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Abstract The distribution of linear combinations

of independent Gumbel random variables is of great

interest for modeling risk and extremes in the most

different areas of application. In this paper we de-

velop near-exact approximations for the distribution

of linear combination of independent Gumbel ran-

dom variables based on a shifted Generalized Near-

Integer Gamma distribution and on the distribution

of the difference of two independent Generalized In-

teger Gamma distributions. These near-exact distri-

butions are computationally appealing and numeri-

cal studies confirm their accuracy, as assessed by a

proximity measure used in related studies. We illus-

trate the proposed approximations on applied prob-

lems in networks engineering, computational biology,

and flood risk management.

Keywords Generalized integer gamma distribu-

tion · Generalized near-integer gamma distribution ·
Gumbel distribution · Near-exact distribution ·
Phase type distributions · Risk.

1 Introduction

The Gumbel distribution is a particular case of the

Generalized Extreme Value distribution and it has

been widely used for modeling risk and extremes

(Gumbel 1941; Tiago de Oliveira 1963; Hosking et al.
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1985; Balakrishnan et al. 1992; Wang 1995; Arnold

et al. 1998; Castillo et al. 2005; Antal et al. 2009).

Linear combinations of Gumbel related random vari-

ates arise naturally in applications whenever there

is the need to model the combination of extremes

of several variables, and this has been a topic of

considerable attention in diverse applications (Bailey

and Gribskov 1997; Cetinkaya et al. 2001; Loaiciga

and Leipnik 1999; Burda et al. 2012). Despite the

wide range of applications in which the distribution

of linear combinations of independent Gumbel ran-

dom variables may be useful, few results are available

on this distribution. Nadarajah (2008) presents the

exact distribution of the linear combination of p in-

dependent Gumbel random variables, using Fox H

and Meijer G functions, but the computational in-
vestment required by these functions limits the prac-

tical usefulness of this result. This was already re-

marked by Burda et al. (2012, p. 189), who claimed

that the exact distribution proposed by Nadarajah

is “extremely complicated to be used.”

In this paper we propose three accurate, man-

ageable, and computationally appealing near-exact

distributions for the linear combination of indepen-

dent Gumbel random variables; the first one for pos-

itive linear combinations, and the second and third

ones can be applied regardless of the sign of the co-

efficients of the linear combination. Our near-exact

distributions have links with phase-type approxima-

tions (Aldous and Shepp 1987; O’Cinneide 1990)

and, as we discuss below, their accuracy can be con-

trolled effectively through a precision parameter. Our

first near-exact distribution is based on the Gener-

alized Integer Gamma (GIG) and Generalized Near-

Integer Gamma (GNIG) distributions, which have a
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wealth of applications in multivariate analysis (Mar-

ques and Coelho 2008; Coelho and Marques 2010,

2012; Marques et al. 2011; Coelho et al. 2013). The

GIG distribution corresponds to the distribution of

the sum of independent Gamma random variables

with integer shape parameters (Amari and Misra

1997; Coelho 1998), while the GNIG distribution

corresponds to the distribution of the sum of a GIG

random variable with an independent Gamma ran-

dom variable with a non-integer shape parameter

(Coelho 2004); further details on the GIG and GNIG

distributions are given in Appendix A. We show that

the exact distribution of a positive linear combina-

tion of independent Gumbel random variables can

be decomposed as the sum of two independent ran-

dom variables: the first corresponding to a linear

combination of independent logarithmized Gamma

random variables, and the second to a shifted Gen-

eralized Integer Gamma (SGIG) random variable.

Our second near-exact distribution is based on the

so-called SDGIG distribution, which corresponds to

the distribution of the shifted difference of two inde-

pendent GIG distributions (Coelho and Mexia 2010,

Chap. 2). Hence, in the context of our second near-

exact distribution, we show that the linear combina-

tion of independent Gumbel random variables can be

decomposed as the sum of two independent random

variables: the first corresponding to a linear com-

bination of independent logarithmized Gamma ran-

dom variables, and the second corresponding to a

SDGIG random variable. The third near-exact distri-

bution is also based on the previous decomposition,

and on the fact that the DGIG distribution can be

represented as a particular mixture of integer Gamma

distributions. These decompositions are extremely

useful as they allow us to construct near-exact dis-

tributions by using a shifted version of the GNIG

distribution—in the case of positive linear combina-

tions—, and by using the SDGIG distribution—in

the case where the coefficients of linear combination

are arbitrary real numbers.

We illustrate our near-exact approximations by

revisiting a problem in network engineering, first ad-

dressed by Cetinkaya et al. (2001), a problem in com-

putational biology, earlier considered by Bailey and

Gribskov (1997), and by addressing the problem of

interval estimation of the location parameter of a

Gumbel distribution in a real data application on

flood risk management, earlier discussed in Hosking

et al. (1985).

The structure of our paper is as follows. In Sec-

tion 2 we introduce the exact and near-exact dis-

tributions of interest. In Section 3 we conduct nu-

merical experiments to assess the level of accuracy

of our near-exact approximations. In Section 4 we il-

lustrate our methods in applied modeling issues, and

we conclude in Section 5.

2 The exact and near-exact distributions

2.1 Exact distribution

Let X1, . . . , Xp be p independent Gumbel random

variables, with location parameter µj ∈ R and scale

parameter σj ∈ R∗+, i.e.

Xj
ind.∼ Gumbel(µj , σj),

FXj (x) = exp[− exp{−(x− µj)/σj}], x ∈ R,
(1)

for j = 1, . . . , p. Here and below we use the notations

R∗+ and A to respectively denote the sets {x ∈ R :

x > 0} and {n ∈ N : n ≥ 2}. The characteristic

functions of Xj and W =
∑p
j=1 αjXj , for αj ∈ R,

are respectively defined as

ΦXj (t) = Γ (1− itσj) exp{itµj},

ΦW (t) =

p∏
j=1

Γ (1− itσjαj) exp{itµjαj}, t ∈ R.

The next theorem provides a characterization of the

exact distribution of the linear combination of inde-

pendent Gumbel random variables.

Theorem 1 Let Xj
ind.∼ Gumbel(µj , σj), with µj ∈

R and σj ∈ R∗+. The exact characteristic function

of W =
∑p
j=1 αjXj, with αj ∈ R, j = 1, . . . , p, can

be written as ΦW (t) = ΦW1
(t)ΦW2

(t), where for any

γ ∈ A,

ΦW1
(t) =

p∏
j=1

Γ (γ − itσjαj)

Γ (γ)
, t ∈ R, (2)

and

ΦW2
(t) =

{ p∏
j=1

γ−2∏
k=0

(
1 + k

σjαj

)(
1 + k

σjαj
− it

)−1}

× exp

{
it

p∑
j=1

µjαj

}
, t ∈ R.

(3)
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Proof: The proof follows by noticing that we can

write the characteristic function of W as

ΦW (t) =

p∏
j=1

Γ (1− itσjαj) exp{itµjαj}

=

{ p∏
j=1

Γ (γ − itσjαj)

Γ (γ)

Γ (γ)

Γ (γ − itσjαj)

× Γ (1− itσjαj)

Γ (1)

}
exp

{
it

p∑
j=1

µjαj

}

=

p∏
j=1

Γ (γ − itσjαj)

Γ (γ)

{ p∏
j=1

γ−2∏
k=0

(1 + k)

× (1 + k − itσjαj)
−1
}

exp

{
it

p∑
j=1

µjαj

}

=

p∏
j=1

Γ (γ − itσjαj)

Γ (γ)

{ p∏
j=1

γ−2∏
k=0

(
1 + k

σjαj

)

×
(

1 + k

σjαj
− it

)−1}
exp

{
it

p∑
j=1

µjαj

}
.

�
Some comments are in order.

i) We can writeW =
∑p
j=1X

′
j , whereX ′j = αjXj ∼

Gumbel(αjµj , αjσj), and hence an alternative pa-

rameterization can be considered by taking

(µ′j , σ
′
j) = (αjµj , αjσj) and setting the corre-

sponding coefficients of the linear combination as

α′j = 1; in addition, to simplify the expressions

we can consider µj = 0, in which case we would

be working with a similar distribution apart from

a shift.

ii) Our results can be readily applied to the prod-

uct of powers of independent Weibull and Fréchet

random variables, through simple transformati-

ons; actually if Xj ∼ Gumbel(µj , σj), then Yj =

exp{−Xj} ∼ Weibull(exp{−µj}, σ−1j ), with dis-

tribution function

FYj (y) = 1− exp

{
−
(

y

exp(−µj)

)1/σj
}
,

and thus
∏p
j=1 Y

αj
j = exp{−

∑p
j=1 αjXj}. If

Y ∗j =exp{Xj} then Y ∗j ∼ Fréchet(exp{µj},σ−1j ),

with distribution function

FY ∗
j

(y) = exp

{
−
(

y

exp(µj)

)−1/σj}
,

and thus
∏p
j=1(Y ∗j )αj = exp{

∑p
j=1 αjXj}. Using

similar transformations it is also possible to apply

our results to more complex distributions, such as

the Generalized Gamma distribution (Marques

2012).

