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Abstract A perturbative approach is used to derive
approximations of arbitrary order to estimate high per-

centiles of sums of positive independent random vari-

ables that exhibit heavy tails. Closed-form expressions

for the successive approximations are obtained both

when the number of terms in the sum is determinis-
tic and when it is random. The zeroth order approxi-

mation is the percentile of the maximum term in the

sum. Higher orders in the perturbative series involve

the right-truncated moments of the individual random
variables that appear in the sum. These censored mo-

ments are always finite. As a result, and in contrast

to previous approximations proposed in the literature,

the perturbative series has the same form regardless of

whether these random variables have a finite mean or
not. For high percentiles, and specially for heavier tails,

the quality of the estimate improves as more terms are

included in the series, up to a certain order. Beyond

that order the convergence of the series deteriorates.
Nevertheless, the approximations obtained by truncat-

ing the perturbative series at intermediate orders are

remarkably accurate for a variety of distributions in a

wide range of parameters.
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1 Introduction

In this article we derive accurate closed-form approxi-

mations for high percentiles of sums of positive indepen-

dent identically distributed random variables (iidrv’s)

with heavy tails. This is an important computational
task in applications such as wireless communications

(Nadarajah, 2008), workload process (Cohen, 1972; Faÿ

et al, 2006) and in the quantification of risk in insurance

and finance (Embrechts et al, 1997; McNeil et al, 2005).

A particularly important application in finance is the
quantification of operational risk (Frachot et al, 2001;

Embrechts et al, 2003; Panjer, 2006; Carrillo-Menéndez

and Suárez, 2012).

There are several numerical procedures to estimate per-

centiles of sums of iidrv’s random variables: the Pan-
jer recursion algorithm, a method based on the Fast

Fourier Transform, and Monte Carlo simulation (Klug-

man et al, 2004; Panjer, 2006; Dupire, 1998). These

numerical techniques are efficient and yield accurate

estimates of high percentiles of sums of random vari-
ables provided that these are not too heavy-tailed: their

computational cost increases as the tails of the proba-

bility distribution become heavier, and eventually be-

come impracticable. When Monte Carlo simulation is
used, this difficulty can be addressed using variance re-

duction techniques (Asmussen et al, 2000; Asmussen

and Kroese, 2006).
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In this work we take a different approach and derive

closed-form approximations for high percentiles of the

aggregate distribution based on a perturbative expan-

sion. The zeroth order term in the perturbative expan-

sion is similar to the single-loss approximation (Böcker
and Klüppelberg, 2005), which assumes that the sum

is dominated by the maximum. This dominance in the

sum by the maximum is a property of subexponential

distributions, a subclass of heavy-tailed distributions
(Goldie and Klüppelberg, 1998; Foss et al, 2011). These

types of distributions appear in important areas of ap-

plication, such as insurance and finance (Embrechts

et al, 1997), hydrology (Reiss and Thomas, 2007), queue-

ing models (Asmussen, 2003; Tsourti and Panaretos,
2004), the characterization of the Internet (Crovella

et al, 1998), and other areas of application (Resnick,

2007).

The first order perturbative approximation, which in-

cludes the zeroth order term plus a first order correc-
tion, is similar to approximations that can be derived

from the asymptotic tail behavior of sums of subex-

ponential variables (Omey and Willekens, 1986, 1987;

Grubel, 1987; Sahay et al, 2007; Degen, 2010; Barbe and

McCormick, 2005; Barbe et al, 2007; Barbe and Mc-
Cormick, 2009; Albrecher et al, 2010). Assuming that

the mean of the individual random variables in the

sum is finite, these approximations are all similar to

the mean-corrected single-loss formula, which was pro-
posed by Böcker and Sprittulla (2006) using heuristic

arguments. In this article we provide an explicit proce-

dure to derive higher order terms in the perturbative

expansion, which provides a more accurate approxima-

tion to high percentiles of sums of positive iidrv’s.

The perturbative series introduced in this article dif-
fers in important aspects from previous approximations

proposed in the literature. In particular, the terms in

the perturbative series are expressed as a function of

the moments of the right-truncated distribution for the
individual rv’s in the sum. These censored moments ex-

ist even when the moments of the original distribution

(without truncation) diverge. Consequently, the same

expression is valid for both the finite and infinite mean

cases. For high percentiles, the perturbative expansion
provides a sequence of approximations that, up to cer-

tain order, has increasing quality as more terms are in-

cluded. Beyond that order the convergence of the series

deteriorates.

The article is organized as follows: section 2 presents
the derivation of a perturbative expansion for the per-

centile of sums of two random variables. This expansion

is then applied to the estimation of high percentiles of

sums of N independent random variables in section 3.

The key idea is to treat separately the maximum and

the remaining terms in the sum. Explicit formulas are

derived when N , the number of terms in the sum, is

either deterministic or stochastic. Section 4 reviews the
approximations for high percentiles of sums of iidrv’s

that have been proposed in the literature.

The accuracy of the perturbative series is illustrated

in section 5 by comparing with exact results or with
Monte Carlo estimates, if closed-form expressions are

not available. Finally, section 6 summarizes the contri-

butions of this work and discusses the perspectives for

further research.

2 Perturbative expansion for the percentiles of

the sum of two random variables

In this section we derive a perturbative expansion of

the percentile of a sum of two random variables. The

zeroth order term in the perturbative series is the per-
centile of one of the variables in the sum. Higher order

terms involve the moments of the second variable, con-

ditioned to the first one having a fixed value. In the

following section, these general expressions are applied
to the particular case sums of N random variables by

identifying the first random variable with the maximum

in the sum and the second one with the remainder.

Let X and Y be two rv’s whose joint distribution func-
tion is FX,Y (x, y) (density fX,Y (x, y)). Consider the

random variable

Z = X + ǫY, (1)

whose probability distribution is FZ(z) (density fZ(z)).

It is not possible to express this distribution in a closed

form that does not involve a convolution, except in spe-

cial cases (Nolan, 2012; Nadarajah and Ali, 2006). Let
Q0 = F−1

X (α) and Q = F−1
Z (α) be the α-percentiles of

X and Z, respectively. The percentile of Z at proba-

bility level α can be formally represented by a power

series in ǫ

Q = Q0 + δQ = Q0 +

∞∑

k=1

1

k!
Qkǫ

k . (2)

The approximation of order K to Q is the result of
keeping only the first K + 1 terms in the series

Q(K) ≡ Q0 +

K∑

k=1

Qkǫ
k/k! . (3)

Explicit expressions for the zeroth and first coefficients

in (2) have been derived in Gourieroux et al (2000), in
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the context of credit risk. Also in this context, Mar-

tin and Wilde (2002) give an explicit expression for the

derivatives dnFZ(z)/dǫ
n, which are used in the pertur-

bative expansion in ǫ for FZ(z), the CDF of the sum.

Our goal in this section is to derive a general expres-
sion for the terms in a perturbative expansion of the

percentile (i.e. the inverse function F−1
Z (α)).

The starting point of the derivation is the identity

0 = FZ(Q)− FX(Q0)

=

∫ ∞

−∞

dy

∫ Q−ǫy

Q0

dxfX,Y (x, y).
(4)

For a sufficiently smooth f(x), one can define the op-

erators

et∂xf(x) ≡
∞∑

k=0

tk

k!

∂k

∂xk
f(x) = f(x+ t)

∂−1
x f(x) ≡

∫ x

−∞

du f(u),

(5)

where ∂x ≡ ∂
∂x , and their composition

(
et∂x − 1

)
∂−1
x f(x) =

∫ x+t

x

f(u)du. (6)

In terms of these operators
∫ Q−ǫy

Q0

dxfX,Y (x, y) =

∫ Q0+δQ−ǫy

Q0

dxfX,Y (x, y)

=
(
e(δQ−ǫy)∂x − 1

)
∂−1
x fX,Y (x, y)

∣∣∣
x=Q0

.

(7)

Using this result, (4) can be expressed as

0 =

∫ ∞

−∞

dy
(
e(δQ−ǫy)∂x − 1

)
∂−1
x fX,Y (x, y)

∣∣∣
x=Q0

. (8)

Expanding the exponential operator in a formal Taylor

power series and using the definition of the complete
Bell polynomials (Appendix A, eq. (80)) this expression

becomes

0 =

∫ ∞

−∞

dy

∞∑

k=1

ǫk

k!
×

Bk ((Q1 − y) ∂x, Q2∂x, . . . , Qk∂x) ∂
−1
x fX,Y (x, y)

∣∣∣
x=Q0

.

(9)

Since this equality holds for all ǫ, each coefficient in the

sum must be zero separately. This yields the system of

equations

0 =

∫ ∞

−∞

dy

Bk ((Q1 − y) ∂x, Q2∂x, . . . , Qk∂x) ∂
−1
x fX,Y (x, y)

∣∣∣
x=Q0

,

for k ≥ 1.

