67.

Huang J, Ma S, Xie H. Regularized estimation in the accelerated failure time model with high-
dimensional covariates. Biometrics. 2006:813–820. [PubMed: 16984324]

Huber PJ. Robust estimation of a location parameter. The Annals of Mathematical Statistics. 1964;
35(1):73–101.

Hunter DR, Lange K. A tutorial on mm algorithms. The American Statistician. 2004:30–37.

Jin Z, Lin DY, Wei LJ, Ying Z. Rank-based inference for the accelerated failure time model.
Biometrika. 2003; 90(2):341–353.

Johnson BA. Variable selection in semiparametric linear regression with censored data. J R Statist Soc
Ser B. 2008; 70:351–370.

Johnson BA. Rank-based estimation in the ℓ1-regularized partly linear model model with application to
integrated analyses of clinical predictors and gene expression data. Biostatistics. 2009a; 10:659–
666. [PubMed: 19553356]

Johnson BA. On lasso for censored data. Electronic Journal of Statistics. 2009b; 3:485–506.

Johnson BA, Lin D, Zeng D. Penalized estimating functions and variable seleciton in semiparametric
regression models. Journal of the American Statistical Association. 2008; 103:672–680. [PubMed:
20376193]

Johnson BA, Long Q, Chung M. On path restoration for censored outcomes. Biometrics. 2011;
67:1379–1388. [PubMed: 21457193]

Johnson LM, Strawderman RL. Induced smoothing for the semiparametric accelerated failure time
model: asymptotics and extensions to clustered data. Biometrika. 2009; 96(3):577–590. [PubMed:
23049117]

Kaipio, JP.; Somersalo, E. Springer Science+ Business Media, Inc.; 2005. Statistical and
computational inverse problems.

Kalbeisch, JD.; Prentice, RL. 2nd edn.. Vol. vol 5. New York: Wiley; 1980. The statistical analysis of
failure time data.

Koenker R, Bassett G Jr. Regression quantiles. Econometrica: Journal of the Econometric Society.
1978:33–50.

Koenker R, Ng P. A Frisch-Newton algorithm for sparse quantile regression. Acta Mathematicae
Applicatae Sinica (English Series). 2005; 21(2):225–236.

Koenker RW, D’Orey V. Algorithm as 229: Computing regression quantiles. Journal of the Royal
Statistical Society Series C (Applied Statistics). 1987; 36(3):383–393.

Lin DY, Geyer CJ. Computational methods for semiparametric linear regression with censored data.
Journal of Computational and Graphical Statistics. 1992; 1(1):77–90.

Meier L, Van De Geer S, Bühlmann P. The group lasso for logistic regression. group. 2008; 70(Part 1):
53–71.

Morris C, Norton E, Zhou X. Parametric duration analysis of nursing home usage. Case Studies in
Biometry. 1994:231–248.

Nocedal, J.; Wright, SJ. 2nd edn. Springer verlag; 2006. Numerical optimization.

Owen, AB. Palo Alto, CA: Department of Statistics, Stanford University; 2006. A robust hybrid of
lasso and ridge regression., technical report.

Prentice RL. Linear rank tests with right censored data. Biometrika. 1978; 65(1):167–179.

Reid N. A conversation with sir david cox. Statistical Science. 1994; 9:439–455.

Chung et al. Page 20

Stat Comput. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society
Series B (Methodological). 1996; 58(1):267–288.

Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K. Sparsity and smoothness via the fused lasso.
Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2005; 67(1):91–108.

Tsiatis AA. Estimating regression parameters using linear rank tests for censored data. The Annals of
Statistics. 1990; 18(1):354–372.

Vogel CR. Computational methods for inverse problems. Society for Industrial Mathematics. 2002;
vol 23

Wei LJ, Ying Z, Lin DY. Linear regression analysis of censored survival data based on rank tests.
Biometrika. 1990; 77(4):845–851.

Wu S, Shen X, Geyer CJ. Adaptive regularization using the entire solution surface. Biometrika. 2009;
96(3):513–527.

Xu J, Leng C, Ying Z. Rank-based variable selection with censored data. Statistics and Computing.
2010; 20:165–176.

Ying Z. A large sample study of rank estimation for censored regression data. Annals of Statistics.
1993; 21:76–99.

Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society: Series B (Statistical Methodology). 2006; 68(1):49–67.

Zou H. The adaptive lasso and its oracle properties. Journal of the American Statistical Association.
2006; 101:1418–1429.

Zou H, Hastie T. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology). 2005; 67(2):301–320.

Chung et al. Page 21

Stat Comput. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Graph of the smoothing function cε. Compared with the function [·]− the error cε(z) − [z]− is
largest at z = 0 with an absolute error of 3/16ε.
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Fig. 2.
Graph of the smoothing function hε. Compared with the function | · | the absolute error stays
below ε/2 for any z.

Chung et al. Page 23

Stat Comput. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Estimated parameters β for the CAMDA data using group lasso regularization.
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Table 1

Table of some common penalty functions and their Huber-type approximation.

Penalty λ,β) ε(λ,β)

ridge

lasso

elastic net

Berhu

total variation

fused lasso combined lasso and total variation smoothing

group lasso

Stat Comput. Author manuscript; available in PMC 2014 September 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Chung et al. Page 26

Table 2

Coefficients estimates for Mayo PBC data.

Parameter β̂B β̂H β̂G,ε β̂G

age −0.344 (0.073) −0.470 (0.102) −0.270 (0.057) −0.271 (0.062)

albumin   0.226 (0.089)   0.200 (0.113)   0.205 (0.070)   0.204 (0.069)

bilirubin −0.721 (0.082) −0.925 (0.110) −0.593 (0.068) −0.594 (0.071)

edema −0.248 (0.083) −0.231 (0.099) −0.223 (0.069) −0.224 (0.070)

protime −0.295 (0.086) −0.347 (0.106) −0.238 (0.071) −0.237 (0.080)
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Table 3

Coefficient estimates for nursing home data.

Parameter β̂B β̂H β̂G,ε β̂G

trt   0.141 (0.107)   0.140 (0.108)   0.145 (0.107)   0.144 (0.103)

age   0.096 (0.055)   0.096 (0.055)   0.096 (0.052)   0.096 (0.054)

sex −0.633 (0.125) −0.633 (0.125) −0.628 (0.127) −0.629 (0.118)

mar stat −0.249 (0.144) −0.249 (0.145) −0.247 (0.142) −0.252 (0.135)

h1 −0.093 (0.146) −0.095 (0.148) −0.092 (0.145) −0.091 (0.141)

h2 −0.589 (0.130) −0.591 (0.131) −0.588 (0.126) −0.587 (0.131)

h3 −1.073 (0.174) −1.076 (0.176) −1.071 (0.169) −1.071 (0.160)
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