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Abstract

In this paper, we consider the partially linear single-index mod-
els with longitudinal data. To deal with the variable selection
problem in this context, we propose a penalized procedure com-
bined with two bias correction methods, resulting in the bias-
corrected generalized estimating equation (GEE) and the bias-
corrected quadratic inference function (QIF), which can take into
account the correlations. Asymptotic properties of these methods
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a real data analysis.
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1 Introduction

Longitudinal/clustered data modeling is often used in experiments that are designed

such that responses on the same experimental units are observed repeatedly. Experi-

ments of this type have extensive applications in many fields, including epidemiology,

econometrics, medicine, life and social sciences. Let {(Yij, Xij, Zij)1≤i≤n,1≤j≤mi
} be

the jth observation for the ith subject or experimental unit, where Yij is the response

variable associated with explanatory variables (Xij , Zij) ∈ R
p×R

q. Throughout this

paper we assume that n increases to push up the total sample size N =
∑n

i=1mi,

while {mi} is a bounded sequence of positive integers. This means that n and N

have the same order. The partially linear single-index model for longitudinal data

takes the form

Yij = g(XT
ijβ0) + ZT

ijθ0 + eij, i = 1, . . . , n, j = 1, . . . , mi, (1.1)

where (β0, θ0) is an unknown vector in R
p × R

q with ‖β0‖ = 1 (where ‖ · ‖
denotes the Euclidean norm), g(·) is an unknown univariate link function, ei =

(ei1, ei2, . . . , eimi
)T is the random error vector of the ith subject, and {ei, i = 1, . . . , n}

are mutually independent with E(ei|Xi,Zi) = 0 and Var(ei) = Σi. The constraint

‖β0‖ = 1 is for the identifiability of β0.

Model (1.1) has been studied by many authors, for example Li et al. (2010),

Lai et al. (2013) and Bai et al. (2009). It covers many important statistical models,

such as the single-index model and the partially linear model. When θ0 = 0 or,

equivalently, there are no predictors Zij, model (1.1) is a longitudinal single-index

model with an unknown link function. The appeal of the model is that by focusing

on an index XT
ijβ0, the so-called “curse of dimensionality” in fitting multivariate

nonparametric regression functions is avoided. Chiou and Müller (2005) introduced

a flexible marginal modeling approach and proposed the estimated estimating equa-

tions (EEE) method to estimate the index parameter vector β0. Lai et al. (2012)

used the smooth threshold GEE method to do variable selection for this model.

When p = 1 and β0 = 1, model (1.1) becomes the longitudinal partially linear

model, which has been investigated in Zeger and Diggle (1994), Lin and Carroll

(2001), He et al. (2002), Fan and Li (2004), Sun and You (2003), You et al. (2007),

Xue and Zhu (2007), Fan et al. (2007), Li et al. (2008) and the references therein.
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When mi = 1, model (1.1) is reduced to the non-longitudinal partially linear

single-index model, studies of which include Cui et al. (2011), Liang et al. (2010),

Wang et al. (2010), Xia and Härdle (2006), Xue and Zhu (2006), Zhu and Xue (2006),

Yu and Ruppert (2002), Carroll et al. (1997), among others.

A popular approach for longitudinal/clustered data analysis is by using GEE

(Liang and Zeger, 1986). Variable selection using GEE has been considered in

Johnson et al. (2008), Wang et al. (2012) and Li et al. (2013a). The QIF method,

introduced by Qu et al. (2000), is a competitor in analyzing longitudinal data.

Qu and Li (2006) applied the QIF method to varying coefficient models for lon-

gitudinal data. Bai et al. (2008, 2009) applied the QIF method to partially linear

models and single-index models with longitudinal data, without considering variable

selection. Wang and Qu (2009) used BIC for consistent variable selection in the con-

text of QIF. Based on the QIF method, Lai et al. (2013) studied the estimation and

testing issues for the partially linear single-index model with longitudinal data.

Our work differs from the existing works in two major aspects. First, we consider

and compare both GEE and QIF in our study while all previous works on single-

index models on longitudinal data only consider one of them. It is of significant

interest to compare the two approaches in a single study given their similarities.

Second, variable selection for single-index models on longitudinal data has not been

considered before and we particularly focus on this aspect in our numerical studies,

although we need to spend a lot of efforts in explaining GEE and QIF themselves

first.

Compared to the work of Li et al. (2010), although our GEE method is based

on the bias correction idea proposed there, the focus of Li et al. (2010) is on em-

pirical likelihood method for inferences. Our GEE estimator without penalization

is actually the same as the empirical likelihood estimator since the same estimat-

ing equations are used in both cases. Note however that the asymptotic properties

of the empirical likelihood estimator were not studied before (Li et al. (2010) only

studied the Wilks’ phenomenon for empirical likelihood ratio under the null hypoth-

esis). Compared to the work of Wang and Qu (2009), they only considered variable

selection for parametric models and our variable selection procedure involving non-

parametric components is more challenging and also requires two penalties.
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The rest of the paper is organized as follows. In Section 2, we propose the

bias-corrected GEE procedure for the partially linear single-index models with lon-

gitudinal data and show its asymptotic properties. Section 3 reviews a bias-corrected

QIF method that has been previously proposed, and discusses the asymptotic prop-

erties for the proposed estimator. In Section 4, the variable selection procedure

is presented for this model. In Section 5, we present the empirical results from

some simulation studies and a real data analysis to illustrate the proposed methods.

Finally, we conclude the paper in Section 6 with some discussions. The technical

proofs are contained in the supplementary material.

2 Bias-corrected GEE estimation

Assume that the recorded data {(Yij, Xij, Zij), i = 1, . . . , n, j = 1, . . . , mi} are gen-

erated from model (1.1). The identifiability condition ‖β0‖ = 1 means that the true

value of β0 is a boundary point on the unit sphere, which causes some difficulty

in estimation. To solve this problem, we use the popular “delete-one-component”

method (see Xue and Zhu (2006); Zhu and Xue (2006)). Let β = (β1, . . . , βp)
T and

let β(r) = (β1, . . . , βr−1, βr+1, . . . , βp)
T be a p−1 dimensional parameter vector after

removing the rth component βr. Without loss of generality, we may assume that

the true vector β has a positive component βr (otherwise, consider −β). Then, we

can write

β = β(β(r)) = (β1, . . . , βr−1, (1− ‖β(r)‖2)1/2, βr+1, . . . , βp)
T. (2.1)

The true parameter β(r) satisfies the constraint ‖β(r)‖ < 1. Thus, β is infinitely

differentiable in a neighborhood of the true parameter β(r), and the Jacobian matrix

is

Jβ(r) =
∂β

∂β(r)
= (γ1, . . . , γp)

T,

where γs(1 ≤ s ≤ p, s 6= r) is a (p− 1)-dimensional unit vector with sth component

1, and γr = −(1 − ‖β(r)‖2)−1/2β(r).