(10)

Explicit expressions for Qk can be derived in terms of
Ck, a centered version of the Bell polynomials (Ap-

pendix A, eq. (82))

Q1 = E [Y |X = Q0]

Qk = − 1

fX(Q0)

[

k∑

i=1

(
k

i

)
Ck−i(Q2∂x, . . . , Qk−i∂x)∂

i−1
x

{
fX(x)M̃i(x)

}

+

k−2∑

i=2

(
k − 1

i− 1

)
QiCk−i(Q2∂x, . . . , Qk−i∂x)fX(x)

]

x=Q0

,

for k ≥ 2,

(11)

where

M̃i(x) ≡ E[(Q1 − Y )i|X = x]

=

i∑

j=0

(
i

j

)
(−1)jQi−j

1 Mj(x)

Mj(x) ≡ E[Y j |X = x].

(12)

These recursive formulas for the coefficients and for Ck

can be used to compute the approximation to the per-

centile Q to any order in ǫ. However, the complexity of

the explicit formulas for the coefficients increases with

their order. The first four terms in the perturbative se-

ries are

Q0 =F−1
X (α)

Q1 =E [Y |X = Q0]

Q2 =− 1

fX(Q0)
∂x

{
fX(x)M̃2(x)

}
x=Q0

=− 1

fX(Q0)
∂x {fX(x)Var[Y |X = x]}x=Q0

Q3 =− 1

fX(Q0)

{
∂2
x

(
fX(x)M̃3(x)

)
+

3Q2∂x

(
fX(x)M̃1(x)

)}
x=Q0

Q4 =− 1

fX(Q0)

{
∂3
x

(
fX(x)M̃4(x)

)
+

6Q2∂
2
x

(
fX(x)M̃2(x)

)
+ 4Q3∂x

(
fX(x)M̃1(x)

)
+

3Q2
2∂xfX(x)

}
x=Q0

. (13)

The term Q2 can be expressed in terms of the condi-

tional variance (Var[Y |X = x]) instead of M̃2(x) be-
cause, for this particular term, Q1 can be replaced by

E[Y |X = x]. This substitution is not possible in general

for higher order terms.
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These general expressions for the terms in a pertur-

bative expansion of the percentiles of the sum of two

random variables will be applied in the following sec-

tion to sums of N independent random variables, where

N can be deterministic or stochastic.

3 Perturbative expansion around the percentile

of the maximum

In this section (13) is used to estimate high percentiles
of the sums of independent random variables with heavy

tails

ZN =

N∑

i=1

Li, (14)

where {Li}Ni=1 are positive iidrv’s sampled from F (l)

(the corresponding density is f(l)). Let G(z) be the

probability distribution of the sum ZN , and g(z) the

corresponding density. The key idea is to partition the
sum into two contributions: the maximum and the sum

of the remaining terms

ZN (ǫ) = XN + ǫYN

XN = L[N ] ≡ max
[
{Li}Ni=1

]

YN =

N−1∑

i=1

L[i] (15)

where L[i] is the i-th order statistic of the sample {Li}Ni=1

(i.e. L[1] ≤ L[2] ≤ . . . ≤ L[N ]). The formal parameter
ǫ is introduced to order the terms in the perturbative

expansion. It is eventually set to one (ǫ = 1), so that

ZN (1) = ZN . As shown in Appendix D, the pertur-

bative series truncated to first order provides an es-

timate that is similar to approximations that can be
derived from the tail behavior of sums of subexponen-

tial variables (Sahay et al, 2007; Degen, 2010; Albrecher

et al, 2010). Therefore, the analysis presented in (Omey

and Willekens, 1986, 1987) can be used to establish the
asymptotic properties of this approximation. The is-

sue of convergence of the perturbative series outside of

the asymptotic regime is analyzed empirically in sec-

tion 5. Qualitatively, the perturbation term in (15) is

small if L[N ] ≫
∑N−1

i=1 L[i]; that is, when the sum (14)
is dominated by the maximum. This is the case when

the probability distribution of L is subexponential, pro-

vided that the value of the sum is sufficiently large

(Goldie and Klüppelberg, 1998; Foss et al, 2011). In
consequence, the perturbative series should be more ac-

curate for high percentiles. The empirical analysis car-

ried out reveals that, for sufficiently high percentiles,

the accuracy of the approximation initially improves

as more terms are included in the series. However, be-

yond a certain order the approximation actually be-

comes worse when further terms are used, which indi-

cates that, in the cases studied, the perturbative series
is not convergent.

The probability distribution of the maximum L[N ] is

F[N ](x) = F (x)N . (16)

The corresponding density is obtained by taking the

derivative of (16)

f[N ](x) = NF (x)
N−1

f(x). (17)

In terms of these, the perturbative expansion (11) be-

comes

Q0 = F−1(α
1
N )

Q1 = E

[
N−1∑

i=1

L[i]|L[N ] = Q0

]

Qk = − 1

f[N ](Q0)

[

k∑

i=1

(
k

i

)
Ck−i(Q2∂x, . . . , Qk−i∂x)∂

i−1
x

{
f[N ](x)M̃i(x)

}

+

k−2∑

i=2

(
k − 1

i− 1

)
QiCk−i(Q2∂x, . . . , Qk−i∂x)f[N ](x)

]

x=Q0

,

for k ≥ 2,

(18)

with

M̃i(x) ≡ E

[(
Q1 −

N−1∑

k=1

L[k]

)i∣∣∣L[N ] = x
]

=

i∑

j=0

(
i

j

)
(−1)jQi−j

1 Mj(x),

(19)

where Mj(x) is the jth conditional moments of the ran-

dom variable YN =
∑N−1

i=1 L[i]

Mj(x) ≡ E



(

N−1∑

i=1

L[i]

)j
∣∣∣∣∣∣
L[N ] = x


 . (20)

These closed-form expressions for the terms in the per-
turbative series (18) are the main contribution of this

research. Explicit formulas for the conditional moments

(20) can be readily obtained using the invariance of
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∑N−1
i=1 L[i] under an arbitrary permutation of the in-

dices

Mj(x) = E

[(N−1∑

i=1

L[i]

)j∣∣∣L[N ] = x
]

= E

[(N−1∑

i=1

Li

)j∣∣∣
{
Li ≤ x

}N−1

i=1

]

=

∫ x

0

dl1 . . .

∫ x

0

dlN−1

(
N−1∑

i=1

li

)j N−1∏

i=1

f(li)

F (x)
.

(21)

The last quadrature is the average of the jth power
of the sum of N − 1 independent random variables

{Li}N−1
i=1 , whose joint distribution is

f
({

li
}N−1

i=1

∣∣∣
{
li ≤ x

}N−1

i=1

)
=

N−1∏

i=1

f(li|li ≤ x)

=

N−1∏

i=1

f(li)

F (x)
θ(x− li),

(22)

where
∏N−1

i=1 θ(x − li) is a product of Heaviside step

functions, which is equal to 1 in the region {li ≤ x}N−1
i=1

and 0 outside this region. Using the definition of the

complete Bell polynomials (81), it is possible to ex-

press the jth moment of the sum
∑N−1

i=1 li, where the

terms in the sum are constrained to be in the region
{li ≤ x}N−1

i=1 ,

Mj(x) = Bj (K1(x), . . . ,Kj(x)) , (23)

in terms of the conditional cumulants Kj(x), defined as

Kj(x) =
dj

dsj

[
log

(∫ ∞

0

dy esyfYN |XN
(y|x)

)]∣∣∣∣
s=0

.

(24)

Finally, using the property that the pth cumulant of
a sum of independent variables is the sum of the pth

cumulants of the individual variables

Kp(x) = (N − 1)κp(x), p = 1, 2, . . . (25)

we obtain

Mj(x) = Bj ((N − 1)κ1(x), . . . , (N − 1)κj(x)) , (26)

where κj(x) is the jth censored cumulant of L

κj(x) =
dj

dsj

[
log

(∫ x

0

dl esl
f(l)

F (x)

)]∣∣∣∣
s=0

. (27)

These censored cumulants can also be expressed in terms

of the censored moments of L

κj(x) = µj(x)−
j−1∑

i=1

(
j − 1

i

)
κj−i(x)µi(x), (28)

µj(x) =

∫ x

0

dl lj
f(l)

F (x)
, for j = 1, 2, . . . (29)

Using these relations, it is possible to derive explicit
formulas for the terms in the perturbative series. In

particular, the first three are

Q0 = F−1(α
1
N ) (30)

Q1 = (N − 1)E [L|L ≤ Q0] (31)

Q2 = − N − 1

F (Q0)
N−1f(Q0)

∂x

(
F (x)

N−1
f(x)Var [L|L ≤ x]

)
x=Q0

= − (N − 1)
[

(
(N − 2)

f(Q0)

F (Q0)
+

f ′(Q0)

f(Q0)

)
Var [L|L ≤ Q0] +

f(Q0)

F (Q0)
(Q0 − E [L|L ≤ Q0])

2
]
. (32)

An attractive feature of this expansion is that the ap-

proximation of order K depends only on the censored

moments of F of order lower or equal to K. Since they

are censored, these always exist, even for distributions

whose moments diverge. These expressions have been
obtained for cases in which the number of terms in the

sum (14) is fixed. In the next section, we derive closed-

form expressions for sums with a random number of

terms.

