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Abstract

Despite the flexibility and popularity of mixture models, their associated parameter spaces
are often difficult to represent due to fundamental identification problems. This paper looks at
a novel way of representing such a space for general mixtures of exponential families, where
the parameters are identifiable, interpretable, and, due to a tractable geometric structure, the
space allows fast computational algorithms to be constructed.
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1 Introduction

Mixtures of exponential family models have found application in almost all areas of statistics,
see [Lindsay| (1995), [Everitt| (1996), [Mclachlan and Peel (2000) and |[Schlattmann| (2009). At their
best they can achieve a balance between parsimony, flexibility and interpretability — the ideal of
parametric statistical modelling. Despite their ubiquity there are fundamental open problems as-
sociated with inference on such models. Since the mixing mechanism is unobserved, a very wide
choice of possibilities is always available to the modeller: discrete and finite with known or un-
known support, discrete and infinite, continuous, or any plausible combination of these. This gives
rise to the first open problem; what is a good way to define a suitable parameter space in this class
of models? Other, related, problems include the difficulty of estimating the number of compo-
nents, possible unboundedness and non-concavity of the log-likelihood function, non-finite Fisher
information, and boundary problems giving rise to non-standard analysis. All these issues are de-
scribed in more detail below. This paper defines a new solution to first of these problems. We show
how to construct a parameter space for general mixtures of exponential families, | f(z;u1)dQ(u),
where the parameters are identifiable, interpretable, and, due to a tractable geometric structure, the
space allows fast computational algorithms to be constructed.

1.1 Background

Let f(x; 1) be a member of the exponential family. It will be convenient, but not essential to any
of the results of this paper, to parameterize with the mean parameter . We will further assume
that the dimension of y is small enough to allow underlying Laplace expansions to be reasonable,
Shun and McCullagh! (1995). A mixture over this family would have the form [ f(z;u)dQ(u)
where () is the mixing distribution which, as stated above, can be very general. Since () may lie
in the set of all distributions the ‘parameter space’ of this set of models is infinite dimensional
and very complex. It is tempting to restrict ) to be a finite discrete distribution indeed, as shown
by [Lindsay| (1995)), the non-parametric maximum likelihood estimate of () lies in such a family.
Despite this, as the following example clearly shows, this is too rich a class to be identified in a
statistically meaningful way.

Example 1 For this example let f(x;p) = ¢(x; u, 1), a normal distribution with unit variance.
The QQ plot in Fig. [I|compares two data sets generated from two different finite mixture models
with five and ten components respectively. The plot shows that data generated from each can have



very similar empirical distributions — thus it would be very hard to differentiate between these
models and hence estimate the number of components. In this example the components of the
mixing distributions have been selected to be close to one another and to have the same lower
order moment structure.
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Figure 1: QQ plot, and histogram with fitted density plots

Different methods have been proposed for determining the order of a finite mixture model, in-
cluding graphical, Bayesian, penalized likelihood maximization, and likelihood ratio hypothesis
testing (Mclachlan and Peel, 2000; [Hall and Stewart, |2005; |[Li and Chen| 2010; Maciejowska,
2013). We question though if the order is, fundamentally, an estimable quantity:

(D first, mixture components may be too close to one another to be resolved with a given set of
data, as in Example

(II) Secondly, for any fixed sample size the mixing proportion for some components may be so
small that contributions from these components may not be observed.

For instance, (Culter and Windham! (1994) show, using an extensive simulation, that when the
sample size is small or the components are not well separated, likelihood based and penalized
likelihood based methods tend to overestimate or underestimate this parameter. |Donohol (1988)),
studies the order as a functional of a mixture density and points out that, “near any distribution of
interest, there are empirically indistinguishable distributions (indistinguishable at a given sample
size) where the functional takes on arbitrarily large values”. He adds, “untestable prior assump-
tions would be necessary”, additional to the empirical data, for placing an upper bound. |Celeux
(2007) mentions that this problem is weakly identifiable from data as two mixture models with
distinct number of components might not be distinguishable.

This fundamental identification issue has immediate consequences when we are trying to de-
fine a tractable parameter space. In particular its dimension is problematic: the space will have
many dimensional singularities as component points merge or mixing distributions become sin-
gular. Identifiability with mixtures has been well studied of course, see Tallis| (1969) and [Lindsay
and Roeder| (1993). The boundaries and singularities in the parameter space of a finite mixture
have been looked at in [Leroux et al.| (1992), |Chen and Kalbfleisch| (1996) and |[Li et al.| (2008)) as
have the corresponding effects on the shape of the log-likelihood function, for example see |Gan
and Jiang| (1999).