We first introduce the following matrix notations. Let

Xi = (Xi1, Xi2, . . . , Ximi
)T, Zi = (Zi1, Zi2, . . . , Zimi

)T,

Yi = (Yi1, Yi2, . . . , Yimi
)T, G(Xiβ0) = (g(XT

i1β0), g(X
T
i2β0), . . . , g(X

T
imi

β0))
T.
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Let g1(t) = E[Xij |XT
ijβ0 = t] and g2(t) = E[Zij|XT

ijβ0 = t]. Motivated by the

idea of bias correction (Zhu and Xue (2006); Li et al. (2010)) and the idea of GEE

(Liang and Zeger (1986)), we construct the bias-corrected GEE as

Qn(G, g1, g2,β
(r), θ) =:

n∑

i=1

ΛiV
−1
i [Yi −G(Xiβ)−Ziθ] = 0, (2.2)

where

Λi =




g′(XT
i1β)(Xi1 − g1(X

T
i1β))

TJβ(r) (Zi1 − g2(X
T
i1β))

T

g′(XT
i2β)(Xi2 − g1(X

T
i2β))

TJβ(r) (Zi2 − g2(X
T
i2β))

T

...
...

g′(XT
imi

β)(Ximi
− g1(X

T
imi

β))TJβ(r) (Zimi
− g2(X

T
imi

β))T




T

and g′(·) is the derivative of g(·). For the bias-corrected GEE (2.2), Vi = A
1/2
i Ri(α)A

1/2
i

is an invertible working covariance matrix with Ai being the mi ×mi diagonal ma-

trix of marginal variances and Ri(α) being the working correlation matrix, where α

is a vector which fully characterizes Ri(α). Note that Vi will be equal to Cov(Yi)

if Ri is indeed the true correlation matrix for Yi. Some common working corre-

lation structures include independent structure, compound symmetry (CS) (i.e.,

exchangeable) with Rij = ρ for any i 6= j, or first-order autoregressive (AR(1)) with

Rij = ρ|i−j|, where Rij denotes the (i, j)th element of R. If the working covariance

matrix Vi = Imi
is used, with Imi

the mi × mi identity matrix, we ignore the de-

pendence of the data within a cluster, that is, assume working independence (see

Lin and Carroll (2001)); when Vi = Σi, it assumes the true within-subject correla-

tion structure for longitudinal data. In practice, the working covariance matrix Vi

can be estimated by using the method of moments (Liang and Zeger (1986)).

When g(·), g′(·), g1(·) and g2(·) are known, we can obtain the estimators of β
(r)
0

and θ0 by solving the above bias-corrected GEE (2.2) directly. However, these

quantities in the bias-corrected GEE (2.2) are unknown. To obtain the estimators

of β
(r)
0 and θ0, we need to replace them by their estimates.

For given (β, θ), we first apply the local linear smoother (Fan and Gijbels,

1996) to estimate g(·) and g′(·) by entirely ignoring the within-subject correlation.

Lin and Carroll (2000) showed that, when standard kernel methods are used, cor-

rectly specifying the correlation matrix in fact will result in an asymptotically less
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efficient estimator for the nonparametric part. We find (a, b) that minimize

n∑

i=1

mi∑

j=1

(Yij − ZT
ijθ − a− b(XT

ijβ − t))2Kh(X
T
ijβ − t), (2.3)

where Kh(·) = h−1K(·/h), K(·) is a kernel function and h = hn is a sequence of

positive numbers tending to zero, called the bandwidth. Let (â, b̂) be the solution

to the weighted least squares problem (2.3). We define the estimators ĝ(t;β, θ) = â

and ĝ′(t;β, θ) = b̂. Simple calculations yield

ĝ(t;β, θ) =

n∑

i=1

mi∑

j=1

Wnij(t;β)(Yij − ZT
ijθ), (2.4)

and

ĝ′(t;β, θ) =

n∑

i=1

mi∑

j=1

W̃nij(t;β)(Yij − ZT
ijθ), (2.5)

where

Wnij(t;β) =
N−1Kh(X

T
ijβ − t)[Sn,2(t;β)− (XT

ijβ − t)Sn,1(t;β)]

Sn,0(t;β)Sn,2(t;β)− S2
n,1(t;β)

,

W̃nij(t;β) =
N−1Kh(X

T
ijβ − t)[(XT

ijβ − t)Sn,0(t;β)− Sn,1(t;β)]

Sn,0(t;β)Sn,2(t;β)− S2
n,1(t;β)

,

and

Sn,l(t;β) =
1

N

n∑

i=1

mi∑

j=1

Kh(X
T
ijβ − t)(XT

ijβ − t)l, l = 0, 1, 2.

Given β, we can obtain the estimators of g1(·) and g2(·) as

ĝ1(t;β) =
n∑

i=1

mi∑

j=1

Wnij(t;β)Xij, (2.6)

and

ĝ2(t;β) =

n∑

i=1

mi∑

j=1

Wnij(t;β)Zij. (2.7)

We estimate the (p− 1 + q)-dimensional parameter vector ξ0 = (β
(r)T
0 , θT

0 )
T by

solving the following estimated bias-corrected GEE

Qn(Ĝ, ĝ1, ĝ2,β
(r), θ) =

n∑

i=1

Λ̂iV
−1
i [Yi − Ĝ(Xiβ;β, θ)−Ziθ] = 0, (2.8)
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where Ĝ(Xiβ;β, θ) = (ĝ(XT
i1β;β, θ), ĝ(X

T
i2β;β, θ), . . . , ĝ(X

T
imi

β;β, θ))T and

Λ̂i =




ĝ′(XT
i1β;β, θ)(Xi1 − ĝ1(X

T
i1β;β))

TJβ(r) (Zi1 − ĝ2(X
T
i1β;β))

T

ĝ′(XT
i2β;β, θ)(Xi2 − ĝ1(X

T
i2β;β))

TJβ(r) (Zi2 − ĝ2(X
T
i2β;β))

T

...
...

ĝ′(XT
imi

β;β, θ)(Ximi
− ĝ1(X

T
imi

β;β))TJβ(r) (Zimi
− ĝ2(X

T
imi

β;β))T




T

.

The Newton-Raphson iterative algorithm can be used to solve the bias-corrected

GEE (2.8) and find the estimators of β
(r)
0 and θ0. The iterative algorithm is de-

scribed as follows.

Step 1: Start with initial estimators of β0 and θ0, say β̂(0) and θ̂(0).

Step 2: Use the current estimates β̂(k) and θ̂(k) and (2.4)–(2.7) to obtain the

estimators ĝ(t; β̂(k), θ̂(k)), ĝ
′(t; β̂(k), θ̂(k)), ĝ1(t; β̂(k)) and ĝ2(t; β̂(k)). Based on these

estimators, compute the working covariance matrix V̂i,(k).

Step 3: Use these estimates of g(·), g′(·), g1(·), g2(·) and Vi from Step 2 and

the estimated bias-corrected GEE (2.8) to obtain the updated estimate ξ̂(k+1) =

(β̂
(r)T
(k+1), θ̂

T
(k+1))

T. Compute

ξ̂(k+1) = ξ̂(k) +Π−1
n (β̂

(r)
(k), θ̂(k))Qn(Ĝ, ĝ1, ĝ2, β̂

(r)
(k), θ̂(k)), (2.9)

Πn(β̂
(r)
(k), θ̂(k)) =

n∑

i=1

Λ̂i(β̂
(r)
(k), θ̂(k))V̂

−1
i,(k)Λ̂

T
i (β̂

(r)
(k), θ̂(k)).

By (2.1) and β̂
(r)
(k+1), obtain the updated estimate β̂(k+1) = β(β̂

(r)
(k+1)).

Step 4: Repeat the above two steps until the successive value satisfies ‖ξ̂(k+1) −
ξ̂(k)‖ < ǫ, where ǫ is some given tolerance value. Denote the final estimator of ξ0 as

the bias-corrected GEE estimator.

It is noteworthy that we apply the Newton-Raphson iterative method to find the

final estimator ξ̂ = (β̂(r)T, θ̂T)T of ξ0 = (β
(r)T
0 , θT

0 )
T. Further, our final estimator for

ξ∗ = (βT, θT)T is ξ̂∗ = (β̂T, θ̂T)T = (β(β̂(r))T, θ̂T)T. We also define the estimator of

the link function g(·) by (2.4) with β and θ being replaced by β̂ and θ̂, respectively.

Remark 1. In Step 1, consistent initial estimators of β0 and θ0 are needed to help

us obtain the final root-n consistent estimators β̂ and θ̂. The PLSIM algorithm

proposed in Xia and Härdle (2006) is applied to obtain the initial estimators of β0
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and θ0 by ignoring the within-subject correlation. In Section 5, our simulation study

shows that the initial estimators perform well.

In order to study the asymptotic behavior of the proposed estimators, we first

give a set of conditions for the results stated in the theorems.