3.1 Sums with a random number of terms

In many applications the quantities of interest are ag-
gregate random variables consisting of a variable num-

ber of terms

ZN =
N∑

i=1

Li, (33)

where N is a discrete random variable whose probabil-

ity mass function is

P [N = n] ≡ pn , n = 0, . . . ,∞. (34)

In insurance and operational risk (Embrechts et al, 1997;
McNeil et al, 2005), where ZN represents the aggre-

gate loss in a fixed time period (e.g. yearly losses), N

is referred to as the frequency of the loss events. For
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convenience, we will use this term to refer to N in the

remainder of the article.

Consider the random variable ZN = XN + YN , with

XN = L[N ] (35)

YN =

N−1∑

i=1

L[i], (36)

as in (14,15), where N is now a integer random vari-

able. We denote Xn = L[n] and Yn =
∑n−1

i=1 L[i] the

corresponding random variables conditional on a fixed

value N = n. In terms of the probability distribution
of L[n], the probability distribution of the maximum of

the n terms in the sum (F[n](x) = F (x)n), and of the

corresponding density (f[n](x) = nF (x)n−1f(x)), the

probability distribution and the density of L[N ] are

F[N ](x) =

∞∑

n=0

pnF[n](x) f[N ](x) =

∞∑

n=0

pnf[n](x), (37)

respectively.

For randomN the zeroth order term in the perturbative

expansion Q0 satisfies the relation

α = F[N ](Q0) =

∞∑

n=0

pnF[n](Q0) =

∞∑

n=0

pnF (Q0)
n

= E

[
F (Q0)

N
]
= M(logF (Q0)),

(38)

where MN (s) is the moment generating function of the
random variable N

MN (s) ≡ E

[
esN

]
=

∞∑

n=0

pne
sn. (39)

Using this definition we can invert (38)

Q0 = F−1(eM
−1
N (α)). (40)

Starting from (10) with k = 1 it is possible derive an

expression for the first term in the perturbative series
in terms of Q0

Q1

∞∑

n=0

pnf[n](Q0) =

∞∑

n=0

pnf[n](Q0)E
[ n−1∑

i=1

L[i]

∣∣∣L[n] = Q0

]
.

(41)

Using the explicit form of the probability distribution
of the maximum and equation (21), we get

Q1 =
E

[
N(N − 1)FN(Q0)

]

E [NFN (Q0)]
E[L|L ≤ Q0]. (42)

For the higher order coefficients an analogous derivation

from (11) yields

−Qk

∞∑

n=0

pnf[n](Q0) =

[
k∑

s=1

(
k

s

)
Ck−s(. . .)∂

s−1
x Us(x)

+

k−2∑

s=2

(
k − 1

s− 1

)
QsCk−s(. . .)

∞∑

n=0

pnf[n](x)

]

x=Q0

(43)

where

Us(x) =

∞∑

n=0

pnf[n](x)E[(Q1 − Yn)
s|Xn = x]

=

∞∑

n=0

pnf[n](x)

s∑

q=0

(
s

q

)
(−1)qQs−q

1 Mn,q(x)

Mn,q(x) ≡Bq ((n− 1)κ1(x), . . . , (n− 1)κq(x)) .

(44)

To compute the expected values over the frequency, one

needs to isolate the dependency on N . For this purpose,
it is convenient to use an alternative representation of

the Bell polynomials that allows to express moments in

terms of cumulants using partitions of sets (Appendix

A, eq. (84))

Mn,q(x) =
∑

A∈P(q)

(n− 1)|A|
∏

b∈A

κ|b|(x), (45)

whereP(q) is the set of all partitions of the set 1, 2, . . . , q,

and |A| and |b| denote the number of elements in the

sets A and b respectively, and κ|b|(x) is the |b|th cen-

sored cumulant of L, as defined in (27).

Using this expression the coefficients become

Q1 =
λ1(Q0)

λ0(Q0)
κ1(Q0)

Qk =
−1

λ0(Q0)

[

k∑

s=1

(
k

s

)
Ck−s(. . .)∂

s−1
x

s∑

q=0

(
s

q

)
(−1)qQs−q

1 ×

∑

A∈P(q)

λ|A|(x)
∏

b∈A

κ|b|(x)

+

k−2∑

s=2

(
k − 1

s− 1

)
QsCk−s(. . .)λ0(x)

]

x=Q0

, for k ≥ 2,

(46)

with

λa(x) ≡ EN [(N − 1)af[N ](x)]

=
f(x)

F (x)
E[N(N − 1)aF (x)

N
], for a ≥ 0.

(47)
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The explicit expressions for the first four coefficients are

Q0 = F−1(eM
−1
N (α))

Q1 =
λ1(Q0)

λ0(Q0)
κ1(Q0)

Q2 =
−1

λ0(Q0)
∂x

[
Q2

1λ0 − 2Q1λ1κ1 + λ1κ2 + λ2κ
2
1

]
x=Q0

=
−1

λ0(Q0)
∂x

[
λ1κ2 + (λ2 −

λ2
1

λ0
)κ2

1

]

x=Q0

Q3 =
−1

λ0(Q0)

{
3Q2∂x

[
Q1λ0 − λ1κ1

]
x=Q0

+ ∂2
x

[
Q3

1λ0 − 3Q2
1λ1κ1 + 3Q1(λ1κ2 + λ2κ1

2)

− λ1κ3 − 3λ2κ1κ2 − λ3κ1
3
]
x=Q0

}
,

(48)

where, to simplify the notation, the dependence on x in

the λa(x) and κb(x) has been omitted.

The functions {λa(x); a = 0, 1, 2, . . .} can also be ex-

pressed in terms of the moment generating function of

N as

λa(x) =
f(x)

F (x)
∂s (∂s − 1)a MN(s)|s=logF (x) for a ≥ 0.

(49)

Explicit expressions for the Poisson and negative bi-
nomial probability distributions are given in Appendix

B. These types of distributions are commonly used in

applications.

3.2 Approximation in terms of frequency moments for

high percentiles

The formulas derived in the previous section (48) are

different from the standard single-loss approximation

(Böcker and Klüppelberg, 2005) and corrections thereof

(Böcker and Sprittulla, 2006; Sahay et al, 2007; Degen,
2010; Albrecher et al, 2010). In this section we show

that for high percentiles one recovers the single-loss ap-

proximation and correction terms. In the limit α → 1−

the inverse of the moment generating function in (40)

can be approximated as

MN (s) = E

[
esN

]
= 1 + sE [N ] +O(s2), (50)

for s → 0. From this expression,

M−1
N (α) ≈ −1− α

E[N ]
, for α → 1−. (51)

This leads to the standard single-loss approximation

(Böcker and Klüppelberg, 2005)

Q0 ≈ QSL ≡ F−1

(
1− 1− α

E[N ]
)

)
. (52)

In this limit, the survival function S(x) ≡ 1 − F (x)

approaches 0, and simpler approximate expressions for

λa(x) are obtained by keeping terms only up to 1st
order in S(x)

λa(x) = ∂xE[(N − 1)a(1− S(x))
N
]

≈ ∂xE[N(N − 1)a(1 −NS(x)]

= −∂xS(x)E[N(N − 1)a]

= f(x)

a∑

s=0

(
a

s

)
(−1)a−sνs+1, a = 0, 1, . . .

(53)

where νs = E[Ns] are the moments of the frequency dis-

tribution. Using these approximations, the high-percentile

corrections to the single-loss formula can be expressed

directly in terms of the moments of the frequency dis-

tribution

Q1 ≈
(
E[N2]

E[N ]
− 1

)
E[L|L ≤ Q0] (54)

Q2 ≈ −
(
E[N2]

E[N ]
− 1

)
1

f(x)
∂x [f(x)Var [L|L ≤ x]]x=Q0

+

((
E[N2]

E[N ]

)2

− E[N3]

E[N ]

)
×

1

f(x)
∂x
[
f(x)E[L|L ≤ x]2

]
x=Q0

. (55)

The approximation to Q1 is similar to the corrections
to the single loss formula proposed in the literature

(Böcker and Sprittulla, 2006; Sahay et al, 2007; Degen,

2010; Albrecher et al, 2010). In section 4, we provide

a review of these corrections. Their accuracy will be
compared to the perturbative expansion in section 5.

To make the numerical computation of the perturba-

tive approximation up to high orders feasible it is use-

ful to express the terms of the series recursively. These

recursive expressions are presented in Appendix C.

4 Related work

In this section we review closed-form approximations

for the percentile of sums of positive iidrv’s that have
been proposed in previous investigations. Even though

it is possible to derive approximations for particular

heavy-tailed distributions, such as (Blum, 1970) for the
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Pareto distribution, in this work we consider compar-

isons only with approximations for general subexpo-

nential distributions (Goldie and Klüppelberg, 1998;

Foss et al, 2011). The single-loss approximation can

be derived using first order asymptotics of the tail of
sums of subexponential random variables (Chistyakov,

1964; Embrechts and Veraverbeke, 1982; Böcker and

Klüppelberg, 2005). Higher order asymptotic expan-

sions of the tails of the compound distribution (Omey
and Willekens, 1986, 1987; Grubel, 1987; Barbe and

McCormick, 2005; Barbe et al, 2007; Barbe and Mc-

Cormick, 2009) can be used to obtain corrections to

the single-loss approximation (Sahay et al, 2007; De-

gen, 2010; Albrecher et al, 2010). These high order
corrections are similar to the successive terms in the

perturbative expansion analyzed in this article. How-

ever, there are some important differences. In partic-

ular, these terms are expressed as a function of right-
censored moments, which are always finite. In the sec-

tion on experimental evaluation (section 5) we will fur-

ther show that the perturbative series provides more ac-

curate approximations than the expressions introduced

in this section.

