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Abstract

In this article we consider a Bayesian inverse problem associated to elliptic par-

tial differential equations (PDEs) in two and three dimensions. This class of inverse

problems is important in applications such as hydrology, but the complexity of the

link function between unknown field and measurements can make it difficult to draw

inference from the associated posterior. We prove that for this inverse problem a basic

SMC method has a Monte Carlo rate of convergence with constants which are indepen-

dent of the dimension of the discretization of the problem; indeed convergence of the

SMC method is established in a function space setting. We also develop an enhance-

ment of the sequential Monte Carlo (SMC) methods for inverse problems which were

introduced in [20]; the enhancement is designed to deal with the additional complex-

ity of this elliptic inverse problem. The efficacy of the methodology, and its desirable

theoretical properties, are demonstrated on numerical examples in both two and three

dimensions.

Keywords: Inverse Problems, Elliptic PDEs, Groundwater Flow, Adaptive SMC,

Markov chain Monte Carlo.

1 Introduction

The viability of the Bayesian approach to inverse problems was established in the pioneering

text [19] which, in particular, demonstrated the potential for Markov chain Monte Carlo

(MCMC) methods in this context. Nonetheless, the high dimensional nature of the unknown,

often found from discretizing a field, leads to difficult problems in the design of proposals

which are cheap to implement, yet which mix efficiently. One recent approach to tackle
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these problems has been the development of algorithms with mesh-free mixing times, such

as those highlighted in [8, 16]; these non-standard MCMC algorithms avoid the unnecessary

penalties incurred by naive proposals related to exploration of the part of the parameter

space dominated by the prior. Nonetheless, in the large dataset or small observational

noise regimes, one is still confronted with an inference problem in high dimensions which,

whilst of smaller order than the dimension of the PDE solver, exhibits wide variations in

scales in different coordinates of the parameterizations, leading to substantial challenges for

algorithmic tuning.

A different approach, which we will adopt here, involves SMC samplers [12]. These are

particle methods which, in the context of Bayesian inverse problems, build an approximation

to a sequence of measures which interpolate from the prior to the posterior; the sequential

nature of the approximation allows for adaptation of the particle distribution and weights

from the (typically simple) prior to the (potentially very complex) posterior. Recent work in

the context of inverse problems [20] has shown how, by using the aforementioned dimension-

independent MCMC methods within SMC, it is possible to construct algorithms which

combine the desirable dimension-independent aspects of novel MCMC algorithms with the

desirable self-adaptation of particle methods. This combination is beneficial for complex

posteriors such as those arising in the large dataset or small noise regimes; in particular

the computational results in [20] demonstrate an order of magnitude speed-up of these new

SMC methods over the MCMC methods highlighted in [8], within the context of the inverse

problem for the initial condition of the Navier-Stokes equation. Furthermore, recent works

[2, 10, 12, 18] have shown that important aspects of this SMC algorithm for inverse problems,

such as adaptation, tempering and parallelization, have the potential to provide effective

methods even for high-dimensional inverse problems.

The contributions of this article are three-fold:

1. A computational study of SMC methods for a class of Bayesian inverse problems which

arise in applications such as hydrology [17], and are more challenging to fit, in com-

parison to the Navier-Stokes inverse problem which was the focus of the development

of novel SMC methods in [20]; furthermore, with modification of the measurement set-

up, the inverse problems considered also find application in medical imaging problems

such as EIT [19].

2. An enhancement of the class of SMC methods introduced in [20] which leads to greater

efficiency and, in particular, the ability to efficiently solve the elliptic inverse problems
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which are the focus of this paper.

3. A proof of the fact that these SMC algorithms have Monte Carlo convergence rates

which are mesh-independent and, indeed converge in the function space setting. This

complements related theoretical work [15] which establishes mesh-independence mix-

ing for the novel MCMC methods which are used as proposal kernels within the SMC

approach of [20] which we build upon here.

This article is structured as follows. In Section 2 we describe the Bayesian model and

associated PDE. In Section 3 our computational procedure is outlined, along with our the-

oretical results. In Section 4 we present our numerical results. The article is concluded in

Section 5 with a discussion of areas for future work.

