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Abstract: Looking at predictive accuracy is a traditional method for comparing models. A

natural method for approximating out-of-sample predictive accuracy is leave-one-out cross-

validation (LOOCV) — we alternately hold out each case from a full data set and then train

a Bayesian model using Markov chain Monte Carlo (MCMC) without the held-out; at last

we evaluate the posterior predictive distribution of all cases with their actual observations.

However, actual LOOCV is time-consuming. This paper introduces two methods, namely iIS

and iWAIC, for approximating LOOCV with only Markov chain samples simulated from a

posterior based on a full data set. iIS and iWAIC aim at improving the approximations given

by importance sampling (IS) and WAIC in Bayesian models with possibly correlated latent

variables. In iIS and iWAIC, we first integrate the predictive density over the distribution

of the latent variables associated with the held-out without reference to its observation,

then apply IS and WAIC approximations to the integrated predictive density. We compare

iIS and iWAIC with other approximation methods in three kinds of models: finite mixture

models, models with correlated spatial effects, and a random effect logistic regression model.

Our empirical results show that iIS and iWAIC give substantially better approximates than

non-integrated IS and WAIC and other methods.
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1 Introduction

Evaluating goodness of fit of models to a data set is of fundamental importance in statistics.

The goodness-of-fit evaluation is necessary for many tasks, such as, comparing competing

models (which may be non-nested), testing hypotheses, and detecting outliers in a data

set to a model. To date, evaluating model goodness-of-fit remains a daunting problem for

Bayesian statisticians. There have been a wide range of methods for this problem, in addition

to the classic significance test for parameters used to link a family of nested models. In

particular, Bayes factor (Kass and Raftery, 1995) based on marginal likelihood is widely used

for comparing multiple Bayesian models. However, it is notorious that marginal likelihood

can be arbitrarily small if the prior is sufficiently diffuse — a problem called Jeffrey-Lindley

paradox (Lindley, 1957; Robert, 2013), therefore Bayes factor cannot be used in models with

uninformative or improper priors. Much research has been done to remedy this problem

with various methods; to name a few, the fractional Bayes factor (O’Hagan, 1995, 1997), the

intrinsic Bayes factor (Berger and Pericchi, 1996), and the methods treating model selection

as a decision problem and using continuous loss functions, see Bernardo and Rueda (2002); Li

and Yu (2012); Li et al. (2014), and the references therein. In addition, computing marginal

likelihood is tremendously difficult for complex models, see discussion in Chib (1995); Raftery

et al. (2006), and the references therein. Another traditional approach, often called predictive

model assessment, is to look at accuracy of competing models in predicting out-of-sample

observations, which is free of Jeffrey-Lindley paradox. An extensive review of predictive

model assessment methods is provided by Vehtari and Ojanen (2012).

Cross-validation (CV) is a natural way to approximate out-of-sample predictive perfor-

mance of a model. Throughout this paper, we will discuss only leave-one-out cross-validation

(LOOCV); hence in what follows, CV means LOOCV. In CV, we hold out a unit from a full

data set, fit/train a model using Markov chain Monte Carlo (MCMC) without the holdout,

and then find a predictive distribution of what would be observed from the holdout. We
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repeat this procedure with each observation as a holdout. We can then compare the CV

predictive distributions with the actual observations in terms of a chosen loss function. A

widely used loss function is negative twice log predictive density of the actual observation.

Predictive evaluations based on this loss are often called information criteria (IC) for histori-

cal reason (Gelman et al., 2014). CV predictive evaluation can also be used to check whether

the actual observation is an outlier by looking at tail probability of the predictive distribution

(Marshall and Spiegelhalter, 2003, 2007). Actual Bayesian CV is time-consuming for com-

plex models because it requires an MCMC simulation for each unit as a held-out test case.

Alternative methods have been proposed to approximate out-of-sample or CV predictive

evaluations only with MCMC samples drawn from the posterior based on the full data set.

These methods aim at correcting for optimistic bias in training (also called within-sample)

predictive evaluation. Gelfand et al. (1992) introduce importance sampling (IS) method that

weights MCMC samples using inverse training predictive density for each unit. IS is widely

applicable to many loss functions. This method has been innovatively applied to many

problems, such as in off-policy reinforcement learning problems (Hachiya et al., 2008) and

in “inverse problems” (Bhattacharya and Haslett, 2007). However, many applications show

that IS approximation has large bias and variance (Peruggia, 1997; Vehtari, 2001; Vehtari

and Lampinen, 2002; Epifani et al., 2008).

There are also many other methods that focus on estimating out-of-sample information

criterion by adjusting a version of training predictive information criterion with a correction

for optimistic bias (Spiegelhalter et al., 2002; Ando, 2007; Plummer, 2008; Gelman et al.,

2014). In the recent years, the deviance information criterion (DIC) of Spiegelhalter et al.

(2002) may be the most popular choice in Bayesian applications, which is readily available in

WinBUGS. However, a number of difficulties have been noted with DIC (and its variants),

particularly in Bayesian models in which latent variables and model parameters are non-

identifiable from data — a typical example is mixture models; see Celeux et al. (2006), and

Plummer (2008), and many of the discussions following the paper by Spiegelhalter et al.
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(2002). Some authors have pointed out connections and discrepancies of DIC with out-of-

sample information criterion [see Plummer (2008); Watanabe (2010a); Gelman et al. (2014)].

However, nowadays we often need to compare models with latent variables. DIC is typically

implemented by treating latent variables as unknown parameters otherwise DIC will be too

hard to implement; however, this treatment is lack of theoretical justification; see a detailed

discussion in Li et al. (2012). Recently, a newer criterion called WAIC (widely applicable

information criterion) was proposed by Watanabe (2009, 2010b,c), which has been evaluated

in several simple models by Gelman et al. (2014). WAIC operates on predictive probability

density of observed variables rather than on model parameters, hence, it can be applied in

singular statistical models (ie, models with non-identifiable parameterization). Watanabe

(2010a) has proved that WAIC is equivalent to CV information criterion asymptotically

as random variables of training data, and that on average of both training and evaluation

(future) data, both WAIC and CV information criterion are asymptotically equivalent to

out-of-sample information criterion using his singular statistical learning theory (Watanabe,

2009). However, WAIC is only justified for problems where observed data are independently

distributed with a population distribution.

In this article, we introduce two predictive evaluation methods based on IS and WAIC

for use in Bayesian models with unit-specific and possibly correlated latent variables. IS and

WAIC can be simply applied to the (non-integrated) predictive density of observed variables,

which is conditional not only on the model parameters, but also latent variables associated

with a validation unit that is supposed to be left out in CV. However, the actual observations

on the validation unit used in full data posterior often bring more bias into the latent variables

associated with the validation unit (perhaps more than into the model parameters) than

IS or WAIC correction alone can eliminate. To eliminate the bias in the latent variables

associated with the validation unit, one remedy is to temporarily discard the latent variables

in full data posterior sample, and integrate the non-integrated predictive density with respect

to the conditional distribution of the latent variables associated with the validation unit
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that is conditional on only the model parameters but not the actual observations, which

will lead to an integrated predictive density. Using the same way we obtain integrated

evaluation function. We then apply IS and WAIC formulae to the integrated predictive

density and evaluation functions, which results in two predictive evaluation methods —

Integrated Importance Sampling (iIS) and Integrated WAIC (iWAIC). The required integrals

can be obtained analytically in some models, otherwise, can often be easily approximated

using Monte Carlo methods or other numerical methods.

Vehtari (2001); Vanhatalo et al. (2012, 2013) have used iIS for computing information

criterion, a special but very important case of predictive evaluation, in Gaussian process la-

tent variable models in their matlab toolbox GPstuff. For computing information criterion,

one uses only the integrated predictive density (see equation (21)), for which GPstuff used

analytical method for Gaussian likelihood, and numerical approximation for non-Gaussian

likelihood; this is documented by the manual for GPstuff but their technical report (Vanhat-

alo et al., 2012) did not discuss the details of iIS. Our article gives iIS a detailed discussion.