One of the defining properties of subexponential distri-

butions is that large values of sums of subexponential

random variables are dominated by the maximum

ZN =

N∑

i=1

Li ≈ max {L1, . . . LN} , ZN → ∞. (56)

In insurance mathematics this corresponds to the ’one
loss causes ruin’ regime (Embrechts et al, 1997). Using

the property of subexponential distributions (Chistyakov,

1964; Embrechts and Veraverbeke, 1982)

lim
x→∞

P (L1 + . . .+ LN > x)

P (L1 > x)
= N, (57)

it is possible to show that, for this type of distribu-
tions, the percentile of ZN at the probability level α is

approximately

QSL = F−1

(
1− 1− α

N

)
, for α → 1−. (58)

In this limit, expression (58) is very similar to the zeroth

order term in the perturbative expansion

Q0 = F−1
(
α

1
N

)

= F−1

(
1− 1− α

N
+O

(
(1 − α)2

N

))
≈ QSL.

(59)

The derivation of a closed-form approximation for high

percentiles using first order tail asymptotics can be

readily extended to sums of subexponential iirdv’s with

a random number of terms

QSL = F−1

(
1− 1− α

E [N ]

)
, (60)

where E [N ] is the average number of terms in the sum.

In the area of operational risk, this expression is known

as the ’single-loss approximation’ (Böcker and Klüppel-
berg, 2005; Böcker and Sprittulla, 2006).

Using heuristic arguments, a correction to the single-

loss approximation was proposed in (Böcker and Sprit-

tulla, 2006) for distributions with finite mean

Q ≈ F−1

(
1− 1− α

E [N ]

)
+ (E [N ]− 1)µL, µL ≡ E [L] .

(61)

In the limit α → 1−, the value Q0 is large, so that

E [L|L ≤ Q0] ≈ E [L] and the approximation given by
(61) becomes similar to (54).

Besides the heuristic derivation given in (Böcker and

Sprittulla, 2006) and the perturbative expansion pro-
posed in this work, higher order corrections to the single-

loss approximation can be derived in at least three

different ways: Using the second order asymptotic ap-

proximations introduced in (Omey andWillekens, 1986,
1987; Sahay et al, 2007; Degen, 2010), from the asymp-

totic expansion analyzed in (Barbe and McCormick,

2005; Barbe et al, 2007; Barbe and McCormick, 2009)

or from asymptotic approximations based on evalua-

tions of F (l) at different arguments (Albrecher et al,
2010).

In the case of distributions with finite mean, the asymp-

totic analysis of the tail of a subordinated distribution
analyzed in Omey and Willekens (1987) can be used to

obtain QOW , a second order approximation of the per-

centile of sums of subexponential iidrv’s, as the solution

of

QOW = F−1

[
1− 1− α

E [N ]
+

(
E

[
N2
]

E [N ]
− 1

)
µLf (QOW )

]
.

(62)

This implicit nonlinear equation can be solved numer-

ically using, for example, an iterative scheme. Alterna-

tively, one can retain only the leading terms in a per-
turbative expansion of this expression

Q∗
OW = QSL + (E [N ] + (D − 1))µL, (63)

where D = Var [N ] /E [N ] is the index of dispersion

(D = 1 for the Poisson distribution and D > 1 for the

negative binomial distribution). The first term in (63) is
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the single-loss approximation (Böcker and Klüppelberg,

2005; Böcker and Sprittulla, 2006). The second term is

a correction that involves the mean and is similar to

(61) when E [N ] ≫ 1 and D ≈ 1. As shown in Ap-

pendix D, expression (63) can be derived in a number
of different ways (Degen, 2010; Barbe and McCormick,

2005; Barbe et al, 2007; Barbe and McCormick, 2009;

Albrecher et al, 2010).

In the case of distributions with infinite mean, in which
the density is regularly varying at infinity with index

−(1 + a), f(L) ∈ RV−(1+a) (Bingham et al, 1987), the

second order approximation of Q ≡ G−1(α) satisfies

the relation (Omey and Willekens, 1986)

QOW = F−1

(
1− 1− α

E [N ]

+ca

(
E

[
N2
]

E [N ]
− 1

)
µF (QOW )f(QOW )

)
,

(64)

where

µF (x) ≡
∫ x

0

ds(1−F (s)) = (1−F (x))x+F (x)E [L| ≤ x] ,

(65)

and

ca =

{
1 a = 1

(1− 1/a) [Γ (1−a)]2

2Γ (1−2a) a < 1
, (66)

where Γ (x) is the gamma function. Besides numerical

schemes, an approximate closed-form expression of the

percentile, Q∗
OW , can be obtained using a perturbative

scheme analogous to the finite mean case

Q∗
OW = QSL + ca (E [N ] + (D − 1))µF (QSL), (67)

µF (QSL) =
1− α

E [N ]
QSL +

(
1− 1− α

E [N ]

)
E [L|L ≤ QSL] .

(68)

Appendix D presents the detailed derivations of these

approximations and the connections with the pertur-
bative approach introduced in the current article. The

main difference with previous proposals is that the per-

turbative expansion involves the moments of right-

truncated distributions. Since these censored moments

are always finite, the same expressions are valid for
distributions with finite and with infinite mean. As il-

lustrated in the following section, the perturbative ex-

pansion provides accurate approximations of high per-

centiles of sums of iidrv’s for a variety distributions and
a wide range of parameters, regardless of whether the

mean of the random variables in the sum is finite or

infinite.

5 Empirical evaluation

In this section we investigate the properties of the per-
turbative expansion of the α-percentile of the aggregate

distribution introduced in this work, when α is close to

1. The accuracy of this perturbative expansion is com-

pared to the second order asymptotic approximations
(62-67) for different types of distributions and different

values of α. The types of distributions, ranges of param-

eters and percentile levels used to carry out the empiri-

cal evaluation of the proposed approximations are in the

range of those commonly used in applications in insur-
ance and finance (Embrechts et al, 1997; McNeil et al,

2005), especially in the area of operational risk (Fra-

chot et al, 2001; Embrechts et al, 2003; Panjer, 2006;

Carrillo-Menéndez and Suárez, 2012). The derivation
closed-form approximations for the estimation of high

percentiles in these areas of application is extremely rel-

evant because of the large computational costs of the

standard methods, such as MC simulation, which are

used to compute the risk measures.

The comparisons among the different approximations

are made in terms of the relative error (Qapprox−Q)/Q,

where Qapprox is an approximation of the percentile (ei-

ther QOW Q∗
OW or Q(K), the truncation of the per-

turbative series at order K), and Q is the exact per-

centile. The sign of the error is retained in most cases

to make it clear whether the approximation over- or

underestimates the true value of the percentile. When

the true value of the percentile cannot be computed ex-
actly, it is estimated via Monte Carlo simulation. Due

to the heavy-tailedness of the severity distributions con-

sidered, many simulations are required to achieve suffi-

cient precision in the percentile estimation. The Monte
Carlo estimates have been obtained using OpVision R©1,

a software system for the analysis and quantification

of operational risk in the Advanced Measurement Ap-

proaches (AMA) framework (Basel Committee on Bank-

ing Supervision, June 2006). In all cases, the error of the
Monte Carlo estimates is at most 0.1% at a 95% con-

fidence level. If the approximations analyzed are more

accurate than this threshold, more simulations are per-

formed to obtain reliable estimates of the accuracy. Er-
ror bands for the Monte Carlo estimates are displayed in

all the graphs except for the Lévy case, where the per-

centiles can be calculated exactly. In many cases these

sampling errors are much smaller than the errors of the

approximations considered and this band cannot be dis-
cerned in the plots.

1 www.opvision.es
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The recursive formulas used for the calculation of the

terms in the perturbative expansion are given in Ap-

pendix C. The computational cost of obtaining an ap-

proximation with K terms is O(K4), where K is the

order at which the perturbative series is trunctated. An
implementation in MatLab of the perturbative expan-

sion is publicly available 2. In the experiments reported,

the computations are numerically stable. However, nu-

merical instabilities eventually appear for higher orders,
higher quantiles and/or heavier-tailed distributions.

The convergence properties of the perturbative series

are also of great importance. Even though a formal
analysis of this question is beyond the scope of this

work, we have carried out an empirical investigation of

the accuracy of the approximation as a function of the

order at which the perturbative expansion is truncated.

The results reported are for sums of a fixed number
of lognormal iidrv’s. Nonetheless, similar patterns are

obtained for other distributions (e.g. Pareto) in other

ranges of parameters and in sums of iidrv’s with ran-

dom numbers of terms. In Figure 1, the relative error
of the quantile estimations for a sum of N = 100 log-

normal iidrv’s is plotted as a function of the order of

the perturbative expansion, for different quantile levels.