2 Modelling

Consider two normed linear spaces, K and Y ⊆ R, corresponding to the state space of the

parameters (u ∈ K) and observations (y ∈ Y) respectively. We will observe data at spatial

locations x ∈ X ⊂ Rd, d ∈ {2, 3} and we denote the observation at location x as yx. Let

G : X × K → Y and, for each x ∈ X , let εx ∈ Y be a random variable of zero mean; then

we will be concerned with models of the form:

yx = G(x;u) + εx.

Here G(x;u) is an underlying system behaviour for a given parameter u, and εx expresses

measurement (and indeed sometimes model error) at location x. In our context, G is

associated to the solution of a PDE, with parameter u. We are interested in drawing

inference on u, given a prior distribution on u ∈ K, conditional upon observing realizations

of yx for a set of points x ∈ O ⊆ X , with Card(O) < +∞. This is the framework of our

Bayesian inverse problem. In subsection 2.1 we define the forward model, and in subsection

2.2 we describe prior modelling on our unknown. Subsection 2.3 shows that the posterior

distribution is well-defined and states a key property of the log-likelihood, used in what

follows.

2.1 Forward Model

In this paper, we focus on the general scenario where the forward map G is described by

an elliptic PDE. In particular, we work with a problem of central significance in hydrology,
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namely the estimation of subsurface flow from measurements of the pressure (hydraulic

head) at certain locations x in the domain of interest. The pressure and velocity are linked

by Darcy’s law in which the subsurface permeability appears as a parameter; estimating it

is thus a key step in predicting the subsurface flow. In this subsection we define the forward

map from permability to pressure space.

In detail, we consider the d−dimensional cube X = [−π2 ,
π
2 ]d as our domain, in both the

cases d = 2, 3. Define a mapping p : X → R, denoting pressure (or hydraulic head), v : X →

R3, denoting a quantity proportional to velocity, and u : X → R, denoting permeability (or

hydraulic conductivity) of soil [22]. The behaviour of the system is described through the

elliptic PDE:

v(x) = −u(x)∇xp(x), x ∈ X (1a)

−∇x ·
(
v(x)

)
= f(x), x ∈ X (1b)

p(x) = 0, x ∈ ∂X . (1c)

Equation (1a) is Darcy’s law and contains the permeability u (for us the key parameter);

equation (1b) expresses continuity of mass and here f : X → R is assumed known and char-

acterizes the source/sink configuration; in equation (1c) ∂X is the boundary of the domain,

and we are thus assuming a homogeneous boundary condition on the boundary pressure –

other boundary conditions, specifying the flux, are also possible. Together equations (1)

define an elliptic PDE for pressure p.

If u is in L∞(X ) and lower bounded by a positive constant kmin a.e. in X then, for every

f ∈ H−1(X ), there is a unique solution p ∈ H1
0 (X ) to the PDE (1) satisfying

‖p‖H1
0
≤ 1

kmin
‖f‖H−1 ; (2)

see [9] and the references therein. In this setting, the forward map G(x;u) := p(x) is well-

defined and thus corresponds to solution of the elliptic PDE for a given permeability field

u. A typical choice of the source/sink function f is

f(x) =
∑
i

ciδxi(x). (3)

The set of points {xi} denote the known position of sources or sinks, and the signs of each

ci determine whether one has a source or sink at xi [17]. We note that the cleanest setting

for the mathematical formulation of the problem requires f ∈ H−1(X ) and, in theory, will

require mollification of the Dirac’s at each xi; in practice this modification makes little

difference to the inference.
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2.2 Prior Modelling of Permeablity u

We describe the modelling of u in three dimensions; simplification to the two dimensional

setting is straightforward. We begin by expressing the unknown model parameter as a

Fourier series:

u(x) = ū(x) +
∑
k∈Z3

ukek(x). (4)

Here we have scaled Fourier coefficients

ek(x) = ak exp(ik · x) , k ∈ Z3 (5)

and the real coefficients {ak}, complex coefficients {uk} (satisfying ūk = u−k) and real-

valued L∞(X ) function ū will be chosen to enforce the mathematically necessary (and

physically sensible) positivity restriction

u(x) ≥ kmin > 0, x ∈ X . (6)

