
ar
X

iv
:1

30
7.

31
80

v2
 [

st
at

.C
O

]
29

 J
an

 2
01

4

Noname manuscript No.
(will be inserted by the editor)

Path storage in the particle filter

Pierre E. Jacob · Lawrence M. Murray · Sylvain Rubenthaler

Received: date / Accepted: date

Abstract This article considers the problem of storing the
paths generated by a particle filter and more generally by a
sequential Monte Carlo algorithm. It provides a theoretical
result bounding the expected memory cost byT +CNlogN
whereT is the time horizon,N is the number of particles and
C is a constant, as well as an efficient algorithm to realise
this. The theoretical result and the algorithm are illustrated
with numerical experiments.

Keywords Sequential Monte Carlo, particle filter, memory
cost, parallel computation

1 Introduction

Consider the problem of filtering in state-space models (Cappé et al,
2005) defined byX0∼ µ(·) and fort = 1, . . . ,T

Xt | Xt−1 = xt−1∼ f (· | xt−1),

Yt | Xt = xt ∼ g(· | xt).

HereX0:T is a hidden Markov chain in some spaceX with
initial distribution µ and transition densityf . The observa-
tionsY1:T in spaceY are conditionally independent given

P.E. Jacob
National University of Singapore
Department of Statistics & Applied Probability
Block S16, Level 7, 6 Science Drive 2
Singapore 117546
E-mail: pierre.jacob.work@gmail.com

L.M. Murray
CSIRO Mathematics, Informatics & Statistics
Private Bag 5, WA 6913, Australia
E-mail: lawrence.murray@csiro.au

S. Rubenthaler
Univ. Nice Sophia Antipolis
Parc Valrose, 06108 Nice cedex 02, France
E-mail: Sylvain.Rubenthaler@unice.fr

x1:T , with measurement densityg. For any vectorv, intro-
duce the notationv1:n = (v1, . . . ,vn) andv1:n = (v1, . . . ,vn).

We denote bypt the distribution of the pathX0:t given the
observationsy1:t available at timet, from which the filtering
distribution of Xt given y1:t , denoted byπt , is a marginal.
The bootstrap particle filter (Gordon et al, 1993), described
in Algorithm 1, recursively approximates the distributions
p1:T , and has borne various other sequential Monte Carlo
methods (Doucet et al, 2001; Doucet and Johansen, 2011).
In Algorithm 1 the resampling step relies on some distribu-

Algorithm 1 Bootstrap particle filter withN particles

Draw an initial samplex1:N
0

iid∼ µ .
Set fork= 1, . . . ,N, x̄k

0 = xk
0 andwk

0 = 1/N.
For t = 1, . . . ,T

[resampling] Draw ancestor indicesa1:N
t ∼R(w1:N

t−1).
For eachk∈ {1, . . . ,N}

[transition] Draw a new samplexk
t ∼ f (· | xak

t
t−1).

Extend the path ¯xk
0:t = (x̄ak

t
0:t−1,x

k
t).

[weighting] Compute unnormalized weights ˜wk
t = g(yt | xk

t).
Normalize weights fork= 1, . . . ,N, wk

t = w̃k
t /∑N

j=1 w̃ j
t .

tion R on{1, . . . ,N}N taking normalized weights as param-
eters.

At each timet, Algorithm 1 approximatespt andπt by
the empirical distributions

pN
t (dx0:t) = w1

t δx̄1
0:t
(dx0:t)+ · · ·+wN

t δx̄N
0:t
(dx0:t)

and πN
t (dxt) = w1

t δx1
t
(dxt)+ · · ·+wN

t δxN
t
(dxt).

It has been shown inWhiteley (2011); Douc et al(2012);
van Handel(2009), and in Theorem 7.4.4 inDel Moral(2004)
thatπN

t converges toπt with N under mild conditions on the
model laws(µ , f ,g), and that the Monte Carlo error is con-
stant with respect tot. However it is also well-known that

http://arxiv.org/abs/1307.3180v2

2 Jacob, Murray & Rubenthaler

the path measurespN
t , while converging topt with N, have a

Monte Carlo error typically exploding at least quadratically
with the timet (Del Moral and Doucet, 2003; Poyiadjis et al,
2011). Indeed the paths quickly coalesce due to the resam-
pling steps, thus providing a poor approximation of the marginal
distributionsp(dxs|y1:t) for large values oft− s. In the fol-
lowing we refer to the collection of paths ¯x1:N

0:t as the ancestry
tree, to eachxk

s (for k = 1, . . . ,N ands= 0, . . . , t) as a node,
to eachxk

t more specifically as a leaf node, and to paths as
branches.

Figure 1 might help to visualise the typical shape of
the ancestry tree generated by a particle filter. The time at
which all the branches coalesce, denoted bycT , separates
the “trunk” made of a unique branch fromt = 0 tot = cT−1
from the “crown” made of all the branches fromt = cT to
t = T. Despite its negative consequence on the estimation
of filtering quantities, the particle degeneracy phenomenon
results in crowns of small sizes, allowing full trees to be
stored at low memory cost. This can be beneficial when-
ever full paths of the particle filter are required, such as for
the conditional sequential Monte Carlo and particle Gibbs
algorithms first described inAndrieu et al(2010), studied in
Chopin and Singh(2013), and used extensively inChopin et al
(2013) and Lindsten et al(2012). Another instance of se-
quential Monte Carlo method requiring path storage is pre-
sented inWang et al(2014) in the context of computational
biology. In the present article algorithms and results are pre-
sented in the filtering terminology, however they immedi-
ately extend to any sequential Monte Carlo method for Feynman-
Kac models (Del Moral, 2004).

