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Abstract We consider the classical problem of computing A similar setting appears in statistical Design of Exper-
the expected value of a real functiérof the d-variate ran-  iment (DoE) where one considers a finite setreatments
dom variableX using cubature formulae. We use in synergy2 and the experimental outputs as function of the treatment.
tools from Commutative Algebra for cubature rulae, from el-The set of treatments and the set of nodes are both described
ementary orthogonal polynomial theory and from Probabil-efficiently as zeros of systems of polynomial equations, i.e
ity. as what is called a @imensional varietyn Commutative

) ) Algebra. This framework is systematic for Algebraic Statis
Keywords Design of experimentsCubature formulee tics where tools from modern Computational Commutative
Algebraic Statistics Orthogonal polynomialsEvaluation  ajgepra are used to address problems in statistical inéeren
of expectations and modelling, see e.d./[3]6,10]. In DoE the Seis called
a designand theaffine structure of the ring of real func-
tions onZ is analyzed in detail because it represents the set
of real responses to treatmentsgn However, in the alge-

Consider the classical problem of computing the expecteBra'C setting thesuclideanstructure, such as the computa-

value of a real functiorf of the d-variate random variable t'on, of mean values, 'S_ missing. In algebraic design of ?X'
X as a linear combination of its valué€z) at a finite set of periment the computation of mean values has been obtained

pointsze 2 ¢ RY. The general cubature problem is: deter-2Y considdering very special sets calfedtorial designse-g.
mine classes of functions: RY — R, finite set ofn nodes {+1,—1)7, see e.gll4] and[10, Ch. 5]. Note that1, —1}

2 < RY and positive weight$A,} . » such that is the zero set of the polynomist — 1.

1 Introduction

: The purpose of the present paper is to discuss how the
E(f(X)) = ./Rd F(x)dA (x) = %f(Z)AZ (1) above comes together by considering orthogonal polynomi-
2 als. In particular, we consider algorithms from Commuta-
whereA is the probability distribution of the random vec- tive Algebra for the cubature problem [d (1) by mixing tools
tor X. In the univariate casel = 1, the set? is the set of from elementary orthogonal polynomial theory and Proba-
zeros of anode polynomiale.g. then-th orthogonal poly- bility. Vice versa, Formuld{1) provides an interestingeint
nomial for A, see e.g[I5, Sec. 1.4]. Not much is known in pretation of the RHS term as expected value.
the multivariate case, unless the set of nodes is product of

one-dimensional sets. We proceed by steps of increasing degree of general-

ity. In Section[2 we consider the univariate case and take

g!a“dti_a FatSSig_Ol\%V? Rictc_omfl‘Jgn_O G A to admit an orthogonal system of polynomials. ét) =
Ipartimento ai Matematica, Universita ai Genova, . . L. . .
Via Dodecaneso 35, 16141 Genova, Italy Mzez (X— z) and- by univariate division given a polynomial
E-mail: fassino@dima.unige.it p there exist uniqug andr such thatp = q g+r andr has
E-mail: riccomagno@dima.unige.it degree smaller than the number of pointsZnthat is the
Giovanni Pistone degree ofy. Furthermoret can be written ag ,c 1 (2)12(x)

Collegio Carlo Alberto, Via Real Collegio 30, 10024 Monesij Italy ~ wherel; is the Lagrange polynomial far € 2. Then we
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1. the expected values pfandr coincide if and only if the  dimensional vector with non-negative integer entri€s=
n-coefficients of the Fourier expansion@fvith respect xfl ... xgd indicates a monomiat; indicates a term-ordering

to the orthogonal polynomial system is zero, on the monomials iIR[X]. If d = 1 there is only one term
2. the weights\; in (@) are the expected values of the La- ordering, this is not the case for> 2. Designs of prod-
grange polynomialk, forze 2. uct form share some commonalities with the one dimension

case. Because of this, term orders are not much used in stan-
dard quadrature theory. We will see that refining the divisio
partial order to a proper term-order is actually relevant in

The case when the designis a proper subset of the zero set
of then-th orthogonal polynomial is developed in Secfign 4.
In Section[B,A is a standard Gaussian probability law L
. . some, but not all, multivariate cases.

and 2 the zero set of the-th Hermite polynomiaH,. By

. : : . The total degree of the monomiat€ is & ; a;. The
applying Stein-Markov theory we give a representation of s .
) . . . symbolR[X]x indicates the set of polynomials of total de-
some Hermite polynomials, including those of degrae-2

. . reek andRR[x] <k the vector space of all polynomials of at
1, as sum of an element in the polynomial ideal generateg X< b PO’y

by Hy and of a reminder. See Theor&in 4 and the followin most total degrek. Let 2 be a finite set of distinct points in

. L . ) . "OWINGed ) a probability measure ové&® and X a real-valued
discussion, in particular Equatidd (8) which, unsurpisin ' P Y L
) - ) _ " random vector with probability distributioA so that the
is reminiscent of other formulee for iterated Ito integrals

e.g.[9, Eq. (6.4.17)]. The pointis to describe a ring stiuet eﬁpected value of the random variaieX) is E(f(X)) =
. . (X)dA (x).
of the space generated by Hermite polynomials up to a cer[

tain order. This ring structure is essentially the aliasing Givenaterm ordering, letfy,..., f € R[x] form aGrob-
: e ; ) ;
functions induced by limiting observations . The par- ner basiswith respectta (see([2, Ch. 2]) of the idea¥ ()

ticular form of the recurrence relationship for Hermiteypol of polynomials vanishing oves’. For eachp c R[] there

nomials makes this possible and we suspect that the stugy}(lsmi’ 1=1,...,tand an unique € R[x] such that
of the ring structure ove® for other systems of orthogonal t
polynomials will require different tools from those we use P(X) = zihi (%) fi (%) +r(x), 2)
here. =

This result implies a system of equations in Theolm Sndr has its largest term im not divisible by the largest
(extended to the multidimensional case in Sedtibn 5) whicherm of f;, i = 1,....t. Note that theh () € R[x] arenot

gives an implicit description of design and weights via twonecessarily unique. For gile R[x], the polynomiat above
polynomial equations. We envisage applicability of this injs referred to aseminderor normal form It is often indi-
the choice ofZ for suitable classes of functions but have cated with the symbol NFp,{f1,...,f}), or the shorter
not developed this here. version NFp), while (fy,..., f;) indicates the polynomial
Section(6 contains our most general set-up: we restriGHeal generated by, ..., f;. Moreover, monomials not di-
ourselves to product probability measures®hbut con-  yisible by the largest terms df, i = 1,...,t, form a vector
sider any set of distinct points inR?. Then a Buchberger- pasis of monomial functions for the vector spagé2) of
Moller type of algorithm is provided that works exclusiyel real functions orZ. The polynomialg = st_,hifi andr in
over vector-space generated by orthogonal polynomials ug) are fundamental in the applications of Algebraic Geom-
to a suitable degree. It gives a generating set of the vanisktry to finite spaces. Various general purpose softwares, in
ing ideal of 7 expressed in terms of orthogonal polynomi- cjuding Maple, Mathematica, Matlab and computer algebra
als. This is used to determine sufficient and necessary €ondipftwares, like CoCoA, Macaulay, Singular, allow manipula

tions on a polynomial functiofi for which (1) holds for suit-  tion with polynomialideals, in particular compute reminsle
ably defined weights. Furthermore, exploiting the Fourierand monomial bases.

expansion of a Grobner basis of the vanishing idea¥of The polynomiat (x) in (@) can be written uniquely as
some results about the exactness of the cubature formulse

are shown. Of course it will be of interest to determine gent(x) = Z p(2)lz(x) 3
eralisations of our results to the cases wheig not a prod- €y

uct measure and still admits an orthogonal system of pon\;v

: herel; is the indicator polynomial of the poiztin 2, i.e
nomials.

forxe Zitisly(x) = 1if x=zandl(x) = 0 if x# z Equa-
tion (3) follows from the fact thafl, : ze 2} is aR-vector
space basis o/ (2).