The use of Fourier series in principle enables the representation of arbitrary functions in

L2(X ) by use of periodic extensions. However we will impose a rate of decay on the {ak},

in order to work in the setting of inversion for this problem, as developed in [16, 25]; this

rate of decay will imply a certain degree of smoothness in the function (u − ū)(·). Noting

that the functions exp(ik · x) have L∞(X ) norm equal to one, we can place ourselves in the

setting of [16, 25] by assuming that, for some q > 0, C > 0,

∑
k

|ak|∞ <∞ ,
∑

k:|k|∞>j

|ak|∞ < Cj−q. (7)

We choose ak of the form

ak = a|k|−αL∞ (8)

and then impose α > 3 in dimension d = 3 or α > 2 in dimension d = 2.

Given this set-up, we need to find a suitable prior for u, so that the forward model G(x;u)

is almost-surely well-defined, as well as reflecting any prior statistical information we may

have. There are several widely adopted approaches in the literature for prior parameteriza-

tion of the permeability, the most common being the log-normal choice (see [26] for details

and, for example, [17] for a recent application), widely adopted by geophysicists, and the

uniform case [16, 25] which has been succesfully adopted in the computational mathematics

literature, building on earlier work of Schwab in uncertainty quantification [14]. We work

with the uniform priors popularized by Schwab: we choose uk
i.i.d.∼ U[−1,1] in the represen-

tation (4) for u, resulting in a pushforward measure ν0 on u as in [25]. We let K denote the
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separable Banach space found from the closure, with respect to the L∞ norm, of the set of

functions used in the representation (4) of u(·). Then ν0 is viewed as a measure on K; see

[9] for further details. Once the parameters ak are chosen to satisfy (7), the mean function

ū(x) can be chosen to ensure that there is kmin such that u(·) is in L∞(X ) and satisfies (6)

almost surely with respect to the prior ν0 on function u.

2.3 Bayesian Inverse Problem

We observe the pressure at certain locations, the set of which is denoted as O ∈ X . We

will suppose that for each x ∈ O and independently, εx ∼ N (0, σ2), where N (0, σ2) is the

normal distribution of mean 0 and known variance σ2. Then the log-likelihood is, up to an

irrelevant additive constant, given by

Φ(u; y) := −
∑
x∈O

∣∣G(x;u)− y(x)
∣∣2

2σ2
. (9)

Along with the prior modelling in subsection 2.2, this defines a scenario so that the

forward model G(x; ·) is, almost-surely, well-defined and, in fact, Lipschitz. As in [9, 25] we

may then define a posterior νy on u which has density with respect to ν0 given by (9):

dνy

dν0
(u) ∝ π(u) = exp

(
−Φ(u; y)

)
. (10)

Exploring the posterior distribution νy is the objective of the paper. In doing so, the

following fact will be relevant; it is easily established by using the fact that (6) holds almost

surely for u ∼ ν0, together with the bound on the solution of the elliptic PDE given in (2).

Lemma 2.1. There is a constant πmin = πmin(y) > 0 such that πmin ≤ π(u) ≤ 1 almost

surely for u ∼ ν0.

We finish by noting that, in algorithmic practice, it is typically necessary (see, however,

[1] in the context of MCMC) to apply a spectral truncation:

u(x) = ū(x) +
∑

k: |k|∞<c

ukek(x) (11)

where c is a truncation parameter. Having defined the desired parameterization of u, we

consider the truncated vector of Fourier coefficients uk as the object of inference in practice.

3 Sequential Monte Carlo

In this section we describe the application of SMC methods to Bayesian inversion. Subsec-

tion 3.1 contains an explanation of the basic methodology and statement of a basic (non-
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adaptive) algorithm. Subsection 3.2 contains statement and proof of a convergence theorem

for the basic form of the algorithm, notable because it applies in infinite dimensional spaces.

In subsection 3.3 we describe an adaptive version of the SMC algorithm, which we use in

practice.