In addition, we provide a formula for iIS that is applicable to general evaluation function;

in particular, our formula can be used also for computing CV posterior p-value. We have

also proved the equivalence of iIS and actual CV. The main contribution of this paper is to

use illustrative examples to demonstrate the necessity and benefit of integrating away the

latent variables associated with the validation unit. For computing CV posterior p-value,

iIS is also related to another method called ghosting method, which was proposed by Mar-

shall and Spiegelhalter (2007), and also discussed by Held et al. (2010). Ghosting method

discards latent variables associated with the validation unit and re-generates them from the

distribution without reference to the actual observations of the validation unit using Monte

Carlo method to compute a tail probability (evaluation function), but ghosting method does

not use importance re-weighting to correct for the bias in model parameters; hence, ghosting

method can be deemed as a partial implementation of iIS.

The remaining of this article will be organized as follows. In Section 1, we describe a
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class of Bayesian models with unit-specific models that iIS and iWAIC can be applied to. In

Section 2, we describe how to perform actual cross-validation evaluation, and give relevant

posterior distributions. We will then describe iIS and iWAIC in general terms in Sections 4

and 5, respectively. In Section 6, we compare iIS and iWAIC to other approximation methods

in three simple examples — a mixture modelling problem, a problem using random effect

logistic models, and a disease mapping problem that uses spatially correlated random effects.

Our empirical results show that iIS and iWAIC provide significantly closer approximates to

actual CV evaluation results than ordinary IS and WAIC, as well as other methods. The

article will be concluded in Section 7. In Appendices, we give a sketch of the working

procedures of iIS and iWAIC.

2 Bayesian Models with Unit-specific Latent Variables

The new predictive evaluation methods that we will describe is for use in Bayesian models

with unit-specific latent variables. Throughout this paper, we use bold-faced letters to de-

note vectors and matrices. Suppose we have n observations yobs
1 , · · · ,yobs

n on n observation

units (aka cases, such as persons, locations, time points, or a combination of them). We

model them as a realization of random variables y1, · · · ,yn. In many problems, we intro-

duce a latent variable (often random vector, sometimes called random effects, missing data)

bi for each unit i from which yobs
i is observed, then we will model yi and bi with certain

statistical distributions parametrized by θ. Conditional on bi and θ (often also on a covari-

ate variable xi that will be omitted in following equations for simplicity), we assume that

y1, · · · ,yn are statistically independent, with probability density P (yi|bi,θ), which we will

call non-integrated predictive density in this article. If we assume independence be-

tween b1, · · · , bn given θ, then the marginalized distributions of random variables y1, · · · ,yn

given θ are also independent for each i, for example in mixture models. For modelling spatial

and time series data, we often assume that the latent variables b1, · · · , bn are dependent for

modelling correlations between locations or time points (see an example in Section 6.3). In
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Figure 1: Graphical representation of Bayesian latent variables models. The double arrows
in the box for b1:n mean possible dependency between b1:n. Note that the covariate xi will
be omitted in the conditions of densities for bi and yi throughout this paper for simplicity.

model parameters

θ

yi

xi for i = 1, · · · , n

bi

for i = 1, · · · , n

for i = 1, · · · , n

covariate variables

observable variables

latent variables

the following general discussion, we will assume that b1, . . . , bn are correlated. Figure 1 gives

a graphical representation of the models described here.

Throughout this paper, we will use notation a1:n to denote the collection of all aj:

{aj|j = 1, . . . , n}, and use a−i to denote the collection of all aj except ai: {aj|j =

1, . . . , n, j 6= i}.

Suppose conditional on θ, we have specified a density for yi given bi: P (yi|bi,θ), a

joint prior density for latent variables b1:n: P (b1:n|θ), and a prior density for θ: P (θ). The

posterior of (b1:n,θ) given observations yobs
1:n is proportional to the joint density of yobs

1:n, b1:n,

and θ:

Ppost(θ, b1:n|yobs

1:n) =
n∏

j=1

P (yobs

j |bj,θ)P (b1:n|θ)P (θ)/C1, (1)

where C1 is the normalizing constant involving only with yobs
1:n.

3 Actual Cross-validatory Predictive Evaluation

To do cross-validation, for each i = 1, . . . , n, we omit observation yobs
i , and then draw

MCMC samples from CV posterior distribution of model parameter and latent variables
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P (θ, b1:n|yobs
−i ):

Ppost(-i)(θ, b1:n|yobs

−i ) =
∏
j 6=i

P (yobs

j |bj,θ)P (b1:n|θ)P (θ) /C2, (2)

where C2 is the normalizing constant involving only with yobs
−i . Note that, in equation (2),

we assume that the possible structures information (e.g. spatial relationships between n

locations) among b1:n are not lost, with only the value of yobs
i omitted. After we draw

MCMC samples of (θ, b1:n) from (2), and then drop bi, we obtain MCMC sample of (θ, b−i)

from the marginalized CV posterior P (θ, b−i|yobs
−i ):

Ppost(-i), M(θ, b−i|yobs

−i ) =
∏
j 6=i

P (yobs

j |bj,θ)P (b−i|θ)P (θ) /C2, (3)

where P (b−i|θ) is the marginalized prior density for b−i induced from the specified joint

prior for b1:n, i.e., P (b−i|θ) =
∫
P (b1:n|θ)dbi. Using conditional prior P (bi|b−i,θ) =

P (b1:n|θ)/P (b−i|θ), we can write

Ppost(-i)(θ, b1:n|yobs

−i ) = Ppost(-i), M(θ, b−i|yobs

−i )P (bi|b−i,θ). (4)

From the above expression, we see that sampling from Ppost(-i) is equivalent to sampling

from Ppost(-i), M and then generating bi from the conditional prior P (bi|b−i,θ). Therefore,

this way to perform cross-validation makes use of the assumed structure in b1:n (such as

neighbouring relationships between spatial units, see the example presented in Section 6.3)

through P (bi|b−i,θ), in predicting yi given yobs
−i . This treatment indeed regards the structure

information in b1:n as fixed covariate and being known. We feel that this treatment is

reasonable because we are interested in comparing competing models for the conditional

distribution of y1:n given the structure between the n units, rather than the distribution of

the structure itself. This is similar to how the cross-validation is done in linear models, for

which we assume that the values of the covariates (explanatory variables) of the test case

are known when we make prediction of the response of the test case.

The purpose of performing CV is to evaluate certain compatibility (or discrepancy) be-
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tween the posterior P (yi|yobs
−i ) and the actual observation yobs

i . We will specify an evaluation

function a(yobs
i ,θ, bi) that measures certain goodness-of-fit (or discrepancy) of the distribu-

tion P (yi|θ, bi) to the actual observation yobs
i . CV posterior predictive evaluation is

defined as the expectation of the a(yobs
1:n, ., .) with respect to Ppost(-i):

Epost(-i)(a(yobs

i ,θ, bi)) =

∫
a(yobs

i ,θ, bi)Ppost(-i)(θ, b1:n|yobs

−i )dθdb1:n. (5)

The expectation in (5) can be approximated by averaging a(yobs
i , ·, ·) over MCMC samples

of (θ, bi) drawn from Ppost(-i).

The first example of a is the value of predictive density function P (yi|bi,θ) at the actual

observation yobs
i :

a(yobs

i ,θ, bi) = P (yobs

i |θ, bi). (6)

The expectation of (6) with respect to Ppost(-i) is CV posterior predictive density

P (yobs
i |yobs

−i ). CV information criterion (CVIC) is defined as the sum of minus twice

of CV posterior predictive densities over all validation units:

CVIC = −2
n∑

i=1

log(P (yobs

i |yobs

−i )). (7)

A smaller value of CVIC indicates a better fit of a Bayesian model to a real data set. The

second is to set a in (5) as the p-value given model parameter and latent variable for unit i

(Marshall and Spiegelhalter, 2003, 2007):

a(yobs

i ,θ, bi) = Pr(yi > y
obs

i |θ, bi) + 0.5Pr(yi = yobs

i |θ, bi), (8)

where Pr means probability of a set, as we have used P as density; also yi should be a scalar

for such situations. The expectation of (8) with respect to Ppost(-i) gives CV posterior

p-value:

CV posterior p-value (yobs

i |yobs

−i ) = Pr(yi > y
obs

i |yobs

−i ) + 0.5Pr(yi = yobs

i |yobs

−i ), (9)

which is a tail probability of CV posterior predictive distribution with density P (yi|yobs
−i ).