The expected value of the random polynomial function
p(X) with respect ofA is

1.1 Basic commutative algebra

We start with some notation on polynomidRjx] is the ring
of polynomials with real coefficients and in tldevariables

(orindeterminate} = (xq,...,Xq); fora = (ay,...,aq) ad- E(PX) =EEX)+ErX) =EEX)+ 3 P@E((X))

e
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by linearity. In this paper we discuss classes of polynasnial Theorem 1 (Favard’s theorem)Lety,, an, By be sequences
p and design point® for which of real numbers and for & O let

E(p(X)) = / P E (1(X)) Thi1(X) = (VX — 0n) Th(X) — BnTh-1(X)
= be defined recurrently withp(x) = 1, 771 (x) = 0. Theri(x),

equivalentlyE (g(X)) = 0. n=0,1,... form a system of orthogonal polynomials if and

In one dimension, the polynomidl vanishing over?  only if y, # 0, an # 0 and anyhyh-1 > O for all n > 0. If
and of degreen = |7| forms a Grobner basis fo¥ (2).  y, = 1for all n then the system is of monic orthogonal poly-
Here |A| indicates the number of elements of a 8efFur-  nomials.

thermorey satisfies three main properties: .
In the monic case,

1. r is a polynomial of degree less or equahte 1,
2. p(x) =9g(x) +r(x) = q(x)f(x) +r(x) for a suitableq € ¢, = (XTh, TH) and Bc= (TR
R[x] andg, f € (f), (T8, TR (Th-1, Th-1)

3. r(x) = p(x) if xis such thatf (x) = 0. Such arxisin 2.  hold true and therefore the norm mf is computed from the

; 2_
In Section 2 we consider the algebra of orthogonal polynop s as||7h||” = Bnbn-1... fo. ) i
mials in one variable. For orthonormal polynomials = ri/ || 7%| the Christoffel-

Darboux formulae hold

XNh-1(t) —
X—t

n-1 =~
~ N Th
2 Orthogonal polynomials and their algebra Zo TR(X)T&(t) = V/Bn
k=
(4)
1

In this section let = 1 andZ be the zero set of a polynomial e = 2 A (et = ~
which is orthogonal to the constant functions with respect t kZOTk(t) = VB (O-1(0) - s (O7()

A. We next recall the basics on orthogonal polynomials we
use, see e.g.[5]. Example 1inner products of the Sobolev type, namaiyw)s =

Let | be a finite or infinite interval oR andA a posi- (V0 T (U, V)a, -+ <‘_J<S)7V(_S)>As where A; are positive
tive measure ovelr such that all momentg; = [Ixj dA (), measures possibly having different support, do not satisfy
=01 exist and are finite. In particularleach IOOIynO_the shift condition. Neither do the complex Hermitian inner

mial function is square integrable drand theL2(A) scalar ~ Products.
productis defined by Theorem 2 Let Z = {x e R : m,(x) = 0} be the zero set of

: the n-th orthogonal polynomial with respect to the distribu
(.90, = /I FO9g(x)dA () tion A of the real random variable X. Consider the division

. . . ~ of pe R[x] by m, giving p(x) = q(x)h(X) +r(x) as above.
We consider only\ whose related inner product is defi- Then there exist weightk, z€ 2, such that the expected

nite positive, i.e|f|| = \/(f,f), > 0if f #0. Inthiscase g e of EX) is
there is a unique infinite sequence of monic orthogonal poly- 5
nomials with respect td and we denote them as E(p(X)) =ca(@[Imhll3 + > P(2)Az

€9

_ _ _ 2
o(X) =1, T (X) =X+, TR(X) =Xt . whereA; = E (I(X)) and (q) is the n-th Fourier coefficient

Furthermore we havei € R[Xy; T, ..., i form a real  Of the polynomial g.

vector space basis &[X]<; 7k is orthogonal to all poly-  Remark 1This theorem is a version of a well known result,
nomials of total degree smaller thdn for p € R[x] and g e.g.[[5, Sec. 1.4]. We include the proof to underline a
N € Z>o there exists uniquen(p) < R, calledn-th Fourier  particular form of the error in the quadrature formula, to be
coefficient ofp, such thaip(x) = 3 1% cn(P)Th(X) and only | jseq again in Theored 3 and in Section 6. Applying Theo-
a finite number ot,(p) are not zero. rem2 top = 1 we have that & S,c A,.

Since the inner product satisfies ttaft property i.e.

Proof The setZ containsn distinct points. For a univari-

(xp(x),q(x)), = (P(x),xq(x)), for p,q € R[X] ate polynomiap, we can write uniquely(x) = q(X) h(X) +
then the corresponding orthogonal polynomial system Sa{}sz)rxg?edigé)i: d?c?a?griﬁgi)tignrg?:{?hequip_rgégéxgu:
isfies athree-term recurrenceelationship. More precisely, (z)i (x) are the Lagrange polynomials fat: namel
all orthogonal polynomial systems on the real line satisfyzzeg L2tz grange poly ' y
a three-term recurrence relationships. Conversely, Bavar 1,(X) X—W

- 1w €2
theorem hold<[11]. wewtz £ W
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Hence we have Proof From
E(p00) = E(@X)7H(X)) + 3 PEIE ((X) p(X) = 409G +1(X)
+oo i i
— . . l,
= k;Ck(q) E (m(X) (X)) + Z;Z P(2)A; k;ckm)m(x) JZOCJ (9)m(x) + Z;j p(2)
= cn(a) I3 + Zj P(2)A; we have

aSEE (IK(X) (X)) = &en Wilh & =1 k=nand D other- g p(x)) = - ickm)cj @EMX)T)+ 3 p@A
wise. O K=0j= €9

n
A particular case of Theoreld 2 occurspfhas degree = ;ck(q)ck(g)||n;<||§ + Z pP(2)A;
less than A. In this caseq has degree at most— 1 and k= €9

¢n(q) = 0. This shows that the quadrature rule withodes
given by the zeros of, and weights{A;},c» is a Gaussian
guadrature rule and it is exact for all polynomial functions
of degree smaller or equal tm2 1. For notes on quadrature
rules see for examplgl[5, Ch. 1].

and this proves the theorem. O

The condition in Theorefl 3 is linear in the Fourier co-
efficients ofg, which is found easily fronf by polynomial
division. The first| 2| Fourier coefficients of appearing in
Example 2 (Identificatiorifor f polynomial of degre®l < the conditions of the theorem are determined by solving the
2n— 1 we can writef (x) = TN ,ck()7&(x). The constant system of linear equations
term is given by

() =E(1(X)) = 3 1@

ey

Mck(@)]i-o,..|7-1 = [AD]ko...|7]-1 (5)

.....

whereM = [Tk(2)],c 5 k—o.... |71 is the design/evaluation

and for alli such thalN +i <2n—1 matrix for the first 2| orthogonal polynomials.
5 Theorem[ B can be used in two ways at leastp lis
Imll3ci(f) =E(fFX)m(X)) = > f(97m(2)A; known, the condition in the theorem can be checked to ver-

=7 ify if the expected value op can be determined by Gaussian

In particular, if deg = n— 1 then all coefficients in the quadrature rule with nodes and weights
Fourier expansion of can be computed with an evaluation
x—w> 56 aZKE (XY

ong.
yo ta(zk)Z

In general for a polynomial of degréé possibly larger A=E < EW# Z—W
than 2v— 1, Theoren R gives the Fourier expansion of its '

reminder byrp,, indeed for ze 2, wherea(z k) is thek-th symmetric function of

the polynomialr,(x)/(x— z). The Fourier coefficients of

ij(z)m(z))\z = ZJNF(f”)(Z)AZ can be computed analogously to thoseafdapting Equa-
VAN VASS .
tion (3).
_ _ 2.
= E(NF(f(X)7(X))) = ||7a[3ci(NF(f)) If pis an unknown polynomial an@(x) = ¥ 5 paXx?

Theoren{B below generalises TheorEm 2 to a generi@r a finite number of non-zero, unknown, regl coeﬁiciepts
finite set ofn distinct points inR, say 2. As above, the in- Pa, Theorgn[B characterizes ","” the polynomials for which
_ _ _ X— W the Gaussian quadrature rule is exact, nariglyp(X)) =
dicator function ofz € 7'is 12(X) = Mwezwzz ;- Let S e P(2)Az. Furthermore, the characterization is a linear
g(X) = [Nze2(x—2) be the unique monic polynomial van- expression in the unknowp,. This is because in Equa-
ishing overZ and of degrea. Write a polynomiab € R[x]  tion (5) theq(z) are linear combinations of the coefficients
uniguely asp(x) = q(X)g(x) +r(x ) and consider the Fourier of p.
expansions o andg: q(x) = ¥, ck(q)Tk(x) andg(x) = In Section[3 we shall specialise our study to Hermite
> k=0 Ck(9) TK(X). polynomials, while in Sectiof]5 we shall generalise The-
orem[3 to higher dimension. To conclude this section, we

Theorem 3 With the above notation, discuss the remaindelvs the orthogonal projection.

Z ck(@)ck(9) |75 + Z P(2)Az. Remark 2Let p(x) € R[x] and writep(x) = q(X) Th(X) +r(X)
€9 wherer has degree less thanThen
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1. gis the unique polynomial such thpt— qrt, is orthog-

(6f)(x+a) holds fora € R and the constant one is mapped

onal to all i with m > n. This is a rephrasing of the intox.

characteristic property of the remainderbelongs to
R[X]<n-1 if, and only if, r is orthogonal to allr, with
m > n. Should it exist two suchy's, then (g1 — g2)
would be in the same space, hence null.

. If ded p) = n, thenr is the orthogonal projection gj
on R[X|<n-1. In fact, q is the leading coefficient op,
thereforep—r is a multiple ofr, and indeed orthogonal
to R[X]Sn,]_.

. If deg p) = N > n, then the orthogonal projection @f
onR[x]<p—1 differs fromr, unless the projection afrs,
is zero.