Positive linear combinations (αj > 0)

If all αj are positive, the exact distribution of W

is the same as that of the sum of two independent

random variables, W1 and W2, where

W1 = −
p∑
j=1

σjαj logZj , Zj
ind.∼ Gamma(γ, 1), (4)

with γ ∈ A, is a linear combination of p independent

logarithmized Gamma random variables and W2 is

distributed according to a shifted sum of p × (γ −
1) independent Exponential distributions with pa-

rameters (1 + k)/(σjαj), for j = 1, . . . , p and k =

0, . . . , γ − 2, with shift parameter
∑p
j=1 µjαj .

If some of the Exponential distributions in (3)

have the same parameter we can sum them, obtain-

ing in this way Gamma distributions, so that equa-

tion (3) can be written as

ΦW2
(t) =

{ ∏̀
j=1

(λj)
rj (λj−it)−rj

}
exp

{
it

p∑
j=1

µjαj

}
,

(5)

where ` is the number of Exponential distributions

with different rate parameters, λj are the parameters

of these distributions, and rj is the number of such

distributions with the same rate parameter λj , for

j = 1, . . . , `. We have thus established the following

corollary to Theorem 1.

Corollary 1 Let Xj
ind.∼ Gumbel(µj , σj), with µj ∈

R and σj ∈ R∗+. If W =
∑p
j=1 αjXj, with αj ∈ R∗+,

j = 1, . . . , p, then it holds that W = W1 + W2, with

W1 as in (4) and

W2 ∼ SGIG

(
r,λ, `,

p∑
j=1

µjαj

)
,

where r = (r1, . . . , r`) and λ = (λ1, . . . , λ`).

Here and below we use the letter ‘S’ to denote a

shifted distribution, and we follow the convention

that the last parameter in a shifted distribution is

the shift parameter; see Appendix A for further de-

tails.

It is instructive to consider the case of the sum

of p independent Gumbel random variables when

σj = σ, j = 1, . . . , p, for which simple expressions

of the characteristic functions are readily available,
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as a consequence of Corollary 1,

ΦW1
(t) =

(
Γ (γ − itσ)

Γ (γ)

)p
,

ΦW2
(t) =

{ γ−2∏
j=0

(λj)
rj (λj − it)−rj

}
exp

{
it

p∑
j=1

µj

}
,

(6)

with rj = p, λj = (1+ j)/σ, for j = 0, . . . , γ−2; this

implies that in such case

W2 ∼ SGIG

(
p1T

γ−1, σ
−1(1, . . . , γ−1), γ−1,

p∑
j=1

µj

)
,

where 1γ−1 denotes a γ − 1 vector of ones. The pa-

rameter γ is related with the depth of the SGIG dis-

tribution and it may be used as a precision parame-

ter, since, as we will see in Section 3, larger values of

γ lead to more accurate near-exact approximations.

General linear combinations (αj ∈ R)

If we have q positive αj and p − q negative αj , the

characteristic function in (3) can be written as

ΦW2
(t) =

{ ∏
{j:αj>0}

γ−2∏
k=0

(
1 + k

σjαj

)(
1 + k

σjαj
− it

)−1}

×
{ ∏
{j:αj<0}

γ−2∏
k=0

(
1 + k

σjαj

)(
1 + k

σjαj
+ it

)−1}

× exp

{
it

p∑
j=1

µjαj

}
,

so that similarly to (5), we obtain

ΦW2
(t) =

{ `+∏
j=1

(λ+j )r
+
j (λ+j − it)−r

+
j

`−∏
j=1

(λ−j )r
−
j

× (λ−j + it)−r
−
j

}
exp

{
it

p∑
j=1

µjαj

}
.

(7)

where r+ = (r+1 , . . . , r
+
`+) and λ+ = (λ+1 , . . . , λ

+
`+),

are respectively the shape and rate parameters corre-

sponding to the positive αj , and r− = (r−1 , . . . , r
−
`−)

and λ− = (λ−1 , . . . , λ
−
`−) are respectively the shape

and rate parameters corresponding to the negative

αj . In this case the exact distribution of W is the

distribution of the sum of two independent random

variables, W1 and W2, where W1 is as in (4) and W2

follows a SDGIG distribution. This gives rise to the

following corollary.

Corollary 2 Let Xj
ind.∼ Gumbel(µj , σj), with µj ∈

R and σj ∈ R∗+. If W =
∑p
j=1 αjXj, with αj ∈ R,

j = 1, . . . , p, then it holds that W = W1 + W2, with

W1 as in (4) and

W2 ∼ SDGIG

(
r+, r−,λ+,λ−, `+, `−,

p∑
j=1

µjαj

)
,

(8)

where r+ = (r+1 , . . . , r
+
`+) and λ+ = (λ+1 , . . . , λ

+
`+)

are respectively the shape and rate parameters corre-

sponding to the positive αj and r− = (r−1 , . . . , r
−
`−)

and λ− = (λ−1 , . . . , λ
−
`−) are respectively the shape

and rate parameters corresponding to the negative

αj.

2.2 Near-exact distributions

First near-exact distribution (αj > 0)

Our first near-exact distribution is based on replac-

ing ΦW1
by an asymptotic approximation ΦW?

1
, such

that for γ sufficiently large

ΦW?(t) = ΦW?
1

(t)ΦW2(t),

approximates the exact characteristic function ΦW ;

the distribution of the random variable W ? is said

to be a near-exact distribution of W (Coelho 2004).

Based on the characterization of the exact distribu-

tion of W in Corollary 1, we take

ΦW?
1

(t) =

(
l

l − it

)ρ
exp{itθ}, (9)

which is the characteristic function of a random vari-
able W ?

1 ∼ SGamma(ρ, l, θ), and replaces asymp-

totically ΦW1
in (2), for increasing values of γ; see

Appendix A for details on the shifted Gamma distri-

bution. Our choice is based on the fact that a single

logarithmized Gamma random variable may be rep-

resented as an infinite sum of independent shifted

Exponential random variables (see Appendix B for

details), and as such the sum of independent loga-

rithmized Gamma random variables, eventually mul-

tiplied by a parameter, may be represented as an in-

finite sum of shifted Gamma distributions. Instead

of this infinite sum of shifted Gamma distributions,

to avoid computational difficulties, we use a single

shifted Gamma distribution, which matches the first

three exact moments. Hence, the parameters ρ, l,

and θ, are determined by solving the system of equa-

tions

∂jΦW?
1

(t)

∂tj

∣∣∣∣∣
t=0

=
∂jΦW1

(t)

∂tj

∣∣∣∣
t=0

, j = 1, 2, 3, (10)
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so to ensure that the first three of moments of the ex-

act and approximating distributions are equal. The

solution to (10) is

ρ = 4(ψ1Σ2)3(ψ2Σ3)−2,

l = 2(ψ1Σ2)|ψ2Σ3|−1,
θ = −ψ0Σ1 − 2(ψ1Σ2)2|ψ2Σ3|−1.

(11)

where we use the following notation throughout the

paper

ψi ≡ ψi(γ) =
∂i+1

∂γi+1
log{Γ (γ)},

Σi ≡ Σi(α) =

p∑
j=1

(αjσj)
i, α = (α1, . . . , αp).

(12)

The resulting near-exact distribution is estab-

lished in the next theorem.

Theorem 2 Let Xj
ind.∼Gumbel(µj , σj), with µj ∈ R

and σj ∈ R∗+. If we use as an asymptotic approxi-

mation of ΦW1
(t) in (2) the characteristic function

ΦW?
1

(t) in (9), we obtain as near-exact distribution

for W =
∑p
j=1 αjXj, with αj ∈ R∗+, j = 1, . . . , p,

the shifted GNIG distribution

SGNIG

(
r?,λ?, `+ 1, θ +

p∑
j=1

µjαj

)
,

with r? = (r1, . . . , r`, ρ) and λ? = (λ1, . . . , λ`, l), and

where the rj, λj, and ` are given in (5) and ρ, l, and

θ are given by (11).

Proof : It is enough to note that for each t ∈ R, it

holds that

ΦW?
1

(t)ΦW2(t) =

(
l

l − it

)ρ
exp{itθ}

{ ∏̀
j=1

(λj)
rj

× (λj − it)−rj
}

exp

{
it

p∑
j=1

µjαj

}

=

{ ∏̀
j=1

(λj)
rj (λj − it)−rj

}(
l

l − it

)ρ

× exp

{
it

(
θ +

p∑
j=1

µjαj

)}
.