3.1 Standard SMC Samplers

Let (E,E ) denote a measure space and ν0 a probability measure on that space. We wish to

sample from a target probability measure ν on (E,E ), which has density with respect to ν0

known up to a normalizing constant:

dν

dν0
(u) ∝ π(u). (12)

We introduce a sequence of “bridging” densities which enable us to connect ν0 to ν:

πn(u) ∝ π(u)ϕn , x ∈ E, (13)

where 0 = ϕ0 < · · · < ϕn−1 < ϕn < · · · < ϕp = 1; we refer to the ϕj as temperatures. We

let νn denote the probability measure with density proportional to πn with respect to ν0.

Assuming that π(u) is finite ν0 almost surely we obtain

dνn
dν0

(u) ∝ π(u)ϕn ,
dνn
dνn−1

(u) ∝ `n−1(u) := π(u)ϕn−ϕn−1 , n ∈ {1, · · · , p}. (14)

We note that the assumption on π being finite is satisfied for our elliptic inverse problem; see

Lemma 2.1. Although ν = νp may be far from ν0, careful choice of the ϕn can ensure that

νn is close to νn−1 allowing gradual evolution of approximation of ν0 into approximation of

ν. Other choices of bridging densities are possible and are discussed in e.g. [12].

Let {Ln−1}pn=1 denote the sequence of (nonlinear) maps on measures found by applying

Bayes’s Theorem with likelihood proportional to {`n−1}pn=1 and let {Kn}pn=1 be a sequence

of Markov kernels (and equivalently, for notational convenience, the resulting linear maps

on measures) with invariant measure {νn}pn=1. We define {Φn}pn=1 to be the nonlinear maps

on measures found as Φn = KnLn−1. Explicitly we have, for each n ≥ 1 and any probability

measure µ on E:

(Φnµ)(du) =
µ(`n−1Kn(du))

µ(`n−1)

where we use the notation µ(`n−1Kn(du)) =
∫
E
µ(dy)`n−1(y)Kn(y, du) and µ(`n−1) =∫

E
µ(dy)`n−1(y). It then follows that

νn = Φnνn−1, n ∈ {1, · · · , p}. (15)
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The standard SMC algorithm is described in Figure 1. It involves a population ofM particles

evolving with n. With no resampling, the algorithm coincides with annealed importance

sampling as in [23]. With resampling at every step (i.e. the case Mthresh = M , where

Mthresh denotes the cut-off point for the Effective Sample Size (EES)) we define the empirical

approximating measures by the iteration

νMn = SMΦnν
M
n−1, n ∈ {1, · · · , p}; νM0 =

1

M

M∑
m=1

δum0 (16)

Here

(SMµ)(dv) =
1

M

M∑
m=1

δv(m)(dv), v(m) ∼ µ i.i.d..

0. Sample {um0 }Mm=1 i.i.d. from ν0 and define the weights wm0 = M−1 for m = 1, · · · ,M.

Set n = 1 and l = 0.

1. For each m set ŵmn = `n−1(umn−1)wmn−1 and sample umn from Kn(umn−1, ·); calculate

the normalized weights

wmn = ŵmn /
( M∑
m=1

ŵmn
)
.

2. Calculate the Effective Sample Size (ESS):

ESS(n)(M) :=

(∑M
m=1 w

m
n

)2
∑M
m=1(wmn )2

. (17)

If ESS(n)(M) ≤Mthres:

resample {umn }Mm=1 according to the normalized weights {wmn }Mm=1;

re-initialise the weights by setting wmn = M−1 for m = 1, · · · ,M ;

let {umn }Mm=1 now denote the resampled particles.

3. If n < p set n = n+ 1 and return to Step 1; otherwise stop.

Figure 1: Standard SMC Samplers. Mthres ∈ {1, . . . ,M} is a user defined parameter.

3.2 Convergence Property

The issue of dimensionality in SMC methods has attracted substantial attention in the

literature [2, 3, 4, 24]. In this section, using a simple approach for the analysis of particle

filters which is clearly exposed in [24], we show that for our SMC method it is possible to
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prove dimension-free error bounds. Whilst the theoretical result in this subsection is not

entirely new (similar results follow from the work in [10, 11]), a direct and simple proof

is included for non-specialists in SMC methods, to highight the utility of SMC methods

in inverse problems, and to connect with related recent results in dimension-independent

MCMC, such as [15], which are far harder to establish.