1.2 The Local Mixture Approach

Examples where there is a single set of closely grouped components — or the much more general
situation where () is any small-variance distribution — motivated the design of the local mixture
model (LMM), Marriott (2002), Anaya-lzquierdo and Marriott] (2007). This is constructed around



parameters about which there is information in the data and can be justified by a Laplace, or Taylor,
expansion argument.

Definition 1 For a mean, i, parametrized density f(x;u) belonging to the regular exponential
Sfamily, the local mixture of order k is defined as

gu(z; N) = f(z;p —1—2] ) NifO(zp) Ae A, CRF (1)

where X\ = (A1, , \g) and fO)(z;p) = 3]7{(337;1) We denote qj(x;p) = f(j)(i;’;), then for
common sample space S, and any fixed p,

{|1+Z N qj(@; p) >0,Vx€5’},

is a convex subspace obtained by intersection of half-spaces. The boundary of A, corresponds to
a positivity condition on g, (x; \).

Example 2 (| revisited) The right panel of Fig.I|shows the LMM fit to the two datasets consid-
ered above. We see that the model can successfully capture the shape of the data using only a
small number of parameters about which the data is informative.

The local mixture approach is designed, using geometric principles, to generate an excellent
inferential frame in the situation which motivated it. The ‘cost’ associated with these properties is
having to work explicitly with boundaries in the inference. We give more details of these properties
and the tools associated with working with the boundaries in Of course the major weakness
of this approach is that it says nothing when the mixing is not ‘local’. This paper addresses this
issue by looking at finite mixtures of local mixture models. This combines the nice properties of
finite mixtures, for example the work of [Lindsay| (1995), while avoiding the fundamental trap of
overidentifying the models as described in We use this finite mixture of local mixtures to
approximate the parameter space of all mixtures. In later sections estimation methods in this very
rich model class are discussed, as is the problem of what a particular data set can tell us about the
number of components examined in important classes of mixture models.

2 Local and Global Mixture Models

Let us consider a general mixture model of the form fue ar f (@3 1)dQ (1) where we make the
assumption that the support of ), M, is compact. We can therefore partition M as M = UiLle,»
where M; N M; = () for i # j, and each M; is connected. Let us also select a set of ‘grid points’,
w; € M;, which will be fixed and known throughout.

The distribution () can be written as a convex combination of distributions () = Zle i Qs
where (i) Q; has support M;, and (ii) for large enough L each @); is a localising mixture in the sense
required by |Anaya-Izquierdo and Marriott (2007), allowing each term [ wEM, f(x; 1)dQ; (1) to be
well approximated by a LMM. In the form given in Definition [I|the mean of the LMM is WA+ A,
so there is one degree of ambiguity about the parametrisation (x, A). In|Anaya-Izquierdo and
Marriott (2007) this was resolved by always setting A\; = 0. In Definition [2| the mean ambiguity
is resolved by fixing 1; and having \{ free.

Definition 2 Let g, (x; \!) be the LMM from Definition |l} and \' = (X}, --- | AL). A discrete
mixture of LMMSs is defined by

L
W, w0, N) =D g (X)) 2

where X\ = (M- XD, = (py, -, pur) is a fixed grid of support points, p = (p1,--- , pr)
such that 0 < p; < 1 and Zlel =1



There are some points to consider in this definition. First, the choice of how to select the fixed
grid points p;, in particular how far they should be separated, is clearly critical and discussed in
Second, throughout this paper we only consider LMMs of order £ = 4. Increasing this
degree — while mathematically possible — only adds a small marginal improvement to the local
modelling performance, (Marriott, 2006). Third, whenever f(z; 1) is a proper exponential family,
the terms ¢;(x, 1t)’s are polynomials of degree j, and the interior of the parameter space A, can
be characterized by analysing the roots of a quartic polynomial. Finally, we use throughout two
illustrative examples: the normal and binomial.