C1. For any i = 1, . . . , n, j = 1, . . . , mi, the density function of XT
ijβ is bounded

away from zero and infinity on T and satisfies the Lipschitz condition of order 1

on T , where T = {t = XT
ijβ : Xij ∈ A, i = 1, . . . , n, j = 1, . . . , mi} and A is the

compact support set of Xij .

C2. g(t) has two bounded and continuous derivatives on T ; g1s(t) and g2k(t)

satisfy the local Lipschitz condition of order 1, where g1s(t) and g2k(t) are the sth

and kth component of g1(t) and g2(t)(1 ≤ s ≤ p, 1 ≤ k ≤ q) respectively.

C3. The kernel K(u) is a bounded and symmetric probability density function

and satisfies
∫ ∞

−∞
u2K(u)du 6= 0,

∫ ∞

−∞
|u|iK(u)du < ∞, i = 1, 2, . . . .

C4. There exists a positive constant M such that max
1≤i≤n,1≤j≤mi

sup
x,z

E(e4ij|Xij =

x, Zij = z) ≤ M < ∞ and max
1≤i≤n,1≤j≤mi

sup
x

E(e4ij |Xij = x) ≤ M < ∞.

C5. When n → ∞, the bandwidth h satisfies that h → 0, n2h7 → ∞, nh8 → 0.

C6. There exist two positive constants c1 and c2 such that

0 < c1 ≤ min
1≤i≤n

λi1 ≤ max
1≤i≤n

λimi
≤ c2 < ∞,

where λi1 and λimi
denote the smallest and largest eigenvalue of Σi, respectively.

C7. There exist positive constants c3 and c4 such that

0 < c3 ≤ min
1≤i≤n

λ′
i1 ≤ max

1≤i≤n
λ′
imi

≤ c4 < ∞,

where λ′
i1 and λ′

imi
denote the smallest and largest eigenvalue of Vi, respectively.

C8. There exists a positive constantM such that for all i, j, sup
t∈T

E(‖Zij‖2|XT
ijβ =

t) ≤ M < ∞.

C9. Ω(β
(r)
0 , θ0) = lim

n→∞

1

n

n∑

i=1

E{ΛiV
−1
i (eie

T
i )V

−1
i ΛT

i } and Π = lim
n→∞

1

n

n∑

i=1

E
[
ΛiV

−1
i ΛT

i

]

are two positive definite matrices, where Λi is defined in (2.2).
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C10. The matrix 1
n

∑n
i=1 Ui(β

(r)
0 , θ0)U

T
i (β

(r)
0 , θ0) converges almost surely to an

invertible positive definite matrix Σ(β
(r)
0 , θ0), where

Ui(β
(r)
0 ,θ0) =




ΛiA
−1/2
i M1A

−1/2
i ei

ΛiA
−1/2
i M2A

−1/2
i ei

...

ΛiA
−1/2
i MkA

−1/2
i ei




, Σ(β
(r)
0 ,θ0) = lim

n→∞
1

n

n∑

i=1

E[Ui(β
(r)
0 ,θ0)U

T
i (β

(r)
0 ,θ0)].

Conditions C1–C8 are actually quite mild and can be easily satisfied, and these

conditions are also found in Li et al. (2010). Condition C1 ensures that the denom-

inators of ĝ(t;β, θ) and ĝ′(t;β, θ) are, with high probability, bounded away from 0

on t ∈ T for β in a neighborhood of β0. Condition C2 is the standard smoothness

condition. Condition C3 is the usual assumption for the kernel function. Condition

C4 is a necessary condition for the consistency and the asymptotic normality of the

estimator. Condition C5 allows a range of bandwidths that include the optimal

bandwidth because the bias-corrected technique is used. Therefore, we do not need

to use different bandwidths to estimate g(·) and g′(·). Conditions C6 and C7 ensure

that the covariance matrix Σi and the working covariance matrix Vi are invertible

for i = 1, . . . , n. Condition C8 is a technical condition on the moments of the pre-

dictors. Conditions C9 and C10 ensure that the asymptotic variances exist for the

bias-corrected GEE estimator and the bias-corrected QIF estimator, respectively.

Theorem 1. Suppose that the technical conditions (C1)–(C9) hold, and the rth com-

ponent of β0 is positive. Further suppose that the initial estimator is
√
n-consistent

(initial estimator can be obtained, for example, as in Xia and Härdle (2006)), then

there exist solutions β̂(r) and θ̂ of (2.8) that satisfy

√
n

(
β̂(r) − β

(r)
0

θ̂ − θ0

)
L−→ N(0,Π−1Ω(β

(r)
0 , θ0)Π

−1),

where “
L−→” stands for convergence in distribution, and Ω(β

(r)
0 , θ0) and Π are the

positive matrices defined in condition C9.

We now consider the asymptotic normality of the estimator (β̂T, θ̂T)T. By the

result of Wang et al. (2010), we have

β̂ − β0 = J
β
(r)
0
(β̂(r) − β

(r)
0 ) +OP (n

−1).
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By Theorem 1 and the Slutsky’s Theorem, we have the following result.

Corollary 2.1. Under the conditions of Theorem 1, we have

√
n

(
β̂ − β0

θ̂ − θ0

)
L−→ N(0,Ψ),

where

Ψ =

(
J
β
(r)
0

0p×q

0q×(p−1) Iq

)
Π−1Ω(β

(r)
0 , θ0)Π

−1

(
J
β
(r)
0

0p×q

0q×(p−1) Iq

)T

.

3 Bias-corrected QIF

As the working covariance matrix Vi is unknown in practice, misspecification of

the working covariance matrix Vi will lead to less efficient estimators of regression

coefficients. To improve the efficiency of estimation, Qu et al. (2000) introduced the

QIF by assuming that the inverse of the working correlation can be approximated

by a linear combination of several basis matrices, that is

R−1 ≈ a1M1 + a2M2 + · · ·+ akMk, (3.1)

whereM1 is the identity matrix, andM2, . . . ,Mk are symmetric basis matrices which

are determined by the structure of R, and a1, . . . , ak are constant coefficients. The

advantage of this approach is that it does not require estimation of linear coefficients

ai’s which can be viewed as nuisance parameters. In practice, we need to choose

the basis matrices M1, . . . ,Mk. If the correlation matrix R is exchangeable, then

R−1 = a1M1 + a2M2, where M1 is the identity matrix and M2 is a matrix with

0 on the diagonal and 1 off-diagonal. If the correlation matrix R is AR(1), then

R−1 = a1M
∗
1 + a2M

∗
2 + a3M

∗
3 , where M∗

1 is the identity matrix, M∗
2 has 1 on the

sub-diagonal and 0 elsewhere, and M∗
3 has 1 on the corners (1,1) and (m,m) and 0

elsewhere (Qu et al. (2000), Qu and Li (2006)). Qu and Lindsay (2003) developed

an adaptive estimating equation approach to find a reliable approximation to the

inverse of the variance matrix.
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Based on the bias-corrected GEE (2.8) and (3.1), Lai et al. (2013) defined the

following bias-corrected QIF objective function

Qn(β
(r), θ) = Û

T

n (β
(r), θ)C−1

n (β(r), θ)Ûn(β
(r), θ), (3.2)

where Ûn(β
(r), θ) = n−1

n∑
i=1

Ûi(β
(r), θ), Cn(β

(r), θ) = n−1
n∑

i=1

Ûi(β
(r), θ)ÛT

i (β
(r), θ)

and

Ûi(β
(r), θ) =




Λ̂iA
−1/2
i M1A

−1/2
i [Yi − Ĝ(Xiβ;β, θ)−Ziθ]

Λ̂iA
−1/2
i M2A

−1/2
i [Yi − Ĝ(Xiβ;β, θ)−Ziθ]

...

Λ̂iA
−1/2
i MkA

−1/2
i [Yi − Ĝ(Xiβ;β, θ)−Ziθ]


 . (3.3)

It is easy to check that the bias-corrected GEE defined in (2.8) becomes a linear

combination of the extended score vector
∑n

i=1 Ûi(β
(r), θ). Note that the dimension

of Ûi(β
(r), θ) is l = k(p − 1 + q), and it is greater than the number of unknown

parameters. Thus, the method of GMM proposed by Hansen (1982) can be extended

to obtain the estimators of β
(r)
0 and θ0 by minimizing the bias-corrected QIF (3.2).