Example 3Substituting the Fourier expansionsafind p
in the division above, fom > n we find that than-th coeffi-
cient in the Fourier expansion pfcan be written as

E (p(X) (X)) = E (q(X) % (X) Tin(X))
:ick<p>E<m<X>m<x>> _ jicj (@) E (15 ) 604 70n(X))
+00
cm(p)|| 7o * = 3 Ci(@E( ()7(X) (X))

i=

For Hermite polynomials it can be simplified by e.g. using
the product formula in Theorel 4 of Sectidn 3.

3 Hermite polynomials

There is another way to look at the algebra of orthogonafl

Then-th Hermite polynomial can be definedlds(x) =
o"1. Direct computation using proves the following well-
known facts:

1. The first Hermite polynomials are

Ho=1
Hi(x) = x

Ha(x) =x*—1

Ha(x) = x3 — 3x

Ha(x) =x* — 6x>+ 3
Hs(x) = x° — 103 4 15x

N

. Hn(x) = (—1)"e®/2d"(e™*/2) (Rodrigues’ formula)
. dd — dd is the identity operator. From this the relation-
|
shipsdH, = nH,_1, d™H, = %Hn,m form< nand the
three-term recurrence relationship

Hni1=XxHq—nHy 3

(7)

are deduced.

Hermite polynomials are orthogonal with respect to the
standard normal distributioh. Indeed from Equatiofi.{6)
we haveE (Hn(Z)Hm(Z)) = nldym wherednm = 0 if
n#manddm=21lifn=m

4.

We already mentioned th@iHn(x) : n < d} spansR[X]<q
and thatH, is orthogonal to any polynomial of degree dif-
erent fromn. The ring structure of the space generated by

polynomials that we discuss here in the case of Hermitdhe Hermite polynomials is described in Theoigm 4.

polynomials. The reference measureis the n(z)rmal dis-
tribution anddA (x) = w(x)dx, with w(x) = e */2//2m,
xeR.

3.1 Stein-Markov operators for standard normal
distribution

For a real valued, differentiable functidn define

d 2,5 d 2
_ o _ /2 2 —X°/2
51 (x) = xf(x) = () = —€ dx(f(x)e )
dn
d"= O and consideZ ~ A. The following identity holds

E(¢(Z) 8"y(2)) =E(d"9(Z) ¢(2)) (6)
if @,y are such that lij, 1. q)(x)w(x)e*xz/2 =0 and are

square integrable, seel [7, Ch. V Lemma 1.3.2 and Propo:-

sition 2.2.3]). Polynomials satisfy these conditions and

is also called the Stein-Markov operator for the standard

normal distribution. It is a shift-equivariant linear optor
onR[x], namelydf(x+a) = (x+a)f(x+a)— f'(x+a) =

Theorem 4 The Fourier expansion of the produciH, is

() (o

Proof Note that(g, ) = E(@(Z)@(Z)) is a scalar product
on the obvious space and let< k with Z ~ .47(0,1) and

Y,  square integrable functions for which ident[ty (6) holds.
Then

(e, ) = (8" He)
- (L) = 31

nAk

HcHn = Hn+k+ Z
i=

(T) dH d )
(rl‘) dH d™ )

(Hoio )+ i (:‘) k(k—1)... (K= i+ 1) (Hn k21, )

= (Hnko ¥) + <ii (?) (Ir) Hnk-2i, )

n

= <1a denil-’> + 'Zl<1,
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Example 4 (Aliasingfs an application of Theorefd 4, ob-
serve that the three-term recurrence relation for Hernaitg-p
nomials, Equatiori{7)

Hnt1 = XHn —nHy1

evaluated on the zeros Bf(x), say%n, becomesin 1(x) =
—nHy_1(X) where= indicates that equality holds farc 2.
In general letHy x = 37— 1h”*kHJ be the Fourier expan-
sion of the normal form olf-ln+k at 7, where we simplified
the notation for the Fourier coefficients. Substitutionhie t

product formula in Theorerl 4 gives the formula to write E (q(Z)Hn(Z))

h?*k in terms of Fourier coefficients of lower order Hermite
polynomials:

NF(Hna) = — 2% (7) (4)it NF(Hn i)
f,zn/\k( )( )Hzn 1hn+k 2|H

(8)

Equating coefficients gives a closed formula
nAk

FOr

In Table[1 the normal form dfiy, , with respect tdH,, is

hn+k _
i =

written in terms of Hermite polynomials of degree smaller

thann. For exampleHn: 3(X) = —n(n—1)(n—2)Hp_3(X) +

3nH,_1(x) for those values af such thatH,(x) = 0.

K|Hn ik =

1|—nHp_1

2|-n(n—1)Hp_»

3|-n(n—1)(n—2)Hn-3+3nHn_1

4|—n(n—1)(n—2)(n—3)Hn_4 +8n(n—1)H, >

5 —(nﬂ—:s)!Hn,s +5NHy_1 -+ 15n(n— 1)(n—2)Hp_3

6|~ g Hn-6 +24n(n — 1)(n— 2)(n— 3)Hn_4
+10n(n—1)(2n—5)Hy_2

Table 1 Aliasing ofHp,x, k=1,...,6 overZ = {Hy(x) = 0}

Example 50bserve that iff has degre@+ 1 equivalently
k= 1then
Ci(f)Hi +cn(f)Hn+cnpa(f)Hnpa

n-2
= 'Z)Ci(f)Hi + (cn1(f) —nenpa(f)) Hooa

and all coefficients up to degree- 2 are “clean”.

We give another proof of Theordm 2 for Hermite poly-
nomials.

Corollary 1 Let Z, = {X: Hn(x) = 0} and pe R[x]. Let
p(X) = g(X)Hn(x) + r(x) with the degree of r smaller than n
and let Z~ .#(0,1). Then

E(p(2)) ; p(2)A; if and only if E (d"q(Z))

VASSEZ0

0

with A; = E (1,(Z)) and L(x) =

X—WwW
pwiz——» ZE Dn.
Hwe{/.w;ézz_w n

Proof From Equation[(6) we have

E(q(2)6"1) =E(d"q(2))

Now by the same steps followed in the proof of Theokém 2
we conclude that

E(p(2)) =E(d"q(2)) + Zj P(2)A,

3.2 Algebraic characterisation of the weights

Theorenti b gives two polynomial equations whose zeros are
the design points and the weights. This is a particular case
of Formula (1.17) in[[12]. We provide the proof to highlight
the algebraic nature of the result and of its proof.

Theorem 5 Let Z = {X: Hn(X) = 0}.

1. There exists only one polynomiabf degree n- 1 such

thatA (x) = Ax forall x € 2,
2. furthermoredy = <r"nl)!Hn 1(X). Equivalently
3. the polynomiah satisfies

|

Proof 1. The univariate polynomidl is the interpolation
polynomial of the valued,'s at then distinct points in
9n and hence it exists, unique of degree 1.

. Observe that for Hermite polynomiads, = 0, B = n,
Hn(X) = Hn(x)/v/nl andH/,(x) = \/AHn_1(X). Substitu-
tion in the Christoffel-Darboux formulee and evaluation
at Zn = {X4,...,%} give

Hn(x) =0

AHZ 5 () = 2=

n

1)!

:Z:ﬁk(xi)ﬁk(xj) =0ifi#]
n-1 _
H

kZO k(X

In matrix form Equationd {9) becomes

9)
)2 = nHy_1(x)?

B, = ndiagFn1(6)2:1 = 1,....,n)
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whereH, is the square matrikl, = { J(X.)] Lo lprovided in Sectiof3]13. The polynomial system to be con-
i=1,...,n;j=0,...n—1g; R

and diag indicates a diagonal matrix. Observe Hiais sidered is

invertible and 0= Hs(x) = x3 — 3x

H;' = Hin tdiagH 2 (%) i =1,....n) 2/3=A(X)H3 = (6o + OB1x+ 62X%) (X° — 1)?

whereA (X) = 6o+ 61x+ 6,x2. The degree oA (x)H2 is re-

Now, letf b [ ial of d t - 1, that .
ow, let f be a polynomial of degree at mas at . ced 0 2 by using® — 3

is a typical remainder by division fddy, then f(x) =
ZJ 0cJH (X). Write f = Hyc wheref = [f(Xi)]i=1,..n 2/3=A(X)HZ = B + 014X + (8o + 46,)x2 (12)
andc = [¢j];. Furthermore note that -

B Coefficients in Equatio(12) are equated to gif&) = % —
H,'f = Hin tdiagH 4 (x):i=1,...,n)f K2

: G
H L diag A2 .-

B diagHy - l(X')f(X') H=1m) In some situations, e.g. the design of an experimental