In Section2 we present an efficient algorithm to store
ancestry trees recursively during the run of a particle filter.
In Section3 we present new theoretical results bounding the
size of ancestry trees, in order to bound the expected mem-
ory requirements of the storage algorithm. Finally the the-
oretical results and the algorithmic performance are tested
numerically in Section4.

2 Algorithms

This section introduces a memory-efficient data structure
and associated algorithms for storing only those paths with
support at timet. The algorithms are designed for parallel
execution, in keeping with the general parallelisability of
other components of sequential Monte Carlo samplers (Lee et al,
2010; Murray, 2013).

2.1 Proposed scheme

Up to time t, the particle filter produces particlesx1:N
1:t and

ancestorsa1:N
1:t . Froma1:N

1:t , offspring countso1:N
1:t are readily

Algorithm 2 Parallel algorithms for basic operations on an
ancestry tree: initialising from the first generation of parti-
cles, inserting a new generation of particles, and pruning just
before a new generation is inserted.

INIT(x1:N
0)

For eachi ∈ {1, . . . ,M}
ai
∗← 0

oi
∗← 0

For eachi ∈ {1, . . . ,N}
xi
∗← xi

0
l i
∗← i

INSERT(x1:N
t ,a1:N

t)
bt ← GATHER(l∗,at)
z∗← TRANSFORM-PREFIX-SUM(o∗,1{0})
l∗← LOWER-BOUND(z∗, (1, . . . ,N))
a∗← SCATTER(bt , l∗)
x∗← SCATTER(xt , l∗)

PRUNE(o1:N
t)

o∗← SCATTER(ot , l∗)
For eachi ∈ {1, . . . ,N}

j ← l i
∗

While j > 0 ando j
∗ = 0

j ← a j
∗

If j > 0
o j
∗← o j

∗−1

obtained (Murray et al, 2013), whereoi
t represents the num-

ber of children at generationt of particlexi
t−1. Let x1:M

∗ rep-
resentM slots in memory for storing particles. At any time,
some of these slots are empty, while others store the nodes
of the tree. Leta1:M

∗ be an ancestry vector, whereai
∗ = 0 if

xi
∗ is empty or a root node, and otherwiseai

∗ = j to indicate
that the particle inx j

∗ is the parent of the particle inxi
∗. Let

o1:M
∗ be the offspring vector corresponding toa1:M

∗ , where
oi
∗ = n indicates thatxi

∗ hasn children. Finally, letl1:N
∗ give

the numbers of theN slots inx1:M
∗ that store the particles of

the youngest generation; these are the leaf nodes of the tree.
Basic operations on the tree are its initialisation, the in-

sertion of a new generation of particles, and the pruning of
older particles to remove those without a surviving descen-
dent in the youngest generation. These operations are de-
scribed in Algorithm2. The descriptions there rely on prim-
itive operations defined in Algorithm3. The efficient imple-
mentation of such primitives is well understood in both se-
rial and parallel contexts, so that they make useful building
blocks for the higher-level algorithms.

To begin, the first of theM empty slots of the tree are ini-
tialised with the first generation ofN particles as in theINIT

procedure of Algorithm2. We assume, for now, thatM is
sufficiently large to accommodate all subsequent operations
on the tree, but see remarks in Section2.2below.

Each new generation is inserted as in theINSERT proce-
dure of Algorithm2. The procedure searches for nodes with
no offspring in the current generation, and replaces them

Path storage in the particle filter 3

cT TdT

crowntrunk

0

10

20

0 10 20 30 40 50
Time

P
ar

tic
le

 In
di

ce
s

Fig. 1 Typical ancestry tree generated by a particle filter using multinomial resampling, withN = 20 andT = 50.

Algorithm 3 Primitives used in pseudocode.

GATHER(p1:P,q1:Q)→ r1:Q

For eachi ∈ {1, . . . ,Q}
r i ← pqi

SCATTER(p1:P,q1:P)→ r1:Q

For eachi ∈ {1, . . . ,P}
rqi ← pi

TRANSFORM-PREFIX-SUM(p1:P, f)→ r1:P

For eachi ∈ {1, . . . ,P}
r i ← ∑i

j=1 f (p j)

LOWER-BOUND(p1:P,q1:Q)→ r1:Q

For eachi ∈ {1, . . . ,Q}
r i ←min{ j : qi ≤ p j}

with the new leaf nodes. The vectorz∗ is introduced, where
zi
∗ is equal to the number of nodes between 1 andi with no

offspring. Nodes to replace are then located by searching for
the increments inz∗. The new generation is inserted at these
locations.

Finally, the tree is pruned before the insertion of each
new generationt, using thePRUNE procedure of Algorithm
2. This requires the offspring vector,ot , of the new gener-
ation. The algorithm determines which of the current leaf
nodes have no offspring in the new generation, decrements
the offspring counts of their parent nodes, and proceeds re-
cursively up the tree for cases where the parent has no re-
maining offspring either. Each non-leaf nodei is considered
pruned ifoi

∗ = 0, and may be overwritten by future calls to
INSERT.