�
It is again instructive to consider the particular

case addressed in (6), that is when we consider the

case of the sum of independent Gumbel random vari-

ables with the same scale parameter. In this case we

obtain the near-exact distribution

SGNIG

(
r?,λ?, γ, θ +

p∑
j=1

µj

)
, (13)

where r? = (p1T
γ−1, ρ) and λ? = σ−1(1, . . . , γ −

1, lσ), with ρ, l, and θ given by (11).

Using Corollary 2, and following two interesting

recommendations made by an anonymous reviewer,

we next develop two near-exact distributions for the

case where the sign of the coefficients needs not to

be positive.

Second near-exact distribution (αj ∈ R)

We now develop a near-exact distribution, that al-

though less accurate, it is computationally fast and

can be applied to the case of an arbitrary real αj .

To do so, we approximate the distribution of W =

W1 + W2 in Corollary 2, with the distribution of

W? = E(W1) + W2, where E(W1) = −ψ0Σ1 with

ψ0 and Σ1 as defined in (12). The distribution of

W? corresponds to our second near-exact approxi-

mation, and as described in the next theorem W?

follows a SDGIG distribution with shift parameter

E(W1) +
∑p
j=1 µjαj .

Theorem 3 Let Xj
ind.∼Gumbel(µj , σj), with µj ∈ R

and σj ∈ R∗+. If we replace W1 by E(W1) we obtain

as near-exact distribution for W =
∑p
j=1 αjXj, with

αj ∈ R, j = 1, . . . , p, the shifted DGIG distribution

SDGIG

(
r+, r−,λ+,λ−, `+, `−, E(W1)+

p∑
j=1

µjαj

)
,

where r+, r−, λ+, and λ− are as in Corollary 2.

Third near-exact distribution (Σ3(α) 6= 0)

Our third near-exact distribution can be applied when

Σ3 6= 0, where Σ3 is defined in (12); below we as-

sume that W ?
1 ∼ SGamma(ρ, l, θ) and that Σ3 6= 0,

so that either sign(Σ3) = 1 or sign(Σ3) = −1, with

sign(·) denoting the sign function. This near-exact

distribution is also based on Corollary 2, but here

we approximate the distribution of W1 in (4) with

the distribution of sign(Σ3)×W ?
1 , whose characteris-

tic function is Φsign(Σ3)×W?
1

(t) = ΦW?
1

(sign(Σ3)× t),
and where ΦW?

1
(t) is as in (9). Here, the parameters

ρ, l, and θ are determined by solving the system of

equations

∂jΦW?
1

(sign(Σ3)× t)
∂tj

∣∣∣∣∣
t=0

=
∂jΦW1(t)

∂tj

∣∣∣∣
t=0

, (14)

for j = 1, 2, 3, which has a solution if and only if

Σ3 6= 0, in which case

ρ = 4(ψ1Σ2)3(ψ2Σ3)−2,

l = 2(ψ1Σ2)|ψ2Σ3|−1,
θ = −sign(Σ3)ψ0Σ1 − 2(ψ1Σ2)2|ψ2Σ3|−1.

(15)
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The following theorem holds.

Theorem 4 Let Xj
ind.∼Gumbel(µj , σj), with µj ∈ R

and σj ∈ R∗+. If we use as an asymptotic approxi-

mation of ΦW1
(t) in (2) the characteristic function

ΦW?
1

(sign(Σ3) × t) in (9), we obtain as near-exact

distribution for W =
∑p
j=1 αjXj, with Σ3(α) 6= 0,

the distribution of

sign(Σ3)×W ?
1 +W2

where W ?
1 ∼ SGamma(ρ, l, θ) and W2 are as in (8),

and where ρ, l, and θ are given by (15).

Technical details on the distribution of sign(Σ3) ×
W ?

1 +W2 can be found in the Appendix A.

3 Numerical studies

3.1 Measuring accuracy

To study the quality of our near-exact approxima-

tions we use a measure of proximity between char-

acteristic functions, that is also a measure of the

proximity between distribution functions, and which

is defined as

∆ =
1

2π

∫
R

∣∣∣∣ΦW (t)− ΦW?(t)

t

∣∣∣∣ dt . (16)

This is measure is known to be related with the

Berry–Esseen upper bound (Berry 1941; Esseen 1945;

Loève 1977; Hwang 1998), and can be shown to ver-

ify the inequality

‖FW − FW?‖∞ ≤ ∆ ≤
1

2π

∫
R

∣∣∣∣ΦW1
(t)− ΦW?

1
(t)

t

∣∣∣∣ dt,
where ‖FW −FW?‖∞ = supw∈R |FW (w)−FW?(w)|.
Here FW? denotes a near-exact distribution function,

which, for example in the case of our first near-exact

distribution is

FW?(w) = FV ?

(
w − θ −

p∑
j=1

µjαj ; r
?,λ?, `+ 1

)
,

(17)

where r? and λ? are as in Theorem 2, and FV ? de-

notes the distribution function of the random vari-

able V ? with a GNIG distribution, as defined in (23)

in Appendix A. For our second near-exact distribu-

tion all follows analogously, but ΦW? needs to be re-

placed by ΦW?
, with W? distributed as in Theorem 3,

and FW? in (17), must be accordingly replaced with

the distribution function

FV?

(
w−E(W1)−

p∑
j=1

µjαj ; r
+, r−,λ+,λ−, `+, `−

)
.

Here r+, r−, λ+, and λ− are defined as in Theorem

3, and FV? is the distribution function of a random

variable V? with a SDGIG distribution. For our third

near-exact distribution, which can be applied when

Σ3 6= 0, ΦW? should be replaced by Φsign(Σ3)×W?
1

and FW? replaced by the distribution function of

sign(Σ3)×W ?
1 +W2 in Theorem 4 (see expressions

(25) and (26) in Appendix A for details on this dis-

tribution function).

We note that when γ →∞, we have ∆→ 0 and

W ?  W , where ‘ ’ is used to denote weak con-

vergence. Parenthetically, we further note that to

be ensured that we accurately approximate the tail

of the exact distribution, we need to keep increas-

ing the precision parameter γ as we move towards

higher quantiles; further details on the measure ∆

can be found in Grilo and Coelho (2007), Marques

and Coelho (2008), and Coelho and Marques (2010,

2012).

Table 1 Values of ∆ for Scenarios i–iii

Scenario i Scenario ii Scenario iii
γ (µi,σi,αi) (µii,σii,αii) (µiii,σiii,αiii)

p = 2 p = 4 p = 5

4 1.4 × 10−4 1.8 × 10−4 3.4 × 10−4

10 8.0 × 10−6 1.0 × 10−5 2.0 × 10−5

15 2.3 × 10−6 2.9 × 10−6 5.8 × 10−6

20 9.4 × 10−7 1.2 × 10−6 2.4 × 10−6

50 5.8 × 10−8 7.4 × 10−8 1.5 × 10−7

100 7.1 × 10−9 9.1 × 10−9 1.8 × 10−8

500 5.6 × 10−11 7.2 × 10−11 1.4 × 10−10

3.2 Numerical results

First near-exact distribution (αj > 0)

In Tables 1 and 2 we report numerical results con-

ducted according to the following scenarios:

—Scenario i: µi = (2, 3), σi = (5, 6), and αi = 1T
2 ;

—Scenario ii: µii = (−4,−1, 2, 3), σii = (0.1, 0.2, 0.3,

0.4), and αii = (1, 2, 3, 4);

—Scenario iii: µiii = (−10, 10, 20, 30, 40), σiii = (1, 2,

3, 4, 5), and αiii = (1/2, 1, 3/4, 5, 1).

In Table 1 it can be observed that the values of

∆ are quite low—indicating a good approximation—

and that the parameter γ is inversely related to ∆.

In addition, it can also be noticed that ∆ is unre-

sponsive to changes in µj , and the same happens if

we multiply all the σj by the same constant. The
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Fig. 1 QQ-plots for Scenarios i–iii. The near-exact quantiles, 0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995 and 0.999,
were computed using the near-exact distribution function in (17) for γ = 10 and the corresponding exact quantiles were
computed using the Gil-Pelaez (1951) inversion formulas and the bisection method.