Similarly, the Newton-Raphson iterative algorithm can be also used to find the

estimators of β
(r)
0 and θ0.

Let (β̂
(r)T
∗ , θ̂T

∗ )
T be the bias-corrected QIF estimator of ξ0 = (β

(r)T
0 , θT

0 )
T, then

our bias-corrected QIF estimator for (βT, θT)T is (β̂T
∗ , θ̂

T
∗ )

T = (β(β̂
(r)
∗ )T, θ̂T

∗ )
T. We

also define the estimator of the link function g(·) by (2.4) with β and θ replaced

by β̂∗ and θ̂∗, respectively. The following asymptotic results have been obtained in

Lai et al. (2013).

Theorem 2. Suppose that the technical conditions (C1)–(C8) and (C10) hold, then

we have

(1) the bias-corrected QIF estimator (β̂
(r)T
∗ , θ̂T

∗ )
T by minimizing (3.2) exists and

converges to (β
(r)T
0 , θT

0 )
T in probability;

(2) the bias-corrected QIF estimator (β̂
(r)T
∗ , θ̂T

∗ )
T is asymptotically normal. That

is

√
n

(
β̂

(r)
∗ − β

(r)
0

θ̂∗ − θ0

)
L−→ N

(
0,
(
ΓTΣ−1(β

(r)
0 , θ0)Γ

)−1
)
,
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where Σ(β
(r)
0 , θ0) is the positive definite matrix defined in conditions (C10), and

Γ = lim
n→∞

1

n

n∑

i=1

E




ΛiA
−1/2
i M1A

−1/2
i ΛT

i

ΛiA
−1/2
i M2A

−1/2
i ΛT

i
...

ΛiA
−1/2
i MkA

−1/2
i ΛT

i




is an l × (p− 1 + q) matrix with the rank being p− 1 + q.

By β̂∗ − β0 = J
β
(r)
0
(β̂

(r)
∗ − β

(r)
0 ) + OP (n

−1), we have the following asymptotic

normality of the estimator (β̂T
∗ , θ̂

T
∗ )

T.

Corollary 3.1. Under the conditions of Theorem 2, we have

√
n

(
β̂∗ − β0

θ̂∗ − θ0

)
L−→ N(0,Φ),

where

Φ =

(
J
β
(r)
0

0p×q

0q×(p−1) Iq

)(
ΓTΣ−1(β

(r)
0 , θ0)Γ

)−1
(

J
β
(r)
0

0p×q

0q×(p−1) Iq

)T

.

4 Variable selection and the asymptotic proper-

ties

In practice, not all explanatory variables are predictive of the response. It is of
interest to automatically select the relevant predictors in the model. We use penal-
ization approach to simultaneously estimate parameters and remove irrelevant vari-
ables. Given qλ = p′λ for some penalty function pλ, we consider the bias-corrected
penalized GEE

UP (β(r),θ) =

n∑

i=1

Λ̂iV
−1
i [Yi−Ĝ(Xiβ;β,θ)−Ziθ]−nqλ1(|β(r)|)sgn(β(r))−nqλ2(|θ|)sgn(θ),

(4.1)

where

qλ1(|β(r)|) = (qλ1(|β1|), . . . , qλ1(|βr−1|), qλ1(|βr+1|), . . . , qλ1(|βp|), 0T
q×1)

T,

sgn(β(r)) = (sgn(β1), . . . , sgn(βr−1), sgn(βr+1), . . . , sgn(βp), 0
T
q×1)

T,

12



with sgn(t) = I(t > 0) − I(t < 0) the sign function, and qλ(|β(r)|)sgn(β(r))

is the componentwise product of qλ(|β(r)|) and sgn(β(r)). Similarly, qλ2(|θ|) =

(0T
(p−1)×1, qλ2(|θ1|), . . . , qλ2(|θq|))T, sgn(θ) = (0T

(p−1)×1, sgn(θ1), . . . , sgn(θq))
T.

Since the penalty is typically not continuous, we consider an approximate zero-

crossing of UP (β(r), θ). For convenience, we denote ξ0 = (β
(r)T
0 , θT

0 )
T, ξ̂ = (β̂(r)T, θ̂T)T.

As defined in Johnson et al. (2008), (β̂(r), θ̂) is an approximate zero-crossing to (4.1)

if limn→∞limǫ→0+n
−1UP

j (ξ̂ + ǫej)U
P
j (ξ̂ − ǫej) ≤ 0, 1 ≤ j ≤ p − 1 + q, where ej is

the vector with one at position j and zero otherwise, and UP
j is the jth component

of UP .

Various penalty functions have been used in the variable selection literature for

linear regression models. We adopt the smoothly clipped absolute deviation (SCAD)

penalty function proposed in Fan and Li (2001), which is given by

p′λ(|x|) = λ

{
I(|x| ≤ λ) +

(cλ− |x|)+
(c− 1)λ

I(|x| > λ)

}
for some c > 2,

where the notation (z)+ stands for the positive part of z. Fan and Li (2001) sug-

gested using c = 3.7 for the SCAD penalty function.

Similarly, for the QIF approach, we can consider the bias-corrected penalized

QIF

nQn(β
(r), θ) + n

∑

1≤j≤p,j 6=r

pλ1(|βj |) + n
∑

1≤j≤q

pλ2(|θj |). (4.2)

To state the theoretical properties of penalized estimators, we assume the pa-

rameters in the true model are β0 = (βT
1 ,β

T
2 = 0T)T and θ0 = (θT

1 , θ
T
2 = 0T)T,

where β1 and θ1 are p0-dimensional and q0-dimensional respectively. We also as-

sume r ≤ p0, that is, we can correctly identify one nonzero coefficient in the index

vector to carry out the “delete-one-component” procedure.

Theorem 3. (a) Under the conditions (C1)–(C9), if λ1 → 0,
√
nλ1 → ∞, λ2 → 0,

√
nλ2 → ∞, then there exists an approximate zero-crossing of the bias-corrected

penalized GEE (4.1), denoted by (β̂(r), θ̂), that satisfies

(i) β̂
(r)
2 = (β̂p0+1, . . . , β̂p)

T = 0, θ̂2 = (θ̂q0+1, . . . , θ̂q)
T = 0;

(ii)

√
n

(
β̂

(r)
1 − β

(r)
1

θ̂1 − θ1

)
L−→ N(0,Π−1

11 Ω11(β
(r)
1 , θ1)Π

−1
11 ),
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where Π11, Ω11 are defined similarly as Π and Ω, but using only the first p0

columns of Xi and the first q0 columns of Zi.

(b) Under the conditions (C1)–(C8) and (C10), if λ1 → 0,
√
nλ1 → ∞, λ2 → 0,

√
nλ2 → ∞, then there exists a local minimizer of the bias-corrected penalized QIF

(4.2), denoted by (β̂(r), θ̂) (with abuse of notation) that satisfies

(i) β̂
(r)
2 = (β̂p0+1, . . . , β̂p)

T = 0, θ̂2 = (θ̂q0+1, . . . , θ̂q)
T = 0;

(ii)

√
n

(
β̂

(r)
1 − β

(r)
1

θ̂1 − θ1

)
L−→ N

(
0,
(
ΓT
11Σ

−1
11 (β

(r)
1 , θ1)Γ11

)−1
)
,

where Γ11, Σ11 are defined similarly as Γ and Σ, but using only the first p0

columns of Xi and the first q0 columns of Zi.