ZlH i) F(xi)Hp 2 1(X|) (20) plan or of a Qaussiap guadrature rule, the exact.computa—
tion of the weights might not be necessary anga) is all

we need. When the explicit values of the weights are re-

Apply this to thek-th Lagrange polynrlomlaf( ) =1k(X), quired, the computation has to be done outside a symbolic
whose Fou.rlerexp§n3|0nf$x) 2= OCkJH (). Using computation setting as we need to solve, ég(x) =0 to
l(xi) = & in Equation[(1D), obtain get 73 = {—V/3,0,V/3} and evaluate\ (x) to find A_ 5 =

c

1~ - A(—V3) =g =2 zandAo=A(0) = 3.
G = =Hj (%) H; (4 1)
Example 7Let a positive integeN be given and lek andn
The expected value of(Z) is be positive integers such thiat < 2N then
n_1 k (n—1)! Hq(2)*
%] E (Hn(2)*) =
M=E((2) = 5 oE (1) = o0 (@) 2 n L@

by Theorenib. The issue is then the evaluatiohlef ; and

Substitution in Equatiori{11) for= 0 gives H, at the zeros oy, for which the recurrence relationship

1~ (n—1! can be used when the values are not tabulated.
A= _Hn 1(Xk) n Hn—l(xk)
This holds foralk =1,...,n. 3.3 Code for the weighing polynomial
3. The system of equations is a rewriting of the previous
parts of the theorem because the first equatigix) =0  The polynomialA (x) in Theoreni’ is called theveighing
states that only values &k 7, are to be considered and polynomial Table[2 gives a code written in the specialised
the second equation is what we have just proven. software for symbolic computation called CoCoA [1] to com-

g  pute the Fourier expansion #f{x) based on Theoref 5.
Line 1 specifies the number of nodBs Line 2 estab-
Item 2 in Theorenil5 states that the weights are stricthjishes that the working environment is a polynomial ring
positive. Theoreml2 applied to the constant polynomia) = whose variables are the fir8 — 1)-Hermite polynomials
1 shows that they sum to one. In other words, the mappinglus an extra variable which encodes the weighing polyno-
that associatesto A,, z€ Zy, is a discrete probability den- mial; here it is convenient to work with a elimination term-
sity. Theoreni 2 states that the expected value of the polyn@rdering ofw, calledElim(w), so that the variables will
mial functions ofZ ~ .#(0,1) for whichcs(q) =0, isequal ~appear as least as possible. Lines 3, 4, 5 construct Hermite
to the expected value of a discrete random varialgazen ~ polynomials up-to-ordeN by using the recurrence relation-

by Ph(X =x) =E(Ix(Z2)) = A, k=1,...,n ships[(T). Specifically they provide the expansiofipbver
Hi with k < j fork=0,...,N—1. Line 6 states thatly =
n HiHn-1— (N—1)Hn_2=0, ‘giving’ the nodes of the quadra-

E(p(2)) = > p(xi)A=En(p(X))

& ture. Line 7 is the polynomial in the second equation in the

system in Item 3 of Theorefd 5 and ‘gives’ the weights.
Example 6Forn = 3 the polynomiah in Theoreni b can be There areN equations which are collected in an ideal whose
determined by-hand. For larger valuesnodin algorithm is ~ Grobner basis is computed in Line 8. In our application it is
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interesting that the Grobner bases contains a polynomial ipolynomial of degree at mosn2- 1. Then from Theorefn 2
whichw appears alone as a term of degree one. This elemente have
of the Grobner basis relates explicitly to the desired Wweig

ing polynomialw to the first(n — 1)-Hermite polynomials.  E((pl#)(X)) = ) p(2)Az=En(p(Y)1#(Y))
ze5
=En(p(Y)Y € F)Pa(Y € F)
L1 N:=4;
L2 Use R::=Q[w,h[1..(N-1)1], Elim(w); whereX is a random variable with probability law andY
L3 Eqgs:=[h[2]-h[1]1*h[1]+1]; is a discrete random variable taking value . with proba-

L4 For I:=3 To N-1 Do
L5  Append(Eqs,h[I]-h[1]*h[I-1]+(I-1)*h[I-2]) EndFor;
L6 Append(Egs,h[1]*h[N-1]-(N-1)*h[N-2]);

bility Pn(Y = z) = A;. The first equality follows from the fact
that p(x)1#(x) is zero forx € 7\ .# and the last equality

L7 Append(Egs,N*wkh [N-1]~2-Fact (N-1)) ; from the definition of conditional expectation.
L8 J:=Ideal(Egs); GB_J:=GBasis(J); Last(GB_J); Another approach is to consider the polynomial whose
L9 3w + 1/4h(2] - 5/4 zeros are the elements &, saywz(x) = [] (x—2). Now
Table 2 Computation of the Fourier expansion of the weighing poly- €T
nomial using Theorefnl 5 consider the Lagrange polynomials &, namelyly” (x) =
X—W
[ —forze #.
w£zZ—W

we.7
Line 9 in Tabld2 gives the polynomial obtained fér= 4,

ar 7, 1
as setin Line 1, namely Lemmal Let.# C %,. The Lagrange polynomial fore

7 is the remainder of the Lagrange polynomial foe 27,

2 with respect taws (X), namely
/\(X)(%Hz(x)+§>1 X 7%

43 12 17 (%) = NF (1209, (@5 (x)))

The nodes are-\/3+ /6 and the values of the weights are Proof There exists unique NF,)(x), polynomial of degree
3%—‘2/6, showing that both nodes and weights are algebraimall thanm, such that

numbers but not rational numbers. On a Mac OS X with an (%) = a(X)@s (x) -+ NF(I2) ()
Intel Core 2 Duo processor (at 2.4 GHz) using CoCoA (re-* q 7 z
lease 4.7) the result is obtained fdr= 10 in Cpu time =  FEyrthermore, foa € .# we have,(a) = NF(l,)(a) = &.a =
0.08, User time = 0; foN = 20 in Cpu time = 38.40, User |Zf/’(a)_ The two polynomialskf(x) and NKl;)(x) have de-
time = 38; forN = 25 in Cpu time = 141.28, User time = 142 gree smaller tham and coincide om points, by interpola-
and forN = 30 in Cpu time = 5132.71, User time = 5186. tion they must be equal. O
Observe that this computations can be done once for all and

the results stored. Observe furthermore that in Line 8 the Forapolynomiap of degreeN, write p(x) = q(x) wz (X) +
CoCoA commandsB_J : =GBasis (J); Last(GB.J); could T(X) with f(2) =r(2) if ze F andr(x) = 3.c 7 p(2)l7" (X).
be substituted byF (w, J) . This does notimprove on com- Letd(x) = 3N-7"b;(x) andwz (x) = 3, GiT8(X) asws
putational cost as NF requires the computation of a Grobnétas degreen. Then

basis and a reduction. As a minor point we observe that the

symbol w would not appear in Line 9. E(p(X)) =E <NZ:bj7Tj(X) icifﬂ(x)> FE(r(X)) =
= i=

bocol|70|[3 +baca| a5+

+ b(me)/\mC(me)/\m”T’{me)/\mni + p(Z)/\f
2eF

4 Fractional design

In this section we return to the case of general orthogo-

nal polynomials {7 }n, and positive measuréA. We as-  whereA;” = E (NF(I(X), (wz(X))), z€ .Z.
sume that the nodes are a proper sutssetf 7 = {x € R: Note that the error of the Gaussian quadrature rule,
Th(X) = 0} with m points, 0< m < n. We work within two

different settings, in one the ambient desigh is consid-  boco| || |3 + bacy||mm|[3 + - +

ered while in the other one it is not.

Consider the indicator function a¥ as subset o0&,
namely 1z(x) =1 if xe .# and 0 ifxe 2, \ .Z. It can islinearin the Fourier coefficients, and also in the Fourier
be represented by a polynomial of degrebecause it is coefficients; of the node polynomial. This is generalised in
a function defined ovef, [2,[10]. Let p be a polynomial Sectiorb. If the fraction” coincides with the ambient de-
of degree at most — 1 so that the produgd(x)14(X) isa  sign%, and hence contaimspoints and ifp is a polynomial

BN myAmCN-m)am! TN myaml 3
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of degree at mostr?— 1, then we obtain the well known re-
sult of zero error becaus® —n) An < n—1 and the only
non-zero Fourier coefficient of the node polynontigis of
ordern. In general one should try to determine pairs%®f

Theorem 6 It holds

Eja (F(Xg,.--, %))
d

2
and sets of polynomials for which the absolute value of thekZlE/\dfl(ck(qw(xfkm|Tﬁ<||/\ +

errors is minimal.

5 Higher dimension: zero set of orthogonal polynomials
as design support

In this section we return to the higher dimensional set-up o
Section 1.l but we restrict ourselves to consider the prodq

uct measure\d = x% A andXy,...,Xq independent ran-

dom variables each one of which is distributed accordingf (x,y)

to the probability lawA . As design we take a product grid
of zeros of orthogonal polynomials with respectttpmore
precisely our design points or interpolation nodes are

{xe RY: 75y (X1) = Thy(X2) = ... = Ty (Xg) = 0}

wherer, is the orthogonal polynomial with respectcof
degreen.

The Lagrange polynomial of the point= (ys,...,Yq) €
Dry....ng is defined ay(xq, ..., %q) = [T, j¥ (%), the apex
" indicates thaty!(x) is the univariate Lagrange polyno-
mial for yi € {Xi : T, (Xx) =0} = Zn, CR.