Table 2 Computation time (in seconds) for the near-exact cumulative distribution functions for Scenarios i–iii

Scenario i Scenario ii Scenario iii

(µi,σi,αi) (µii,σii,αii) (µiii,σiii,αiii)

p = 2 p = 4 p = 5

γ p-values p-values p-values

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

4 0.02 0.02 0.02 0.05 0.03 0.03 0.05 0.03 0.03

10 0.08 0.08 0.08 0.39 0.41 0.33 0.38 0.39 0.41

15 0.17 0.17 0.20 1.17 1.28 1.14 1.48 1.62 1.08

20 0.30 0.31 0.36 2.87 3.09 2.82 2.93 2.90 2.95

50 2.62 2.50 3.00 64.2 70.9 65.8 72.6 68.3 70.7

Table 3 Values of ∆ for Scenario a

γ p = 2 p = 10 p = 20 p = 30 p = 50

4 1.4× 10−4 1.5× 10−5 6.7× 10−6 4.2× 10−6 2.4× 10−6

10 8.0× 10−6 8.1× 10−7 3.5× 10−7 2.2× 10−7 1.3× 10−7

15 2.3× 10−6 2.3× 10−7 9.9× 10−8 6.3× 10−8 3.6× 10−8

20 9.4× 10−7 9.4× 10−8 4.1× 10−8 2.6× 10−8 1.5× 10−8

50 5.8× 10−8 5.8× 10−9 2.5× 10−9 1.6× 10−9 8.9× 10−10

100 7.1× 10−9 7.1× 10−10 3.1× 10−10 1.9× 10−10 1.1× 10−10

500 5.6× 10−11 5.6× 10−12 2.4× 10−12 1.5× 10−12 8.8× 10−13

quality of the near-exact approximations is patent

from the extremely reduced values of ∆.

The parameter γ may be chosen according to

the desired precision. Higher values of γ entail how-

ever a higher computational investment, and hence

the selection of this parameter involves a precision–

burden tradeoff. In Table 2 we present the compu-

tation time, in seconds, for the calculation of the

p-values 0.10, 0.05 and 0.01, using the near-exact

quantiles. These calculations were done using an In-

tel i7 2GHz processor; for values of γ larger than 50

the computation times start to increase steadily. In

most computations below we use the value γ = 10

as a reference value, as it provides a sensible compu-

tation time/∆ ratio for our first near-exact distribu-

tion.

It is also possible to observe from Table 2 that, as

expected, when we increase p the computation time
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Table 4 Values of ∆ for Scenarios iv–vi

Second near-exact distribution

Scenario iv Scenario v Scenario vi

γ (µiv,σiv,αiv) (µv,σv,αv) (µvi,σvi,αvi)

p = 2 p = 4 p = 5

4 4.7× 10−2 4.6× 10−2 5.5× 10−2

10 1.5× 10−2 1.5× 10−2 1.7× 10−2

15 9.8× 10−3 9.8× 10−3 1.1× 10−2

20 7.2× 10−3 7.2× 10−3 8.3× 10−3

50 2.8× 10−3 2.7× 10−3 3.2× 10−3

100 1.3× 10−3 1.4× 10−3 1.6× 10−3

500 2.7× 10−4 2.7× 10−4 3.1× 10−4

Third near-exact distribution

Scenario iv Scenario v Scenario vi

γ (µiv,σiv,αiv) (µv,σv,αv) (µvi,σvi,αvi)

p = 2 p = 4 p = 5

4 5.3× 10−4 4.0× 10−4 3.9× 10−4

10 3.0× 10−5 2.2× 10−5 2.3× 10−5

15 8.5× 10−6 6.4× 10−6 6.6× 10−6

20 3.5× 10−6 2.6× 10−6 2.7× 10−6

50 2.1× 10−7 1.6× 10−7 1.7× 10−7

100 2.6× 10−8 2.0× 10−8 2.1× 10−8

500 2.1× 10−10 1.6× 10−10 1.6× 10−10

also grows, being this growth less steep for small to

moderate values of γ.

To compare the exact and near-exact quantiles

we present in Figure 1 QQ-plots for Scenarios i–iii.

The extreme closeness between the exact and near-
exact quantiles is sustained by the fact that all the

points are extremely close to the line of equation y =

x; the exact quantiles were computed using the Gil-

Pelaez (1951) inversion formulas and the bisection

method which is very time consuming, numerically

unstable, and hence inappropriate for a regular use.

It is also interesting that the near-exact approxi-

mations tend to slightly improve with an increasing

number of variables, as can be seen from Table 3,

where we consider a Scenario a with parameters

µa = ((−1)j2j, j = 1, . . . , p), σa = (5/j, j = 1, . . . , p)

and αa = (2j + 1, j = 1, . . . , p) for p = 2, 10, 30, 50.

Second near-exact distribution (αj ∈ R)

In Tables 4 and 5 we report numerical results con-

ducted according to the following scenarios:

—Scenario iv: µiv = µi = (2, 3), σiv = σi = (5, 6),

and αiv = (1,−1);

—Scenario v: µv = µii = (−4,−1, 2, 3), σv = σii =

(0.1, 0.2, 0.3, 0.4), and αv = (1,−2, 3,−4);

—Scenario vi: µvi = µiii = (−10, 10, 20, 30, 40),

σvi = σiii = (1, 2, 3, 4, 5), and αvi = (1/2,−1,

−3/4,−5, 1).

From Tables 4 and 5 we can observe that the

near-exact approximation obtained using the result

in Theorem 3 is not as accurate as the one obtained

with Theorem 2, although it presents faster compu-

tation times for the same values of γ. To achieve in

Scenarios iv–vi similar performances as the ones ob-

tained for Scenarios i–iii we need to consider at least

γ = 500 as can be seen in Table 4. Again, for Scenar-

ios iv–vi, it can be ascertained from Table 5, that for

higher values of p we obtain a higher computational

cost.

From the QQ-plots in Figure 2 it can be noticed

that, for Scenarios iv–vi, the near-exact quantiles

approximate reasonably well the exact ones. In these

QQ-plots we consider γ = 100, given that it provides

a reasonable computation time/∆ ratio for our sec-

ond near-exact distribution.

From Table 6 it can be ascertained that the ac-

curacy of our second near-exact approximation also

tends to improve as the number of variables increases,

although in this case the decrements in ∆ occur at

a much slower rate; in Table 6 we considered a Sce-

nario b with µb = (j/2, j = 1, . . . , p), σb = (3j − 1,

j = 1, . . . , p), and αb = ((−1)j+1 j
3 , j = 1, . . . , p) for

p = 2, 10, 20, 30, 50.

Third near-exact distribution (Σ3(α) 6= 0)

We assess the performance of the third near-exact

distribution on Scenarios iv–vi. Tables 4 and 6 reveal

that our third near-exact distribution possesses sim-

ilar asymptotic properties as our second approach,

although—as reflected by its lower values of ∆—

it is much more precise. The computation time of

our third near-exact distribution increases however

as a function of γ, in some cases beyond the realms

of practicality. From Table 5 it is possible to ob-

serve that our third near-exact distribution presents

higher computing times than our second one, and

thus we propose γ = 4 as a reference, as it provides

a sensible computation time/∆ ratio, to be used in

practical applications. Note that for γ = 4, the value

of ∆ is slightly lower than the one for our second ap-

proach with γ = 100, but even with this difference

the near-exact quantiles of both approaches would

be virtually indistinguishable if plotted simultane-

ously in Figure 2.
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Fig. 2 QQ-plots for Scenarios iv–vi. The near-exact quantiles, 0.80, 0.85, 0.90, 0.925, 0.95, 0.975, 0.99, 0.995 and 0.999,
were computed using the near-exact distribution function in (17) for γ = 100 and the corresponding exact quantiles
were computed using the Gil-Pelaez (1951) inversion formulas and the bisection method.

Table 5 Computation time (in seconds) for the near-exact cumulative distribution functions for Scenarios iv–vi

Second near-exact distribution

Scenario iv Scenario v Scenario vi

(µiv,σiv,αiv) (µv,σv,αv) (µvi,σvi,αvi)

p = 2 p = 4 p = 5

γ p-values p-values p-values

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02

10 0.00 0.02 0.00 0.02 0.02 0.03 0.03 0.03 0.02

15 0.02 0.02 0.02 0.05 0.05 0.05 0.08 0.06 0.08

20 0.03 0.02 0.02 0.09 0.08 0.09 0.13 0.13 0.14

50 0.16 0.13 0.12 0.75 0.73 0.73 1.22 1.23 1.22

100 0.89 0.87 0.86 5.76 5.77 5.76 12.4 12.5 12.4

500 44.6 44.9 45.2 526.3 628.5 630.2 2540 2550 2545

Third near-exact distribution

Scenario iv Scenario v Scenario vi

(µiv,σiv,αiv) (µv,σv,αv) (µvi,σvi,αvi)

p = 2 p = 4 p = 5

γ p-values p-values p-values

0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

4 0.23 0.20 0.17 0.22 0.22 0.19 0.44 0.41 0.34

10 2.56 1.75 1.28 2.62 2.59 2.12 12.50 11.65 8.42

15 7.72 5.69 4.17 13.44 6.37 5.68 46.84 47.11 39.61

20 15.88 13.74 11.29 29.03 12.59 11.45 173.46 190.15 166.89

50 130.96 102.31 72.76 260.52 241.05 110.67 * * *

note: *) Above one hour. The same applies for γ = 100 and γ = 500.
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Table 6 Values of ∆ for Scenario b