In the process of variable selection, the tuning parameters λ1 and λ2 should be

determined. For a given data set with a finite sample size, it is practically important

to select the unknown tuning parameters with a data driven method. In this paper,

we use the BIC (Liang et al. (2010)) to select the tuning parameters (λ1, λ2), that

is

BICλ1,λ2 = log
(Sλ1,λ2

n

)
+ dfλ1,λ2

log n

n
,

where

Sλ1,λ2 =
n∑

i=1

mi∑

j=1

(Yij − ZT
ij θ̂ − ĝ(XT

ijβ̂))
2,

and dfλ1,λ2 denotes the number of nonzero components of the estimated parameters.

5 Numerical examples

5.1 Simulation studies

In this subsection, we present some simulation studies to evaluate the finite sam-

ple performance of the proposed estimation. We denote the bias-corrected GEE

estimators as β̂G, θ̂G, ĝG(·) and the bias-corrected QIF estimators as β̂Q, θ̂Q, ĝQ(·).
The working independence estimators β̂I , θ̂I and ĝI(·) are used as comparison in
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these examples. In our simulations, we also compare our proposed methods with

the method of Wang and Qu (2009). The proposed estimators of Li et al. (2010)

are the same as our bias-corrected GEE estimators. Note that in Wang and Qu’s

paper parametric models (in particular linear models) are considered. However a

linear model does not work well for our simulated data which are generated from a

nonlinear model and thus the results are not reported here. Instead, we assume the

true g is known and used to compute Wang and Qu’s estimator which is denoted

by β̂WQ, θ̂WQ. In order to evaluate the variable selection procedure proposed in

Section 4, the oracle estimators β̂O and θ̂O are computed as a comparison, where

the zero components are known a priori.

To measure the performance of the proposed estimators, the biases and standard

errors of the estimators of β0 and θ0 are reported. We also define the mean squared

errors of the estimators of β0 and θ0 and g(·) as

MSEβ̂H
=

1

L

L∑

i=1

(
1

p

p∑

k=1

(β̂
(i)
k,H − βk)

2

)
, MSEθ̂H

=
1

L

L∑

i=1

(
1

q

q∑

k=1

(θ̂
(i)
k,H − θk)

2

)

and

MSEĝH =
1

L

L∑

i=1

(
1

n

n∑

j=1

(
1

mj

mi∑

k=1

(ĝH(t̂
(i)
k )− g(tk))

2

))
, t̂

(i)
k = XT

jkβ̂
(i)
H , tk = XT

jkβ0,

where H denotes I, G, Q or WQ, and L is the number of replications. To evaluate

the performance of the proposed variable selection method, we used the following

cirteria.

• The square of the R statistic: R2
β = |β̂Tβ0|2

|βT
0 β0|2 and R2

θ = |θ̂Tθ0|2
|θT

0 θ0|2 .

• The numbers of zero coefficients and nonzero coefficients obtained by different

methods: “TN” is the average number of zero coefficients correctly estimated

as zero, and “TP” is the number of nonzero coefficients identified as nonzero.

The data are generated from the following model:

Yik = g(tik) + ZT
ikθ0 + eik, tik = XT

ikβ0, (5.1)

where g(t) = et, Xik = (Xik1, . . . , Xikp)
T and Zik are generated from N(0, Imi

) and

U(0, 1), respectively, i = 1, . . . , n; k = 1, . . . , mi. The error ei = (ei1, . . . , eimi
)T
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Table 1: The biases, standard errors and MSE of the proposed estimators for Ex-
ample 1 with the true correlation matrix being exchangeable (the values in the
parentheses are the corresponding standard errors of the estimators).
n Exchangeable β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence 0.0012(0.0431) -0.0013(0.0605) 0.0019(0.0672) 0.2750(0.7156) 0.0034 0.5873 1.3824
GEE 0.0017(0.0288) -0.0023(0.0399) -0.0005(0.0486) 0.0756(0.3669) 0.0016 0.1402 1.2189
QIF 0.0007(0.0316) -0.0014(0.0436) 0.0007(0.0510) 0.0546(0.3288) 0.0018 0.1110 1.2007

QIFWQ 0.0007(0.0253) -0.0011(0.0356) 0.0006(0.0403) 0.0052(0.2147) 0.0012 0.0472 –
120 Independence -0.0008(0.0251) 0.0009(0.0358) 0.0007(0.0400) 0.1462(0.4294) 0.0012 0.2056 0.9342

GEE -0.0005(0.0173) 0.0010(0.0244) -0.0004(0.0267) 0.0426(0.2181) 0.0005 0.0493 0.8956
QIF -0.0001(0.0179) 0.0003(0.0253) -0.0002(0.0278) 0.0331(0.2037) 0.0006 0.0425 0.8862

QIFWQ -0.0002(0.0153) 0.0005(0.0216) -0.0005(0.0267) 0.0074(0.1436) 0.0005 0.0207 –
n AR(1) β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence 0.0012(0.0431) -0.0013(0.0605) 0.0019(0.0672) 0.2750(0.7156) 0.0034 0.5873 1.3824
GEE 0.0016(0.0308) -0.0017(0.0434) -0.0015(0.0505) 0.0714(0.3679) 0.0018 0.1403 1.2196
QIF 0.0009(0.0331) -0.0009(0.0505) -0.0009(0.0537) 0.0624(0.3585) 0.0020 0.1323 1.2151

QIFWQ -0.0005(0.0277) -0.0002(0.0387) 0.0007(0.0423) 0.0068(0.2299) 0.0014 0.0528 –
120 Independence -0.0008(0.0251) 0.0009(0.0358) 0.0007(0.0400) 0.1426(0.4294) 0.0012 0.2056 0.9342

GEE -0.0001(0.0179) 0.0002(0.0254) -0.0002(0.0289) 0.0459(0.2265) 0.0006 0.0533 0.8936
QIF 0.0003(0.0190) -0.0002(0.0270) -0.0004(0.0296) 0.0334(0.2166) 0.0007 0.0480 0.8958

QIFWQ 0.0003(0.0164) -0.0001(0.0233) -0.0007(0.0267) 0.0074(0.1529) 0.0005 0.0234 –

follows an mi-dimensional multivariate normal distribution with mean 0 and covari-

ance Σi = σ2
iΣ

mi

0 , i = 1, . . . , n. Here we consider two different types of correlation

matrix Σmi

0 , one is the exchangeable correlation structure and the other is the AR(1)

correlation structure with ρ = 0.6. The kernel function used here isK(x) = 3
4
(1−x2)

if |x| ≤ 1, 0 otherwise. The bandwidth is obtained through the leave-one-out cross-

validation bandwidth selection method.

Example 1. For model (5.1), let p = 3, q = 1, m1 = · · · = mn = m = 3,

β0 = 1√
14
(3, 2, 1)T and θ0 = 0.3. Let σi = 1, i = 1, . . . , [n/2], and σi = 2, i =

[n/2]+1, . . . , n, where [x] denotes the integer part of x. The true covariance matrix

Σm
0 has an exchangeable correlation structure or an AR(1) correlation structure.

The sample size for the simulated data is n = 60 or 120, and the number of the

simulated datasets is 1000. Two working correlation matrices, exchangeable and

AR(1), are considered. We report the results in Tables 1–2.

Example 2. We use the same model as in Example 1, with unbalanced cluster

sizes. Let mi = 3, σi = 1, i = 1, . . . , [n/3], mi = 4, σi = 2, i = [n/3] + 1, . . . , [2n/3]

and mi = 5, σi = 3, i = [2n/3] + 1, . . . , n. We report the results in Tables 3–4.