2.2 Remarks and improvements

TheINSERTprocedure of Algorithm2 assumes that there are
at leastN free slots in which to place the latest nodes. If this
is not true, the buffer can be enlarged by allocating a larger

block of memory, copying the contents of the ancestry tree
across, and filling the new regions of theo∗ anda∗ vectors
with zeros. Various heuristics can be used to set the new size
M, aiming to reduce fragmentation and the chance of future
increases. Because memory reallocations involve an expen-
sive copy, it is worth increasingM more than strictly neces-
sary to postpone additional reallocations. For instance, im-
plementations of theC++ Standard Template Library

typically double the storage capacity of a vector that is ex-
tended by just one element, anticipating further extensions.
A more conservative strategy is to start with a value ofM
equal to a small multiple ofN, and enlarge byN slots when-
ever necessary. Ultimately, we have not found that the par-
ticular enlargement strategy affects execution time a great
deal, particularly since, as in the proceeding theoreticalre-
sults, the size of the ancestry tree crown is independent ofT,
so that the need for reallocations diminishes ast increases.

According to the results of Section3, the expectation of
the size of the tree grows linearly withT, but this is only
due to the trunk. The size of the crown is independent ofT.
It may be possible to improve the algorithms by identify-
ing the nodes along the trunk and storing them separately, as
these nodes will never be overwritten by subsequent inser-
tions. Under this modified scheme a separate, single growing
trunk needs to be stored but not searched, while the nodes of
the crown need to be stored and searched at every time step.
The number of nodes in the crown is of constant expectation
according to Theorem1 of Section3. Hence this modifica-
tion induces a scheme of constant expected computational
cost inT, which could be relevant in applications where the
time horizon is very long, although there will be overhead in
identifying the trunk. See Fig.3(b) in Section4 for a report
on the computational cost of the proposed method. Memory
reallocation is also reduced by storing the trunk separately.

We establish in Section3 that the size of the tree is ex-
pected to be bounded byT +∆2N logN for some constant
∆2. The size of the data structure,M, must be at least as large
as this. We assume that, with a sensible enlargement strat-

4 Jacob, Murray & Rubenthaler

egy, it is no more than a constant factor larger than this, so
that its expected memory complexity isO(T +∆2N logN).

The computational complexity ofINIT is linear in the
size of the data structure,O(T+∆2N logN). A serial imple-
mentation ofINSERTpermits a linear prefix sum and search,
so thatINSERT is alsoO(T +∆2N logN). In parallel, a lin-
ear prefix sum is still achieved (Sengupta et al, 2008), but
the search becomesN binary searches, logarithmic to the
size of the data structure; overallO(N log(T +∆2N logN)).

For PRUNE, consider the best case, where all particles of
the previous generation have an offspring in the new gener-
ation. The complexity is thenO(N): the algorithm operates
on each of theN new nodes, but does not traverse the tree
further. Now consider the worst case, where only one parti-
cle of generationt has offspring in the new generationt+1.
In this case all butt nodes of the existing tree are pruned, so
that the complexity isO(T +∆2N logN− t) – linear in the
size of the data structure, and parellelisable.

Finally, the TRANSFORM-PREFIX-SUM across the full
vectoro∗ in the INSERT is redundant. The sum can be trun-
cated once it has reachedN, as a sufficient number of free
slots have then been found. This is simple to achieve in the
serial case, but it is not obvious how to achieve it in the par-
allel case. Heuristic include considering only a subset ofo∗
at a time and iterating until a sufficient number of free slots
are found, and starting the cumulative sum after the last slot
that was filled in the previous call toINSERT. In practice,
however, we have observed only negligible variation in ex-
ecution times when applying such heuristics, and so have
chosen to present the simplest version here.

3 Size of the ancestry tree

3.1 Results

From a theoretical point of view, similar random trees have
been studied in population geneticsDel Moral et al(2009);
Möhle (2004) in a setting that corresponds to a state-space
model that assigns equal weights to all paths; these results
do not apply directly here. In order to bound the expected
number of nodes in an ancestry tree, we first study the dis-
tancedT = T − cT between the final timeT and the full
coalescence timecT when all the paths merge. Theorem1
proposes a bound on the expectation ofdT , which is inde-
pendent ofT and explicit inN.

Assumption 1 There existsε ∈ [0,1] such that for all y∈Y

and for all x∈X

√
ε ≤ g(y | x)≤ 1√

ε
.

Theorem 1 Under Assumption1 the distance to the most
recent common ancestor dT satisfies

E [dT]≤ ∆1N logN

for some∆1 > 0, which does not depend N nor T .

The expected number of nodes in the tree can be bounded
explicitly in N andT, as in Theorem2.

Theorem 2 We suppose here that N≥ 3. Under Assumption
1 the number of nodes, denoted by nT at time T , satisfies

E [nT]≤ T +∆2N logN

for some∆2 > 0 that does not depend on N nor T .

These results quantify the practical difference between stor-
ing all the generated particles (for a deterministic cost of
T ×N memory units) and storing only the surviving par-
ticles (for a random cost expected to be bounded byT +

∆2N logN).

Assumption1 is very strong outside compact spaces, and
for instance does not even cover the linear-Gaussian case,
although the experiments of Section4 indicate that similar
results might hold for non-linear and non-Gaussian cases.
The numerical experiments show that the bound is accurate
as a function ofN, so that even if some inequalities used
in the proofs appear quite crude, the overall result is pre-
cise. However the results do not capture the shape of the
tree as a function ofε, which is why we write the constants
∆1 and∆2 without making their dependency onε explicit.
Consider for example Theorem1, where∆1 can be defined
by ∆1 = 1+ 8/ε, as will be proven in Section3.3. If the
bound was sharp as a function ofε, it would mean that the
time to full coalescence increases to infinity whenε goes to
zero. However path degeneracy is expected be more acute
for smallerε, since more variability in the particle weights
is then allowed. The dependency onε in ∆1 is thus not re-
alistic. We believe the bounds could in fact be independent
of ε, by consideringε = 1 as the case corresponding to the
largest expectations ofdT andnT ; a claim not proven here.