Second near-exact distribution

γ p = 2 p = 10 p = 20 p = 30 p = 50

4 6.0× 10−2 3.7× 10−2 3.3× 10−2 3.2× 10−2 3.1× 10−2

10 1.9× 10−2 1.3× 10−2 1.2× 10−2 1.1× 10−2 1.1× 10−2

15 1.2× 10−2 8.2× 10−3 7.6× 10−3 7.3× 10−3 7.1× 10−3

20 8.7× 10−3 6.1× 10−3 5.6× 10−3 5.4× 10−3 5.3× 10−3

50 3.4× 10−3 2.4× 10−3 2.2× 10−3 2.1× 10−3 2.1× 10−3

100 1.7× 10−3 1.2× 10−3 1.1× 10−3 1.0× 10−3 1.0× 10−3

500 3.3× 10−4 2.3× 10−4 2.1× 10−4 2.1× 10−4 2.0× 10−4

Third near-exact distribution

γ p = 2 p = 10 p = 20 p = 30 p = 50

4 4.2× 10−4 1.7× 10−4 7.7× 10−5 4.8× 10−5 2.7× 10−5

10 2.6× 10−5 9.3× 10−6 4.0× 10−6 2.5× 10−6 1.4× 10−6

15 7.4× 10−6 2.6× 10−6 1.1× 10−6 7.1× 10−7 4.0× 10−7

20 3.1× 10−6 1.1× 10−6 4.7× 10−7 2.9× 10−7 1.6× 10−7

50 1.9× 10−7 6.7× 10−8 2.9× 10−8 1.8× 10−8 1.0× 10−8

100 2.3× 10−8 8.2× 10−9 3.6× 10−9 2.2× 10−9 1.2× 10−9

500 1.8× 10−10 6.5× 10−11 2.8× 10−11 1.7× 10−11 9.8× 10−12

Our third near-exact distribution can also be ap-

plied to the case of positive linear combination co-

efficients. In practice we have found that although

both our first and third near-exact distributions have

tantamount precision, the third approach requires a

higher computational investment.

4 Examples and illustrations

All examples in this section entail positive linear

combinations, and hence for conciseness only our

first near-exact approximation is used.

4.1 Network engineering

The real time management of massive data streams

in large-scale networks leads to a number of challeng-

ing problems in computational statistics (Domingos

and Hulten 2003). One of such problems entails achiev-

ing at least a minimum level of quality-of-service,

and a well-known method for achieving this goal

is the so-called egress admission control algorithm

(Cetinkaya et al. 2001). A full description of this al-

gorithm is beyond the scope of our paper. What is

relevant for our purposes is that their algorithm is

based on the sum of two independent Gumbel dis-

tributed random variables, and quoting the authors

(Cetinkaya et al. 2001, p. 76):

“Approximating the sum of two Gumbel dis-

tributed random variables by a Gumbel random

variable, the admission control test follows.”

Thus, Cetinkaya et al. (2001) inadequately use a

single Gumbel distribution to approximate the sum

of two independent Gumbel distributions, as already

remarked in Nadarajah and Kotz (2008). In Fig-

ure 3 we illustrate the reliability of our SGNIG-based

near-exact approximation, introduced in Section 2.2,

and the inadequacy of the approach in Cetinkaya et

al. (2001), as assessed by the pointwise difference to

the exact density obtained using the inversion for-

mulas in Gil-Pelaez (1951).

Figure 3 clearly provides evidence to support the

claim that the egress admission control algorithm

could benefit from using our near-exact approxima-

tion. To give a more complete view of the comparison

between our approach and the one in Cetinkaya et al.

(2001), we revisit Scenario i from Section 3, and to

assess the performance of both approaches we again

use the measure ∆, as defined in (16). The results

are reported in Figure 4, and again provide evidence

suggesting that our near-exact approximation would
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Fig. 3 Pointwise difference between the exact density of
the sum of two independent Gumbel random variables(
(µ1, σ1) = (0, 1) and (µ2, σ2) = (0, 10)

)
and the densi-

ties obtained through our near-exact approximation (gray
lines), as well as the difference between the exact density
and the approximation in Cetinkaya et al. (2001) (black
line). The exact density was obtained using the inversion
formulas in Gil-Pelaez (1951), and for our approach we
take a precision parameter of γ = 4, 7, 10, respectively
corresponding to the dotted, dashed, and solid gray lines.

yield more precise and reliable egress admission con-

trol algorithms.

Parenthetically, we note that Nadarajah and Kotz

(2008) present an expression for the exact distribu-

tion of the sum of two independent Gumbel ran-

dom variables, but only for the cases where the ratio

between the scale parameters is a rational number.

However, the expression they use for their function

J( · , · , · , · ) is not valid when its first and third ar-

guments are symmetrical, which means that their

expressions for the cumulative distribution and prob-

ability density functions simply do not work.

4.2 Computational biology

Our second example is on motif discovery in biolog-

ical sequences. Some interesting computational and

statistical issues arising in modeling these problems

are documented in Keich and Nagarajan (2006), and

the huge literature on the topic is reviewed by Sandve

and Drabløs (2006). Our analysis focuses on a method

proposed by Bailey and Gribskov (1997) for calcu-

lating p-values for the test of simultaneous matching

of p DNA sequences in a database. More precisely,

20 40 60 80 100
−

15
−

10
−

5
Precision Parameter (γ)

lo
g(

∆)

Fig. 4 Comparing our near-exact approximation with the
approximation in Cetinkaya et al. (2001), on the basis of
the measure∆, as defined in (16), over several values of the
precision parameter γ; the solid and dashed lines respec-
tively correspond to our near-exact approximation and the
approach in Cetinkaya et al., for Scenario i.

the authors consider the test statistic

Wp(n) =

p∑
i=1

Xi(n), (18)

where for each i, Xi(n) is a sequence of random vari-

ables converging in distribution to a standard Gum-

bel distribution Xi, as n → ∞; here n should be

understood as the number of DNA sequences in the

database. Under the assumptions in Bailey and Grib-

skov (1997), X1, . . . , Xp is thus a sequence of inde-

pendent standard Gumbel random variables, so that

the limiting distribution of the test statistic (18) is

Wp(n) W =

p∑
i=1

Xi.

The authors then propose

FW (w) = P (W ≤ w)

≈ (p− 1)!− exp{−w}wp−1

(p− 1)!
= P̃ (W ≤ w),

(19)

as an approximation to the distribution function of

W . In opposition, our near-exact approximation for

W can be obtained from (13), and it is based on the

shifted GNIG distribution

SGNIG

(
r? = (p1T

γ−1, ρ),λ? = (1, . . . , γ−1, l), γ, θ

)
,
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with ρ, l, θ given in (11). In Figure 5 we consider

the case p = 6 with γ = 10. As it can be observed

the pointwise differences between the exact distri-

bution function and the distribution function (19)

corresponding to the Bailey and Gribskov approxi-

mation, are much larger in absolute value than the

ones provided by our near-exact approximation.

To make direct comparisons with the results ob-

tained by Bailey and Gribskov, we use the ‘percent

error’, which they define as

err%(w) = 100× P̃ (W ≥ w)− P (W ≥ w)

P (W ≥ w)
, (20)

and where we replace P̃ (W ≥ w) by P (W ? ≥ w) cor-

responding to our near-exact approximation, which

is given by

P (W ? ≥ w) = 1− FW?(w)

= 1− FV ?
(
w − θ; r?,λ?, γ

)
,

(21)

where r? = (p1T
γ−1, ρ) and λ? = (1, . . . , γ−1, l), and

where FV ? is the distribution function of a random

variable V ? = W ? − θ with a GNIG distribution, as

defined in (23) in Appendix A. To evaluate P (W ≥
w) we use the Gil-Pelaez inversion formulas.

The resulting ‘percent error’ is plotted in Fig-

ure 6. Comparing this figure with Figure 5 in Bai-

ley and Gribskov (1997) it is possible to observe the

differences of scales in the vertical axis which show

that the percent errors for the near-exact approxima-

tions are extremely low when compared to the ones

obtained for the approximation in Bailey and Grib-

skov (1997). These results reinforce the proximity,

already assessed in Section 3, between the near-exact

distributions developed and the exact distribution.

Although the computation times for the Bailey

and Gribskov approximation are comparable with

those for the near-exact approximations developed

for γ = 4 or γ = 6, the precision obtained has no

comparison.