The Sparfly 1y € Zn,,..ny) is equal to the linear space

generated by the monomials whose exponents lie on the in-

teger grid{0,...,n; — 1} x ... x {0,...,ng — 1}. Any poly-
nomial f € R[x] can be written as

d
f(Xl7"'7Xd) = Z qk(xla"'7Xd)mk(xk)+r(xl7"'axd)
k=1

wherer is unique, its degree in the variabigis smaller than
ny, fork=1,....d, and belongs to that Span.

The coefficients of the Fourier expansiongpfwith re-
spect to the variablg are functions ok, ...,Xq but not of
Xk Let x_i denote thgd — 1)-dimensional vector obtained
from (xq,...,Xg) removing thek-th component and write

f(xe,...,Xd) =
d —+oo
> (ZOCJ (Qk)(Xk)TTj(Xk)> T, (X) 4T (X1, - -, Xq)
k=1 \j=

Only a finite number o€ (gx)(x_x) are not zero.

From the independence 4§, . . ., Xy, the expected value
of the Lagrange polynomidj is

d d
Epa (ly(X1,...,Xa)) = k|j|1EA (I (X)) = k[pk”k

Ng
Axd

f(Xg,. 0 Xd)Agt -
Proof The proof is very similar to that of Theorem 2 and
we do it ford = 2 only. In a simpler notation the design is
}hen x mgrid given byZnm = {(X,y) : Th(X) = 0= 1in(y)}
ndX andY are independent random variables distributed
according toA. The polynomialf is decomposed as

A1(X Y) Th(X) + G2(X, Y) Th(Y) + f(a,b) 13()1g'(y)
(a,b)EZnm

() 00 + icj (@) ()5 (y) TH(Y)+
2

f(a,b) 12(X)I5'(y)
(a,b)e@mm

+oo

zOCJ () (y)m
=

Taking expectation, using independenc&adndY and or-
thogonality of thers, we have

Ejy2 (f(XvY)) =

E) (cn(dn) (Y)) 17813 +Ex (em(@2) (X)) || 78l |5 +
f(a b)AIAD
(a,b)e.@n‘m
O

Note in the proof above that a sufficient condition for
E, (ca(q1)(Y)) being zero is thaf has degree ix smaller
then 21— 1, similarly for E, (cm(g2)(X)). We retrieve the
well-known results that if for eachthe degree irx; of f is
smaller than B — 1, then

Eo (F(X0, ., Xa)) = A

f(x1,. . Xa) A A

2

(Xla---yxn)e-@nl...nd

In the Gaussian set-up, by Theoréin 5 applied to each
variable, weights and nodes satisfy the polynomial system

Hn, (x1) -0
Moy 27 — (M2
Ny
: (13)
Hng (Xa) =0
Ad(Xd)Hndfl(Xd)z _ (ng—1)!
Ng

For the grid set-up of this section and for the Gaussian
case, in analogy to Examgdlé 4 some Fourier coefficients of
polynomials of low enough degree can be determined ex-

Where)\lf" =K (I{,‘f(xk)) is the expected value of a univariate actly from the values of the polynomials on the grid points

random Lagrange polynomial as in the previous sections.

as shown in Exampléd 8 below.
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2 1
L0z (Xy) = éHo - gHz(y)
1 lvr lvr 1 1
Lvavaes (%Y) = Ho+ 35 V3H1(X) + 75 V3H1(Y) + 5 H1(x)H1(y) + 75 H2(y)
1 1 1 1 1
1v3—vaes(%Y) = 2o~ 1—2\/§H1(X) + 1—2\/§H1(Y) - 1—2H1(X)H1(Y) + 1—2H2(Y)
1 1 1 1 1
1 yayaesr(6Y) = T5Ho+ 75 VBHL(0 — 5 V3H(Y) — SHI)H(Y) + 5 Ha(Y)
1 1 1 1 1
L5y (6¥) = 5Ho— T5V3HI(X) — 5 V3HL(Y) + 5HI0HL(Y) + 5Ha(y)

Table 3 Indicator functions for Examp[g 9

Example 8Consider a square grid of sineZnn, and apoly-  with &,68; e Rfori=0,...,5andj=1,...,3, then
nomial f of degrees ixxand iny smaller tham, the Hermite

polynomials and the standard normal distribution. Then W& (gi(Z1,22)Gi(Z1,22)) =0, i=1,2,3

can write

n-1 . . . .
for Z; andZ, independent normally distributed random vari-
fxy) = 5 ciHiOH;(y) P y

%o ables. Writer as a linear combination of the indicator func-

tions of the points inZ, i.e.
As both the degree ir of fHy and the degree ig of fHjy,

are smaller thanr?— 1, we have
rxy)= 5 f(@ab)laper(xy)

E (f(Z1,Z2)Hk(X0)Hn(X2)) = cnl [Hk(X0) ||| [Hn(X2) | |2 (@bes
1
Ckh = St . y)ze@ F(%,Y)H O Hn(Y)AxAy Each indicator function jp)c » belongs to

Note if f is the indicator function of a fractio” C Znn  Span(Ho,Hi(x), Ha(y), H1(X)H1(y), Ha(y))
then

Cih= —— Hic(X)Hn (y) AxA with0< h.k<n and are shown in Tabld 3. Their expected values are given
th XY = b L ; :
(Xy)e.F y theHp-coefficients. Furthermore, by linearity
Example[® deals with a general design and introduces
the more general theory of Sectioh 6. E(f(Z1,22)) = E(r(Z41,22)) =
Example 9Let.Z be the zero set of _ f(@b)E(Lapes(21,22))
(ab)es#
g1=x*—y* =Hy(X) —Ha(y) =0
and we can conclude
g2 =y>—3y=Hs(y) =0
03 = Xy? — 3x = Hy(X) (Ha(y) — 2Hg) = 0 (0,0)

f
E(f(Z4,25)) = E(r(Z1,22)) = 22 .
namely.Z is given by the five point$0,0), (+/3,+£v/3). (121, 22)) = E{r (21, 22)) 3
Write apolynomlalf €R[xy] asf =y gigi +r wherer(x y) = F(v3,v3) + f(v3,-v3) + f(-=v3,v3) + f(-V3 —V3)

f(x,y) for (x,y) € # and 12
r € Span(Ho, H1(x),H1(y),H1(X)H1(y),H2(y)) = The key points in Exampl[g 9 are
Span(L,x,y.xy.y?) 1. determine the class of polynomial functions for which
If, furthermore,f is such that E(6i(Z1,22)6(Z1,22)) = O and o _
2. determine thédg-coefficients of the indicator functions
ti(X,y) = a0+ arH1(X) +azH1(y) +agHi(X)Ha(y) of the points in7.

G2 = B1(x) + B (x)Fa(y) + B30 H2(y) In Section & we give algorithms to do this for any fraction
0z = as+asHi(y) Z.
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6 Higher dimension: general design support Theorem 7 1. For d=1 and ke Z>o, in the notation of
Equation [T4) we have that

In the previous sections we considered particular designs

whose sample points were zeros of orthogonal polynomi- K Ky

als. In the Gaussian case we exploited the ring structure of X = J.ZOC‘ ()75 (x)

the set of functions defined over the design in order to ob-

tain recurrence formula and to write Fourier coefficients of  where @(XO) =1, c,l(xo) = cl(xo) =0, and, for k=

higher order Hermite polynomials in terms of those oflower 1 2. and j=0,...,k—1

order Hermite polynomials (Examdlé 4). Also we deduced K K

a system of polynomial equations whose solution gives the C-1(X') = Cks1(X") =0

weights of a quadrature formula. The mathematical tools c-(xk) _ ijl(xkfl) n Cj (x"*l)aj n cHl(xk*l)[;Hl

that allowed this are Equatiohl(6) and the particular struc- ! Yi-1 Yi Yi+1

ture it implies for Hermite polynomials on the recurrence

relation for general, orthogonal polynomials

T 1(X) = (WX — Ok) T(X) — BTh_1(X) XeR (14) 2. For d > 1, the monomial % is a linear combination of
g, with 3 < a component wise, and vice versa. In for-

with y, ax # 0 andag YW1 > O (cf. Theorenil). mulae
In this section we switch focus and consider a generic 5
set of points inRY as a design, or nodes for a cubature for- & = > apx and X'=% bpmg (15)

mula, and a generic set of orthogonal polynomials. We gain pza Psa

something and lose something. The essential computations wheref3 < a holds component wise.

are linear: such is the computation of a Grobner basis for a

finite set of distinct point< [8]; the Buchberger Moller gyp Proof The proof of Iteni 1 is by induction and that of Itémn 2
of algorithm in Tabl&4 is based on finding solutions of linearfollows by rearranging the coefficients in the product. They
systems of equations; in Sectionl6.1 we give a characteris@e given in Appendix|8. 0

tion of polynomials with the same expected values which is

a linear expression of some Fourier coefficients and a squaﬁaxample 10If 75 is thej-th Hermite polynomial, then ltem 1

free polynomial of degree two in a larger set of Fourier co-Of TheoreniJ gives the well known result

efficients (see Equatidn118). _
: . : 1 Cj
Given a set of points and a term-ordering the algorithm
in Table[4 returns the reduced Grobner basis of the desiga xK) = (k) (K—j— 1) if k+ j is even
ideal expressed as linear combination of orthogonal poly- J
nomial of low enough degree. It does so directly; that is, it

- : . : Direct application of Theore 7 is cumbersome and we
computes the Grobner basis by working only in the space of . . . .
. need only to characterise the polynomial functions for Wwhic
orthogonal polynomials.