From these results it is apparent that the series con-

verges only asymptotically for α → 1−. The asymptotic
behavior of the series is analyzed in detail for the par-

ticular case of the Pareto distribution in section 5.3.3.

For a fixed quantile level, the accuracy of the approx-

imation initially improves as more terms are included
in the expansion, but becomes worse beyond a certain

order. Nonetheless, for a given order, there is a quantile

level above which the series truncated to this order is a

more accurate approximation than the series truncated

to lower orders. As heavier tails imply stronger domi-
nance of the maximum in the sum, the heavier the tails

of the distribution, the more accurate of the approxima-

tion becomes. Hence, the order beyond which the ap-

proximation deteriorates is larger for distributions with
heavier tails. Finally, the accuracy of the perturbative

expansion becomes poorer for increasing N .

In summary, in the cases analyzed, the accuracy of the

approximation initially improves as more terms are in-
cluded in the perturbative approximation. However, be-

yond a certain order, adding further terms in the ex-

pansion leads to an increase of the error. In the exper-

iments carried out in the remainder of this section, the
series is truncated at intermediate orders (K = 3 or

K = 5), which, for the considered examples, provide

very accurate approximations. The results of these ex-

2 www.qrr.es/technical-reports/QRR-2012-
0001/code/perturbativeExpansion.m
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Fig. 1 Relative error for Lognormal (σ = 2.5) with frequency
N = 100, as a function of the coefficient order for α = 90%
(upper plot), α = 92.5% (middle plot) and α = 95% (lower
plot). The horizontal lines delimit the 95% confidence interval
of the Monte Carlo simulation of the exact quantile.

periments are presented in separate subsections, each

of which corresponds to different types of distributions

of the individual random variables in the sum.

5.1 Lévy distribution

In this section we evaluate the accuracy of the different
approximations of high percentiles of the sum of iidrv’s

that follow a Lévy distribution

f(x) =

√
c

2π

1

x3/2
e−

c
2x

F (x) = erfc

(√
c

2x

)
for x > 0,

(69)

where erfc(y) is the complementary error function. The

mean of the Lévy distribution is infinite. The probabil-

ity distribution, F (x), is a function of regular variation
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Fig. 2 Absolute value of the relative error of the different ap-
proximations to the α-percentile of the sum of N independent
identically distributed Lévy random variables as a function of
α for N = 100 (upper plot) and N = 1000 (lower plot).

RV−a and the density, f(x), is RV−(1+a)) with a = 1/2.

This a particularly useful case to analyze because the

Lévy distribution belongs to the family of stable distri-

butions (Nolan, 2012). Therefore, the sum of N Lévy

independent identically distributed (iid) random vari-
ables ZN =

∑N
i=1 Li, is also of the Lévy form

g(z) =

√
c

2π
N

1

z3/2
e−

cN2

2z

G(z) = erfc

(√
c

2z
N

)
= 1− erf

(√
c

2z
N

) (70)

In the case of deterministic N , the α-percentile is

Q =
c

2
N2
[
erf−1 (1− α)

]−2
. (71)

For Lévy random variables, ca = 0 in (64) because

a = 1/2. In consequence, the second order asymptotic
approximation (64) coincides with the single-loss ap-

proximation

QOW = Q∗
OW = QSL = F−1

(
1− 1− α

N

)

=
c

2

[
erf−1

(
1− α

N

)]−2

.

(72)

The accuracy of this approximation is compared to the

perturbative series up to order 5. Figure 2 displays in

a logarithmic scale in both axes the absolute value of
the relative error of the different approximations as a

function of α for N = 100 and N = 1000. All approx-

imations become more accurate for higher percentiles
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Fig. 3 Relative error of the different approximations to the
percentile of the sum of iid Lévy random variables as a func-
tion of the number of terms in the sum for α = 99% (upper
plot) and α = 99.9% (lower plot).

(α → 1−). In this limit the relative error is proportional

to (1− α)
2
for all the approximations considered. Using

the results of Appendix E the relative error of approx-
imation (72) is

QOW −Q

Q
≈ π

6

N2 − 1

N2
(1− α)

2
α → 1−. (73)

Similarly, for the perturbative expansion truncated at

different orders

Q(k) −Q

Q
≈ γk (1− α)

2
α → 1−, k = 1, 2, . . . , (74)

with

γ1 =
(2π − 5)N2 − 6(π − 3)N + (4π − 13)

12N2

γ2 =
(N − 1)(N − 2)

6N2
(π − 3)

γ3 =
(N − 1)(N − 2)

6N2

(
π − 16

5

)
. (75)

Up to the orders analyzed the perturbative series pro-
vides more accurate estimates than (72), improving with

the number of terms included in this series. Nonethe-

less, the relative improvements become smaller for higher

order terms. The dependence of the relative error with
N , the number of terms in the sum, for α = 99% (upper

plot) and α = 99.9% (lower plot) is shown in Figure 3.

The relative error increases with N . Nonetheless, the
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deterioration is fairly slow. The error eventually ap-

proaches a constant, in agreement with the large N

behavior of (75). Also in these cases the perturbative

series is more accurate that QOW .

5.2 Lognormal distribution

In this section we analyze the sum of iidrv’s that follow

a lognormal distribution

f(x) =
1

xσ
√
2π

exp

(
− (log x)2

2σ2

)

F (x) =
1

2
+

1

2
erfc

(
log x

σ
√
2

)
, for x > 0.

(76)

The lognormal is also subexponential. However, in con-

trast to the Lévy distribution, all its moments are finite.

The perturbative series, which is of the same form as in

the previous case, also provides very accurate approxi-
mations of high percentiles of the sum.

Figure 4 displays the relative error of the different ap-
proximations as a function of σ. Larger values of σ cor-

respond to heavier tails. In the simulations the number

of terms in the sum (frequency) is random and follows

a Poisson distribution whose mean is λ = 100. In all
cases, the relative error becomes smaller as σ increases.

This is consistent with the fact that this parameter de-

termines the heaviness of the tail. For larger values of σ

(heavier tails) the relative importance of the maximum

in the sum increases and the approximations, which are
based on the dominance of the maximum in the sum,

become more accurate.

The second order asymptotic approximationsQ∗
OW and

QOW diverge as σ becomes larger. This is not unex-

pected because the mean of the distribution increases

as eσ
2/2, while the percentile of the maximum (which

dominates the sum) increases only as eσ. The perturba-

tive expansion introduced in this work, which involves

only censored moments, avoids this problem and be-

haves properly. Figure 5 displays the dependence of the

error of the different approximations as a function of
the percentile level (upper plot) and of the average fre-

quency (lower plot). As expected, all approximations

perform better at higher percentiles and lower frequen-

cies; that is, as the weight of the maximum in the sum
becomes larger. Even for the relatively high average fre-

quency λ = 1000, the accuracy of the perturbative ap-

proximation Q(3) is remarkable.
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Fig. 4 Relative error for Lognormal /Poisson (λ = 100) as a
function of σ for α = 99% (upper plot) and α = 99.9% (lower
plot).
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5.3 Pareto distribution

In this section we analyze the sum of iidrv’s that follow

a Pareto distribution

f(x) =
a

x1+a
, F (x) = 1− 1

xa
, x > 1, (77)
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Fig. 6 Relative error for Pareto / Poisson (λ = 100) as a
function of a for α = 99% (upper plot) and α = 99.9% (lower
plot). The values of a are ordered so that the heaviness of the
tails increases from left to right in the plots.

with a > 0. Since the second order asymptotic approx-

imations have a different form depending on whether
the mean is defined or not, we consider two separate

regimes: a > 1, where the mean of the Pareto distri-

bution is finite, and a ≤ 1, where the mean diverges.

It is worth noting that the perturbative expansion in-
troduced in this work has the same expression in both

regimes and is in fact continuous at a = 1.

5.3.1 Pareto distribution with finite mean (a > 1):

We now compare the accuracy of the different approx-

imations for sums of random variables that follow a

Pareto distribution with finite mean using Monte Carlo

simulations. Figure 6 displays the relative error as a
function of the Pareto index a. In the limit a → 1+

the second order asymptotic approximations QOW and

Q∗
OW diverge. The origin of this divergence is the in-

crease of correction term in (62,63), which involves the

unconditional mean of the distribution. This mean which
grows without bound as a approaches 1 from above.

By contrast, the perturbative expansion, which is ex-

pressed in terms of censored moments, behaves well and

actually becomes more accurate in this limit. Figure 7
presents the dependence of the relative error as a func-

tion of α. The dependence on the average frequency

λ = E[N ] is shown in Figure 8. In all cases the conclu-
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Fig. 7 Relative error for Pareto / Poisson ( λ = 100 ) as a
function of α for different values of a: a = 2.00 (upper plot)
and a = 1.20 (lower plot).
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Fig. 8 Relative error for Pareto/Poisson as a function of E[N ]
for α = 99.9% and different values of a: a = 2.00 (upper plot)
and a = 1.20 (lower plot).

sions reached through the analysis of these results are

similar to the lognormal case.
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5.3.2 Pareto distribution with infinite mean

(0 < a ≤ 1):

We now evaluate the accuracy of the different approxi-

mations for the percentiles of sums of random variables
that follow a Pareto distribution with infinite mean.