4.3 Flood risk management

In this section we first show how our results can be

used to obtain simple confidence intervals for the lo-

cation parameter of a Gumbel distribution, and then

we apply our results to a real data set of annual max-

imum floods of the river Nidd in Yorkshire, UK, used

by Hosking et al. (1985). Let (X1, . . . , Xn) be a ran-

dom sample from a population with Gumbel(µ, σ)

distribution, so that

E(Xi) = σγ∗ + µ, var(Xi) =
π2

6
σ2,

where γ∗ is the Euler–Mascheroni constant. There

are two cases to be considered: i) σ is known, and ii)

σ is unknown.

Case i

If σ is known, the classical moment estimator of µ,

µ̂ = X − σγ∗,

is unbiased and consistent in quadratic mean, and

as such a good candidate to build confidence inter-

vals for µ. Based on our near-exact approximations

in Section 2, we can compute for a given level of con-

fidence α, the near-exact quantiles qα/2 and q1−α/2
of µ̂− µ, such that

1− α = P
(
qα/2 < µ̂− µ < q1−α/2

)
= P

(
µ̂− q1−α/2 < µ < µ̂− qα/2

)
,

and thus[
µ̂− q1−α/2, µ̂− qα/2

]
is a near-exact level α confidence interval for µ. Note

that the α quantile of µ̂− µ is the α quantile of

n−1
∑n
i=1X

∗
i , where X∗i ∼ Gumbel(−σγ∗, σ), and a

close approximation to this may be obtained through

the near-exact quantiles determined using the near-

exact distribution function in (17).

Case ii

If σ is unknown, for S2 = (n− 1)−1
∑n
i=1(Xi−X)2,

we have

E(S2) = var(Xi) =
σ2π2

6
, S2 p−→ var(Xi) =

σ2π2

6
,

so that
√

6

π

√
S2 p−→ σ .

Thus, we propose using the estimator

Û = X −
√

6

π

√
S2γ∗,

to build confidence intervals for µ, given that Û is

consistent for µ, since

Û = X︸ ︷︷ ︸
p−→σγ∗+µ

−
√

6

π

√
S2︸ ︷︷ ︸

p−→σ

γ∗
p−→ µ .



Stat Comput (2013) 13

5 10 15 20 25 30

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00

∆ = 1.38 × 10−6

w

P
oi

nt
w

is
e 

D
iff

er
en

ce
s

(a)

29.80 29.85 29.90 29.95

0e
+

00
2e

−
09

4e
−

09
6e

−
09

∆ = 1.38 × 10−6

w
P

oi
nt

w
is

e 
D

iff
er

en
ce

s

(b)

Fig. 5 Pointwise difference between the exact distribution function of the sum of six independent Gumbel random vari-
ables

(
(µ1, σ1) = · · · = (µ6, σ6) = (0, 1)

)
and the distribution function obtained through our near-exact approximation

(gray line), as well as the difference between the exact density and the approximation in Bailey and Gribskov (1997)
(black line). The exact distribution function was obtained using the inversion formulas in Gil-Pelaez (1951), and for our
approach we take a precision parameter of γ = 10. Here (a) and (b) correspond to different windows of interest.
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Fig. 6 Percent error, as defined in (20), for near-exact
distributions. The near-exact distribution functions were
obtained using (21), where we take a precision parameter
of γ = 10. The solid, dashed, dotted, and dashed-dotted
black lines respectively correspond to p = 2, 3, 4, 5; the
solid gray line corresponds to p = 6.

As such, an approximate confidence interval for µ is

given by[
Û − q1−α/2, Û − qα/2

]
, (22)

where qα/2 and q1−α/2 are respectively the α/2 and

the 1− α/2 quantiles of Û − µ, where we have that

Û − µ = n−1
∑n
i=1X

∗∗
i , with

X∗∗i ∼ Gumbel

(
−
√

6

π

√
S2γ∗,

√
6

π

√
S2

)
.

Based on a first impression, one could be tempted

to infer from (22) that changes in the value of S2

would not affect the width of the confidence inter-

val, but we note that
√
S2 appears multiplying in

both parameters of the Gumbel distribution of X∗∗i ,

and hence the larger the S2 the wider the confidence

interval.

To show that these confidence intervals yield the

due coverage probabilities, we performed some simu-

lation studies for coverage probabilities of 0.90, 0.95

and 0.99; the results are reported in Tables 7–8. For

each case we have simulated 50 batches of 100 sam-

ples of size 5 for the case of σ known and of size

10 for the case of σ unknown and we counted the

number of times, out of 100, that the true value of µ

fell into the respective confidence interval. The near-

exact quantiles, needed to determine the confidence

intervals, were calculated using the near-exact distri-

bution function in (17) taking γ = 4 for both cases

of known and unknown σ.

For the case of known σ, using µ = 5 and σ = 5.6,

confidence intervals for the proportion of times that
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Table 7 Number of times, out of 100, that the true value of µ fell into the corresponding confidence interval, in the
case of known σ

coverage

probability number of times

0.90 93, 90, 84, 90, 85, 93, 89, 88, 98, 91, 87, 94, 91, 88, 97, 88, 90, 87, 92, 95, 90, 93, 86, 93, 89, 88, 92, 90,

89, 90, 85, 92, 86, 92, 91, 92, 91, 93, 84, 90, 87, 89, 93, 91, 87, 97, 93, 91, 89, 90

0.95 96, 94, 96, 95, 95, 95, 95, 91, 93, 97, 98, 98, 95, 95, 95, 89, 93, 97, 97, 98, 92, 94, 93, 97, 95, 97, 94, 92,

96, 97, 94, 99, 97, 92, 95, 91, 95, 96, 92, 92, 98, 97, 93, 94, 89, 96, 92, 95, 95, 97

0.99 100, 100, 97, 99, 99, 99, 99, 99, 100, 98, 100, 100, 98, 99, 100, 98, 100, 96, 97, 99, 100, 96, 100, 99, 99,

100, 99, 99, 100, 98, 98, 99, 100, 100, 99, 99, 100, 99, 97, 98, 99, 98, 99, 100, 100, 99, 98, 99, 100, 98

Table 8 Number of times, out of 100, that the true value of µ fell into the corresponding confidence interval, in the
case of unknown σ

probability number of times

0.90 91, 93, 91, 91, 92, 84, 92, 84, 91, 89, 96, 96, 93, 92, 89, 89, 90, 89, 93, 89, 93, 97, 86, 90, 94, 89, 89, 86,

91, 87, 90, 88, 89, 91, 95, 93, 91, 90, 89, 95, 87, 93, 87, 95, 88, 87, 94, 91, 92, 87

0.95 92, 94, 96, 99, 96, 99, 93, 97, 97, 95, 98, 94, 97, 97, 95, 97, 93, 95, 97, 93, 95, 96, 96, 92, 98, 92, 93, 97,

97, 96, 92, 95, 95, 96, 94, 98, 97, 94, 97, 99, 90, 97, 97, 97, 96, 97, 92, 92, 94, 95

0.99 100, 99, 98, 99, 98, 97, 96, 100, 100, 99, 98, 99, 97, 99, 99, 100, 97, 99, 98, 100, 99, 99, 100, 100, 98,

100, 99, 99, 100, 100, 99, 100, 100, 99, 100, 100, 99, 99, 100, 100, 99, 99, 100, 98, 99, 99, 99, 100, 97,

99

the true value of µ fell into the corresponding con-

fidence interval, based on the asymptotic distribu-

tion of the maximum likelihood estimator of the pro-

portion p∗ in a Binomial(100, p∗) distribution, for a

sample of size 50, gave, respectively for the nominal

coverage probabilities of 0.90, 0.95 and 0.99,

[0.8944, 0.9108] , [0.9414, 0.9538] , [0.9863, 0.9921] ,

being clear that in each case the nominal coverage
probability falls in the respective confidence interval.

For the case of unknown σ, we also used µ = 5

and σ = 5.6 to simulate the samples, and then we

estimated σ as described above. A similar procedure

as described above, gave the following confidence in-

tervals for the proportion of times that the true value

of µ fell into the corresponding confidence interval

[0.8975, 0.9137] , [0.9482, 0.9598] , [0.9875, 0.9929] ,

being once again clear that in each case the nomi-

nal coverage probability falls indeed in the respective

confidence interval. The above results show the ad-

equacy of the confidence intervals proposed even for

very small sample sizes.

To illustrate the utility of the interval estima-

tion procedure developed above, we consider 35 an-

nual maximum annual maximum floods of the river

Nidd in Yorkshire, UK, taken from the Natural En-

vironment Research Council (NERC 1975, p. 235).

As mentioned by Hosking et al. (1985, p. 258) these

data “may reasonably be assumed to come from a

Gumbel distribution.” For these data we have as

estimates for the parameters µ and σ respectively

µ̂ = 109.33 and σ̂ = 47.34. The near-exact quantiles,

qα/2 and q1−α/2, were determined using the near-

exact distribution function in (17) and taking γ = 4.