The purpose of computing CV posterior p-value is to check the discrepancy of the observation
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yobs
i to the CV posterior predictive distribution of yi that is conditional on other observations

yobs
−i . Both very large and small values of posterior p-value indicate that yobs

i may be an outlier

(unusually small or large) compared to other observations.

Actual CV requires n of Markov chain simulations (each may use multiple parallel

chains), one for each validation unit. This is very time consuming, especially when the

model is complex and n is fairly large. Therefore, we are interested in approximating the

expectations in (5) for all validation units i = 1, . . . , n with samples of (θ, b1:n) obtained

with a single MCMC simulation based on the full data set; that is, with samples drawn

from Ppost(θ, b1:n|yobs
1:n), called full data posterior for short hereafter. However, we cannot

simply treat samples from the full data posterior as CV posteriors, because the inclusion

of yobs
i has introduced optimistic bias in validating yobs

i . The optimistic bias means that

the “posterior predictive distribution” of yi formed by averaging P (yi|bi,θ) with respect to

Ppost(θ, b1:n|yobs
1:n) fits yobs

i better than the actual CV posterior predictive distribution of yi

that averages P (yi|bi,θ) with respect to Ppost(-i)(θ, b1:n|yobs
−i ). Therefore, we need to correct

for the optimistic bias with a certain method to obtain an unbiased approximate/estimate

of actual CV posterior predictive evaluation. We will introduce two new approximating

methods in Section 4 and 5, respectively.

4 Importance Sampling (IS) Approximation

4.1 Non-integrated Importance Sampling

Importance weighting (Gelfand et al., 1992) is a natural choice for approximating CV pre-

diction evaluation based on the posterior given the full data set. For general and detailed

discussion of importance sampling techniques, one can refer to Geweke (1989); Neal (1993);

Gelman and Meng (1998); Liu (2001). If our samples are from Ppost(θ, b1:n|yobs
1:n), but we

are interested in estimating the mean of a with respect to Ppost(-i)(θ, b1:n|yobs
−i ) as in (5), im-

portance weighting method is based on the following equality for CV expected evaluation:
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Epost(-i)(a(yobs

i ,θ, bi)) =
Epost

[
a(yobs

i ,θ, bi)W
nIS
i (θ, b1:n)

]
Epost

[
W nIS

i (θ, b1:n)
] , (10)

where Epost[ ] is expectation with respect to Ppost(θ, b1:n|yobs
1:n), and

W nIS
i (θ, b1:n) =

Ppost(-i)(θ, b1:n|yobs
−i )

Ppost(θ, b1:n|yobs
1:n)

× C2

C1

=
1

P (yobs
i |θ, bi)

. (11)

Note that, we can multiply any constant to the above important weight since they will be

canceled in the fraction of (10); also we use subscript nIS denote application of importance

sampling (shortened by nIS) to the non-integrated predictive density, in contrast to iIS

to be given in next section. In words, important sampling estimates the expected evaluation

by finding Monte Carlo estimates of the two means in the fraction of (10) with only MCMC

samples from Ppost(θ, b1:n|yobs
1:n). We can apply equation (10) to estimate means of any

evaluation function a with respect to the CV posterior distribution of (θ, bi).

Particularly, in computing CVIC, the evaluation function a(yobs
i ,θ, bi) = P (yobs

i |θ, bi),

which is the same as 1/W nIS
i (θ, b1:n) in equation (11). Therefore, the numerator of (10)

is just 1 when applied to compute CVIC. Therefore, the CV posterior predictive density

P (yobs
i |yobs

−i ) is equal to harmonic mean of the non-integrated predictive density P (yobs
i |θ, bi)

with respect to P (θ, b1:n|yobs
1:n):

P (yobs

i |yobs

−i ) =
1

Epost

[
1/P (yobs

i |θ, bi)
] . (12)

Based on the equality (12), nIS estimates the CV posterior predictive density by:

P̂ nIS(yobs

i |yobs

−i ) =
1

Êpost

[
1/P (yobs

i |θ, bi)
] . (13)

The corresponding nIS estimate of CVIC using (13) is −2
∑n

i=1 log(P̂ nIS(yobs
i |yobs

−i ). Note

that, if there are not latent variables used for a model, there will be no bi in (12) and (13).

4.2 Integrated Importance Sampling

In theory, the nIS estimate (10) is valid for almost all Bayesian models with latent variables as

long as the integral itself exists and the supports of Ppost(-i)(θ, b1:n|yobs
−i ) and Ppost(θ, b1:n|yobs

1:n)
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are the same. However, in simulating MCMC from Ppost(θ, b1:n|yobs
1:n), the latent variable bi

is largely confined to regions that fit well the observation yobs
i . Therefore, the distribution

of bi marginalized from Ppost(θ, b1:n|yobs
1:n) may be highly biased to regions that fit well the

observation yobs
i , compared to the distribution of bi marginalized from Ppost(-i)(θ, b1:n|yobs

−i ),

which can cover a much larger area. Therefore, although the supports of Ppost(-i)(θ, b1:n|yobs
−i )

and Ppost(θ, b1:n|yobs
1:n) are the same in theory, the effective support of Ppost(θ, b1:n|yobs

1:n) may

be much smaller than that of Ppost(-i)(θ, b1:n|yobs
−i ). We will illustrate this in the mixture

model example with Figure 3. This results in the inaccuracy of nIS.

To improve nIS, we can re-generate bi from P (bi|b−i,θ), with the observation yobs
i re-

moved, as the actual cross-validation simulation does; see equation (4). The formal formu-

lation of such re-generation procedure is given as follows. First we note that using equation

(4), we can rewrite the expectation in (5) as

Epost(-i)(a(yobs

i ,θ, bi)) = Epost(-i), M(A(yobs

i ,θ, b−i)) (14)

=

∫ ∫
A(yobs

i ,θ, b−i)P (θ, b−i|yobs

−i )dθdb−i, (15)

where,

A(yobs

i ,θ, b−i) =

∫
a(yobs

i ,θ, bi)P (bi|b−i,θ)dbi. (16)

We will call (16) as an integrated evaluation function.

We will also discard bi temporarily for validation unit i in MCMC samples from the full

data posterior Ppost(θ, b1:n|yobs
1:n). The marginalized full data posterior of (θ, b−i) is

Ppost, M(θ, b−i|yobs

−i ) =
∏
j 6=i

P (yobs

j |bj,θ)P (b−i|θ)P (θ)×
∫
P (yobs

i |bi,θ)P (bi|b−i,θ)dbi/C1.

(17)

We will call the second factor in (17) integrated predictive density, because it integrates

away bi without reference to yobs
i . For ease in reference, it is explicitly given below:

P (yobs

i |θ, b−i) =

∫
P (yobs

i |bi,θ)P (bi|b−i,θ)dbi. (18)
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Using the standard importance weighting method, we will estimate (15) by

Epost(-i), M(A(yobs

i ,θ, b−i)) =
Epost, M

[
A(yobs

i ,θ, b−i) W
iIS
i (θ, b−i)

]
Epost, M

[
W iIS

i (θ, b−i)
] , (19)

where W iIS
i is the integrated importance weight:

W iIS
i (θ, b−i) =

Ppost(-i), M(θ, b−i|yobs
−i )

Ppost, M(θ, b−i|yobs
−i )

× C2

C1

=
1

P (yobs
i |θ, b−i)

. (20)

In particular, for estimating CVIC, A×W iIS
i = 1. Therefore, the iIS estimate of the CV

posterior predictive density based on equality (19) is given by:

P̂ iIS(yobs

i |yobs

−i ) =
1

Êpost, M

[
1/P (yobs

i |θ, b−i)
] . (21)

Accordingly, iIS estimate of CVIC using (21) is −2
∑n

i=1 log(P̂ iIS(yobs
i |yobs

−i )). The differ-

ence from nIS estimate (13) is only the replacement of non-integrated predictive density

P (yobs
i |θ, bi) by integrated predictive density P (yobs

i |θ, b−i). Note that we can also write the

expectation Epost, M( ) in equations (19) and (21) as Epost( ), because we still find Monte

Carlo estimates with samples of (θ, b1:n) from Ppost(θ, b1:n|yobs
1:n), but without using bi.