Example 3 (Normal) For the normal density function ¢(x; u, 1), with fixed variance at 0% = 1,
the LMM at 1 = g has the following form,

Guo(1;A) = (s po, V{1 + Mi(x — po) + Aaf(x — po)® — 1] + As[(2 — o)’
=3(2 = po)] + Ma(z — po)* — 6(x — po)* + 3]} €)
with, E(X)=po+M, Varg(X)=1+2x -, p¥ =063+ 2) —6A1)

in which u§3) is the third central moment. The expression for the first moment and an argument

based on Fisher orthogonality of density derivatives (Morris, |1982) illustrate how identifiability
is attained either by fixing |t = pg or A\ = Q.

Example 4 (Binomial) The LMM for a binomial distribution, with mean p = o and number of
trials n, has a probability mass function of the form

nlud(n — o)™
5?((” - ;;?Zln {1+ Map1(@, po) + Aapa(, o) + Asps(, o)

+Aapa(@, po)} “)

g#o (x; n, )‘)

where p;(x, 1) is a polynomial with degree j. In this example there is extra boundary structure
as p is limited to the compact set [0, n].

Definition 3 For fixed iy the parameter space A, is a convex subset of R* and its boundary,
OA,,, is defined by the envelope of hyperplanes

I, := {A|1 + ijl ANjgj(xsp) = O} ,

parametrized by x € S, [Struik| (1988).

2.1 Choosing the Support Points

In Deﬁnitionthe set of support points, {y1,- - , 1.}, is assumed fixed and the question remains:
how to select it? Recall that the LMM gives a good approximation when the variance of the mixing
distribution is small. This would imply that we want neighbouring support points to be close, on
the other hand the more support points the larger the value of L and hence the larger the dimension
of the parameter space in Definition

The following result follows from standard Taylor remainder results and formalizes the above
discussion.

Lemma 1 Suppose g,,(x; \) is the local mixture of the family of densities f(x;u) and Q is a
distribution. For any § > 0 there exist an interval I = [uo — €1(9), po + €2(9)] such that

/If(w;u) dQ — gue(T; N)| <6,

for all x.



Example 5 3 revisited) By Taylor’s theorem we have f(x; 1) —gu, (z; A1) = (”_5%)5]”(5) (z;m)
where m is a value between p and ji. For the normal family with standard deviation o we have
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(z—m)

where y = ~=_—. This function is obviously bounded, by M say, for all y € R, and the bound,
which only depends on o, can be numerically obtained. Letting ¢ = max{e1, €2} gives,

‘/If(w;u) dQ—/lguo(!E;)\(u))dQ‘ < /I|f(x;u) g (@ V)] dQ

e

< (€1 +€2) &l M ©)

The result follows since we can write [; g, (x; A1) dQ as a LMM with \; := [ \i(p)dQ(p).

Example 6 (d|revisited) For the binomial family, with probability function p(z;n, j1), again we
want to bound the error by %M , say. We have

P (w;m,m) = p(x;n,m) g5 (231, M)

where qs5(x;n, m) is a polynomial of degree 5 of both x and m, which can be written as

1 AR 5—j
gs(xsn,m) = ———= > ()| . |(=) (=177

(a:n.m) <n_mw§;<>ﬂ><>< )

with v(j) = 71 (b — j)'(j) (Z:%) It can be shown that uniformly for all x = 0,1,--- ,n,
p(z;n,m) < p(z*;n, m), where z* = L%J, and

L(n,m) < gs(z;n,m) < U(n,m)

where, for all m € [0, n],

L(n,m) = _(71—7(773))57714(5714 + 10n2m?* + m*)
U(n,m) = ﬁ(nf’ +10n*m? + 5nm* — m") (6)
’  (n—m)dm?

Moreover, it can be shown that

3 3
IA A
3 wIs

Therefore,

M = maxgs(z*;n,m)|L(n,m)| or M =maxgs(z*;n,m)U(n,m)
mel mel

which depends on L, €1 and €3.[]

2.2 Estimation Methods

Estimation with a LMM is, in general, straightforward. The parameter space has nice convexity
properties and the likelihood is log-concave, see /Anaya-Izquierdo and Marriott|(2007). In Marriott
(2002) Markov Chain Monte Carlo (MCMC) methods are used since boundaries in the parame-
ter space can easily be accommodated by a simple rejection step whenever a parameter value is
proposed that lies outside the boundary. Alternatively direct log-likelihood maximization can be



done exploiting the convexity of the parameter space and the concavity of the objective function
(Marouty and Marriott, 2015).