Moreover, the proposed proof relies on the multinomial
resampling scheme, while most practitioners favour more
sophisticated schemes (Carpenter et al, 1999; Liu and Chen,
1998; Kitagawa, 1998; Doucet and Johansen, 2011). Figure
3(a)of Section4 indicates that similar results hold for these
other resampling schemes. There are some obvious counter-
examples, for instance when the measurement density is con-
stant, leading to equal weights at each step (equivalently
ε = 1). Then the results above hold for multinomial resam-
pling but systematic resampling would completely obviate
the path degeneracy phenomenon.Describing features of an-
cestry trees corresponding to general resampling schemes
would constitute an interesting avenue of research.

The rest of the section is devoted to proving Theorem1
and Theorem2.

Path storage in the particle filter 5

3.2 From non-uniform weights to uniform weights

We first relate the ancestry process associated with particle
filters using multinomial resampling, with the ancestry pro-
cess associated with the neutral case, where all the weights
would be equal toN−1 at every time step. To do so we in-
troduce various intermediate processes, starting with theex-
act multinomial resampling process denoted by(At)t≥0, then
an approximation represented by(A′t)t≥0 which provides an
almost sure upper bound and eventually a process(Zk)k≥0

counting the number of nodes at generationT−k in the neu-
tral case, for a fixed time horizonT.

Let us introduce an alternative representation of the multi-
nomial resampling scheme. For each particle indexj = 1, . . . ,N
at timet, drawV j

t uniformly in [0,1]. If V j
t ≤ ε, drawU j

t ∼
U ([0,1]) and seta j

t = k for k such thatU j
t ∈ [(k−1)/N,k/N].

If howeverV j
t > ε, drawa j

t from ∑1≤i≤N(w
i
t−1− ε/N)(1−

ε)−1δi(·). One can check that Assumption1 ensures that
wi

t−1− ε/N ≥ 0 for each 1≤ i ≤ N and that the scheme

described above leads toP(a j
t = k) = wk

t−1 as in multino-
mial resampling. The alternative representation amounts to a
mixture of two steps: one step that does not take the weights
into account, applied ifV j

t ≤ ε, and another step that uses
the weights, applied ifV j

t ≥ ε. This perspective allows to in-
troduce an approximate resampling scheme represented by
the process(A′t)t≥0 described below.

For each timet, defineAt : j ∈{1, . . . ,N} 7→ a j
t ∈{1, . . . ,N}

and thenA′t : {1, . . . ,N} → {1, . . . ,N} as follows. For all
j in Ct = {k ∈ {1, . . . ,N} : Vk

t ≤ ε}, setA′t(j) = a j
t . Order

the p remaining indices of the set{ j ∈ {1, . . . ,N} : Vt
j > ε}

into{ j1 < · · ·< jp}, setA′t(j1) = inf({1, . . . ,N}\A′t(Ct)) and
then recursively

A′t(jk) = inf({1, . . . ,N}\(A′t(Ct)∪{A′t(j1), . . . ,A
′
t(jk−1)})).

Such a functionA′t almost surely maps to more unique values
thanAt by construction. It can be seen as a mixture of two
steps, as described forAt above, but this time neither step
relies on the values of the weights.

We write |u| for the cardinal of the image of a func-
tion u : {1, . . . ,N} → {1, . . . ,N}. In terms of the functions
(Ak)k≤T−1, the full coalescence timecT can be defined as

cT = sup{0≤ k≤ T−1 :| Ak ◦Ak+1◦ · · · ◦AT−1 |= 1},

with the conventioncT = 0 in the event| Ak ◦Ak+1 ◦ · · · ◦
AT−1 |> 1 for each 0≤ k≤ T−1, which almost surely sat-
isfiescT ≥ c′T with

c′T = sup{k≤ T−1 :| A′k◦A′k+1◦ · · · ◦A′T−1 |= 1}.

Indeed sinceA′t maps to more unique values thanAt at each
time t, the quantity| A′k ◦ · · · ◦A′T−1 |, counting the unique
ancestors from generationk of the particles at timeT when
using the resampling schemeA′, is almost surely larger than

|Ak◦· · ·◦AT−1 | for anyk, and hence it takes longer to reach
the full coalescence time when usingA′ compared toA.

Following Del Moral et al(2009), Section 4 andMöhle
(2004), the sequence(Kk)k≥0 = (| A′T−k ◦ · · · ◦A′T−1 |)k≥0 is
a Markov chain in the filtration(Fk)k≥1 with

Fk = σ(V1:N
r ,U1:N

r)T−k≤r≤T−1,

with the conventionK0 = N. For all k≥ 0, q ∈ {1, . . . ,N}
andp< q its transition law verifies

P(Kk+1 = p | Kk = q) (1)

=
q

∑
q′=q−p+1

(

q
q′

)

εq′(1− ε)q−q′
{

q′

q′−q+ p

}

(N)q′−q+p

Nq′

and pN,q = P(Kk+1 = q | Kk = q)

=
q

∑
q′=0

(

q
q′

)

εq′(1− ε)q−q′ (N)q′

Nq′ (2)

where
{q

p

}

is the Stirling number of the second kind giving
the number of ways of partitioning the set{1, . . . ,q} into p
non empty blocks and where(N)p = N!/(N− p)!. Note that
Eq. (2) is a special case of Eq. (1).