The integration over bi in equations (16) and (18) is the essential difference of iIS to nIS.

For using iIS, we need to find their values. In some problems, they can be approximated

with finite summation, or calculated analytically. Otherwise, we will re-generate bi given

(b−i,θ) with no reference to yobs
i , which is often easy. Note that this re-generation needs

to be done for each i = 1, . . . , n. Sometimes, much computation can be shared by these n

re-generating processes since they are all conditional on θ; see the example in Section 6.3.

5 WAIC Approximations

In this section, we describe a generalized WAIC method, iWAIC, for approximating CV

predictive density in Bayesian models with correlated latent variables.

We will first describe WAIC for models with no latent variables (or models after we

integrate away latent variables that are independent for units given parameters). In such
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models, observed variables y1, . . . ,yn are independently distributed with a probability dis-

tribution P (y|θ) conditional on model parameters θ. After we obtain MCMC samples for θ

given observations yobs
1 , . . . ,yobs

n , a version of WAIC (Watanabe, 2009, 2010b,c) is given by:

WAIC = −2
n∑

i=1

[
log(Epost(P (yobs

i |θ)))− Vpost(log(P (yobs

i |θ)))
]
, (22)

where Epost and Vpost stand for mean and variance over θ with respect to P (θ|yobs
1 , . . . ,yobs

n ).

By comparing the forms of WAIC and CVIC (7), we can think of that in WAIC, the CV

posterior predictive density is approximated by:

P̂WAIC(yobs

i |yobs

−i ) = exp
{

log(Epost(P (yobs

i |θ)))− Vpost(log(P (yobs

i |θ)))
}
. (23)

In words, WAIC corrects for the bias in mean of training predictive density of yobs
i by

dividing exponential of variance of log predictive density of yobs
i with respect to the posterior

of θ given the full data set. Watanabe (2010a) has proven that WAIC is asymptotically

equivalent to CVIC when observed variables are independently distributed conditional on

θ. He has shown the asymptotic equivalence of Taylor expansions of (23) and harmonic

mean (13) (without bi). From our research, we do see that (23) provides results very close

to CV posterior predictive density of each yobs
i . This way to look at WAIC also provides

the approach to assess statistical significance of differences of WAICs of different models by

looking at differences in means of log CV posterior predictive densities, which was advocated

by Vehtari and Lampinen (2002) for CVIC itself.

For the models given in Section 2 with possibly correlated latent variables, a naive way

to approximate CVIC is to apply WAIC directly to the non-integrated predictive density of

yobs
i conditional on θ and bi:

P̂ nWAIC(yobs

i |yobs

−i ) = exp
{

log(Epost(P (yobs

i |θ, bi)))− Vpost(log(P (yobs

i |θ, bi)))
}
. (24)

We will refer to (24) as non-integrated WAIC (or nWAIC for short) method for approximating
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CV posterior predictive density. The corresponding information criterion based on (24) is:

nWAIC = −2
n∑

i=1

log(P̂ nWAIC(yobs

i |yobs

−i )). (25)

This way to apply WAIC indeed treats latent variables as model parameters. nWAIC is not

justified by the theory for WAIC. However, practitioners may likely apply WAIC to Bayesian

models with latent variable this way for the sake of convenience.

Our research (to be presented next) will show that nWAIC cannot correct for the bias

in unit-specific latent variables entirely. We propose to apply WAIC approximation to the

integrated predictive density (18) to estimate the CV posterior predictive density:

P̂ iWAIC(yobs

i |yobs

−i ) = exp
{

log(Epost(P (yobs

i |θ, b−i)))− Vpost(log(P (yobs

i |θ, b−i)))
}
. (26)

Accordingly, iWAIC for approximating CVIC is given by :

iWAIC = −2
n∑

i=1

log(P̂ iWAIC(yobs

i |yobs

−i )). (27)

In Section 4, we have theoretically shown the equivalence of iIS to CV predictive evalu-

ation for models with correlated latent variables, which holds as long as the support of full

data posterior is not a subset of the CV posterior. However, we haven’t proven any sort of

equivalences of P̂ iWAIC and P̂ nWAIC to CVIC. The derivations of formulae for nWAIC and

iWAIC for models with correlated latent variables are only heuristic, borrowing the asymp-

totic equivalence of WAIC estimate (23) and CVIC expressed with harmonic mean (IS) (12)

(without bi) for models without latent variables, which is proved by Watanabe (2010a).

6 Data Examples

6.1 Finite Mixture Models for Galaxy Data

In this section, we look at the performance of iIS and iWAIC in approximating CVIC of

fitting finite mixture models to Galaxy data (Postman et al., 1986; Roeder, 1990) which

is used very often to demonstrate mixture modelling methods. We obtained the data set
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Figure 2: Histograms of Galaxy data and three estimated density curves using MCMC
samples from fitting finite mixture models with different numbers of components, K = 4, 5, 6
and the full data set.
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(b) K = 5
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(c) K = 6
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from R package MASS. The data set is a numeric vector of velocities (km/sec) of 82 galaxies

from 6 well-separated conic sections of an unfilled survey of the Corona Borealis region.

We applied mixture modelling to the velocities divided by 1000. A histogram of these 82

numbers is shown in each plot of Figure 2, which also shows three fitted density functions to

be discussed later. Our purpose of computing CVIC for finite mixture models is to determine

the numbers of mixture components, K, that can adequately capture the heterogeneity in a

data but don’t overfit the data. The finite mixture model that we used to fit Galaxy data is

as follows:

yi|zi = k,µ1:K ,σ1:K ∼ N(µk, σ
2
k), for i = 1, . . . , n, (28)

zi|p1:K ∼ Category(p1, . . . , pK), for i = 1, . . . , n, (29)

µk ∼ N(20, 104), for k = 1, . . . , K, (30)

σ2
k ∼ Inverse-Gamma(0.01, 0.01× 20), for k = 1, . . . , K, (31)

pk ∼ Dirichlet(1, . . . , 1) for k = 1, . . . , K. (32)

Here we set the prior mean of µk to 20, which is the mean of the 82 numbers, and set the

scale for Inverse Gamma prior for σ2
k to 20, which is the variance of the 82 numbers.

The finite mixture model (equations (28) - (32)) falls in the class of models depicted
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by Figure 1: the observed variable is yi, the model parameters θ is (µ1:K ,σ
2
1:K ,p1:K), and

the latent variable bi is mixture component indicator zi. In this model, the latent vari-

ables z1, . . . , zn are independent given the model parameter θ. It follows that y1, . . . , yn are

independent given θ.

We used JAGS (Plummer, 2003) to run MCMC simulations for fitting the above model

to Galaxy data with various choice of K. To avoid the problem that MCMC may get stuck in

a model with only one component, we followed JAGS eyes example to restrict the MCMC

to have at least a data point in each component. All MCMC simulations started with a

randomly generated z1:n, and ran 5 parallel chains, each doing 2000, 2000, and 100,000

iterations for adapting, burning, and sampling, respectively.

We ran actual 82 cross-validatory MCMC simulations with each of the 82 numbers re-

moved (set to NA in JAGS). After each simulation, we computed actual CV posterior predic-

tive density P (yobs
i |yobs

−i ) using equation (5) with evaluation function a set to φ(yobs
i |µzi , σ

2
zi

),

where φ represents normal density. Using all 82 values of CV posterior predictive densities,

we can compute CVIC using equation (7). The CVICs for different choices of K based on

one simulation for each K are displayed in Table 1. We repeated computing CVICs quite a

few times, and the results were almost the same, with only differences in the 2nd decimal.