We lose the equivalent of Theorér 4 for Hermite pon-the cubatqrg formula I? gxact. .SO we pzopeed by. another
: . . . way. The finite set of distinct point¥ C R® is associated
nomials, in particular we do not know yet how to impose

a ring structure on Spary, ..., ) for generic orthogonal to its vanishing polynomial ideal

polynomialsrt and we miss a general formula to write the 7(2)={f R : f(z) =0foralize 2}

productri s, as linear combination aff withi =0,...,nA

k,n+k, which is fundamental for the aliasing structure dis- Let LTa(f) or LT(f) denote the |argest termina p0|yn0mia|

cussed for Hermite polynomials. f with respect to a term-ordering. Let [f(2)],c» be the
For multivariate cubature formulee we refer e.g.[td [13]evaluation vector of the polynomiélat 2 and for a finite set

and [14] which, together witH [8], are basic references folof polynomialsG R[X] let [9(2)],c2 gec be the evaluation

this section. For clarity we repeat some basics and notanatrix whose columns are the evaluation vectorsZaof

tion. LetA be a one-dimensional probability measure anthe polynomials irG. In DoE often this matrix is called the

{M}nez., be its associated orthogonal polynomial systemx-matrix of 2 andG.

To a multi-indexa = (ay,...,aqy) € 24, we associate the As mentioned at the end of Sectionl1.1, the spat{e?)

monomialx® = xj* - -xgd and the product of polynomials of real valued functions defined ovgris a linear space and

Ty (X) = Ty, (X1) ... Tlay (X4). Note that{ 1ty } o is & system of  particularly important vector space bases can be constiuct

orthogonal polynomials for the product measafe Theo-  as follows. LetLT(.#(2)) = (LTs(f) : f € #(2)). If Gis

rem[1 describes the one-to-one correspondence between tthe o-reduced Grobner basis of (2), thenLT (¥ (2)) =

x?'s and thery (x)'s. (LTs(f): f € G). Now we can define two interesting vector

(X =0 if k+ j is odd
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space bases (7). LetL={a € Z4,:x* ¢ LT (.7(2))}
and define

B

={x?:aelL}

and OB={my:acl}

Example 11Ford = 2 andL = {(0,0),(1,0),(0,1),(2,0)}
we haveZ = {1,x,y,x*} and0 % = {1, m(x), ma(y), /e(x)},
sincem(X) = mo(y) = 1.

The setd.,  and 0% depend oro. It is well known

that if t € # andr dividest, thenr € %; it follows that
if a €L andp < a component wise then alg® belongs
to L and iz to 6 %. Note thato induces a total ordering thogonal polynomials.
also on the orthogonal polynomialg; < 713 if and only if
x? < xB; analogouslyr <, B if and only if X2 <4 xB for

eacha,f € Z‘io. Here we used the same symbol to indicat

related ordermgs over theg's, thex®'s and thery,'s. Further,
givena < B componentwise, sincé dividesx? and since
1<, xB~% we havex® <, xB, thatisa <, B.

Now, given a term-ordering,

written as its leading ternx” = LT(g), and tail which is a
linear combination of terms ig8 precedind-T(g) in o, that
iS9=X"+Ypcl pqadpXP With ag € R.

Theoreni 8 provides an alternative to the classical method

of rewriting a polynomialf in terms of orthogonal polyno-
mials. It does so by applying Theoré&in 7 and by substituting

Theoren 8 provides a pseudo-algorithm to compute a
Grobner basis foZ (2) and the interpolating polynomial at
2 in terms of orthogonal polynomials of low order directly
from 2 and0 . Tabld4 gives the algorithm which is a vari-
ation of the Buchberger-Moller algorithmi [8]. It startstiwvi
a finite set of distinct points/ and a term-ordering and
it returnsL and the expressiors= Ty — 3 gc| g<,a 0373
for g in the reducedr-Grobner basis of# (2). It does so
by performing linear operations. If the real vecip(z)],c»
is assigned, then the expressiph= 3 g.| agmg can now
be found using Item 3 in Theordm 8. This permits to rewrite
every polynomialp € R[x] as a linear combination of or-

The algorithm in Tablgl4 returns tleereduced Grobner
basis as linear combination of orthogonal polynomials. It
€performs operations only with orthogonal polynomials and
in particular it does not involve at any step tk& mono-
mials. This is computationally faster than first computing a
classical Grobner basis in thé€ and next substituting the

anyg € G can be uniquely ;. Furthermore working with only one vector space basis,

and not switching between thé and thert,, is conceptu-
ally appealing.

Input: a setZ of distinct points inRY, a term-orderings and any
vector norm|| - ||.

each monomial inf. Theoreni B gives linear rules to write Output: the reduced-Grobner basi§ of .# (2) as linear combina-

the elements 0B and the remainder of a polynomial divided

tion of orthogonal polynomials and the det
Stepl Let={0€2z8y}, 0B =[1],G=[]andM = [x,...,Xq].

by G as linear combinations of orthogonal polynomials of >
low enough order. The proof is in Appendix 8.

Theorem 8

1.
2.

Span#) = Spart0 #);
Let G be the reduced-Grdbner basis of# (2). Each
g € G with LT(g) = x“ is uniquely written as

> b

BeL,B<ga

9= T

where b= [bg|gcL g<,a SOIVEs the linear system

[73(2)] 2e7 pel peoa P = Ma(D]zes;

Step 2 IfM =[] stop; else set” = ming(M) and deletex® from M.
Step3 Solve in b the overdetermined linear system
[M5(2)] e 5 per b= [Ta(2)] o and compute the residual

p= [r@(z)}ze@ - [nﬁ(z)}ze@‘[}ELb
Step 4

1. If ||p|| > 0, then includex in L, and include inV those ele-
ments of{x1x?,...,x¢x?} which are not multiples of an ele-
ment inM or of LT(g), g € G. Return to Step 2.

2. If ||p]| = 0, then include irG the polynomial

9=Ta— » bpTy

BeL

in words the coefficient matrix is the evaluation matrix

over 7 of the orthogonal polynomialgg with X8 in tail

of g and the vector of constant terms is the evaluation

vector ofrt,.

. Let pe R[X] be a polynomial andp(z)] 4 its evalua-

tion vector. The polynomial*pdefined as

= 3Ty

BeL
where a= [ag]gc, Solves the linear system

[nﬁ (Z)} ze_@,BGLa = [p(z)]zeg

is the unique polynomial belonging &par{&' %) such
that p*(z2) = p(z) forallze 2.

(16)

where the valuesg, B € L, are the components of the so-
lutions b of the linear system in Step 3. Delete frdvh all
multiples ofx?.

Table 4 Buchberger-Mdller algorithm using orthogonal polynotsia

Summarising: given a functiofy, a finite set of distinct
pointsZ c RY and a term-ordering;, a probability product
measure\ 9 overRY, its system of product orthogonal poly-
nomials, and a random vector with probability distribution
A9, then the expected value éfwith respect toA9 can be
approximated by



Algebra of Cubature 13

1. computind- with the algorithm in Tablgl4 and We do this in two ways. First we study the Fourier expansion
2. determining, by solving the linear system of the elements ofp, next we present some results about the
degree of the elements belonging4e.
(5(2)] e per 8= [F(D]eqr The elements of; are characterized in Theor&in 9. Note

that if f € R[x] is such thatf = p+rgs with p € & and
the unique polynomiap* such thatp*(z) = f(z) forall  r; e Spar{#) then by linearity and independence
z< 9. The polynomialp* is expressed as linear combi-
nation of orthogonal polynomials. Ex(f)= 5 f(z,....z)Ag - Az
3. The coefficienty of 1 is the required approximation. (21,

Recall thatp*(x) = Y ,c4 f(2)I2(X) is a linear combination
of the indicator functions of the points i (Lagrange poly-

nomials) and hencey = 5,4 f(2) E (1,(X)). In particular,
E(IZ(X))) A ze 2 cgrzmege (cgmétzj(teé)by a?pplying the Pe a random vector with distributioh?. Let 7 c R? be a

above tof = I,. Notice however that a&¢ is a product mea- set of distinct pointsg a term-ordering, G thes-reduced

sure, the\, can be obtained from the one-dimensional one$>robner basis of7(7) whose elements as linear combina-

as noticed before Theordth 6. It would be interesting to genions Of orthogonal polynomials. Thus foregG and X' =

eralise this section to non-product measures. LT(g) we write

Here an algorithm has been provided to approximate the —

: . 9=Tqy cp(9)1

expected value of polynomials. Next the set of polynomials a>oBelL
whose expected value coincides with the value of the cuba-
ture formula is characterised. In Sectionl6.1 we provide 4'N€r€d >o B € L stands forr >, B andf € L.
characterisation of the full set via linear relationshipatt Let p= 3 gec g9 € ¥ () for suitable g € R[x], and
Fourier coefficients of suitable polynomials have to spiisf consider the Fourier expansion of each,e € G,