From Tables 1–4, by the biases, standard errors and MSE of the proposed esti-

mators, the bias-corrected GEE estimators and bias-corrected QIF estimators have

better performance than the working independence estimators. And when the work-
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Table 2: The biases, standard errors and MSE of the proposed estimators for Ex-
ample 1 with the true correlation matrix being AR(1) (the values in the parentheses
are the corresponding standard errors of the estimators).
n Exchangeable β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence 0.0011(0.0431) -0.0012(0.0602) 0.0020(0.0679) 0.2708(0.7109) 0.0034 0.5782 1.3829
GEE 0.0013(0.0303) -0.0021(0.0417) 0.0004(0.0518) 0.0718(0.3644) 0.0018 0.1378 1.2087
QIF 0.0006(0.0332) -0.0017(0.0460) 0.0017(0.0536) 0.0558(0.3558) 0.0020 0.1296 1.2087

QIFWQ 0.0007(0.0268) -0.0011(0.0378) 0.0003(0.0450) 0.0062(0.2219) 0.0014 0.0492 –
120 Independence -0.0010(0.0250) 0.0012(0.0355) 0.0007(0.0397) 0.1421(0.4289) 0.0012 0.2040 0.9294

GEE -0.0008(0.0182) 0.0012(0.0256) -0.0002(0.0283) 0.0428(0.2292) 0.0006 0.0543 0.9007
QIF -0.0004(0.0191) 0.0007(0.0253) -0.0001(0.0295) 0.0325(0.2163) 0.0006 0.0478 0.8793

QIFWQ -0.0005(0.0164) 0.0009(0.0233) -0.0004(0.0281) 0.0056(0.1469) 0.0005 0.0216 –
n AR(1) β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence 0.0011(0.0431) -0.0012(0.0602) 0.0020(0.0679) 0.2708(0.7109) 0.0034 0.5782 1.3829
GEE 0.0015(0.0302) -0.0020(0.0422) -0.0006(0.0493) 0.0673(0.3509) 0.0017 0.1275 1.1993
QIF 0.0011(0.0324) -0.0012(0.0452) -0.0008(0.0532) 0.0594(0.3480) 0.0020 0.1245 1.2185

QIFWQ 0.0001(0.0267) -0.0003(0.0370) 0.0005(0.0416) 0.0061(0.2192) 0.0013 0.0480 –
120 Independence -0.0010(0.0250) 0.0012(0.0355) 0.0007(0.0397) 0.1421(0.4289) 0.0012 0.2040 0.9294

GEE -0.0005(0.0174) 0.0007(0.0247) -0.0001(0.0281) 0.0447(0.2216) 0.0006 0.0510 0.8968
QIF 0.0000(0.0188) 0.0007(0.0263) -0.0004(0.0289) 0.0313(0.2079) 0.0006 0.0442 0.8866

QIFWQ 0.0001(0.0160) 0.0001(0.0227) -0.0006(0.0260) 0.0068(0.1453) 0.0005 0.0212 –

Table 3: The biases, standard errors and MSE of the proposed estimators for Ex-
ample 2 with the true correlation matrix being exchangeable (the values in the
parentheses are the corresponding standard errors of the estimators).
n Exchangeable β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence -0.0021(0.0546) 0.0016(0.0747) 0.0029(0.0864) 0.2357(0.6789) 0.0054 0.5159 1.3987
GEE -0.0011(0.0394) 0.0007(0.0549) 0.0019(0.0621) 0.0870(0.4032) 0.0028 0.1700 1.3735
QIF -0.0009(0.0401) 0.0002(0.0563) 0.0021(0.0651) 0.0738(0.4176) 0.0030 0.1796 1.3799

QIFWQ -0.0012(0.0270) 0.0008(0.0383) 0.0019(0.0446) 0.0074(0.2480) 0.0014 0.0615 –
120 Independence -0.0002(0.0325) 0.0008(0.0454) -0.0011(0.0523) 0.1453(0.4500) 0.0020 0.2235 0.9206

GEE -0.0008(0.0206) 0.0010(0.0292) 0.0004(0.0333) 0.0499(0.2383) 0.0008 0.0592 0.9001
QIF -0.0005(0.0212) 0.0008(0.0299) -0.0001(0.0345) 0.0407(0.2234) 0.0008 0.0515 0.9070

QIFWQ -0.0005(0.0157) 0.0007(0.0230) 0.0002(0.0258) 0.0009(0.0267) 0.0005 0.0267 –
n AR(1) β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence -0.0021(0.0546) 0.0016(0.0747) 0.0029(0.0864) 0.2357(0.6789) 0.0054 0.5159 1.3987
GEE -0.0013(0.0418) 0.0016(0.0574) 0.00107(0.0655) 0.0866(0.4150) 0.0031 0.1796 1.3935
QIF -0.0015(0.0417) 0.0015(0.0589) 0.0016(0.0673) 0.0607(0.4220) 0.0033 0.1816 1.3761

QIFWQ -0.0015(0.0296) 0.0017(0.0407) 0.0011(0.0457) 0.0085(0.2611) 0.0015 0.0682 –
120 Independence -0.0002(0.0325) 0.0008(0.0454) -0.0011(0.0523) 0.1453(0.4500) 0.0020 0.2235 0.9206

GEE -0.0006(0.0217) 0.0006(0.0312) 0.0006(0.0349) 0.0446(0.2541) 0.0009 0.0665 0.8915
QIF -0.0004(0.0221) 0.0008(0.0315) -0.0004(0.0364) 0.0289(0.2358) 0.0009 0.0564 0.9028

QIFWQ -0.0005(0.0169) 0.0009(0.0246) -0.0004(0.0275) -0.0007(0.0290) 0.0005 0.0290 –
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Table 4: The biases, standard errors and MSE of the proposed estimators for Ex-
ample 2 with the true correlation matrix being AR(1) (the values in the parentheses
are the corresponding standard errors of the estimators).
n Exchangeable β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence -0.0030(0.0541) 0.0020(0.0754) 0.0051(0.0860) 0.2442(0.6909) 0.0054 0.5366 1.4187
GEE -0.0014(0.0425) -0.0005(0.0599) 0.0051(0.0679) 0.0782(0.4145) 0.0033 0.1777 1.3623
QIF -0.0008(0.0434) -0.0009(0.0614) 0.0042(0.0701) 0.0678(0.4449) 0.0035 0.2023 1.3830

QIFWQ -0.0015(0.0316) 0.0012(0.0425) 0.0021(0.0508) 0.0062(0.2534) 0.0018 0.0642 –
120 Independence 0.0005(0.0323) -0.0000(0.0462) -0.0014(0.0521) 0.1463(0.4504) 0.0020 0.2240 0.9068

GEE -0.0006(0.0226) 0.0007(0.0316) 0.0004(0.0362) 0.0509(0.2553) 0.0009 0.0677 0.9036
QIF -0.0004(0.0232) 0.0008(0.0325) -0.0002(0.0378) 0.0421(0.2485) 0.0010 0.0635 0.9052

QIFWQ -0.0006(0.0174) 0.0008(0.0251) 0.0002(0.0286) 0.0004(0.1651) 0.0006 0.0272 –
n AR(1) β1 β2 β3 θ MSE

β̂
MSE

θ̂
MSEĝ

60 Independence -0.0030(0.0541) 0.0020(0.0754) 0.0051(0.0860) 0.2442(0.6909) 0.0054 0.5366 1.4187
GEE -0.0011(0.0413) -0.0001(0.0577) 0.0035(0.0642) 0.0850(0.4100) 0.0031 0.1751 1.3768
QIF -0.0016(0.0419) 0.0006(0.0593) 0.0034(0.0676) 0.0525(0.3982) 0.0033 0.1612 1.3851

QIFWQ -0.0015(0.0282) 0.0018(0.0400) 0.0010(0.0451) 0.0099(0.2448) 0.0015 0.0600 –
120 Independence 0.0005(0.0323) -0.0000(0.0462) -0.0014(0.0521) 0.1463(0.4504) 0.0020 0.2240 0.9068

GEE -0.0005(0.0208) 0.0006(0.0298) 0.0003(0.0341) 0.0504(0.2654) 0.0008 0.0729 0.8981
QIF -0.0006(0.0216) 0.0012(0.0307) -0.0006(0.0352) 0.0301(0.2323) 0.0009 0.0548 0.9004

QIFWQ -0.0005(0.0163) 0.0009(0.0235) -0.0002(0.0269) 0.0006(0.1577) 0.0005 0.0248 –

ing correlation models are correctly specified, the performances of the estimators are

usually slightly better. On the other hand, even when the working correlation is mis-

specified, both proposals still have comparable performance. Since we use the true

g(·) to compute the estimators of Wang and Qu (2009), their estimators perform

the best because their method avoids estimating the index function. When the sam-

ple size becomes big, the bias-corrected QIF method is a slightly better choice for

estimating the unknown parameters in terms of MSE. For sample size n = 60, the

bias-corrected GEE and the bias-corrected QIF methods use about 12 seconds for

each simulated data set, and for sample size n = 120, these two methods use about

16 seconds, implemented in Matlab on our PC.