We then considered approximating CVIC using four different methods (nIS, nWAIC, iIS,

iWAIC) from a single MCMC simulation that is based on all of the 82 numbers. The non-

integrated predictive density for this model is P (yobs
i |zi,θ) as specified in (28); this is normal

density with mean µzi and standard deviation σzi , denoted by φ(yobs
i |µzi , σzi). The values

of P (yobs
i |zi,θ) computed with a collection of MCMC samples of (zi,θ) are then used for

computing nIS and nWAIC approximates of CV posterior predictive densities (with equations

(13) and (24) respectively). We can then compute nIS information criterion and nWAIC

by plugging the approximates of CV posterior predictive densities into (7). The integrated

predictive density is P (yobs
i |θ) =

∑K
k=1 pkφ(yobs

i |µk, σk) ( note that z−i and yi are independent
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given θ). We can then use P (yobs
i |θ) for computing iIS and iWAIC approximates of CV

posterior predictive densities (with equations (21) and (26) respectively), and corresponding

information criterion values. In this example, iIS and iWAIC are just applications of IS and

WAIC to mixture models with latent variables z1:n integrated out.

Table 1: Comparisons of 5 information criteria for mixture models. The numbers are the
averages of ICs from 100 independent MCMC simulations. The numbers in brackets indicates
standard deviations.

K DIC nWAIC nIS iWAIC iIS CVIC
2 445.38(1.64) 420.27(0.39) 425.63(3.45) 449.56(0.14) 449.62(0.17) 450.55
3 528.78(45.12) 384.94(9.94) 391.29(6.17) 437.23(4.70) 436.43(3.79) 427.46
4 774.85(31.58) 339.91(1.87) 363.55(5.32) 422.43(0.53) 422.76(0.54) 423.16
5 710.88(25.34) 328.19(0.29) 362.30(3.70) 421.02(0.09) 421.41(0.10) 421.10
6 679.95(17.48) 323.62(1.33) 355.49(5.72) 420.97(0.27) 421.35(0.31) 421.34
7 675.27(18.57) 321.61(0.30) 364.41(4.49) 421.25(0.07) 421.64(0.12) 421.53

For each choice of K, we computed the above four criteria as well as DIC (using R

package R2jags) for 100 independent MCMC simulations. Table 1 shows the means of these

100 information criterion values for each approximation method, with standard deviations

shown in brackets. From the table, we see that the naive applications of WAIC and IS to non-

integrated predictive densities P (yobs
i |zi,θ) do not work satisfactorily. They are both highly

downward biased. Furthermore, nWAIC chooses over-complex models because nWAICs keep

decreasing until K = 7, and nIS estimates of CVIC have very high variances. DICs for this

example turn into a mess because the model parameters are non-identifiable. iIS and iWAIC

provide significantly closer estimates of actual CVIC, with much smaller standard deviations,

than other methods. These results show that using integrated predictive densities signifi-

cantly improves accuracy of nIS and nWAIC. The results of iWAIC may not be surprising

because here iWAIC is just application of WAIC to the marginalized models with latent

variables z1:n integrated out, in which observed variables y1, . . . , yn are independent given

model parameters. Watanabe (2010a) has proven the asymptotic equivalence of WAIC and

CVIC in such models. iIS is also theoretically justified in Section 4.

CVIC is the sum of minus twice of log CV posterior predictive densities. Therefore,
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Table 2: One-sided paired t-test p-values for comparing means of 82 log posterior predic-
tive densities for Galaxy data given by mixture models with different number of mixture
components, K.

pair of models nWAIC nIS iWAIC iIS CVIC
K =3 vs K = 2 0.000 0.000 0.016 0.013 0.010
K = 4 vs K = 3 0.000 0.019 0.030 0.032 0.190
K = 5 vs K = 4 0.000 0.249 0.070 0.066 0.027
K = 6 vs K = 5 0.002 0.203 0.489 0.476 0.674
K = 7 vs K = 6 0.110 0.840 0.716 0.711 0.700

the statistical significance of the differences of two CVICs (or estimates) can be accessed

by looking at the population mean differences of two groups of log CV posterior predictive

densities (Vehtari, 2001; Vehtari and Lampinen, 2002). We conducted one-sided paired t-

test to test whether a finite mixture model with K components provides a better fit (larger

mean of CV posterior predictive densities) to Galaxy data than a mixture model with K−1

components. The p-values of the comparisons for K = 3, . . . , 7 for actual CV posterior

predictive densities are given in Table 2 (column CVIC). We also conducted the same test for

log CV posterior predictive densities estimated by four different methods (nIS, iIS, nWAIC,

iWAIC). Due to the variations in these estimates, we computed the p-values 1000 times by

randomly drawing two simulation results from models with K and K − 1 components. We

then computed the mean of the 1000 p-values. Table 2 shows the results for all four different

estimation methods. From the table, we see that iIS and iWAIC provides much closer p-

values to those based on actual CV posterior predictive densities than nIS and nWAIC.

These p-values indicates that mixture models with 5 components are adequate to capture

the heterogeneity in Galaxy data, and 6-component mixture models does not provide better

fit with statistical significance. These conclusions can be visualized by the density curves

given by fitting resulting with K = 4, 5, 6, where the curves with K = 4 and K = 5 are

different, but the curves with K = 5 and K = 6 are almost the same.

Last, we explain why naive applications of IS and WAIC to non-integrated predic-

tive densities cannot provide good estimates of CV posterior predictive densities. Fig-

19



Figure 3: Scatter-plot of non-integrated predictive densities against µzi , given MCMC sam-
ples from the full data posterior (3a) and the actual CV posterior with the 3rd number
removed (3b), when K = 5 components are used.

(a) (b)

ure 3 show scatter-plots of the log non-integrated predictive density, log(P (yobs
i |zi,θ)) =

log(φ(yobs
i |µzi , σzi)), against µzi , computed with each MCMC sample of (zi,µ1:K ,σ1:K) from

the full data posterior (Figure (3a)) and the actual CV posterior with the yobs
i removed (Fig-

ure (3b)), where yobs
i is the 3rd of the 82 numbers. From the figure, we see great discrepancy

between the posterior distribution of the non-integrated predictive density with and with-

out yobs
i included in MCMC simulations. When we simulate MCMC with the full data (yobs

i

included), most of the zi visit components that fit yobs
i well, with most of µzi are around

10. Thus, the non-integrated predictive densities are mostly very high. When we simulate

MCMC with yobs
i removed, most of the zi visit large components, hence the µzi visits much

more often the interval from 10 to 35 that do not fit yobs
i well. The reason is that without the

inclusion of yobs
i , the zi will more likely take larger components. Thus, values of P (yi|θ, zi)

in the CV posterior are very low, with greatly lower order in magnitude than in the full data

posterior. This indicates that the difference between the CV posterior and full data poste-

rior of zi is huge. Applying IS and WAIC to the non-integrated predictive densities alone is
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unable to correct for much of the bias due to the inclusion of yobs
i in MCMC simulation. By

averaging the non-integrated predictive density over regenerated zi given θ but not yobs
i , we

significantly reduce the optimistic bias in P (yobs
i |θ, zi) due to inclusion of yobs

i . This explains

why iIS and iWAIC provide significantly closer estimates to CVIC than nIS and nWAIC.

6.2 A Simulation Study with Finite Mixture Models

In this section, we report a simulation study with the same mixture models described in

Section 6.1. We simulated 100 data sets, each containing 200 data points yi from a mixture

distribution with K = 4 normal components: (1/4)N(−7, 1)+(1/4)N(−2, 1)+(1/4)N(1, 1)+

(1/4)N(7, 1). The kernel density of one of the data sets are shown in Figure 4. From this

plot, we see that the middle two components may be hard to separate in some data sets.

Figure 4: Kernel Density of a Simulated Data Set.
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We fitted each of the 100 data sets using the exactly same way described in Section 6.1,

and then computed information criterion (IC) using each of the five methods (nWAIC, nIS,

iWAIC, iIS and DIC). Table 3 show the IC values for two selected data sets. Table (4a)

shows averages of IC values in 100 data sets, for each model indexed by K (row) and for

each method for approximating CVIC (column). Table (4b) shows frequencies of selected

models in 100 data sets by looking at the minimum IC value computed with each of the five

methods (column).
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Table 3: Values of information criterion for two selected data sets. The bold-faced numbers
show the smallest IC values for each method.