We will consider the algorithm in Figure 1 with Mthres = M , so one resamples at every

time step (and this is multinomially). Note that then, for n ≥ 0, at the end of each step of

the algorithm the approximation to νn is given by

νMn (du) :=
1

M

M∑
m=1

δumn (dx), (18)

which follows from the algorithm in Figure 1 with Mthres = M or, equivalently, (16).

Throughout, we will assume that there exists a κ > 0 such that for each n ≥ 0 and any

u ∈ E

κ ≤ `n(u) ≤ 1/κ. (19)

We note that this holds for the elliptic inverse problem from the previous section, when the

uniform prior ν0 is employed; see Lemma 2.1.

Let P denote the collection of all probability measures on E. Let µ = µ(ω) and ν = ν(ω)

denote two possibly random elements in P, and Eω expectation w.r.t. ω. We define the

distance between µ, ν ∈ P by

d(µ, ν) = sup|f |∞≤1
√
Eω|µ(f)− ν(f)|2,

where the supremum is over all f : E → R with |f |∞ := supv∈E |f(v)| ≤ 1. This definition

of distance is indeed a metric on the space of random probability measures; in particular

it satisfies the triangle inequality. In the context of SMC the randomness underlying the

approximations (18) comes from the various sampling operations within the algorithm.

We have the following convergence result for the SMC algorithm.

Theorem 3.1. Assume (19) and consider the SMC algorithm with Mthresh = M . Then,

for any n ≥ 0,

d(νMn , νn) ≤
n∑
j=0

(2κ−2)j
1√
M
.

Proof. For n = 0 the result holds via Lemma 3.2. For n > 0, we have, by the triangle

inequality, Lemma 3.1 and Lemma 3.2 (which may be used by the conditional independence
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structure of the algorithm),

d(νn, ν
M
n ) = d(Φnνn−1, S

MΦnν
M
n−1)

≤ d(Φnνn−1,Φnν
M
n−1) + d(Φnν

M
n−1, S

MΦnν
M
n−1)

≤ 2

κ2
d(νn−1, ν

M
n−1) +

1√
M
.

Iterating gives the desired result.

Remark 3.1. This theorem shows that the sequential particle filter actually reproduces the

true posterior distribution νp, in the limit M →∞. We make some comments about this.

• The measure νp is well-approximated by νMp in the sense that, as the number of par-

ticles M →∞, the approximating measure converges to the true measure. The result

holds in the infinite dimensional setting. As a consequence the algorithm as stated is

robust to finite dimensional approximation.

• In principle the theory applies even if the Markov kernel Kn is simply the identity

mapping on probability measures. However, moving the particles according to a non-

trivial νn-invariant measure is absolutely essential for the methodology to work in

practice. This can be seen by noting that if Kn is indeed taken to be the identity map

on measures then the particle positions will be unchanged as n changes, meaning that

the measure νp is approximated by weighted samples (almost) from the prior, clearly

undesirable in general.

• The MCMC methods in [8] provide explicit examples of Markov kernels with the desired

property of preserving the measures νn, including the infinite dimensional setting.

• In fact, if the Markov kernel Kn has some ergodicity properties then it is sometimes

possible to obtain bounds which are uniform in p; see [10, 11].

Lemma 3.1. Assume (19). Then, for any n ≥ 1 and any µ, ν ∈ P,

d(Φnµ,Φnν) ≤ 2

κ2
d(µ, ν).

Proof. For any measurable f : E → R we have

[Φnµ− Φnν](f) =
1

µ(`n−1)
[µ− ν](`n−1Kn(f))

+
ν(`n−1Kn(f))

µ(`n−1)ν(`n−1)
[ν − µ](`n−1).
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So we have, by Minkowski,

Eω[|[Φnµ− Φnν](f)|2]1/2 ≤ Eω
[∣∣∣ 1

µ(`n−1)
[µ− ν](`n−1Kn(f))

∣∣∣2]1/2
+ Eω

[∣∣∣ ν(`n−1Kn(f))

µ(`n−1)ν(`n−1)
[ν − µ](`n−1)]

∣∣∣2]1/2.
Note that the ratio

ν(`n−1Kn(f))