Hence for 1− α = 0.90, 0.95, 0.99 we have

q0.05 = 11.03, q0.95 = 44.76,

q0.025 = 8.15, q0.975 = 48.38,

q0.005 = 2.69, q0.995 = 55.68,

and thus the confidence intervals for µ, and for 1 −
α = 0.90, 0.95, 0.99, are respectively given by

[91.91, 125.64] , [88.29, 128.52] , [80.99, 133.98] .

The coverage probabilities obtained for samples of

size 5 and 10, show that the confidence intervals ob-

tained in this way may be applied even for small

sample sizes; these are usually situations in which

maximum-likelihood estimation procedures, are not

always satisfactory, even for moderate sample sizes

as pointed out by Hosking et al. (1985).

5 Discussion

In this paper we develop precise, tractable, and com-

putationally appealing near-exact approximations for
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the distribution of the linear combination of indepen-

dent Gumbel random variables. The precision pa-

rameter γ plays a key role in modulating the desired

reliability of our approximations, with larger values

of γ leading to a higher accuracy. The value of γ can

hence be chosen according to the targeted level of

precision, but this entails a precision–burden trade-

off as a higher value of γ requires a larger computa-

tional investment. Although our illustrations focused

mostly on the case of sums of independent Gumbel

variates, our approaches are tailored for linear com-

binations in general, and their accuracy seems to be

mildly uniform over a different set of weights and

several combinations of shape and scale parameters.

From the point of view of modeling extremes, more

complex structures of dependence—other than ex-

act independence—are certainly of interest, as well

as tails which are heavier than the Gumbel. As dis-

cussed by Albrecher et al. (2011) simple and manage-

able models—such as the Cramér–Lundberg model—

are based on restrictive independence assumptions,

but still can be used as a natural starting point for

modeling.

Although not explored here, our near-exact ap-

proximations have the potential to be used as a base-

line model—say as a centering distribution in a

Bayesian nonparametric setting (Müller and Quin-

tana 2004)—and from that point of view it can be

understood as a computationally appealing start-

ing point for modeling linear combinations of heavy-

tailed data with more complex structures of depen-

dence. In this context, it seems for example natural

‘centering’ a Dirichlet process DP(M,FW?) at our

near-exact approximation FW? , where M > 0 con-

trols the variability of the random distributions F

generated according to the DP prior, such that we

have F ∼ Beta(MFW? ,M(1−FW?)). Since E(F ) =

FW? random realizations of the DP process would

on average coincide with our near-exact distribution,

and the role played by the parameter M can be bet-

ter understood by noticing that var(F ) = FW?(1 −
FW?)/(M + 1). Hence, by taking a small value of

M the contribution to the inference of the paramet-

ric model FW? would be large, whereas larger val-

ues of M will give more priority to the data, which

may hopefully be informative on the tails and on the

structure of dependence to be revealed.

Supplementary material

The supplemental files include additional numerical

reports, and Mathematica programs which can be

used to implement the methods described in the ar-

ticle.
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Appendix

Appendix A: Results and definitions on distributions

of interest

Part I: The GIG and GNIG distributions

Let Xj
ind.∼ Gamma(rj , λj) with shape parameters

rj ∈ N and rate parameters λj ∈ R∗+, all different,

for j = 1, . . . , `. The Generalized Integer Gamma

(GIG) distribution of depth ` ∈ N, introduced by

Coelho (1998), is defined as the distribution of Y =∑`
j=1Xj , and we denote this by Y ∼ GIG(r,λ, `),

for r = (r1, . . . , r`) and λ = (λ1, . . . , λ`). The den-

sity and distribution functions of Y are

fY (y; r,λ, `) = K
∑̀
j=1

πj(y) exp{−λjy},

and

FY (y; r,λ, `) = 1−K
∑̀
j=1

Πj(y) exp{−λjy},

where y > 0, K =
∏p
i=1 λ

ri
i ,πj(y) =

∑rj
k=1 cj,ky

k−1,

Πj(y) =
∑rj
k=1 cj,k(k − 1)!

∑k−1
i=0

yk

i!λk−ij

,

and the cj,k are given in (11)–(13) in Coelho (1998).

The Generalized Near-Integer Gamma (GNIG) dis-

tribution of depth (`+1) ∈ N, introduced by Coelho

(2004), is defined as the distribution of Y ? = X? +∑`
j=1Xj , where X? is independent of

∑`
j=1Xj , and

X? ∼ Gamma(ρ, l), with ρ ∈ R∗+\N. We denote this

by Y ? ∼ GNIG(r?,λ?, `+ 1), where r? = (r, ρ) and
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λ? = (λ, l), and the corresponding density and dis-

tribution functions are

fY ?(y; r?,λ?, `+ 1)

= Klρ
∑̀
j=1

exp{−λjy}

×
rj∑
k=1

{
cj,k

Γ (k)
Γ (k+ρ)y

k+ρ−1
1F1(ρ, k+ρ,−(l−λj)y)

}
,

and

FY ?(y; r?,λ?, `+ 1)

= lρ yρ

Γ (ρ+1)1F1(ρ, ρ+1,−ly)−Klρ
∑̀
j=1

exp{−λjy}

×
rj∑
k=1

c∗j,k

k−1∑
i=0

yr+iλij
Γ (ρ+1+i) 1F1(ρ, ρ+1+i,−(l − λj)y),

(23)

for y > 0 and where c∗j,k = (cj,kλ
k
j )/Γ (k); in the

above expressions 1F1(·) denotes the Kummer con-

fluent hypergeometric function.

The random variable X∗ = X + θ is a shifted

Gamma distribution with rate λ ∈ R∗+, shape r ∈
R∗+, and shift θ ∈ R, ifX ∼ Gamma(r, λ), and we de-

note this by X∗ ∼ SGamma(r, λ, θ); the shifted GIG

and GNIG distributions are analogously defined and

denoted by SGIG(r,λ, `, θ) and SGNIG(r?,λ?, ` +

1, θ).

Part II: The DGIG distribution and the sum (and

the difference) of a DGIG random variable with an

independent Gamma random variable

Let X1 ∼ GIG(r1,λ1, p1), with r1 = (r11, . . . , r1p1)

and λ1 = (λ11, . . . , λ1p1), and X2 ∼ GIG(r2,λ2, p2),

with r2 = (r21, . . . , r2p2) and λ2 = (λ21, . . . , λ2p2)

be two independent random variables with GIG dis-

tributions. Let us then consider the random vari-

able Y = X1 − X2. Y has a DGIG distribution

whose density and distribution functions are given

by (2.12) and (2.15) in Coelho and Mexia (2010), and

we denote this by Y ∼ DGIG(r1, r2,λ1,λ2, p1, p2).

The shifted SDGIG distribution, with shift θ ∈ R,

is denoted by Y ∼ SDGIG(r1, r2,λ1,λ2, p1, p2, θ).

Next we obtain results on the distribution of the sum

(and the difference) of a DGIG with an independent

Gamma random variable; these results are relevant

for our third near-exact distribution. One useful way

to look at the distribution of Y is to see it as a partic-

ular mixture of integer Gamma or Erlang distribu-

tions. Indeed, after some rearrangements the density

and distribution functions of Y may be respectively

written as

fY (y) =



p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki fYjki(y) , y ≥ 0,

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki fY ∗
jki

(−y) , y < 0,

and

FY (y) =



p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

+

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki FYjki(y) , y ≥ 0,

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FY ∗
jki

(−y) , y < 0,

where, for j=1, . . . , p1; k=1, . . . , r1j ; i=0, . . . , k − 1,

pjki =
K1K2

λk−i1j

cjk

p2∑
`=1

r2∑̀
h=1

d`h
(k − 1)!

i!

(h+ i− 1)!

(λ1j + λ2`)h+i

and, for j = 1, . . . , p2; k = 1, . . . , r2j ; i = 0, . . . , k − 1,

p∗jki =
K1K2

λk−i2j

djk

p1∑
`=1

r1∑̀
h=1

c`h
(k − 1)!

i!

(h+ i− 1)!

(λ1j + λ2`)h+i
,

with

K1 =

p1∏
j=1

λ
r1j
1j , K2 =

p2∏
j=1

λ
r2j
2j ,

and cjk (j = 1, . . . , p1; k = 1, . . . , r1j) given by (2.9)–

(2.11) in Coelho and Mexia (2010), with p replaced

by p1 and rj replaced by r1j and djk (j=1, . . . , p2; k=

1, . . . , r2j) defined in a similar manner, replacing p1
by p2 and r1j by r2j , and where, for y ≥ 0,

fYjki(y) =
λk−i1j

Γ (k − i)
yk−i−1e−λ1jy ,

and

FYjki(y) = 1−
k−i−1∑
t=0

λt1j
t!

yt e−λ1jy , (24)

are respectively the density and distribution func-

tions of Yjki ∼ Gamma(k − i, λ1j), while fY ∗
jki

( · )
and FY ∗

jki
( · ) are the density and distribution func-

tions of Y ∗jki ∼ Gamma(k − i, λ2j).
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The weights pjki and p∗jki verify the relation

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki +

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki = 1 .