Theorem 9 Let A be a product probability measure with
product orthogonal polynomialgy (x), a € Zgo and let X

while in Sectioi 6.2 a possibly proper subset has been cha% — z cs(0g) 713 (17)
acterised via a simple condition on the total degree of the 5’71
polynomials. -

ThenE, (p(X)) =0if and only if
chlﬂalﬁca(ch)— zc > lImsl3cp(ag)cp(g) = 0 (18)
g€ ge

6.1 Characterisation of polynomial functions with zero a>oBel

expectation o )
Proof The key observation is th@, (i ) =0if n#£ m

In this section we characterise the set of polynomials whos@nd then linearity oft, is used. The proof can be found in
expected value coincides with the value of the cubature forAPPeNdiX3. =
mula. As mentioned in Sectién 1.1 givéhe RY, its vanish-
ing ideal.# (2), a term-ordering and the Grobner bass
of .7 (2) with respect tog, then any polynomiaf € R[X]

Importantly, only terms of low enough Fourier order in Equa-
tion (I4) matter for the computation of the expectation.

can be written as Example 12ConsiderZ; andZ; two independent standard
normal random variables and hence the Hermite polynomi-
f(x) = ZGCIQ(X)Q(X) +ra(X) als. Consider also the five point design
ge

whererg(x) is unique in Spaf#?) such thatrs(z) = f(2) 7={(-6-1).(=5.0).(-2.1).(3.2),(10.3)}

for all ze 2 and can be written as;(X) = S,c4 f(2)2(x), and theo=DegLex term-ordering over the monomials in
where thd,'s are the product Lagrange polynomials in Sec-R[x,y]. The algorithm in Tablel4 giveS = {g1,02,9s} where
tion[8. TheoremB states how to writg over 0 4.
= Ha(y) —H 2H1(y) — 4

If f eR[X]issuchthal), (f(X))=E, (rs(X)) thenwe o 2(y) = Ha(x) +2H(y)
haveE, (f(X)—rq(X)) =0, wheref —r; € .#(2). Hence 92 = Ha(X)H1(y) — 9H2(X) + 47H1(x)H(y) — 123H1(x)
to study the set +271H;(y) — 399

03 = H3(X) — 47H2(X) + 300‘|1(X)H1(y) — 84541(X)

+204;(y) — 2987
is equivalent to characterize the set andL = {(0,0),(1,0),(0,1),(1,1),(0,2)}, that is

¢o={pec S (Z):E) (p(X)) =0} 0% = {1,Hi(y),H1(x),H1()H1(y), H2(x) }

do = {f R :E) (£(X)) =Ex (ra(X))}
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€ o _ w _ o _
c(<)2> ¥ CE%‘)O) - ng,)n 2 CE%O) 0 @ @
o0 ) apt Cao” 2 gyl g0 2
¢ =10  Cpp =2 Cyy= Cloy="5 Coy= Clo0) = 58632987

Table 5 A solution for [18)

By Theoreni® for the purpose of computing its expectatior6.2 On exactness of cubature formulee
a polynomialp = qi191 + 0202 + 0ags € -#(Z) can be sim-

plified to have the form Here we adopt another viewpoint and characterise the set
&5. Instead of studying the Fourier expansion of its polyno-
p— (cél)Hz(y) 4 Cg)o)Hl(X) + CE(l)):L)Hl(y) + CE(l))O)) g1+ mials, we focus our att(_ention on their degree. Given a degree
’ ' ' compatible term ordering, we show how to compute the

(céz)Hg(x)Hl(y) + cEé?O)Hz(x) + cg?l)Hl(x)Hl(y)jL maximum degres such thafR[x|<s is in &y, that is the de-

@) @ @ 3 gree of the cubature formula with nodgs Our strategy is
CloH1(¥) +cgyyHi(y) + C(o,O)) 92+ (Co Ha(x)+ based on the definition sforthogonal polynomial$[14].
CEE?O) Ha(x) +CE§?1)H1(X)H1(V) + CEi)O)Hl(X)JF Definition 1 A polynomialg € R[X] is s-orthogonal ifs ¢

3 3 Z~g is the maximum integer such that
CEO?l)Hl(y) + CEO?O)) g3 >0 9

fgeR implies E, (f(X)g(X))=0
and furthermore by Equatiop ({18) 9€Rix<s implies £, (f(X)g(X))
L L . L " " ) Furthermore, a sé&b of polynomials iss-orthogonal if each
c(() )21 0(1)0) + ZCEO?l) - 4050?0) + cé )21 9CEZ?O)2! +47c§1?1) g € Gis s(g)-orthogonal and = mingcc S(9).

(1
— 12?4271, —39%@ 4 31— a7cd 21 i
(1,0) (0,1) (0,007 %0 (2,0 Theorenfi ID reformulates and summarizes two theorems
3 about the degree of a cubature formula presented_in [13]
— 2987, =0

@ (3) ( =
* 3000(1,1) 84&(1,0) +2040 0) and [14] (where H-bases are considered).

3)
(0.1)

In practice, fqn =1,2,3, put coefﬁmer_]ts 0fi andg; in two Theorem 10 Given a set? and a degree compatible term
vectors, multiply them component wise and sum the result. . ) " :
There are infinite polynomials that satisfy the above equa(_)rderlnga the following conditions are equivalent.
tions, one such polynomial is given in Talyle 5. The abovel. R[x|<s C &;

equation involves only a finite number of Fourier coeffi- 2. E, (f(X)) =0forall f € .#(2)NR[X<s;

cients, namelycg(qg)’s is relevant for the equation if and 3. theo-Grobner basis G 0f# (2) is s-orthogonal.

only if B € L andx? is smaller ino than the leading terms ] ]
of g € G. Hence if togy we add a polynomial of the form Proof 1= 2. Letf € /(Z)NR[X<s. Since by hypothesis
Y p~a or gz CgHp We still obtain a zero mean polynomial. R[X<s C &, thenf € & thatisE, (f(X)) = Ej (re(X)).
That is, we can modifygg by adding high enough terms Sincef € 1(7), we haverg(x) = 0 and sd2, (f (X)) = 0.
without changing the mean value. 2= 3. For eacly € G let f be such thatg € R[X|<s. Since

For example by addingla(x) to q; andHa(y) to g we 19 € #(Z) NR[X<s thenE, (f(X)g(X)) = 0 and sog is

obtain the following zero mean polynomial s-orthogonal.
3= 1. Forp € R[X|<s, we have that

2y,25) =
P(Z1,Z2) P=3 d%+ro
7273 + 1028 + 2§72 — 97273 + 472,75 — 465+ de
300212, + 2375 — 62iZ3 — 123173+ 27103~ where eaclygy is such that Ty (ggg) < LTs(p) and so, since
86147 + 2099057, + 962275 — 2822173 — 42475 o is degree compatible, dégpy) < degp) < s. It follows
B 3 2 2 3 that, sinceG is s-orthogonalE, (gog) = 0. By linearity we

8789856029877 — 67057, + 138X 75 — 1695+ obtaink, (p(X)) = E, (re(X)), that isp € &y. .

71785814, 21827546 5
2987 %1 ~ 2987 %122 4845+ Remark 3The maximum integes such thaff, (f(X)) =0
30786266% B 5937584% 5931425 for eachf € .#(2) NR[x/<s is the degree of the cubature
2087 * 2987 2 2987 formula with nodes? and with respect to.
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Theoreni ID shows that the maximum integsuch that
all polynomials of total degre®are iné&; coincides with the
maximums such thatG is s-orthogonal. Hence we focus our
attention on the-orthogonality of the elements .

Theorem 11 Each polynomial gt R[x] is s-orthogonal with
degg) —1<s< 2dedg).

Proof Sincefg € R[X|<(gegq)—1) if and only if f is the iden-
tically zero polynomial, therfg € R[X|<(gegg)—1) implies
E, (f(X)g(X)) = 0, that isg is alwayss-orthogonal with
s> dedg) — 1. Moreovers < 2dedg); in fact, g belongs
to R[X] <2 deqq) @nd, from the orthogonality of the polynomi-
als i, we have

Ex (9(X)9(X)) = Y (Ca(9))? ]| Tal|?

As gis not identically zero, theR, (g(X)g(X)) # 0 and so
g cannot be 2 dgg)-orthogonal. a

The following theorem shows how to detect thertho-
gonality of a polynomial analysing its Fourier coefficients

Theorem 12 Let g= 3, Cq(9) T the Fourier expansion of
a polynomial g= R[x].