Let us give more details on Eq. (1) and (2). First con-
sider the expression ofpN,q. The indexq′ represents the
number of particles associated with realisations ofVT−k−1

being less thanε. Hence it is the number of particles of step
T−k−1 for which the ancestorA′T−k−1 was chosen accord-
ing to the uniform distribution on{1, . . . ,N}; the remaining
q−q′ ancestors are chosen deterministically; see the defini-
tion of (A′t). The term

(q
q′
)

εq′(1− ε)q−q′ corresponds to the
probability of obtainingq′ uniform draws ofVT−k−1 with
values less thanε amongq particles at timeT−k. The term
(N)q′/Nq′ corresponds to the probability of theseq′ ances-
tors, drawn uniformly on{1, . . . ,N}, landing onq′ unique
values. Now consider the probabilityP(Kk+1 = p | Kk = q)
for somep < q. For Kk to fall from q to p at the next step,
q− p unique particles must disappear; since particles cor-
responding toVT−k−1 > ε do not disappear, there must be
at leastq− p+ 1 particles corresponding toVT−k−1 ≤ ε.
Hence the indexq′, still representing the number of parti-
cles with realisations ofVT−k−1 less thanε, now starts at
q− p+ 1. The binomial term is similar to the case where
p = q. Among theq′ particles with realisations ofVT−k−1

less thanε, p′ = p− (q− q′) of them must choose unique
ancestors and the otherq− p must coalesce. The Stirling
number

{q′
p′
}

indeed counts the number of partitions (groups
of particles that will coalesce) of{1, . . . ,q′} in p′ non-empty
blocks (each corresponding to a unique ancestor).

Note that conditional uponKk = q there can be any num-
ber I ∈ {1, . . . ,q} of variablesV1:q falling underε. We can
writeE[Kk+1 | Kk = q] as

q

∑
i=0

(

q
i

)

ε i(1− ε)q−i
E [Kk+1 | Kk = q, I = i] .

6 Jacob, Murray & Rubenthaler

We now focus onE [Kk+1 | Kk = q, I = i], the expected num-
ber of ancestors ofq different particles, given thati of them
choose their ancestors uniformly in{1, . . . ,N} and thatq− i
have a unique ancestor. Of course the difficulty comes from
the random component,id est the i particles that choose
their ancestors uniformly. Introduce the process(Zk)k≥0 on
N corresponding to the number of ancestors in a scheme us-
ing only those uniform selections, which is equivalent to a
multinomial resampling scheme with uniform weights. More
formally the transition of(Zk)k≥0 satisfies

P(Zk+1 = p | Zk = q) =

{

q
p

}

(N)p

Nq , (3)

following the same reasoning as for the transition probabil-
ities of (Kk)k≥0. The initial distribution ofZ0 is not used in
the following hence we do not need to specify it. The link
between(Zk)k≥0 and(Kk)k≥0 is explicitly given by

E [Kk+1 | Kk = q, I = i] = (q− i)+E [Zk+1 | Zk = i]

so that we have

E [Kk+1 | Kk = q]

= q(1− ε)+
q

∑
i=0

(

q
i

)

ε i(1− ε)q−i
E[Zk+1 | Zk = i]. (4)

Note that the process(Zk)k≥0 is not used in the proof of
Theorem1, where we start from(Kk)k≥0 again, but is pivotal
for the proof of Theorem2.

3.3 Distance to the most recent common ancestor

We start with the proof of Theorem1. We define a Markov
chain(Lk)k≥0 onN such thatL0 = N and its transition satis-
fies

P(Lk+1 = q−1 | Lk = q) = ∑
p<q

P(Kk+1 = p | Kk = q)

and thus for allk≥ 0 andp≤ q

P(Lk+1 = p | Lk = q) =

{

pN,q if p= q,

1− pN,q if p= q−1,

wherepN,q is defined in Eq. (2). In addition we couple(Lk)k≥0

and(Kk)k≥0 by assuming

– [Lk = Kk]⇒[Lk+1 < Lk⇔ Kk+1 < Kk] (if the two chains
are at the same point, then if one of them decreases, the
other one decreases too)

– [Lk 6= Kk]⇒Kk+1andLk+1 are independent, condition-
ally uponLk, Kk.

By constructionLk ≥ Kk for all k≥ 0 almost surely. Hence
c′T ≥ T−DT with DT = inf{k≥ 1 : Lk = 1} and thusdT =

T− cT ≤ T− c′T ≤DT almost surely.

For q = 2, . . . ,N denote byJ(N)
q the time required for

(Lk)k≥0 to jump fromq to q− 1. EachJ(N)
q follows a geo-

metric law with parameter(1− pN,q) andDT = ∑N
q=2J(N)

q ,

so thatE[DT] = ∑N
q=2(1− pN,q)

−1. To conclude, we manip-
ulate this sum as follows. For anyk= 1, . . . ,N a crude bound
on(N)k/Nk is given by exp{−k/2N}, from which we obtain

pN,q≤
(

1− ε(1−e−1/2N)
)q

.

We have, for allN, (8N)−1 ≤ 1−exp{−1/2N} and for all
x≥ 1 andε ∈ (0,1), (1−ε/x)x≤ exp(−ε); combining these
inequalities we obtain

E[DT]≤
N

∑
q=2

(1−αq/N)−1

whereα = exp(−ε/8). We can now bound this series by ex-
pandingαq/N = exp{(q/N) logα} into an alternating series
and by bounding the alternating series always by one of its
partial sums:

N

∑
q=2

(1−αq/N)−1

≤
N

∑
q=2

(

q
N
(− logα)− 1

2!