Adopting these ideas to finite mixtures of LMMs, we can also easily use MCMC methods.
However, here we define a new form of Expectation-Maximization (EM) algorithm, described
in the Appendix, and applied in Example In this example we look at mixtures of normals,
¢(z; p, 03), where grid-points for p1 are selected as discussed in To understand the selection
of o2 by the modeller we return to point (II) of Section This makes the case that we can
only estimate clusters, and indeed features of such clusters, if there is the associated information
in the data. One consequence of that is the well-known phenomenon that infinite likelihoods are
attainable in the case where only a single observation has been associated with a normal cluster
and the estimated variance is zero. In our approach we take issue (II) seriously and only put in
a LMM component when there is enough data to support its inference. In particular we note that
the variance of such a component is 03 + 2\2 — A2, which will be bounded below, and vary from
cluster to cluster. Hence the data can estimate the variance of each cluster as long as it is above
our, modeller selected, threshold.

Example 7 (Acidity data) The data includes acidity index measured in 155 lakes in north-central
Wisconsin which is analyzed in Mclachlan and Peel| (2000) and the references therein. Using like-
lihood ratio hypothesis testing, the bootstrap estimated p-value supports two or three components
at the 5% or 10% level of significance, respectively. However, based on a Bayesian method all the
values between two and six are equally supported, Richardson and Green, |1997

Here we select the grid-points (0 = (3.6,4.2,4.8,5.4,6,6.6,7), set oy = 0.5 and v =
0.15, so that at least 20 observation is assigned to each cluster. The algorithm returns a two-
component discrete mixture of LMMs with p = (0.676,0.324), u = (4.2,6.6), Figure 2| (left
panel). The middle panel shows that if we give a set of slightly different initial grid points, ,uéo) =
6.4 instead of 6.6, the algorithm returns the same order for the mixture, with m = (4.2,6.4) and
p = (0.651,0.349), (middle panel). In addition, if we let o;’s to take different values, og = 0.6,
we get the same order with a slightly different fit (right panel).
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Figure 2: Discrete mixture of LMMs for Acidity data.

Further analysis of the data with different values of ~, shows how the final results of the
algorithm depend on , see Table|l]

¥ \ W D ‘ Order ‘
0.13,0.14,0.15,0.16,0.17 (4.2,6.6) (0.67,0.33) 2
0.1,0.11,0.12 (4.2,4,8,6.6) (0.57,0.13,0.3) 3
0.07,0.08,0.09 (4.2,6,6.6) (0.63,0.18,0.19) 3
0.06 (4.2,4.8,6,6.6) (0.57,0.08,0.16,0.19) 4

Table 1: Further analysis for different values of
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Figure 3: left to right: three and four components fit corresponding to the last three rows in Table
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3 Discussion

While finite mixtures of exponential families are very flexible they suffer from identification prob-
lems when support points cluster. This means estimating the order is a very hard problem with a
fixed set of data. This paper takes a new approach to this problem. We use a local mixture model
to directly model each cluster in a very flexible way. This results in a finite mixture of LMMs.
We propose counting these, now well-defined, components as the ‘order’ — which will now be
statistically meaningful. In each of the component LMMs all the parameters are estimable with
efficient algorithms where we have applied a principle that we do not considered models which
are unestimable from the data at hand.
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Appendix
Starting from initially selected grid points (9 = (uﬁo), e ’MS;O)), proportions p(0) = (pgo), e p(LO))
and local mixture parameters A(?) = (A1) ... AL(9)) Suppose we have x(") and p(") and X(")

at step r, where L, < L. For obtaining the estimates at step r + 1 run the following steps.
1. Calculate p(r+1) = %, where ng = ZTL_I w§;+1) and

WY — pl(r)gm (@i, >‘l7(r))
il - r 3
Zlerl pl( )guz (24, AL

2. Choose a positive value 0 < v < 1, and check if there is any [ such that pl(rH) <.

(a) If yes: exclude the components corresponding to pl(TH) < 7, update L, — L, and

go back to step 1.
(b) If no: go to step 3.



3. Classify the data set into 2!, - - - z%r+1 by assigning each z; to only one mixture component.
Foreachl =1,---, L, 1, update \(") by

Alv(T+1) = arg max lﬂl (wla )\)7
AEAL,

where [, (¢!, ) is the log-likelihood function for the component /.

Remark 1 Step 2 restricts the number of required components for fitting a data set in a way that
there is enough information necessary for running inference on each local mixture component. Its
value has an influence on the final result of the algorithm in a similar way that an initial value
affects the convergence of a general EM algorithm (Table|l)).
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