(a) iIS and iWAIC select K = 4

K nWAIC nIS iWAIC iIS DIC

2 1022.95 1081.11 1163.96 1163.99 1143.19
3 690.39 855.85 1088.20 1088.26 850.28
4 642.82 782.94 1083.16 1083.28 1416.81
5 640.27 754.13 1084.29 1084.48 1351.18
6 638.25 756.82 1085.25 1085.51 1382.83
7 637.12 727.84 1086.46 1086.76 1479.03

(b) iIS and iWAIC do not select K = 4

K nWAIC nIS iWAIC iIS DIC

2 1144.14 1122.07 1202.25 1199.90 1192.42
3 758.35 924.19 1101.48 1101.53 1024.83
4 706.30 830.63 1095.42 1095.54 1510.18
5 691.02 821.51 1094.84 1094.99 1561.51
6 679.71 800.38 1094.64 1094.80 1652.05
7 673.63 794.05 1094.69 1094.87 1740.80

Table 4: Model selection results with 100 data sets simulated from finite mixture models
with K = 4. Table (4a) shows averages of IC values in 100 data sets, for each model with
different K components (row) and computed with different method (column). Each column
of Table (4b) shows frequencies of selected models indexed by K by looking at the minimum
IC value in 100 data sets.

(a) Average of IC values in 100 data sets

K nIS nWAIC iIS iWAIC DIC
2 1112.48 1103.95 1181.60 1182.33 1248.97
3 922.88 751.58 1105.18 1105.11 990.51
4 827.06 682.62 1099.42 1099.26 1572.80
5 810.42 674.39 1099.18 1098.96 1562.05
6 801.24 669.57 1099.60 1099.31 1630.02
7 796.65 666.39 1100.09 1099.77 1700.12

(b) Frequencies of selected models

K nIS nWAIC iIS iWAIC DIC
2 0 0 0 0 2
3 0 0 15 15 94
4 6 15 39 37 4
5 10 4 21 20 0
6 30 8 11 13 0
7 54 73 14 15 0

In both of the data sets shown in Table 3, nWAIC and nIS select the model with K = 7,

which is more flexible than the true data generating model, which has K = 4. This is typical

for the 100 data sets, which can be seen from Tables (4a) and (4b). DIC, on the other

hand, almost always selects the model with K = 3 which is simpler than the true model

(K = 4). These results are consistent with what we observe from the analysis of Galaxy

data. For iWAIC and iIS, their IC values have a sharp decrease from K = 2 until K = 4,

compared to the changes in the IC values after K = 4, which stabilize and have only very

small variation. This small variation sometimes leads to wrong model selection results if

one chooses the model with the smallest IC value, for example in the data set shown by

Table (3b). Therefore, IC may not be sensitive enough in penalizing over-complex models.
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Overall, in this example, iWAIC and iIS outperform nWAIC, nIS and DIC in comparing

models because of the improved estimation of CVIC. With IC values computed by iWAIC

and iIS, the appropriate decision (K = 4) can be made for most data sets if one does not

simply look at which model has the smallest IC value but also the change of IC values in all

models considered.

In this example, IC cannot penalize over-complex models sensitively. The insensitivity

occurs because the posterior inference with MCMC itself is robust to over-complexity in

models, that is, MCMC simulation can automatically adjust the model complexity. For

example, in this example, although we fit a mixture model with K = 7 components, some

components have very small proportions in MCMC samples, which is effectively a simpler

model. This has been long known as a good property for Bayesian inference, see extensive

discussions by Neal (1995). However, this poses difficulty in model selection by looking

at CVIC. We’ve noticed that recently Wang and Gelman (2014) have also discussed the

insensitivity of CVIC. They explain the insensitive as that the the criterion CVIC itself is not

sensitive in distinguishing models for binary data. Overall, how to determine a threshold for

CVIC (even computed with actual cross-validation) for selecting models, particularly among

models with slight difference, is still a problem, which demands further study. Looking

at the population mean of log CV posterior predictive density may be an option, as we

discuss in Galaxy data analysis results. However, we feel that generally this may be too

conservative because a model is better than another not because it can provides better

predictive accuracy for “most” observations (resulting in a sharp change in population mean

— CVIC), but rather it can provide better prediction only for a fraction of observations.

Perhaps, we should look at the proportion of units whose predictions have been improved

with a more complex model.
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6.3 Random Spatial Effect Models for Scottish Lip Cancer Data

In this section, we investigated the performance of iIS and iWAIC in an analysis of Scottish

lip cancer data, which was used in Stern and Cressie (2000); Spiegelhalter et al. (2002);

Plummer (2008). The data set was extracted from the paper by Stern and Cressie (2000).

The data represents male lip cancer counts (over the period 1975 - 1980) in the n = 56

districts of Scotland. At each district i, the data include these fields: (1) the number of

observed cases of lip cancer, yi; (2) the number of expected cases, Ei, calculated based

on standardization of “population at risk” across different age groups; (3) the percent of

population employed in agriculture, fishing and forestry, xi, used as a covariate; and (4) a

list of the neighbouring regions.

The yi, for i = 1, . . . , n, is modelled as an independent Poisson random variable condi-

tional on λi and Ei:

yi|Ei, λi ∼ Poisson(λiEi), (33)

where λi denotes the underlying relative risk for district i, and Ei stands for expected counts.

Let si = log(λi) and X = (x1, . . . , xn)′. We consider four different models for the vector

s = (s1, · · · , sn)′ conditional on X and neighbouring information between districts:

spatial+linear (called full for short) : s ∼ Nn(α +Xβ,Φτ 2), (34)

spatial : s ∼ Nn(α,Φτ 2), (35)

linear : s ∼ Nn(α +Xβ, Inτ
2), (36)

exchangable : s ∼ Nn(α, Inτ
2), (37)

where Φ = (In − φC)−1M is a matrix for capturing the spatial correlations amongst the n

districts, in which, the elements of C are: cij = (Ej/Ei)
1/2 if areas i and j are neighbours,

and 0 otherwise; the elements of M are: mii = E−1i and mij = 0 if i 6= j. The multivariate

normal distributions with Φ as covariance matrix are called proper conditional auto-

regression (CAR) model. Derived from the joint distribution in (34), the conditional
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distribution of si|s−i, α, β, φ is:

si|s−i,θ ∼ N(α + xiβ + φ
∑
j∈Ni

(cij(sj − α− xjβ)), τ 2mii), (38)

where Ni is the set of neighbours of district i. From (38), we see that φ controls the

degree of spatial dependency of si on its neighbours. At a higher level, diffused priors are

assigned to α, β, τ , and φ: α ∼ N(0, 10002), β ∼ N(0, 10002), τ 2 ∼ Inv-Gamma(0.5, 0.0005),

φ ∼ Unif(φ0, φ1), where (φ0, φ1) is the interval for φ such that Φ is positive-definite (see

Stern and Cressie, 2000). In model (34), we consider both spatial and linear effects of xi in

modelling s. One may also consider other models. Model (35) considers only spatial effect;

model (36) considers only linear effect; and model (37) considers none of spatial and linear

effect. We are interested in comparing goodness-of-fits of the four models to lip cancer data

set so as to determine which model is the most appropriate for Scottish lip cancer data.

CVIC is one criterion for measuring goodness-of-fit.

All the above four models belong to the class of Bayesian latent variable models depicted

by Figure 1. The observable variable is yi, the latent variable is si , and the model parameters

θ in model (34) are (α, β, τ, φ), and a subset of it for other models depending on which are

used in respective models. We used OpenBUGS through R package R2OpenBUGS to run

MCMC simulations for fitting each of the above models to Scottish lip cancer data. For each

simulation, we ran two parrallel chains, each with 15000 iterations, and the first 5000 were

discarded as burn-in.

For each model, we first ran actual 56 cross-validatory MCMC simulations with each

of the 56 obervations removed (set to NA in OpenBUGS) and then computed actual CV

posterior predictive density P (yobs
i |yobs

−i ) using equation (5) with evaluation function set to

dpoisson(yobs
i |λiEi) — Poisson probability mass function with parameter λiEi. Then we

computed CVIC using equation (7). We computed actual CVIC 10 times for each model

although actual LOOCV gives very stable results. The averages and standard deviations of

10 CVICs for different models are displayed in Table 5. From this table, we see that the
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spatial+linear model is optimal for the Scottish lip cancer data according to CVIC.