(q
N

)2
(logα)2

)−1

≤ − N
logα

logN+(N−1)≤
(

1+
8
ε

)

N logN,

which concludes the proof of Theorem1.
Note that bounding(Kk)k≥0 by (Lk)k≥0 almost surely

seems very crude, sinceKk can possibly jump fromq to
p << q in one step whereasLk can only jump fromq to
q−1. However the time to coalescence is mostly dominated
by the final jumps, because the probabilitiesP(Kk+1 = p |
Kk = q) are close to 0 whenN is large compared toq and
p< q. In other words after a few time steps,q is small com-
pared toN and then(Kk)k≥0 mostly jumps fromq to q−1
if it jumps at all, so that(Lk) provides an accurate bounding
process. The additional approximations used to boundpN,q

and thusE[DT] are also to be considered in the regime of
small q compared toN, where they prove accurate enough
to obtain the desired result inN logN.

3.4 Number of nodes in the ancestry tree

We now proceed to the proof of Theorem2. Denote bymT

the number of nodes in the crown. The bound ondT from
Theorem1 gives a first crude bound

E[mT]≤ ∆1N2 logN

Path storage in the particle filter 7

which is obtained by bounding the size of every generation
in the crown byN. However we can obtain a better bound,
in N logN, by the following arguments.

The process(Kk)k≥0 was already introduced to bound
E[dT] but we can naturally use it to boundE[mT] since

mT ≤
τT

∑
k=0

Kk

almost surely, whereτT = inf {k≤ T : Kk = 1}; note that
τT = T− c′T . To boundE[Kk] we use the chain(Zk)k≥0 de-
fined by Eq. (3). By definition of (Zk)k≥0 and denoting by
(Cj)

N
j=1 independent uniform variables in{1, . . . ,N}, we have

E[Zk+1 | Zk = q] = E[
N

∑
j=1

1{∃k∈{1,...,q}:Ck= j}]

= N−
N

∑
j=1

E[1{∀k∈{1,...,q}:Ck 6= j}]

= N−N

(

1− 1
N

)q

(5)

which, using Eq (4), implies

E [Kk+1 | Kk = q] = q(1− ε)+N
(

1−
(

1− ε
N

)q)

.

By expanding(1−(1−ε/N)q) into its alternating series and
bounding the series by its third partial sum, we obtain

E [Kk+1 | Kk = q]≤ q− ε2

2N
q(q−1)+

ε3

6N2q(q−1)(q−2).

Now for x∈ [1,N] define the functiongN,ε by:

gN,ε(x) = x− ε2

2N
x(x−1)+

ε3

6N2 x(x−1)(x−2). (6)

Noting thatgN,ε is concave and using Jensen’s inequality,
we obtain

E[Kk+1] = E[E[Kk+1 | Kk]]≤ gN,ε(E[Kk]). (7)

Introduce the sequenceu0 = N, and un+1 = gN,ε(un) for
n > 0. By the above inequality and becausegN,ε is nonde-
creasing, we haveE(Kk)≤ uk for all k. We can finally bound
the expected number of nodes in the crown as follows

E

[

τT

∑
k=0

Kk

]

= E

[

E

[

τT

∑
k=0

(Kk−1)

]

+ τT

]

≤
∞

∑
k=0

(uk−1)+∆1N logN (8)

using Theorem1 to boundE[τT]. We use the following tech-
nical lemma to bound∑∞

k=0(uk−1).

Lemma 1 Let N∈ N, N ≥ 6 and ε ∈ (0,1). Consider the
sequence(uk)k≥0 such that u0 = N and for k≥ 1

uk= uk−1−
ε2

2N
uk−1(uk−1−1)+

ε3

6N2uk−1(uk−1−1)(uk−1−2).

Then there exists C> 0 independent of N such that
∞

∑
k=0

(uk−1)≤CNlogN.

The proof of Lemma1, based on elementary real analysis, is
given in AppendixA. Using Lemma1 and Eq. (8) we obtain
Theorem2 with ∆2 =C+∆1.

4 Numerical experiments

This section provides numerical experiments to illustratethe
results of Section3 and the efficiency of the algorithms pre-
sented in Section2. The results summariseK = 500 inde-
pendent runs, usingN = 128 particles andT ≤ 1000 time
steps. For each run, a new synthetic dataset is generated
and a different random seed is used. The default resampling
scheme is the multinomial scheme, applied at every time
step. The algorithms of Section2 have been implemented
in LibBi (Murray, 2013, www.libbi.org), which is used
for the numerical results here.

We use the Phytoplankton-Zooplankton (PZ) model de-
scribed inJones et al(2010) andMurray et al(2012). Con-
centrations of phytoplankton(Pt) and zooplankton(Zt), along
with the stochastic growth rate of phytoplankton(αt), con-
stitute the hidden state. The state follows the continuous-
time dynamicsdP/dt = αtP− cPZ and dZ/dt = ecPZ−
ml Z−mqZ2, with αt ∼ N (µ ,σ2) drawn at every integer
time t. The initial conditions are logP0 ∼ N (log(2),0.2),
logZ0∼N (log(2),0.1). The observations(Yt)measure(Pt)

with additive log-normal noise, that is logYt ∼N (logPt ,σy).
The parameters are set toµ = 0.4, σ = 0.2, c = 0.25, e=

0.3, ml = mq = 0.1 andσy = 0.2.
Lemma2 is illustrated by plots of the adjusted number

of nodes defined by ˜nT = (nT −T)/N for variousN against
T on Fig.2(a)and for variousT againstN on Fig.2(b). The
quantity is averaged overK independent runs. According to
the lemma ˜nT should be uniformly bounded as a function of
T and should grow logarithmically as a function ofN; this
is confirmed by the graphs. Figure3(a)shows that a similar
behaviour is expected for other resampling schemes such as
stratified and systematic, only with a different value for∆2.