Let now W ∼ Gamma(ρ, λ), where ρ is a posi-

tive non-integer real, be independent of Y . We will

consider the random variables Z1 = Y + W and

Z2 = Y −W and derive their distribution functions.

The distribution function of Z1, will be given by

FZ1
(z) =

∫ +∞

0

FY (z − w) fW (w) dw ,

which, for z ≥ 0, using the notation introduced above

for the GNIG distribution function, with r? = (k −
i, ρ) and λ?1 = (λ1j , λ), may be written as

FZ1
(z) =

∫ z

0

FY ( z − w︸ ︷︷ ︸
≥0

) fW (w) dw

+

∫ +∞

z

FY ( z − w︸ ︷︷ ︸
≤0

) fW (w) dw

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ z

0

fW (w) dw

+

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki

∫ z

0

FYjki(z−w) fW (w) dw︸ ︷︷ ︸
distribution function of
G1∼GNIG(r?,λ?1 ,2)

+

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

(
1−

∫ z

0

fW (w) dw

)
−

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ +∞

z

FY ∗
jki

(w−z) fW (w) dw︸ ︷︷ ︸
1−F

W−Y ∗
jki

(z)

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

+

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjkiFG1
(z, r?,λ?1, 2)

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

(
1− FW−Y ∗

jki
(z)
)

=

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjkiFG1
(z, r?,λ?1, 2)

+

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FW−Y ∗
jki

(z) ,

while for z < 0 we have

FZ1
(z) =

∫ +∞

0

FY ( z − w︸ ︷︷ ︸
≤0

) fW (w) dw

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ +∞

0

fW (w) dw︸ ︷︷ ︸
=1

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ +∞

0

FY ∗
jki

(w−z) fW (w) dw︸ ︷︷ ︸
=1−F

W−Y ∗
jki

(z)

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FW−Y ∗
jki

(z) .

We thus have

FZ1
(z) =



p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjkiFG1
(z; r?,λ?1, 2)

+

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FW−Y ∗
jki

(z) , z ≥ 0,

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FW−Y ∗
jki

(z) , z < 0.

(25)

Concerning Z2 = Y − W we have, for z < 0,

using the notation introduced above for the GNIG

distribution function, with r? = (k − i, ρ) and λ?2 =

(λ2j , λ),

FZ2
(z) = P (Y −W ≤ z) = P (Y ≤W + z)

=

∫ −z
0

FY (w + z︸ ︷︷ ︸
≤0

) fW (w) dw

+

∫ +∞

−z
FY (w + z︸ ︷︷ ︸

≥0

) fW (w) dw

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ −z
0

fW (w) dw

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ −z
0

FY ∗
jki

(−w−z) fW (w) dw︸ ︷︷ ︸
distribution function of
G2∼GNIG(r?,λ?2 ,2)
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+

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ +∞

−z
fW (w) dw

+

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki

∫ +∞

−z
FY ∗

jki
(w+z) fW (w) dw︸ ︷︷ ︸

1−FW−Yjki
(−z)

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki +

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FG2
(−z; r?,λ?2, 2)

−
p1∑
j=1

r1j∑
k=1

k−1∑
i=0

p∗jki FW−Yjki(−z)

= 1−
p1∑
j=1

r1j∑
k=1

k−1∑
i=0

p∗jki FW−Yjki(−z)

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FG2
(−z; r?,λ?2, 2)

while for z ≥ 0 we have

FZ2
(z) = P (Y −W ≤ z) = P (Y ≤W + z)

=

∫ +∞

0

FY (w + z︸ ︷︷ ︸
≥0

) fW (w) dw

=

p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki

∫ +∞

0

fW (w) dw

+

p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjki

∫ +∞

0

FYjki(w+z) fW (w) dw︸ ︷︷ ︸
1−FW−Yjki

(−z)

= 1−
p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjkiFW−Yjki(−z) ,

so that

FZ2
(z) =

1−
p1∑
j=1

r1j∑
k=1

k−1∑
i=0

pjkiFW−Yjki(−z) , z ≥ 0 ,

1−
p1∑
j=1

r1j∑
k=1

k−1∑
i=0

p∗jki FW−Yjki(−z)

−
p2∑
j=1

r2j∑
k=1

k−1∑
i=0

p∗jki FG2
(−z; r?,λ?2, 2) , z < 0 .

(26)

It remains now to obtain the distribution func-

tion of random variables of the type of Z∗ = W−Y ∗,
where W ∼ Gamma(ρ, λ) and Y ∗ ∼ Gamma(r, λ1),

where ρ, λ1 and λ2 are positive reals and r is a posi-

tive integer. The distribution function of Z∗ is given

by

FZ∗(z) = P (W − Y ∗ ≤ z) = P (−Y ∗ ≤ z −W )

= 1− P (Y ∗ ≤W − z)

= 1−
∫ +∞

0

FY ∗(w − z) fW (w) dw

which for z ≥ 0, using the expression in (24) for the

distribution function of an integer Gamma or Erlang

distribution, yields

FZ∗(z) = 1−
∫ z

0

FY ∗(w − z︸ ︷︷ ︸
≤0

)

︸ ︷︷ ︸
=0

fW (w) dw

−
∫ +∞

z

FY ∗(w − z) fW (w) dw

= 1−
∫ +∞

z

{1− P (Y ∗ > w − z)} fW (w) dw

= 1−
∫ +∞

z

fW (w) dw

+

∫ +∞

z

P (Y ∗ > w − z) fW (w) dw

= FW (z) +
λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!∫ +∞

z

(w − z)twρ−1 e−w(λ+λ1) dw

}

= FW (z) +
λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!

t∑
k=0

(
t

k

)
(−z)k∫ +∞

z

wt+ρ−k−1e−w(λ+λ1)dw

}

= 1−Γ (ρ, λz)

Γ (ρ)
+

λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!

t∑
k=0

(
t

k

)

(−z)k(λ+λ1)−t−ρ+kΓ (t+ρ−k, (λ+λ1)z)

}

while for z < 0 it yields

FZ∗(z) = 1−
∫ +∞

0

FY ∗(w − z) fW (w) dw

= 1−
∫ +∞

0

{1− P (Y ∗ > w − z)} fW (w) dw
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= 1−
∫ +∞

0

fW (w) dw

+

∫ +∞

0

P (Y ∗ > w − z) fW (w) dw

=
λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!

t∑
k=0

(
t

k

)
(−z)k

∫ +∞

0

wt+ρ−k−1e−w(λ+λ1)dw

}

=
λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!

t∑
k=0

(
t

k

)
(−z)k

(λ+ λ1)−t−ρ+kΓ (t+ ρ− k)

}
,

and as such

FZ∗(z) =

1−Γ (ρ, λz)

Γ (ρ)
+

λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!

t∑
k=0

(
t

k

)

(−z)k(λ+λ1)−t−ρ+kΓ (t+ρ−k, (λ+λ1)z)

}
, z ≥ 0 ,

λρ

Γ (ρ)
eλ1z

{
r−1∑
t=0

λr1
t!

t∑
k=0

(
t

k

)
(−z)k

(λ+ λ1)−t−ρ+kΓ (t+ ρ− k)

}
, z< 0.

Appendix B: Representation of a logarithmized

Gamma distribution as an infinite sum of shifted Ex-

ponential distributions

If X ∼ Gamma(r, λ) its hth moment is given by

E
(
Xh
)

=
Γ (r + h)

Γ (r)
λ−h . (27)

Then, the random variable Y = − log X has what

we call a logarithmized Gamma distribution and its

characteristic function may be obtained from (27) in

the following way

ΦY (t) = E(Y −it) =
Γ (r − it)

Γ (r)
λit , t ∈ R,

Using the equality

Γ (z) =
1

z

∞∏
n=1

[(
1 +

1

n

)z (
1 +

z

n

)−1]
, z ∈ C,

we have

ΦY (t) =
1

Γ (r)

1

r − it

∞∏
n=1

[(
1 +

1

n

)r−it
×
(

1 +
r − it

n

)−1]
exp{log λit}

=

{
r

r − it
exp{log λit}

}[ ∞∏
n=1

n+ r

n+ r − it

× exp

{
it

(
− log

(
1 +

1

n

))}]
.

Hence ΦY is also the characteristic function of an

infinite sum of independent shifted Exponential dis-

tributions. This shows that a logarithmized Gamma

random variable may be represented as an infinite

sum of independent shifted Exponential random vari-

ables.
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