ν(`n−1)

is an expectation of f and is hence bounded by 1 in modulus, if |f |∞ ≤ 1. Then using the

fact that |`n−1Kn(f)|∞ ≤ κ−1 and `n−1 ≥ κ (see (19)) we deduce that

Eω[|[Φnµ− Φnν](f)|2]1/2 ≤ 1

κ2
Eω
[∣∣∣[µ− ν](`n−1Kn(f)κ)

∣∣∣2]1/2
+

1

κ2
Eω
[∣∣∣[ν − µ](`n−1κ)]

∣∣∣2]1/2.
using the fact that |`n−1Kn(f)|∞ ≤ κ−1 and `n−1 ≤ κ−1, with the first following from (19)

together with the Markov property for Kn, taking suprema over f completes the proof.

Lemma 3.2. The sampling operator satisfies

sup
µ∈P

d(SMµ, µ) ≤ 1√
M
.

Proof. Let ν be an element of P(X) and {v(k)}Mk=1 a set of i.i.d. samples with v(1) ∼ ν; the

randomness entering the probability measures is through these samples, expectation with

respect to which we denote by Eω in what follows. Then

SMν(f) =
1

M

M∑
k=1

f(v(k))

and, defining f = f − ν(f), we deduce that

SMν(f)− ν(f) =
1

M

M∑
k=1

f(v(k)).

It is straightforward to see that

Eωf(v(k))f(v(l)) = δklEω|f(v(k))|2.

Furthermore, for |f |∞ ≤ 1,

Eω|f(v(1))|2 = Eω|f(v(1))|2 − |Eωf(v(1))|2 ≤ 1.

It follows that, for |f |∞ ≤ 1,

Eω|ν(f)− SMν(f)|2 =
1

M2

M∑
k=1

Eω|f(v(k))|2 ≤ 1

M
.

Since the result is independent of ν we may take the supremum over all probability measures

and obtain the desired result.
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3.3 Adaptive SMC Samplers

In practice, the SMC samplers algorithm requires the specification of 0 < ϕ0 < · · · < ϕn−1 <

ϕn < · · · < ϕp = 1 as well as any parameters in the MCMC kernels. As demonstrated in

[18, 20], the theoretical validity of which is established in [5], these parameters may be set

on the fly.

First, we focus on the specification of the sequence of distributions. Given step n − 1

and πn−1(x), we select the next target density by adapting the temperatures to a required

value for the Effective Sample Size (ESS) statistic (17) as in [18] (see also [29] for an alter-

native procedure). So, for a user-specified threshold Mthres, we choose ϕn as the solution of

ESS(n)(M) = Mthres. One can use an inexpensive bisection method to obtain ϕn.

Second, we turn to the specification of the mutation kernels Kn. Several options are

available here, but we will use reflective random walk Metropolis proposals on each univariate

component, conditionally independently. We will adapt the random-move proposal scales,

εj,n, with j the co-ordinate and n the time index. A simple choice would be to tune εj,n

to the marginal variance along the j-th co-ordinate; since this is analytically unavailable

we opt for the SMC estimate at the previous time-step. Thus, we set εn,j = ρn

√
V̂ar(Un,j)

where ρn is a global scaling parameter. For ρn itself, we propose to modify it based on the

previous average acceptance rate over the population of particles (denoted αNn−1), to try

to have average acceptance rates in a neighbourhood of 0.2 (see e.g. [7] and the references

therein for a justification). Our adaptive strategy works as follows;

ρn =


2ρn−1 , if αNn−1 > 0.3

0.5ρn−1 , if αNn−1 < 0.15

ρn−1 , o.w.

(20)

Thus, we scale ρ upwards (downwards) if the last average acceptance rate went above (below)

a predetermined neighbourhood of 0.2. This approach is different to the work in [20].

In addition, one can synthesize a number, say Mn, of baseline MCMC kernels, to obtain

an overall effective one with good mixing; this is a new contribution relative to [20]. To

adapt Mn, we follow the following heuristic; We propose to select Mn using Mn = b mρ2n c,

with m being a global parameter. The intuition is that for random-walk-type transitions of

increment with small standard deviation δ, one needs O(δ−2) steps to travel distance O(1)

in the state-space. A final modification for practical computational reasons is that we force

Mn steps to lie within a predetermined bounded set, i.e. [l, u].