Figure 9 displays the relative error of the different ap-

proximations as a function of a, the tail parameter of

the Pareto distribution. Figure 10 plots the relative er-
ror as a function of α for two different values of a. Fi-

nally, the change in relative error as the average fre-

quency E[N ] varies is presented in Figure 11. In this

regime all approximations are fairly accurate. Between

the second order asymptotic approximations, QOW is
more accurate than Q∗

OW .

For high percentiles, the best results corresponds to
Q(3), the third order perturbative approximation. Be-

yond α = 0.90 the errors of this approximation are be-

low the uncertainty of the Monte Carlo estimates. The

improvements with respect to the standard approxima-

tions,QOW orQ∗
OW , are especially significant for values

of a close to 1.
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Fig. 9 Relative error for Pareto/Poisson (λ = 100) as a func-
tion of a for α = 99% (upper plot) and α = 99.9% (lower
plot). The values of a are ordered so that the heaviness of the
tails increases from left to right in the plots.
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Fig. 10 Relative error for Poisson/Pareto as a function of α
for λ = 100 and different values of a.
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Fig. 11 Relative error for Poisson/Pareto as a function of
E[N ] for α = 99.9% and different values of a.

5.3.3 Effective expansion parameter

Equation (2) has been derived using a purely formal

expansion parameter ǫ, which is eventually set to 1. In

this section we take advantage of the simple form of the
Pareto distribution to identify the actual perturbative

parameter of the expansion for this type of random vari-

ables. To this end, we analyze the leading contributions
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in the individual terms in the expansion for α → 1−.

In terms of the parameter δ = (1−α), the leading con-

tributions for δ → 0+ and for all non-integer a 6= 1
2

are

Q1

N − 1
∼− a

a− 1

(
δ

N

)1−1/a

+ . . .

+
a

a− 1

(
δ

N

)0/a

+ . . .

Q2

N − 1
∼− a(2a− 1)

a− 2

(
δ

N

)1−1/a

+ . . .

− a(a+ 1)

(a− 1)2(a− 2)

(
δ

N

)1/a

+ . . .

Q3

N − 1
∼− 2a(a− 1)(2a− 1)

a− 3

(
δ

N

)1−1/a

+ . . .

+
2a(a+ 1)2(a+ 2)

(a− 1)3(a− 2)(a− 3)

(
δ

N

)2/a

+ . . . (78)

The pattern that emerges is the following: up to or-

der Qk, with k < a, the terms (δ/N)(k−1)/a dominate.
Therefore, for k < a, (δ/N)1/a can be interpreted as an

expansion parameter. For k > a the terms proportional

to (δ/N)1−1/a dominate. Since these terms are indepen-

dent of k, there is no longer a recognizable expansion
parameter. However, the prefactors, which depend on

a, become smaller as the order of the perturbative term

increases. For k = a both types of terms contribute. It

is interesting to note that the dominance shifts precisely

at the order in which the moments cease to exist.

6 Conclusions

Starting from a perturbative expansion for the per-

centile of a sum of two random variables we derive a for-
mal expansion for the percentile of sum of N indepen-

dent random variables. Assuming that, for sufficiently

high percentiles, the maximum dominates the sum, the

expansion is carried around the percentile of the maxi-
mum in the sum. This zeroth order term in the pertur-

bative series is similar to the single-loss approximation

(Böcker and Klüppelberg, 2005), which can be derived

from a first order asymptotic analysis of the tails of

sums of subexponential random variables (Embrechts
and Veraverbeke, 1982). The first order perturbative

correction is similar to the mean-corrected single-loss

formula for distributions with finite mean (Böcker and

Sprittulla, 2006), which can also be derived using higher
order asymptotics. Higher order terms in the pertur-

bative series are expressed in terms of right-truncated

moments. These censored moments are always finite,

regardless of whether the original uncensored distribu-

tions have finite or divergent moments. The pertur-

bative series becomes more accurate for higher per-

centiles and heavier tails. From the empirical study car-

ried out using either exact results or Monte Carlo sim-
ulation, one concludes that the perturbative approach

is more accurate than previous approximate formulas

proposed in the literature (Sahay et al, 2007; Degen,

2010; Albrecher et al, 2010). Furthermore, the accu-
racy of the approximation can be improved by includ-

ing more terms in the perturbative series, up to a cer-

tain order. Beyond this order the approximation error

generally increases. Another practical difficulty is the

computational cost of the computations of higher or-
der terms. Nonetheless, the third order approximation

is sufficiently accurate for the percentiles (99− 99.9%),

and the types of distributions that are used in practice

in many fields of application, such as finance and insur-
ance. As an extension of this research, the perturbative

analysis is being applied to sums of random variables

that are not identically distributed and may have de-

pendencies. A more detailed analysis of the convergence

of the perturbative series and the development of accu-
rate approximations for lower percentiles are also the

subject of current investigation.
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A Complete Bell polynomials

The complete Bell polynomials (CBP) (named after Bell,
(Bell, 1934)) arise in many contexts, such as the n-times dif-
ferentiation of a function (Faà di Bruno formula) or to ex-
press the relationship between moments and cumulants in
statistics.

Let z(t) be an arbitrary function of t whose k-th derivative

z(k)(t) = dk

dtk
z(t) the complete Bell polynomial of order k is

Bk(z
(1)(t), . . . , z(k)(t)) = e−z(t) dk

dtk
ez(t) (79)

From this definition, the CBP can be shown to satisfy

exp

(
∞∑

p=1

xp
tp

p!

)
= 1 +

∞∑

q=1

Bq (x1, . . . , xq)
tq

q!
. (80)

This expression provides a relationship between the power
series expansion of the moment generating function and the
cumulant generating function. In partucular

µq = Bq(κ1, . . . , κq), (81)

where µq are the moments of a random variable and κp its
cumulants.

In this paper we use a centered version of the CBP, which
is defined by Ck(x2, . . . , xk) ≡ Bk(0, x2, . . . , xk). In terms of
Ck(x2, . . . , xk) the complete Bell polynomial of order k is

Bk(x1, . . . , xk) =
k∑

s=0

(k
s

)
xs
1Ck−s(x2, . . . , xk−s) (82)

The CBP satisfy the following recursive formulae

k = 0, B0 = 1 , C0 = 1

k = 1, B1(x1) = x1 , C1 = 0

k ≥ 2, Bk(x1, . . . , xk) =

xk +

k−1∑

s=1

(k − 1

s− 1

)
xsBk−s(x1, . . . , xk−s)

Ck(x2, . . . , xk) =

xk +

k−2∑

s=2

(k − 1

s− 1

)
xsCk−s(x2, . . . , xk−s)

(83)

There exists an alternative representation for the CBP, which
is related to the structure of the partitions of a set of size n

Bk(x1, . . . , xk) =
∑

A∈P(k)

∏

b∈A

x|b| (84)

where P(k) is the set of all partitions of the set {1, . . . , k}
(if k = 0, P(k) contains one empty set) and |b| denotes the
number of elements in set b.

B Explicit formulas for particular frequency

distributions

In this section we provide explicit formulas for the first terms
in the perturbative series when the number of terms in the
sum is distributed as a Poisson or as a negative binomial.

B.0.4 Poisson distribution

We consider the particular case where N , the number of terms
in the sum (33) follows a Poisson distribution with parameter
λ = E[N ]

pn =
1

n!
λne−λ. (85)

The moment generating function is

MN (s) = exp (λ(es − 1)). (86)

From this we derive

λ0(x) = exp (λ(F (x) − 1))λf(x)

λ1(x) = λF (x)λ0(x)

λ2(x) = (1 + λF (x))λ1(x).

(87)

The first three terms of the perturbative expansion are

Q0 = F−1

(
logα

λ
+ 1

)

Q1 = (λ+ log α) E [L|L < Q0]

Q2 = −
1

λ0(Q0)
∂x
(
λ1(x)(κ2(x) + κ1(x)

2)
)
x=Q0

= −

(
λf(Q0) +

f ′(Q0)

f(Q0)

)
(logα+ λ)E[L2|L < Q0]

− λf(Q0)Q
2
0,

where, in the last step, we have used the identity

∂xµp(x) =
f(x)

F (x)
(xp − µp(x)) . (88)

for the censored moments µp(x) ≡ E[Lp|L < x].

B.0.5 The negative binomial distribution

The probability mass function of the negative binomial dis-
tribution with parameters (p, r) is

pn =
(n+ r − 1

n

)
pr(1− p)n. (89)

Setting q ≡ 1− p The moment generating function is

MN (s) = pr [1− qes]−r . (90)

In terms of ξ(x) = 1− qF (x) we have

λ0(x) = prξ(x)−r−1qrf(x)

λ1(x) = ξ(x)−1q(1 + r)F (x)λ0(x)

λ2(x) = ξ(x)−1 [1 + q(1 + r)F (x)] λ1(x)

(91)
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The first three terms in the perturbative expansion are

Q0 = F−1

(
1− pα−1/r

q

)

Q1 = (1 + r)

(
α1/r

p
− 1

)
E [L|L < Q0]

Q2 = −
r + 1

h3

[

E

[
L2|L < Q0

]
h(1 − h)

(
q(r + 2)f(Q0) + h

f ′(Q0)

f(Q0)

)

+ E [L|L < Q0]
2 (1 − h)2

(
q(r + 3)f(Q0) + h

f ′(Q0)

f(Q0)

)

+ E [L|L < Q0] 2Q0qh(1− h)f(Q0) +Q0
2qh2f(Q0)

]

(92)

where q ≡ 1− p and h ≡ pα−1/r.