Example 3. For model (5.1), let p = 20, q = 30, m1 = · · · = mn = m = 3, β0 =
1√
14
(3, 2, 1, 0T)T, θ0 = (3, 1.5, 0T)T, and the covariance matrix Σi = σ2

1Σ
m
0 , σ1 = 0.5,

i = 1, . . . , [n/3]; Σi = σ2
2Σ

m
0 , σ2 = 1.0, i = [3/n]+1, . . . , [2n/3]; Σi = σ2

3Σ
m
0 , σ3 = 2.0,

i = [2n/3] + 1, . . . , n. Σm
0 is an exchangeable correlation matrix, and the working

correlation matrix is assumed to be exchangeable or AR(1). The sample sizes for

the simulated data are n = 50, 100, 200 and 400, and the number of simulated data

sets is 100. We report the results in Tables 5 and 6.

From Tables 5–6, we can explore the performance of the penalized bias-corrected

GEE estimators and the penalized bias-corrected QIF estimators. The oracle esti-
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Table 5: Simulation results for Example 3 with working correlation being ex-
changeable (the values in the parentheses are the corresponding standard errors).
Here ξ∗ = (βT

0 , θ
T
0 )

T.
Exchangeable

n Method R2
β TNβ TPβ R2

θ TNθ TPθ

50 ξ̂∗
O 0.9992(0.0011) 17 3 1.0486(0.1537) 28 2

ξ̂∗
I 0.9470(0.0708) 16.46 2.56 0.9924(0.5084) 27.37 1.72

ξ̂∗
G 0.9612(0.0763) 16.54 2.77 1.0095(0.3235) 27.78 1.91

ξ̂∗
Q 0.9503(0.0930) 16.53 2.65 0.9712(0.2733) 27.69 1.80

ξ̂∗
WQ 0.9879(0.0238) 16.81 2.91 0.9862(0.1188) 27.84 1.87

100 ξ̂∗
O 0.9996(0.0007) 17 3 1.0157(0.0865) 28 2

ξ̂∗
I 0.9862(0.0258) 16.76 2.90 1.0780(0.2953) 27.69 1.94

ξ̂∗
G 0.9938(0.0184) 16.98 2.93 1.0449(0.1489) 27.92 2

ξ̂∗
Q 0.9916(0.0221) 16.96 2.91 1.0080(0.1124) 27.89 1.97

ξ̂∗
WQ 0.9992(0.0012) 17 3 1.0033(0.0569) 28 2

200 ξ̂∗
O 0.9999(0.0002) 17 3 1.0114(0.0838) 28 2

ξ̂∗
I 0.9954(0.0151) 16.95 2.96 1.1078(0.2499) 27.82 2

ξ̂∗
G 0.9995(0.0136) 17 3 1.0367(0.0895) 28 2

ξ̂∗
Q 0.9963(0.0146) 16.98 2.96 1.0281(0.0709) 27.69 2

ξ̂∗
WQ 0.9997(0.0004) 17 3 1.0073(0.0357) 28 2

400 ξ̂∗
O 0.9999(0.0001) 17 3 1.0119(0.0345) 28 2

ξ̂∗
I 0.9987(0.0007) 17 3 1.0770(0.1876) 27.85 2

ξ̂∗
G 0.9998(0.0002) 17 3 1.0105(0.0699) 27.8833 2

ξ̂∗
Q 0.9993(0.0004) 17 2.9833 0.9975(0.0708) 27.8667 1.9833

ξ̂∗
WQ 0.9999(0.0001) 17 3 1.0008(0.0255) 28 2
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Table 6: Simulation results for Example 3 with working correlation being AR(1)
(the values in the parentheses are the corresponding standard errors). Here ξ∗ =
(βT

0 , θ
T
0 )

T.
AR(1)

n Method R2
β TNβ TPβ R2

θ TNθ TPθ

50 ξ̂∗
O 0.9991(0.0012) 17 3 1.0383(0.1359) 28 2

ξ̂∗
I 0.9470(0.0708) 16.46 2.65 0.9924(0.5084) 27.37 1.72

ξ̂∗
G 0.9545(0.0927) 16.51 2.76 0.9808(0.2268) 27.68 1.91

ξ̂∗
Q 0.9311(0.1048) 16.46 2.58 0.9532(0.3813) 27.6 1.68

ξ̂∗
WQ 0.9852(0.0306) 16.76 2.90 1.0072(0.1104) 27.69 1.91

100 ξ̂∗
O 0.9995(0.0007) 17 3 1.0173(0.0860) 28 2

ξ̂∗
I 0.9862(0.0258) 16.76 2.90 1.0780(0.2953) 27.69 1.94

ξ̂∗
G 0.9909(0.0227) 16.95 2.90 1.0342(0.1278) 27.76 2

ξ̂∗
Q 0.9882(0.0347) 16.91 2.90 1.0035(0.1743) 27.72 1.95

ξ̂∗
WQ 0.9990(0.0013) 16.99 3 1.0041(0.0634) 28 2

200 ξ̂∗
O 0.9999(0.0002) 17 3 1.0108(0.0787) 28 2

ξ̂∗
I 0.9954(0.0151) 16.99 2.96 1.1078(0.2499) 27.82 2

ξ̂∗
G 0.9991(0.0034) 17 3 1.0321(0.0846) 27.97 1.99

ξ̂∗
Q 0.9965(0.0142) 17 2.96 1.0243(0.0960) 27.86 1.99

ξ̂∗
WQ 0.9996(0.0004) 17 3 1.0073(0.0375) 28 2

400 ξ̂∗
O 0.9999(0.0001) 17 3 1.0128(0.0359) 28 2

ξ̂∗
I 0.9993(0.0007) 17 3 1.0770(0.1876) 27.8833 2

ξ̂∗
G 0.9998(0.0002) 17 3 1.0119(0.1034) 27.8167 2

ξ̂∗
Q 0.9998(0.0002) 17 3 0.9901(0.0886) 28 1.9667

ξ̂∗
WQ 0.9999(0.0001) 17 3 1.0005(0.0256) 27.9833 2
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Table 7: Simulation results for GEE estimator for Example 3 when the true correla-
tion matrix is AR(1) and the working correlation is AR(1) or exchangeable (the val-
ues in the parentheses are the corresponding standard errors). Here ξ∗ = (βT

0
, θT

0
)T.

AR(1)
n Method R2

β TNβ TPβ R2
θ TNθ TPθ

50 ξ̂∗G 0.9668(0.0535) 16.46 2.8 1.0589(0.4369) 27.52 1.92

100 ξ̂∗G 0.9948(0.0174) 16.98 2.95 1.0540(0.1633) 27.76 2

200 ξ̂∗G 0.9995(0.0007) 17 3 1.0490(0.1398) 27.96 2

400 ξ̂∗G 0.9998(0.0002) 17 3 1.0189(0.0804) 28 2
Exchangeable

50 ξ̂∗G 0.9657(0.0608) 16.45 2.75 1.0692(0.4827) 27.35 1.96

100 ξ̂∗G 0.9901(0.0294) 16.95 2.92 1.0386(0.1729) 27.66 1.99

200 ξ̂∗G 0.9983(0.0115) 17 3 1.0317(0.1269) 27.96 2

400 ξ̂∗G 0.9998(0.0002) 17 3 1.0194(0.1083) 27.8375 2

mators give the perfect values of TNβ, TPβ, TNθ, TPθ. From Tables 5 and 6, it

can be observed that the proposed estimators are close to the oracle estimators in

terms of R2
β and R2

θ, which are close to 1. Generally, with the sample size increasing,

the proposed method’s performance in terms of R2
β, R

2
θ, TNβ, TPβ, TNθ and TPθ

improves. From Tables 5–6, it is easy to see that the proposed estimators perform

better in terms of R2
β and R2

θ when the working correlation structure is correctly

specified. In addition, even when the working correlation is misspecified, the bias-

corrected penalized GEE method and the bias-corrected penalized QIF method still

can identify the important variables. It shows that the proposed penalized methods

are not sensitive to the choice of the working correlation structure. In terms of

computation time, for each simulated data set, the penalized methods take about 2

minutes, 4 minutes, 12 minutes and 40 minutes for sample size n = 50, 100, 200 and

400, respectively

To conform further the effect of correlation matrix on variable selection, we now

use AR(1) correlation matrix as the truth and consider bias-corrected penalized

GEE estimators using AR(1) and exchangeable correlation matrix in model fitting.