1. Ifco(g) # 0, the polynomial g isdeq g) — 1)-orthogonal.

where $g) is such that the Fourier expansion of eack &
is given by
9="> Ca(9)T
a

with ¢ (g) = Oforall a such thaty? , a; < s(g) — dedg).

Proof By Theoreni 1D the thesis follows® is s;-orthogonal.
But this is true since, from Theordml12, we have that each
g € Gis s(g)-orthogonal. O

Example 13Given the set of points
@:{(_150)5 (_17_2)5 (17_1+\/§)a (1a_1_\/§)7 (25 1)}

and the degree compatible term orderimgDegLex, then
by e.g. the algorithm in Tablé 4 the reduaedsrobner basis
G of #(2) can be written as

g1 = Ha(y) — Hi(x) + 2H1(y)
G = ¢ 92 = Ha(X)H1(y) — Ha(x)
g3 = Ha(X) — 2H2(x) +2Hy(x)

Since for eacly € G, s(g) is such thaty(g) = 0 for eacha
s.t. 34 ai < s(g) —degqg), we have thas(g;) = 2,5(g2) =
4 ands(gs) = 3. It follows thatG is sc-orthogonal, with
s = min{s(g1),s(d2),s(g3) } = 2 and so, from Corollarfy]2
it follows that the maximum integersuch thalR [x]<s C &5
is 2.

2. If cg(g) = 0, the polynomial g is s-orthogonal where s is Example 14For 2 of Exampld_IR anar=Deglex, the re-

such thatg(g) = Oforall a s.t. 74, ai < s—dedg).

Proof 1. Letf be a constant polynomiaf,= 1. We have
that fg € R[X|<geyg) implies

E, (f(X)9(X)) =E, (9(X)) = co(g) #0

and sag is not dedg)-orthogonal. From Theorem111 we
conclude thag is (degg) — 1)-orthogonal.

2. Lets< 2dedg) and letf be a polynomial such thdg €
R[X<s. Since de@f) < s—dedg) the Fourier expansion
of fis such thaf = ¥ |4|<s_degg) Ca (f) 7. From the or-
thogonality of the polynomials, and froms—degg) <
degg) we have

Erx(fX)gX)= Y ca(f)ca(9)l|mal?
o <s"Ged)

The generality of implies thafE) (f(X)g(X)) =0 only
if cz(g) = 0 for eacha such thata| < s—dedQg).
O

Corollary 2 Given a finite set of distinct poini8 € RY and
a degree compatible term ordering on R[x, let G be the
reducedo-Grbbner basis of7 (2). Then the maximum in-
teger g such thalR[X]<s, is in &y is

S = gygS(w

ducedo-Grdbner basiss = {g1,02,03} of .#(2) is such
thats(g1) =1,s(gz) = 2 ands(gs) = 3 sincecy(g) # 0 for all

g € G. It follows thatG is 1-orthogonal and so the cubature
formulaw.r.t.o andZ is exact for all the polynomials with
degree 0 and 1. Nevertheless let us remark that the cubature
formula is exact for a much larger class of polynomials as
shown in Theoreml9 and in Examplg 12.

7 Conclusion

In this paper we mixed tools from Computational Commuta-
tive Algebra, orthogonal polynomial theory and Probailit
to address the recurrent statistical problem of estimaifon
mean values of polynomial functions. Our work shares great
similarity with applications of computational algebra te-d
sign and analysis of experiments, which inspired us with a
non-classical viewpoint to cubature formulae.

We obtained two main results. In the Gaussian case we
obtained a system of polynomial equations whose solution
gives the weights of a quadrature formula (Thedrein 13). For
a finite product measure which admits an orthogonal sys-
tem of polynomials, we characterise the set of polynomials
with the same mean value. This depends substantially from
Equation [[IB) and it is in terms of Fourier coefficients of
particular polynomials obtained by adapting Grobner dasi
theory.
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8 Appendix: proofs

xB with B < a component wise. Vice versa, applying the

first part of the theorem we have

Theorem[4:

Proof 1. The proof is by induction on the monomial de- X

greek. From the three terms recurrence formuia ; =

(yjx—aj)m — Bjm_1 we have
T, aj
ay = Tt iy B
Yi Yi Yi

Fork = 0 we havex® = m(x) = co(X°) 1p. Fork = 1 from
the three terms recurrence formula we have

Th (o
X = XMy = — + 275 = C1(X) & + Co(X) Thy

:ﬂﬁ ﬁ[Z%

]

k=0

and commuting product with sum shows tlétis a linear
combination of products afig (x) wheref =
such thaf3 < a component wise, that i dividesx?. O

(B, Ba)is

Theorem[8:

Proof Recall that# and¢&' % are defined in terms of a com-
mon setl of d-dimensional vectors with non-negative inte-

oY ger entries satisfying the property of ‘factor-closengtgit

is if (ay,...,

(B1,- ..

In the inductive step the thesis holds foand we prove it
for k+ 1. From the three terms recurrence formula we have

= ] -V; ]
Kile (xK k 1 .
:Z J _l( )7TDL ci(X)Shm+ CJH("")M"
= Vi i= i j= Yi+1
k-1 /i (XK .
N ( J .1( )+CJ(Xk)—+CJ+l(Xk)—B.ﬁ1) T
=1 Yi-1 | Yi+1
Ce_1(X€) c(X6)
+ +
Ve 1 Tk Y Tha
K K K
N Co(X) o N Ck(X )Ukar c1(X) B
Yo Yk i

Z kﬂ i +Ck+l(xk+l)7"i<+l

ce1(X) | a(X)ax
+< - + Y >Tli<

-1
co(X)ado . c1(X)By
+( Yo * )21 )m

This concludes the proof of the first part of the theorem.

To prove the second part we apply what we just proved
and unfold the multiplication. Given® = x*---x3¢, the
polynomialry = 7y, (X1) - - - Ty (Xq) is the product ol uni-
variate polynomialst,; each of degree;j inx;j, j=1,...,d.
Clearly if aj = 0 thenrg; = 1 andx; does not dividex”.
Furthermore we have

d aj

A I_I1k0 3.

We deduce thatr, is a linear combination af® and of the
power products which dividg?, that is of power products

oq) eLandifg <o foralli=1,...
,Ba) € L.

,d then

1. Ifx® € % forsomea, then from Theoreml¥” = ¥ g bgTi

follows. SinceB < a thenf € L and so eaclmg € 0 %:
we have thak® belongs to Spa@#). The vice versa
is proved analogously.

. The matriX{73(2)],c» geL iS @ Square matrix sindehas

as many elements @8 and has full rank. The linear in-
dependence of the columns of this matrix follows from
the fact that each linear combination of its columns cor-
responds to a polynomial in Span) which coincides
with Spar{%).

Any polynomialg € G can be written as

g=x%— cpxP

a>gBel
wherex® = LT(g) is a multiple by some; of an element
of #. By Theorenil’ we have

g= Z a¥m, — S oy d\¥ 5,

y<a a>gBel  y<p
The polynomialt, appears only in the first sum with the
coefficient 1. For the other terms in the first sum observe
that asy < a theny € L and alsoy <4 a. Analogously,
for the second sum considgK 3 < a; sincef € L then
y€ Landsince/ < o theny <4 a. And so, with obvious
notation,
9=Ta— > b7y

a>qgLeL

Sinceg(z) = 0 for z€ 2, then the vectob = [bg]g of
the coefficients in the identity above solves the linear
system[T3(2)]zc 7,0 >, peL b = [T (2)]2c 2. Furthermore,
since[13(2)|,c,a>,peL iS a full rank matrix, therb is
the unique solution of such a system.
Let p* = Yy gL @37 be the polynomial whose coeffi-
cients are the solution of the linear system

[nﬁ (Z)]ZegﬁﬁEL a=[p(2)|z2-
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Such a polynomial obviously interpolates the valpé&s,
z¢€ 9, and, since the columns @iz (2)] . » g are the
evaluation vectors of the elements 6% at 2, it be-
longs to Spa(r’%). We conclude thap* is the unique
polynomial belonging to Spdw.%#) which interpolates
the value9(z), z€ 2.

O

Theorem[9:

Proof As G is a basis of7(2), then for everyp € .#(2)
andg € Gthere existlg € R[x] such thap = ¥ 4. gg9- Since
by linearity

Ex <g;qgg) =9;EA (9g9)

the thesis follows once we show that, for eagh G and

x? =LT(g)

Ej (999) = | Tal3¢a(dg) — 5 cp(ag)cp(9) 735l
a>gBeL

holds. From Equatiori.(17) we have

Ggd =) Cp(dg) ;39
B

and we substitute the Fourier expansiomgafiven in Theo-
rem8

9=Tu— » ¢cp(9)7

a>gBelL
In computing the expectation we use the fact hatrs, ) =
0 for differenth andk. Then the expectation aj (qg) 139
vanishes if3 >5 a or B <5 a, B ¢ L, the expectation of
Ca(Ug) T gives|| My ||3cq (qg) and, ifa >4 B € L, the ex-
pectation ofcg (dg) 739 gives—Cg(dg)Ca(9)|| T ||§. O
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