To illustrate the efficiency of the procedures presented in
Section2, Fig. 3(b) shows the combined time taken to exe-
cute the pruning and insertion algorithms at each time step,
for variousT andN. The results suggest that the computa-
tional cost is not greatly influenced byT, and close to linear
with respect toN: evidence of a practical implementation
with comparable complexity to the particle filter itself.

www.libbi.org

8 Jacob, Murray & Rubenthaler

1

2

3

4

5

0 250 500 750 1000
Time

A
dj

us
te

d

no
de

s

N 128 256 512 1024

(a) Adjusted number of nodes ˜nT = (nT −T)/N againstT for var-
iousN

4.4

4.8

5.2

5.6

128 256 512
N

A
dj

us
te

d

no
de

s

Time 250 500 750 1000

(b) Adjusted number of nodes ˜nT = (nT −T)/N againstN (log-
scale) for variousT

Fig. 2 Adjusted number of nodes ˜nT = (nT −T)/N versusT for var-
ious N (top), and versusN for various timesT (bottom), for the PZ
model.

5 Conclusion

We have presented a bound on the expected number of nodes
in the ancestry tree produced by particle filters. The numeri-
cal experiments of Section4 indicate that the result is accu-
rate, even outside the scope of the assumptions made in the
theoretical study, and that the proposed algorithm to store
the tree is computationally efficient.

A Proof of Lemma 1

Let N ∈ N and ε ∈ (0,1), define(uk)k≥0 as in the statement of the
lemma and definegN,ε as in Eq. (6). We are interested in∑k≥0(uk−
1). Note first thatgN,ε is contracting and is such thatgN,ε(1) = 1, so
that uk goes to 1 using Banach fixed-point theorem. The contraction
coefficient ofgN,ε can be bounded by

sup
x
|g′N,ε(x)| ≤ g′N,ε(1) = 1− ε2

2N
< 1,

however this contraction coefficient depends onN and a direct use of
it yields a bound on∑k≥0(uk−1) that is not inN logN.

Note also that even thoughuk goes to 1, we can focus on the partial
sum∑σ2

k=0(uk−1) whereσ2 = inf{k : uk ≤ 2}, because∑∞
k=σ2

(uk−1)

2

4

6

0 250 500 750 1000
Time

A
dj

us
te

d

no
de

s

Resampling multinomial stratified systematic

(a) Adjusted number of nodes ˜nT = (nT −T)/N againstT for var-
ious resampling schemes

30

60

90

128 256 512
N

C
om

pu
tin

g
tim

e
(µ

s)

Time 250 500 750 1000

(b) Computing time (in microseconds) of the path keeping algo-
rithm againstN for variousT

Fig. 3 Impact of the resampling scheme on the number of nodes (top)
and computing time of the path keeping algorithm for variousN andT
(bottom), for the PZ model.

is essentially bounded byN. Indeed note that for 1≤ u≤ 2 we have
(ε3/6N2)u(u−1)(u−2) ≤ 0 so that

uk−1≤ uk−1−1− ε2

2N
uk−1(uk−1−1)≤ (uk−1−1)(1− ε2

2N
),

hence∑∞
k=σ2

(uk−1)≤ (2N/ε2). Therefore we can focus on bounding

∑σ2
k=0(uk−1) by N logN. Let us split this sum into partial sums, where

the first partial sum is over indicesk such thatN/2≤ uk ≤ N, the sec-
ond is over indicesk such thatN/4≤ uk ≤ N/2, etc. More formally,
we introduce(k j)

J
j=0 such thatk0 = 0, k1 = inf{k : uk ≤ N/2}, . . . ,

k j = inf{k : uk ≤N/2 j}, up tokJ = inf{k : uk ≤N/2J} whereJ is such
that N/2J ≤ 2, or equivalently logN/ log2− 1≤ J. For instance we
takeJ = ⌊logN/ log2⌋. Thus we have split∑σ2

k=0(uk−1) into J partial

sums of the form∑
k j+1−1
k=k j

(uk−1) and we are now going to bound each

of these partial sum by the same quantityC(ε)N for someC(ε) that
depends only onε .

To do so, we consider the time needed by(uk)k≥0 to decrease from
a valueN/mj to a valueN/mj+1, with mj+1 > mj ; we will later take
mj = 2 j andmj+1 = 2 j+1. Note that for anym we have

gN,ε

(

N
m

)

=
N
m

(

1− 1
m

[

ε2

2
− mε2

2N
− ε3

6m
+

ε3

2N
− mε3

3N2

])

.

Define

β (N,m,ε) =
ε2

2
− mε2

2N
− ε3

6m
+

ε3

2N
− mε3

3N2

Path storage in the particle filter 9

and note that for anyN≥ 6 andm≤ N/2 we have

β (ε) :=
ε2

4
≤ β (N,m,ε),

which is clear upon noticing thatβ (N,m,ε) as a function ofm on
[1,N/2] is concave and thus reaches its minimum in 1 orN/2 (and this
minimum is greater thanε2/4, providedN ≥ 6). For anyx≥ N/mj+1
we can check that

gN,ε(x) ≤
gN,ε(N/mj+1)

N/mj+1
×x

by noticing thatgN,ε is concave and thatgN,ε(x) ≤ x for x ∈ [0,N].
Hence fork≥ 0 such thatuk−1 ≥N/mj+1, we have

uk ≤
(

1− 1
mj+1

β (ε)
)

uk−1.