We then consider approximating CVIC with four different methods (nIS, nWAIC, iIS,

and iWAIC) from a single MCMC simulation based on all of the 56 observations. The non-

integrated predictive density used in computing nIS and nWAIC with equations (13) and

(24) is dpoisson(yobs
i |λiEi), where λi = exp(si). Next, we describe how to compute iIS and

iWAIC for model (34). The integrated predictive density (18) required by (21) and (26) is:

P (yobs

i |θ, s−i) =

∫
dpoisson(yobs

i |λiEi)P (si |θ, s−i)dsi, (39)

where P (si|θ, s−i) is given by equation (38). Because there is no closed form for the integral

(39), we use Monte Carlo method to estimate it by generating 200 random numbers from

P (si|s−i,θ) (note, this is done for each retained MCMC sample of (θ, s1:n) and each valida-

tion unit i, with si alternately discarded). Finally, based on computed values of P (yobs
i |θ, s−i)

for all MCMC samples, we can then compute iIS and iWAIC approximates of CV posterior

predictive densities (with equations (21) and (26) respectively) and then corresponding iIS

information criterion and iWAIC. iIS and iWAIC are computed similarly for models (35) -

(37), with only a change of the conditional distribution (38) according to their joint prior

distributions.

We repeated computing the values of the above four criteria as well as DIC for 100

independent MCMC simulations based on each model. The means of these 100 informa-

tion criterion values for each method and each model are shown in Table 5, with standard

deviations shown in brackets. We see that, iIS and iWAIC provide significantly closer ap-

proximates to actual CVIC than nIS, nWAIC and DIC; furthermore, the approximates by

iWAIC and iIS are almost identical to actual CVIC. In contrast, DIC has large biases and

variances when spatial effects are considered, and also the mean DIC of the spatial + linear

model is bigger than the mean DIC of the model with spatial effects only. This suggests that,

if we randomly draw one MCMC simulation out of the 100 ones based on each model, the

probability that DIC does NOT pick up the spatial+linear model as the optimal model is
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Table 5: Comparisons of information criteria for Scottish lip cancer data. Except for CVIC,
each table entry shows the average of 100 information criterion values computed from 100
independent MCMC simulations, and the standard deviation in bracket. For CVIC, the
average and standard deviation are from 10 independent LOOCV evaluations.

DIC nWAIC nIS iWAIC iIS CVIC
spa.+lin. 269.43(12.30) 306.82(0.21) 335.54(1.27) 344.47(0.12) 345.21(0.19) 343.88(0.14)

spatial 266.79(10.15) 304.61(0.18) 338.77(1.85) 354.11(0.06) 356.06(0.37) 352.54(0.14)
linear 310.42(0.11) 306.94(0.21) 338.81(3.02) 350.48(0.05) 350.54(0.05) 349.48(0.11)
exch. 312.57(0.12) 306.74(0.17) 346.55(3.46) 368.01(0.03) 368.08(0.03) 366.61(0.00)

high (56.6% if we assume the DICs are normally distributed). nWAIC and nIS also have large

biases and variances. In particular, nWAIC nearly never chooses the spatial+linear model

(with a probability close to 1 if nWAICs are normally distributed). nIS has a good chance

(0.92 if the values are normally distribute) to choose the spatial+linear model. However,

nIS is numerically unstable, with fairly large variance, which has been well-known to many

people (Spiegelhalter et al., 2002). In summary, the integration applied to latent variables

associated with each validation unit substantially improve the estimates of CVIC given by

nWAIC and nIS.

The good approximations of CVIC by iIS may not be surprising, because our derivation

in Section 4.2 has shown their equivalence in these models. It is surprising to note that

the heuristic iWAIC also gives estimates very close to CVIC for model (34) and (35), which

contain actually correlated random effects. Furthermore, note that iWAIC has smaller stan-

dard deviations and biases than iIS. Therefore, the equivalence of iWAIC to iIS (or CVIC)

deserves more empirical and theoretical investigations in the future.

6.4 CV Posterior p-values in Logistic Regression for Seeds Data

We consider comparing different methods for computing posterior p-values for identifying

outliers in applying logistic regression with random effects to Seeds data, a classic example of

WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/Vol1.pdf). We obtained the

data set from the previous link. The example is taken from Table 3 of Crowder (1978). The
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study concerns about the proportion of seeds that germinated on each of 21 plates arranged

according to a 2 by 2 factorial layout by seed and type of root extract. For i = 1, . . . , 21,

let ri be the number of germinated seeds in the ith plate, ni be the total number of seeds

in the ith plate, xi1 be the seed type (0/1), and xi2 be root extract (0/1). The conditional

distribution of ri given ni, xi1 and xi2 are specified as follows:

ri|ni, pi ∼ Binomial(ni, pi), (40)

logit(pi) = α0 + α1x1i + α2x2i + α12x1ix2i + bi, (41)

bi ∼ N(0, σ2), (42)

and parameters α0, α1, α2, α12 are assigned with N(0, 106) as prior, and σ2 is assigned with

Inverse-Gamma (0.001, 0.001) as prior. The above model is a member of Bayesian latent

variable models depicted by Figure 1. The observable variable is ri, the latent variable

is bi, the covariate variable vector is (ni, xi1, xi2), and the model parameter vector θ is

(α0, α1, α2, α12). We used JAGS to run MCMC for fitting the above model to the Seeds data.

For each simulation, we ran 5 parallel chains, each running 1000 iterations for adapting, 2500

iterations for burning in, and 10000 iterations for sampling.

The p-value (given parameters and latent variable) defined by (8) for this example is the

right tail probability of Binomial distribution with number of trials ni and success rate pi:

p-value(robsi ,θ, bi) = 1− pbinom(robsi ;ni, pi) + 0.5 dbinom(robsi ;ni, pi), (43)

where robsi is the actual observation of ri, and pbinom and dbinom denote CDF and PMF of

Binomial distribution. Very small or very large p-values indicate that the actual observed

robsi falls on the tails of (ie, is unusual to) Binomial (ni, pi). CV posterior p-value (Marshall

and Spiegelhalter, 2003) for observation robsi is the mean of p-value(robsi ,θ, bi) with respect to

the CV posterior distribution P (θ, bi|robs
−i ). If we get a very small or very large CV posterior

p-value for observation robsi , it indicates that robsi is unusual to the predictive distribution of

ri given robs
−i . For this example, when CV posterior p-value for robsi is very small or very large,
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the germination rate, robsi , of the ith plate is probably an outlier to other plates. Marshall

and Spiegelhalter (2007) showed that the CV posterior p-values are uniformly distributed

on interval (0, 1). We ran actual CV MCMC simulations to find the CV posterior p-values

for each of the 21 plates, and the results are displayed by the x-axis in plots of Figure 5.

We compared four different methods for computing posterior p-values for identifying

outliers with only a single MCMC simulation based on the full data set. One method is to

apply posterior checking idea of Gelman et al. (1996) without considering bias-correction,

that is, to average each p-value(robsi ,θ, bi) with respect to the posterior of (θ, bi) given the full

data set robs
1:21. We will call this method by posterior checking. Gelman et al. (1996) do not

recommend this use of posterior checking because it uses data twice in model building and

assessment. However, this method is convenient and so perhaps used very often in practice.

Therefore, we include it in comparison. To reduce the bias of including robsi in model fitting,

Marshall and Spiegelhalter (2003) propose ghosting method : for each MCMC sample, one

averages p-value(robsi ,θ, bi) with respect to the conditional distribution of bi given θ (but

without robsi ) to obtain ghosting p-value (which can be done with Monte carlo method by re-

generating bi given θ with no reference to robsi ), then averages the ghosting p-values over all

MCMC samples. The third method is non-integrated importance sampling method (nIS) that

averages p-value(robsi ,θ, bi) after being weighted with the inverse of probability density (mass)

of robsi : 1/dbinom(robsi ;ni, pi). The fourth method is integrated importance sampling (iIS).

For each MCMC sample, we first average both p-value(robsi ,θ, bi) and dbinom(robsi ;ni, pi)

with respect to P (bi|θ) to find the integrated evaluation p-value (equation (47)) and the

integrated predictive density (equation (18)) respectively, then compute the weighted average

of the integrated p-values with the reversed integrated predictive density as weights over all

MCMC samples using formula (19). We can see that the way to obtain ghosting p-value is

the same as finding integrated p-value in (47) when b1:n are independent given θ, but without

using the reversed integrated density to correct for the optimistic bias in full data posterior

of parameters. Therefore, ghosting method can be viewed as a partial implementation of iIS
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method presented here.