The adaptive SMC algorithm works as in Figure 1, except in step 1, before simulation
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from Kn is undertaken, our adaptive procedure is implemented. Then one may resample

(or not) and then move the samples according to Kn. In addition, the algorithm will run

for a random number of time steps and terminate when ϕn = 1 (which will happen in a

finite number of steps almost surely).

4 Numerical Results

In this section, we describe the details of our implementation (Section 4.1), describe the

objects of inference (Section 4.2) and give our results in 2D (Section 4.3) and 3D (Section

4.4).

4.1 Implementation Details

The software used in our experiments has been implemented in C++ for the GNU\Linux

platform. We used the Libmesh library for finite elements computation [21], we used the

Fast Fourier Transform for rapid evaluation of the sum in u(·) at pre-determined grid-points

in X and we exploited parallel computation wherever possible, for which we used the MPI

libraries. Our experiments were run on a computer server with 23 “Intel(R) Xeon(R)CPU

X7460 @2.66GHz” processors, each with 2 cores; 50 Gb memory and running “RedHat

Linux version 2.6.18-194.el5” operating system. The experiments discussed in this paper

used 20 processors.

All the colour plots of random fields (e.g. permeability fields) have been prepared using

the rainbow color scheme from the R programming language/environment. The scheme

quantizes the Hue quantity of HSV (Hue Saturation Value) triplet of a pixel. Our level of

quantization is selected to be 256 (8 bits), with the Hue range of [0, 1], hence we normalize

the random fields to this range and quantize to 8 bits to get the Hue value for a pixel.

Saturation and Value were taken to be 1. All images were computed using 500× 500 equi-

spaced point evaluations from the respective random fields.

4.2 Objects of Inference

The work in [27] investigates the performance of the Bayesian approach for our elliptic

inverse problem and gives sufficient conditions under which posterior consistency holds.

Posterior consistency is concerned with “ball probabilities” of type

lim
Card(O)→∞

∫
Bε

dνy

dν0
(u)ν0(du) = 1
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where y = {yx}x∈O and Bε is the ε neighbourhood of the true value of u. One way to check

such a result numerically is to use the posterior estimates obtained via our method. The

estimated ball probabilities are computed as follows:∑
i

wipIBε(u(xip)) (21)

Although not all the conditions in [27] required for posterior consistency to hold are

fulfilled, we will nonetheless empirically investigate such a consistency property. This also

provides a severe test for the SMC method since it implies posterior measures in the large

dataset limit.

4.3 Results in 2D

We consider equation (1) in dimension d = 2 and with source and sinks as specified in

(3). Our goal is to construct a sequence of posterior estimates, corresponding to increasing

number of observations in order to numerically illustrate posterior consistency. Table 1

shows the parameters used in our experiments.

Parameter name Value

frequency cutoff 10

Finite Elements d.o.f. 100

σ2 5× 10−7

M 1000

Mthres 600

a 4

ū 40

Wall-clock time 11 hrs

Table 1: Parameter values of used for the 2D experiments. Between 5 and 1000 steps are

allowed for the iterates of the MCMC kernels. The frequency cutoff determines the level of

discretization of the permeability field. Finite elements d.o.f. denotes the number of finite

elements used in the numerical solution of the elliptic PDE, higher values indicate better

approximation at the expense of computational resources. For a see (8).

To get an empirical sense of these parameters’ effects on the distribution of the per-

meability field, we plot some samples from the prior field u(x) in Figure 2. We will then

generate 100 data points from the model, in the scenario where the permeability field is as
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Figure 3 (a). In Figure 3 (b) we show the mean of the posterior permeability field, using

these 100 noisily observed data points. The posterior mean is estimated as the mean of

the particle distribution from SMC at the final time, and notable in that it shows good

agreement with true value of the permeability.