Now suppose that for somek j ≥ 0 we haveuk j ≤ N/mj . Then let us
find K such thatuk j+K ≤ N/mj+1. It is sufficient to findK such that

(

1− 1
mj+1

β (ε)
)K N

mj
≤ N

mj+1

⇔ K ≥ log
mj+1

mj

(

− log

(

1− 1
mj+1

β (ε)
))−1

.

Finally by using

∀x∈ (0,1)
1
x
−1≤ 1

− log(1−x)
≤ 1

x

we conclude thatK defined as

K =

⌈

(

log
mj+1

mj

)

mj+1

β (ε)

⌉

guarantees the inequalityuk j+K ≤ N/mj+1. In other words(uk)k≥0
needs less thanK steps to decrease fromN/mj to N/mj+1. Summing
the terms betweenk j andk j +K, we obtain

k j+K

∑
k=k j

uk ≤ K
N
mj
≤
[

(

log
mj+1

mj

)

mj+1

β (ε)
+1

]

N
mj

.

Taking mj = 2 j and mj+1 = 2 j+1, we havek j+1 ≤ k j +K and thus
obtain

k j+1

∑
k=k j

uk ≤
k j+K

∑
k=k j

uk ≤
[

(log2)
2

β (ε)
+

1
2 j

]

N =C(ε)N

with C(ε) independent ofN. We have thus bounded the full sum by

∑
k≥0

(uk−1)≤
σ2

∑
k=0

(uk−1)+ ∑
k≥σ2

(uk−1)

≤
⌈

logN
log2

⌉

C(ε)N+
2N
ε2 ≤D(ε)N logN

for someD(ε) independent ofN.

References

Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain
Monte Carlo (with discussion). J Royal Statist Society Series B
72(4):357–385

Cappé O, Moulines E, Rydén T (2005) Inference in Hidden Markov
Models. Springer-Verlag, New York

Carpenter J, Clifford P, Fearnhead P (1999) Improved particle filter for
nonlinear problems. IEE Proc Radar, Sonar Navigation 146(1):2–7

Chopin N, Singh SS (2013) On the particle Gibbs sampler. ArXiv e-
prints1304.1887

Chopin N, Jacob P, Papaspiliopoulos O (2013) SMC2: an efficient al-
gorithm for sequential analysis of state space models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology)
75(3):397–426

Del Moral P (2004) Feynman-Kac formulae. Springer
Del Moral P, Doucet A (2003) On a class of genealogical and inter-

acting metropolis models. Séminaire de Probabilités XXXVII pp
415–446

Del Moral P, Miclo L, Patras F, Rubenthaler S (2009) The convergence
to equilibrium of neutral genetic models. Stochastic Analysis and
Applications 28(1):123–143

Douc R, Moulines E, Olsson J (2012) Long-term stability of sequential
Monte Carlo methods under verifiable conditions. ArXiv e-prints; to
appear in Annals of Applied Probability1203.6898

Doucet A, Johansen A (2011) A tutorial on particle filtering and
smoothing: Fifteen years later. In: Handbook of Nonlinear Filter-
ing, Oxford, UK: Oxford University Press

Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo
methods in practice. Springer-Verlag, New York

Gordon N, Salmond J, Smith A (1993) A novel approach to non-
linear/non-Gaussian Bayesian state estimation. IEEE Proceedings
on Radar and Signal Processing 140:107–113

van Handel R (2009) Uniform time average consistency of monte
carlo particle filters. Stochastic Processes and their Applications
119(11):3835 – 3861

Jones EM, Parslow J, Murray LM (2010) A Bayesian approach to state
and parameter estimation in a phytoplankton-zooplankton model.
Australian Meteorological and Oceanographic Journal 59:7–16

Kitagawa G (1998) A self-organizing state-space model. J American
Statist Assoc 93:1203–1215

Lee A, Yau C, Giles MB, Doucet A, Holmes CC (2010) On the util-
ity of graphics cards to perform massively parallel simulation of ad-
vanced Monte Carlo methods. Journal of Computational and Graph-
ical Statistics 19:769–789

Lindsten F, Jordan M, Schön T (2012) Ancestor sampling for particle
Gibbs. ArXiv e-prints1210.6911

Liu J, Chen R (1998) Sequential Monte Carlo methods for dynamic
systems. J American Statist Assoc 93:1032–1044

Möhle M (2004) The time back to the most recent common ancestor in
exchangeable population models. Advances in Applied Probability
pp 78–97

Murray LM (2013) Bayesian state-space modelling on high-
performance hardware using LibBi. ArXiv e-prints1306.3277

Murray LM, Jones EM, Parslow J (2012) On collapsed state-space
models and the particle marginal Metropolis-Hastings sampler.
ArXiv e-prints1202.6159

Murray LM, Lee A, Jacob PE (2013) Rethinking resampling in the par-
ticle filter on graphics processing units. ArXiv e-prints1301.4019

Poyiadjis G, Doucet A, Singh S (2011) Particle approximations of the
score and observed information matrix in state space modelswith
application to parameter estimation. Biometrika 98(1):65–80

Sengupta S, Harris M, Garland M (2008) Efficient parallel scan algo-
rithms for GPUs. Tech. Rep. NVR-2008-003, NVIDIA

Wang J, Jasra A, De Iorio M (2014) Computational methods for aclass
of network models. Journal of Computational Biology

Whiteley N (2011) Stability properties of some particle filters. ArXiv
e-prints; to appear in Annals of Applied Probability1109.6779

1304.1887
1203.6898
1210.6911
1306.3277
1202.6159
1301.4019
1109.6779

	1 Introduction
	2 Algorithms
	3 Size of the ancestry tree
	4 Numerical experiments
	5 Conclusion
	A Proof of Lemma 1