Figure 5: Scatterplots of estimated posterior p-values from an MCMC simulation against
actual CV posterior p-values. The number for points show indices of plates

(a) Posterior checking
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(b) Ghosting method
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(c) Non-integrated IS (nIS)
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(d) Integrated IS (iIS)
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We calculated 21 posterior p-values with the four method given a MCMC simulation

based on the full data set, and repeated this calculation for 100 independent MCMC sim-

ulations. For computing integrated p-values and predictive densities as needed by nIS and

ghosting method, we generated 30 of bi from N(0, σ2) for each plate and each MCMC sam-

ple. Figure 5 shows the scatter-plots of four sets of estimated posterior p-values given by

four different methods against the actual CV posterior p-values from one MCMC simulation.
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From the figure, we see that the p-values given by posterior checking are more concentrated

around 0.5 than the actual CV posterior p-values, and do not appear to be uniformly dis-

tributed (Gelman, 2013). This is because in computing each p-value, the observed value robsi

itself is included in model fitting, resulting in optimistic bias. Ghosting method reduces the

bias, hence the estimated p-values are closer to the actual CV p-values, and more spread out

over (0, 1). However, for this example, the bias is still visible from Figure (5b). Both nIS

and iIS give estimates that are very close to the actual values found by CV. However, nIS

is less stable than iIS, and sometimes gives very poor estimates; for example the 3rd plate

shown in Figure (5c).

To measure more precisely the accuracy of estimated p-values to the actual CV p-values,

we use absolute relative error in percentage scale defined as

RE = (1/n)
n∑

i=1

|p̂i − pi|
min(pi, 1− pi)

× 100, (44)

where p̂1:n are estimates of p1:n. This measure emphasizes greatly on the error between p̂i

and pi when pi is very small or very large, for which we demand more on absolute error

than when pi is close to 0.5. A similar measure (only using pi in denominator) is used by

Marshall and Spiegelhalter (2007). Here we modify the denominator because large p-values

are important too. Table 6 shows the averages of REs over 100 independent simulations for

each method. Clearly, we see that iIS is the best among the four, and improve significantly

ghosting and posterior checking methods.

Table 6: Comparisons of the averages of 100 absolute relative errors (in percentage) of
estimated CV p-values from 100 independent MCMC simulations, for logistic regression
example. The numbers in brackets indicate standard deviations.

iIS nIS Ghosting Posterior checking
2.319(0.399) 5.234(1.083) 35.610(1.267) 93.887(3.854)
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7 Conclusions and Discussions

In this article, we have introduced two methods (iIS and iWAIC) for approximating leave-

one-out cross-validatory predictive evaluations for models with unit-specific and possibly

correlated latent variables. The innovation in iIS and iWAIC is that we replace the non-

integrated predictive density and evaluation functions by the integrated predictive density

and evaluation functions. iIS is applicable to models with non-identifiable parametrization for

which DIC may not be suitable; and also applicable to models with correlated latent variables

for which WAIC is not. The extent of applicability of iWAIC remains to be investigated.

We have tested iIS and iWAIC in four examples, in which iIS and/or iWAIC provide almost

identical approximates to what given by actual leave-one-out cross-validation, whereas other

methods show large discrepancies. In addition, we have found that iWAIC is slightly more

stable than iIS.

Although our empirical results show that iIS and iWAIC provide better approximates

of CVIC than DIC, we notice that the implementations of iIS and iWAIC are much more

complicated, and requires users to have basic knowledge in statistics and scientific computing

(for example a degree in statistics). For the moment, we do not know how to automate their

applications as DIC, which can be embedded into a black-box MCMC sampler program.

This is a direction for future research one can pursue.

Applicability of iWAIC to models with correlated latent variables still requires more

empirical and theoretical investigations. The results of our empirical studies in the lip cancer

data give an example that iWAIC provides very close approximates to CVIC. However, we

have to be cautious in the generalization of iWAIC to other models and problems. In

the future, we will empirically test iWAIC in many other models using correlated latent

variables, for example, the stochastic volatility models used for modelling financial time

sequences (Jacquier et al., 2002; Gander and Stephens, 2007), multivariate spatial models

(Feng and Dean, 2012), and many other models considering spatial and temporal correlations
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(Waller et al., 1997). We will also investigate iWAIC theoretically, probably using the tools

for singular statistical models developed by Watanabe (2009).

There is also much research work needed to generalize and extend iIS and iWAIC. We

have only shown how to integrate latent variables away in the models where they are unit-

specific to improve ordinary nIS and nWAIC. In many models, a latent variable is shared by

many observations. It is still unclear to us how to improve nIS and nWAIC in such models.

More ambitiously, we may wonder whether there is a method that requires little technical

work but provides very good predictive evaluation for all Bayesian models.

The insensitivity of CVIC is another important problem that demands further research,

as we discuss in Section 6.2. One may consider other evaluation function than log predictive

density for capturing sensitively the difference among models. One may also consider other

methods for comparing two sets of log predictive densities resulting from two competing mod-

els. However, we think that the method we present in this article for latent variable models

may be generally useful for providing better approximation of cross-validatory quantities

regardless of the choice of evaluation function.

Appendices

A Working procedure of iIS

1. Generate MCMC samples {(θ(s), b(s)1:n); s= 1,. . . ,S} from P (θ, b1:n|yobs
1:n)

2. For each s = 1, . . . , S

(a) For each i = 1, . . . , n, generate {b(s,r)i ; r = 1, . . . , R} from P (bi|b(s)−i ,θ
(s)), and

estimate P (yobs
i |θ, b−i) by

P̂ (yobs

i |θ(s), b
(s)
−i ) = (1/R)

R∑
r=1

P (yobs

i |θ(s), b
(s)
−i , b

(s,r)
i ). (45)
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Then, we can find iIS weight:

W iIS
i (θ(s), b

(s)
−i ) =

1

P̂ (yobs
i |θ

(s), b
(s)
−i )

. (46)

(b) For each i = 1, . . . , n, generate {b̃(s,k)i ; k = 1, . . . , K} from P (bi|b(s)−i ,θ
(s)), and

estimate integrated evaluation function A by

A(yobs

i ,θ(s), b
(s)
−i ) = (1/K)

K∑
k=1

a
(
yobs

i ,θ(s), b̃
(s,k)

i

)
. (47)

3. Estimate expected evaluation function a with respect to P (θ, b1:n|yobs
−i ) by

ÊiIS
post(-i)(a(yobs

i ,θ, bi)) =
(1/S)

∑S
s=1

[
A(yobs

i ,θ(s), b
(s)
−i )W

iIS
i (θ(s), b

(s)
−i )
]

(1/S)
∑S

s=1W
iIS
i (θ(s), b

(s)
−i )

. (48)

Note that, if we are only interested in computing CVIC, don’t need to do step 2(b), and

take the numerator in (48) to be 1 as warranted by theory.

B Working procedure of iWAIC

1. Generate MCMC samples {(θ(s), b(s)1:n); s= 1,. . . ,S} from P (θ, b1:n|yobs
1:n)

2. For each s = 1, . . . , S and each i = 1, . . . , n, generate {b(s,r)i ; r = 1, . . . , R} from

P (bi|b(s)−i ,θ
(s)), and estimate integrated predictive density P (yobs

i |θ, b−i) by

P̂ (yobs

i |θ(s), b
(s)
−i ) = (1/R)

R∑
r=1

P (yobs

i |θ(s), b
(s)
−i , b

(s,r)
i ). (49)

3. Estimate log CV posterior predictive density:

log(P̂ (yobs

i |yobs

−i )) = log((1/S)
S∑

s=1

P̂ (yobs

i |θ(s), b
(s)
−i ))− V S

s=1 log(P̂ (yobs

i |θ(s), b
(s)
−i )), (50)

where V S
s=1a

(s) stands for sample variance of (a(1), . . . , a(S)).

4. Find iWAIC:

iWAIC = −2
n∑

i=1

log(P̂ (yobs

i |yobs

−i )). (51)
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