C Recursive formulas for the perturbative

series

The objective of this section is to derive recursive expressions
for the terms in the perturbative expansion of high quantiles
of Z = X + ǫY . These expressions are better suited for the
numerical computation of the series than the expressions de-
rived in section 2.
The starting point is (8). By defining the function

φ(s, x) ≡ fX(x)MY |X(s|x), (93)

where

MY |X(s|x) =

∫ ∞

−∞

dy esyfY |X(y|x) (94)

is the moment generation function of Y conditional on X ,
and the operator

Ωǫ ≡
(
e(δQ−ǫ∂s)∂x − 1

)
∂−1
x , (95)

(8) can be written as

Ωǫφ(s, x)|s=0,x=Q0
= 0. (96)

By defining the operators
{
Ω(n) ≡ ∂nΩǫ

∂ǫn |ǫ=0, n ≥ 0
}
, the

terms of the perturbative expansion can be obtained by solv-
ing the equations

Ω(n)φ(s, x)
∣∣∣
s=0,x=Q0

= 0 , for all n ≥ 0. (97)

The sequence of operators Ω(n) has the recurrence relation

Ω(0) = 0

Ω(1) = ∂̃s

Ω(k) = Qk +Ω(k−1)∂̃s∂x +

k−2∑

i=1

(k − 1

i

)
Qk−iΩ

(i)∂x (98)

for k ≥ 2 and with ∂̃s ≡ Q1 − ∂s. Expressing each operator
Ω(n) in the form

Ω(k) =
n∑

i=0

n∑

j=0

ω
(k)
i,j ∂̃

i
s∂

j
x (99)

(98) can be expressed as recursion relations for the coefficients

ω
(k)
0,0 = Qk

ω
(k)
i,0 = 0

ω
(k)
0,j =

k−2∑

l=max(1,j−1)

(k − 1

l

)
Qk−lω

(l)
0,j−1

ω
(k)
i,j =

k−2∑

l=max(1,i,j−1)

(k − 1

l

)
Qk−lω

(l)
i,j−1 + ω

(k−1)
i−1,j−1,

(100)

for i, j ≥ 1. Finally, the terms in the perturbative series can
be derived from (97) as

Qn = −
1

φ(0,0)

n∑

i=0

n∑

j=1

ω
(n)
i,j φ(i,j) (101)

where

φ(i,j) ≡ ∂̃i
s∂

j
xφ(s, x)

∣∣∣
s=0,x=Q0

. (102)

The remainder of this appendix is devoted to the derivation
of explicit recursive formulas for the quantities φ(i,j) of the
perturbative expansion for sums of N independent random
variables, ZN =

∑N
n=1 Ln. These independent rv’s are iden-

tically distributed according to F (l) (density f(l)).

C.1 Deterministic N

Consider the case of sums of N iidrv’s, with N fixed. In this
case, the expansion around the maximum of the terms in the
sum is characterized by

fX(x) = NF (x)N−1f(x)

MY |X(s|x) = ML(s|x)N−1. (103)

Therefore

φ(s, x) = Nf(x)F (x)N−1ML(s|x)N−1. (104)

To make the notation more compact, the following definitions
are used in the derivation

M
(i,j)

Y |X
≡ ∂i

s∂
j
xM

N−1
L (s|x)

∣∣∣
s=0,x=Q0

k
(j)
i ≡ ∂j

xκi(x)
∣∣
x=Q0

= ∂i
s∂

j
x logML(s|x)

∣∣
s=0,x=Q0

m
(j)
i ≡ ∂j

xµi(x)
∣∣
x=Q0

= ∂i
s∂

j
xML(s|x)

∣∣
s=0,x=Q0

F̃ (j) ≡ ∂j
x logF (x)

∣∣
x=Q0

f̃(j) ≡ ∂j
x log f(x)

∣∣
x=Q0

, (105)

where

ML(s|x) =

∫ x

0

dl esl
f(l)

F (x)
(106)
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is the generating function of the censored moments of the
individual terms in the sum with censoring threshold x.

Using these expressions and definitions, the coefficients in
(101) are

φ(i,j) =

i∑

l=0

j∑

k=0

(−1)i−l
(j
k

)(i
l

)
Ql

1M
(i−l,j−k)
Y |X ∂k

xfX(x)
∣∣
x=Q0

.

(107)

The derivatives of the conditional moment generating func-
tion MY |X(s|x) evaluated at s = 0 and x = Q0 can be
computed using the recursion

M
(0,j)

Y |X
= δ0,j

M
(i,j)
Y |X = (N − 1)

i−1∑

l=0

j∑

k=0

(i − 1

l

)(j
k

)
M

(l,k)
Y |Xk

(j−k)
i−l (108)

for j ≥ 0, i ≥ 1 and with δi,j the Kronecker delta. To evalu-
ate this expression one needs the derivatives of the censored
cumulants evaluated at Q0. These can be computed using the
recursion

k
(j)
0 = 0

k
(j)
i = m

(j)
i −

i−1∑

l=1

j∑

k=0

(i− 1

l

)(j
k

)
m

(k)
l k

(j−k)
i−l (109)

for j ≥ 0, i ≥ 1. Finally, the derivatives of the censored
moments evaluated at Q0 are given by the recursion

m
(j)
i =

j−1∑

k=0

(j − 1

k

)
F̃ (1+k)

(
∂j−1−k
x xi

∣∣
x=Q0

−m
(j−1−k)
i

)
,

(110)

for j ≥ 1. Besides m
(0)
i , the censored moments with threshold

x = Q0, the remaining terms in the calculation, namely, the
derivatives of logarithm of the severity F̃ (j) and of the den-
sity of the maximum ∂k

xfX(x) = ∂k
x

(
Nf(x)F (x)N−1

)
can be

readily computed from the derivatives of the severity CDF,
also via recursion. For instance

F̃ (j) =

[
∂j
xF (x) −

j−1∑

k=1

(j − 1

k

)
∂k
xF (x)F̃ (j−k)

]

x=Q0

F (Q0)
. (111)

C.2 Random N

In this case

MY |X(s|x) = E
[
eSY

∣∣X = x
]

=
∞∑

n=0

MY |X,N (s|x, n)
fXn

(x)pn

fX(x)

=

∞∑

n=0

ML(s|x)n−1 fXn
(x)pn

fX(x)
(112)

with pn ≡ P[N = n]. In terms of these quantities

φ(s, x) = E
[
fXN

(x)ML(s|x)N−1
]
. (113)

The coefficients in (101) are then given by

φ(i,j) =
i∑

l=0

(i
l

)
Ql

1(−1)i−l∂i−l
s ∂j

xE

[
fXN

(x)MN−1
L (s, x)

]x=Q0

s=0

=
i∑

l=0

(i
l

)
Ql

1(−1)i−lξ
(i−l,j)
0 , (114)

where

ξ(i,j)a = ∂i
s∂

j
xE

[
(N − 1)afXN

(x)MN−1
L (s, x)

]x=Q0

s=0
. (115)

These quantities have the recursion

ξ(0,j)a = ∂j
xE

[
(N − 1)afXN

(x)
]

x=Q0

= ∂j
xλa(x)

∣∣
x=Q0

ξ(i,j)a =

i−1∑

l=0

j∑

k=0

(i− 1

l

)(j
k

)
ξ
(l,k)
a+1 k

(j−k)
i−l i ≥ 1, j ≥ 0 (116)

where the coefficients λa(x) have been defined in (47). Their
values at x = Q0 can be computed using equation (49) in
terms of the derivatives of the moment generating function.

To obtain the derivatives λ
(k)
a ≡ ∂k

xλa(x)
∣∣
x=Q0

in the previ-

ous equation, the following recursion can be used

λ(k)
a =

k−1∑

l=0

(k − 1

l

)(
f̃(l+1)λ(k−l−1)

a + F̃ (l+1)λ
(k−l−1)
a+1

)
.

(117)

The remaining elements in the calculation (moments, cen-
sored cumulants and their derivatives etc.) are computed as
in the case with deterministic N .

D Derivation of higher order asymptotic

approximations

In this section we present the derivations of the single-loss
approximation and higher order corrections that have been
given in the literature. (Omey and Willekens, 1986, 1987; Sa-
hay et al, 2007; Degen, 2010; Barbe and McCormick, 2005;
Barbe et al, 2007; Barbe and McCormick, 2009; Albrecher
et al, 2010)

D.1 Second order approximation by Omey and

Willekens (Omey and Willekens, 1986, 1987)

It is possible to derive corrections to the single-loss approxi-
mation by using the second order behavior of the tail prob-
ability of subordinate distributions (Omey and Willekens,
1986, 1987). These references are also the basis for the anal-
ysis presented in Sahay et al (2007); Degen (2010).