The results are reported in Table 7. The observations we can make are similar as

before. It shows that the proposed bias-corrected penalized GEE method is not

quite sensitive to the choice of the working correlation structure.
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5.2 Application to CD4 data

We now apply the method to the CD4 data from the Multi-Center AIDS Cohort

Study. This data set consists of 283 homosexual males who were HIV positive be-

tween 1984 and 1991. All individuals were scheduled to have their measurements

taken during semiannual visits. Each patient had a different number of repeated

measurements and the true observation times were not equally spaced because pa-

tients often missed or rescheduled their appointments. Details of the study were de-

scribed in Huang et al. (2002) and Fan and Li (2004). Qu and Li (2006) analyzed

the same data set using varying coefficient models. Here we apply the partially

linear single-index model to this data set.
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Figure 1: The kernel smoothing plots between each covariate and response variable.

The response variable Y is the CD4 percentage over time. Four covariates are also

collected: T , patients’ visiting time; X1, patient’s age; X2, the individual’s smoking

status, which takes binary values 1 or 0, according to whether a individual is a

smoker or nonsmoker; X3, the CD4 cell percentage before infection. We also consider

the squares and cross multiples of these covariates, which include X4 = T 2, X5 =

X2
1 , X6 = X2

3 , X7 = T × X1, X8 = T × X2, X9 = T × X3, X10 = X1 × X2, X11 =

X1 ×X3, X12 = X2 ×X3. In order to apply the partially linear single-index model,
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we first divide all these covariates into two groups, the linear part and the single-

index part as follows. After standardizing these variables, the kernel smoothing

plots between each covariate and the response variable are shown in Figure 1. From

visual inspection we use variables Z = (T,X2, X3, X5, X9, X12)
T in the linear part,

and the others in the single-index part. We compare our method with that of

Wang and Qu (2009), for which we assume the model is linear (g is a linear function).

We apply the bias-corrected penalized GEE procedure, the bias-corrected penalized

QIF procedure, and the procedure proposed by Wang and Qu (2009) with the AR(1)

working correlation matrix. And we also consider the bias-corrected penalized GEE

procedure with independent working correlation matrix. Applying these procedures,

we can select the important variables starting from the following model

Yi = Ziθ + g(Xiβ) + ei,

where

Yi =




Yi1
...

Ymi


 , Zi =




Ti1 Xi21 Xi31 Xi51 Xi91 Xi121

· · · · · · · · · · · · · · · · · ·
Timi

Xi2mi
Xi3mi

Xi5mi
Xi9mi

Xi12mi


 ,

Xi =




Xi11 Xi41 Xi61 Xi71 Xi81 Xi101 Xi111

· · · · · · · · · · · · · · · · · · · · ·
Xi1mi

Xi4mi
Xi6mi

Xi7mi
Xi8mi

Xi10mi
Xi11mi


 , ei =




εi1
...

εmi


 .

The estimated nonzero parameters and their 95% confidence intervals are reported

in Table 8. Here, these intervals are constructed using similar methods as in

Carroll et al. (1997). In order to compare the mean squared prediction error (MSPE),

we use five-fold cross-validation, and the results are also shown in Table 8. From

Table 8, we see that all the methods identify similar models, and the bias-corrected

penalized GEE procedure has the best performance based on MSPE although the

differences among various methods are small. Wang and Qu’s method has the largest

MSPE suggesting the assumption of g(·) being linear is probably wrong. Further-

more, if we focus on the variable selection problem, the bias-corrected penalized QIF

method obtains the smallest numbers of significant variables with similar MSPE to

the bias-corrected penalized GEE method. The fitted curves for the unknown link

function g(·) are shown in Figure 2.

23



Table 8: Estimates and confidence intervals of the nonzero parameters for the real
data.

Estimates Confidence interval Estimates Confidence interval MSPE

GEE βX1 -0.6627 [-0.7469,-0.5785] βX4 0.6124 [0.5354,0.6894] 0.7294
βX7 -0.4310 [-0.4703,-0.3918]
θT -0.3528 [-0.4617,-0.2439] θX3 0.4527 [0.2535,0.6519]

QIF βX1 -0.9212 [-0.9674,-0.8751] βX4 0.3891 [0.2797,0.4984] 0.7330
θT -0.3789 [-0.5263,-0.2314] θX3 0.2814 [0.1776,0.3852]

QIFWQ βX8 -0.1876 [-0.3865,0.0113] 0.8304
θT -0.3789 [-0.5263,-0.2314] θX3 0.2814 [0.1776,0.3852]

Independence βX1 -0.6315 [-0.6887,-0.5743] βX4 0.7754 [0.7288,0.8220] 0.7332
θT -0.3517 [-0.4354,-0.2680] θX3 0.2824 [0.1891,0.3757]
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Figure 2: The estimated link function g(t) where the solid line is obtained by GEE,
the dotted line is obtained by QIF and the dashed line is obtained by the indepen-
dence working correlation matrix.
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6 Concluding remarks

In this paper, we proposed the bias-corrected GEE estimator and the bias-corrected

QIF estimator for partially linear single-index models with longitudinal data. By

taking into account the correlation within each subject, we can improve the per-

formance of the estimators. In addition, variable selection and estimation can be

performed at the same time based on penalization. The resulting estimators are

consistent in identifying the true model and enjoy the oracle property.

The working correlation structure is used to improve the performance of the esti-

mators. When the working correlation structure is correctly specified, the proposed

estimators perform better than the estimators with the misspecified working corre-

lation structure. When the inverse working correlation matrix can be approximated

by a linear combination of several basis matrices, the bias-corrected QIF method can

avoid estimating the nuisance parameters in the working correlation matrix. There-

fore, it is easier to choose the working correlation structure using the bias-corrected

QIF method.

In the real data analysis, we used a heuristic method to separate the predictors

into the linear part and the single-index part. How to separate the predictors into

the linear part and the single-index part in a more principled way is an important

problem. Zhang (2007) proposed the generalized likelihood ratio (GLR) statistic

to test whether some predictors should be in the linear part. Li et al. (2013b)

proposed an adaptive Neyman test statistic to determine which predictors belong to

the linear part. Automatic structure identification for single-index models based on

penalization, following the recent work of Zhang et al. (2011), is another interesting

direction for future investigation.

For longitudinal data it is essential to estimate and select a working correlation

structure since correctly modeling correlation structure will increase the efficiency

of the regression parameter estimator. Estimation and selection of the working cor-

relation structure is a challenging problem. For linear models and generalized linear

models with longitudinal data, some approaches for estimating or selecting a work-

ing correlation structure have been proposed. For example, Chen and Lazar (2012)

proposed an empirical likelihood approach to select the best working correlation

structure in GEE, Zhou and Qu (2012) proposed an approach to estimate and select
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the working correlation structure simultaneously through a group penalty strategy,

and Pan (2001); Pan and Connett (2002) proposed semiparametric and nonpara-

metric approaches to select the working correlation structure in GEE. Estimation

and selection of the working correlation structure in our context is an interesting

topic for future research.
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