Figure 2: Six permeability field samples drawn from the prior

In another experiment, designed to study posterior consistency, a sequence of posterior

estimates are formed by repeatedly running the adaptive SMC algorithm with, respectively,

4, 16, 36, 64 and 100 observations equi-spaced inside the domain of [−π/2, π/2]2. The com-

puted MSE and ball probabilities are given in Figure 4, with the ball radius ε taken to

be 0.17 × 360, where 360 is the number of parameters in the system, corresponding to a

frequency cutoff of 10. The Figure suggests that as more data become available posterior

consistency is obtained as predicted, under slightly more restrictive assumptions than we

have in play here, in [27]. This is interesting for two reasons: firstly it suggests the po-

tential for more refined Bayesian posterior consistency analyses for nonlinear PDE inverse

problems; secondly it demonstrates the potential to solve hard practical Bayesian inverse

problems and to obtain informed inference from a relatively small number of observations.

Finally, Figure 5 shows marginal posterior density estimates corresponding to 144 ob-

servations. The usual observation is to note the effectiveness of even the mode estimator

in lower frequencies. Another important observation is the similarity of the high frequency

marginal densities to the prior. In fact, it is this behaviour that makes a prior invariant

MCMC proposal superior to others, i.e. the proposal itself is almost optimal for a wide
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(a) True permeability field. (b) Estimated permeability field.

Figure 3: The true and Posterior Estimated Permeability Field. The estimated filed is the

mean estimated at the final step of the SMC method.
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range of coefficients in the problem.
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Figure 5: Posterior marginal density estimates for two low and one high frequency coeffi-

cients in the 2D case

4.4 Results in 3D

A more realistic experiment is performed using the 3D setup discussed in Section 2. In this

setup, the computational aspects of the problem are further highlighted as the numerical

solution of the forward operator becomes much harder due to the increased cardinality of

the finite elements basis. The values of parameters in this numerical study are given in

Table 2. The data are generated from the model, under the specifications given in Table 2.

Parameter name Value

# of Observations 125

Frequency Cutoff 5

Finite Elements d.o.f. 1000

σ2 1× 10−8

M 1000

Mthres 600

a 1

ū 100

Wall-clock time 10 days

Table 2: Parameter values used for the 3D experiment discussed in this section. Between 5

and 200 steps are allowed for the iterates of the MCMC kernels.

In Figure 6, we consider the performance of our SMC algorithm in this very challenging

scenario. In Figure 6 (a), we can see the average acceptance rates of the MCMC moves,
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over the time parameter of the SMC algorithm. We can observe that these acceptance rates

do not collapse to zero and are not too far from 0.2. This indicates that the step-sizes are

chosen quite reasonably by the adaptive SMC algorithm and the MCMC kernels have some

mixing ability. In Figure 6 (b), we can see the number of MCMC iterations that are used

per-particle over the time parameter of the SMC algorithm. We can observe, as one might

expect, that as the target distribution becomes more challenging, the number of MCMC

steps required grows. Figure 6 indicates reasonable performance of our SMC algorithm.

In terms of inference, the posterior density estimates are shown in figure 7. Recall

that the priors are uniform. These estimates indicate a clear deviation from the prior

specification, illustrating that the data influence our inference significantly. This is not

obvious, and establishes that one can hope to use this Bayesian model in real applications.
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(a) Average acceptance rates for each iteration of the
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Figure 6: SMC Performance for 3D Example.

5 Summary

In this article we have presented an SMC method for Bayesian inverse problems and applied

it to a particular elliptic PDE inversion; the methodology, however, is transferable to other

PDE inverse problems. Simulations demonstrated both the feasability of the SMC method

for challenging infinite dimensional inversion, as well as the property of posterior contraction
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Figure 7: Posterior marginal density estimates for two low and one high frequency coeffi-

cients in the 3D case

to the truth. In addition to simulations, we have provided a straightforward proof of the

fact that SMC methods are robust to the dimension of the problem.

There are several avenues for future research. Firstly, our error bounds explode w.r.t.

the time parameter. It is of interest to find realistic conditions for which this is not the case

(for instance the bounds in [10, 11, 28] have assumptions which either do not hold or are

hard to verify). Secondly, a further algorithmic innovation is to use multi-level Monte Carlo

method as in [16], within the SMC context; this is being considered in [6]. And finally it is

of interest to consider the use of these methods to solve other Bayesian inference problems.
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