For the case in which the mean is finite, the second order
approximation for the tail distribution of the sum is (Omey
and Willekens, 1987)

1−G(x) ∼ E [N ] (1− F (x))+E [N(N − 1)]µLf(x) x → ∞.

(118)
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From this, it is possible to derive a nonlinear equation for a
second order approximation of Q ≡ G−1(α), the percentile
of the sum at the probability level α

Q ≈ F−1

[
1−

1− α

E [N ]
+

(
E [N2]

E [N ]
− 1

)
µLf (Q)

]
. (119)

This nonlinear equation can be solved numerically.

A closed-form expression that is similar to the correction by
the mean proposed in Böcker and Sprittulla (2006) is obtained
using an approximate solution of

1− α ∼ E [N ] (1− F (Q)) + ǫE [N(N − 1)]µLf(Q) (120)

where the parameter ǫ = 1 has been introduced to order the
terms in a perturbative expansion of the solution

Q = Q′
0 + ǫQ′

1 + . . . (121)

Expanding (120) up to first order in ǫ we obtain

1− α = E [N ] (1− F (Q′
0 + ǫQ′

1 + . . .))

+ǫE [N(N − 1)]µLf(Q′
0 + ǫQ′

1 + . . .)

1− α = E [N ] (1− F (Q′
0))

−ǫ
(
E [N ] f(Q′

0)Q
′
1 − E [N(N − 1)]µLf(Q′

0)
)

+O(ǫ2)

Identifying terms of the same order,

1− α = E [N ] (1− F (Q′
0)) =⇒

Q′
0 = F−1

(
1−

1− α

E [N ]

)
, (122)

0 = (E [N ]Q′
1 − E [N(N − 1)]µL) f(Q′

0) =⇒

Q′
1 =

(
E [N2]

E [N ]
− 1

)
µL, (123)

which provides a good approximation to the solution provided
that f(Q′

0) > 0 and Q′
1 ≪ Q′

0. Therefore, the approximate
solution of (120) with ǫ = 1 is

Q ≈ F−1

(
1−

1− α

E [N ]

)
+ (E [N ] + (D − 1))µL, (124)

where D = Var [N ] /E [N ] is the index of dispersion (D = 1 for
the Poisson distribution and D > 1 for the negative binomial
distribution). The first term in (124) is the single-loss formula.
The second term is a correction that involves the mean.

Similar approximate formulas can be given for the case of
distributions F (L) with infinite mean and whose correspond-
ing density is regularly varying f(L) ∈ RV−(1+a) using the
results of Omey and Willekens (1986)

1−G(x) ∼ E [N ] (1− F (x)) + caE [N(N − 1)]µF (x)f(x)

for x → ∞, (125)

where

µF (x) ≡

∫ x

0

ds(1− F (s)) = (1− F (x))x + F (x)E [L| ≤ x] ,

(126)

and

ca =

{
1 a = 1

(1− 1/a) [Γ(1−a)]2

2Γ (1−2a)
a < 1

. (127)

In this case a second order approximation of Q ≡ G−1(α)
can be obtained from

Q ≈ F−1

(
1−

1− α

E [N ]
+ ca

(
E [N2]

E [N ]
− 1

)
µF (Q)f(Q)

)
.

(128)

Again, this nonlinear equation can be solved numerically us-
ing, for example, an iterative scheme. Alternatively, an ap-
proximate closed-form expression can be obtained by means
of a perturbative scheme analogous to the finite mean case

Q ≈ Q′
0 + ca (E [N ] + (D − 1))µF (Q′

0), (129)

Q′
0 = F−1

(
1 −

1− α

E [N ]

)
(130)

µF (Q′
0) =

∫
Q′

0

0

(1− F (s)) ds

=
1 − α

E [N ]
Q′

0 +

(
1−

1 − α

E [N ]

)
E [L|L ≤ Q′

0] , (131)

D.2 Asymptotic expansion by Barbe and McCormick

(Barbe and McCormick, 2005; Barbe et al, 2007;
Barbe and McCormick, 2009)

This section uses the approximations for the distribution of
sums of independent random variables with heavy tails de-
rived in (Barbe and McCormick, 2005; Barbe et al, 2007;
Barbe and McCormick, 2009). For simplicity, we assume that
the number of terms in the sum are sampled from a Pois-
son distribution. Assuming that the first m moments of the
variables in the sum are finite

1−G(x) = λ exp

{
λ

m∑

i=1

(−1)i

i!
µ
[i]
L ∂i

x

}
[1− F (x)]

+O (hm(x) [1− F (x)]) , (132)

where h(x) = f(x)/(1−F (x)) and µ
[i]
L ≡ E[Li] =

∫
∞
0

dx f(x)xi

is the ith moment of L. For m = 0, the single-loss approxi-
mation is recovered. The first order approximation (m = 1)
is

1−G(x) ≈ λe−λµL∂x [1− F (x)] . (133)

In Barbe et al (2007); Barbe and McCormick (2009) the au-
thors proceed by preforming a Taylor expansion of the right-
hand side of (133). Here, we derive an exact formula by re-
alizing that the Taylor expansion can be resummed. This re-
summation results in a translation of the argument of F

1−G(x) ≈ λ [1− F (x − λµL)] . (134)

Therefore, the first order approximation to the α percentile
of G yields the correction by the mean

Q ≈ F−1

(
1−

1− α

λ

)
+ λµL, (135)

also in this derivation. The second order approximation for G
can also be expressed in terms of an integral over a diffusion
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kernel

1−G(x) ≈ λ

[
1−

∫ ∞

0

dz
1√

2πλµ
[2]
L

×

exp

{
−
(z − x+ λµL)2

2λµ
[2]
L

}
F (z)

]
. (136)

The corresponding second order approximation (m = 2) for
Q, the α percentile of G is the solution of the nonlinear equa-
tion

1− α = λ

[
1−

∫
∞

0

dz
1√

2πλµ
[2]
L

exp

{
−
(z −Q+ λµL)2

2λµ
[2]
L

}
F (z)

]
. (137)

D.3 Asymptotics with a shifted argument

The results of this section are based on the expansion for G
derived in Albrecher et al (2010) using only evaluations of F
at different arguments

1−G(x) ≈ E [N ] (ξ1F (x − k1) + . . .+ ξmF (x − km)) (138)

for some constants ξ1, . . . , ξm, k1, . . . , km. Assuming that the
first m moments of F are finite, these constants are the solu-
tion of the system of equations

m∑

j=1

ξj = 1

m∑

j=1

(
ci − E [N ] ki

j

)
ξj = 1; i = 1, . . . ,m, (139)

where ci = E

[
N (X1 + . . .+XN )i

]
; for ≥ 0. There is some

freedom in the choice k1, . . . , km. In Albrecher et al (2010) the
authors propose to determine the values of these parameters
by enforcing the constraints

m∑

j=1

(
cm+i − E [N ]km+i

j

)
ξj = 0, for i = 1, . . . ,m− 1.

(140)

Therefore, the approximation of order m is obtained by solv-
ing the set of nonlinear equations

m∑

j=1

ξjk
i
j = c̃i, for i = 0, . . . , 2m− 1. (141)

where c̃i = ci/E [N ] for i ≥ 0.

For m = 1

ξ1 = 1, k1 = c̃1 =
c1

E [N ]
=

E [N(N − 1)]

E [N ]
µL, (142)

which yields the first order approximation

1−G(x) ≈ E [N ]F (x −
E [N(N − 1)]

E [N ]
µL). (143)

The α percentile of G in this approximation is the single-loss
formula corrected by the mean (124).

E Approximations to high percentiles of sums

of Lévy iidrv’s

The exact α quantile for the sum of N Levy iidrv’s with
parameters (µ = 0, c) is

Q =
c

2
N2

[
erf−1(δ)

]−2
, (144)

where δ = 1− α. High percentiles can be approximated as

Q ≈
2c

π
N2

[
1

δ2
−

π

6
−

π2

120
δ2 +O(δ4)

]
, δ → 0+. (145)

For the Lévy distribution the approximation to the quantiles
(64) is

QOW =
c

2

[
erf−1

(
δ

N

)]−2

. (146)

For high percentiles, this approximation is of the form

QOW ≈
2c

π

[
N2

δ2
−

π

6
+O

((
δ

N

)2)]
, δ → 0+. (147)

Similarly, it is possible derive the high-percentile approxima-
tions of the perturbative expansion coefficients

Q0 ≈
2N2c

π

[
1

δ2
−
N − 1

N

1

δ
+

(N − 1)(N − 5) − 2π

12N2
+O(δ)

]

Q1 ≈
2N2c

π

[
N − 1

N

1

δ
−

(N − 1)(N + π − 3)

2N2
+O(δ)

]

Q2 ≈
2N2c

π

[
−

(N − 1)(N + 1)

6N2
+O(δ)

]

Q3 ≈
2N2c

π

[
−

(N − 1)(N − 2)

5N2
+O(δ)

]
.

(148)
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