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Fast Approximate Bayesian Computation for
Estimating Parameters in Differential Equations

Sanmitra Ghosh, Srinandan Dasmahapatra, and Koushik Maharatna, Member, IEEE

Abstract—Approximate Bayesian computation (ABC) using a sequential Monte Carlo method provides a comprehensive platform
for parameter estimation, model selection and sensitivity analysis in differential equations. However, this method, like other Monte
Carlo methods, incurs a significant computational cost as it requires explicit numerical integration of differential equations to carry out
inference. In this paper we propose a novel method for circumventing the requirement of explicit integration by using derivatives of
Gaussian processes to smooth the observations from which parameters are estimated. We evaluate our methods using synthetic data
generated from model biological systems described by ordinary and delay differential equations. Upon comparing the performance of
our method to existing ABC techniques, we demonstrate that it produces comparably reliable parameter estimates at a significantly
reduced execution time.

Index Terms—Approximate Bayesian computation, Gaussian process regression, non-linear differential equations, non-parametric
Bayesian, sequential Monte Carlo
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1 INTRODUCTION

THE time evolution of the variables modelled in
a variety of science and engineering branches are

often described by ordinary differential equations that
are characterised by model structure – the functions of
the dynamical variables – and model parameters. The
task of estimating these parameters from experimental
observations is thus of paramount importance. It is also
necessary in some cases to choose the most appropriate
among competing models that describe the observations.
For parameter estimation and model selection, statistical
and pattern recognition techniques built upon a Bayesian
framework have been shown to work extremely well
for complex non-linear ordinary differential equations in
[1],[2],[3] and [4].

To apply Bayesian techniques we need to integrate
marginal likelihoods, which can be computationally in-
tractable in non-linear differential equation models. For
this reason some form of approximation such as Monte
Carlo integration is generally preferred for parameter
inference. Approximate Bayesian computation (ABC)
based on sequential Monte Carlo (SMC) is one such
approximate inference technique that has been applied
to different classes of dynamical systems described by
deterministic or stochastic differential equations for both
parameter estimation and model selection in [5]. The
ABC-SMC algorithm has been shown to work well for
the examples considered in [5]. ABC-SMC produces
reliable estimates of parameters and has been used to
discriminate between a set of candidate models using
Bayesian model selection criteria. Moreover, ABC-SMC
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enables the calculation of parameter sensitivities [5].
ABC methods prove to be most useful for large models

with complex likelihood surfaces that are difficult to
evaluate. The operating principle of ABC methods lies in
replacing the evaluation of likelihoods with a simulation
based procedure for inference, by using a generative
modelMθ with parameters θ drawn from a prior distri-
bution π(θ) to simulate observations Y s ∼ Mθ that are
compared with the observed data Y d. If the likelihood
p(Y d|Mθ) of observed data Y d is intractable or infeasible
to compute, then we can use the ABC algorithm to obtain
samples from the following modified posterior density

pǫ(θ, Y
s|Y d) =

1(∆(Y d, Y s) ≤ ǫ)(Y s ∼Mθ)π(θ)∫
θ

∫
Y s 1(∆(Y d, Y s) ≤ ǫ)(Y s ∼Mθ)π(θ)dθdY s

(1)

where ǫ > 0 is a tolerance level, ∆ is a distance
function, 1 is the indicator function and pǫ(θ, Y

s|Y d) =
p(θ, Y s|∆(Y d, Y s) ≤ ǫ). A good (enough) approximation
of the true marginal posterior distribution is obtained
when the distance ∆(Y d, Y s) is within a predetermined
small tolerance ǫ, i.e.,

pǫ(θ|Y d) =

∫

Y s

pǫ(θ, Y
s|Y d)dY s ≈ p(θ|Y d) (2)

Since ABC (including ABC-SMC) requires the generation
of a number of simulated observations Y s ∼ Mθ, the
generation of observations could be a computationally
expensive process. Thus although ABC-SMC mitigates
the intractability of evaluating the likelihood function
through simulation, repeated simulation from complex
models for inference can itself be burdensome. For the
case of dynamical systems such simulations require
explicit numerical solutions of non-linear differential
equations. Thus, despite its attractive features the ABC-
SMC algorithm suffers from a major drawback rooted
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in its computational burden for inference in differen-
tial equations. In particular, the acceptance criterion
1(∆(Y d, Y s) ≤ ǫ) can lead to the generation of many
unused simulations Y s ∼ Mθ , and various methods
have been proposed in [6] to improve the acceptance
rate and reduce the run-time of the algorithm.

In this paper we propose an alternate method of
speeding up the ABC-SMC algorithm for parameter es-
timation in deterministic models described by ordinary
differential equations (ODE) or delay differential equa-
tions (DDE) by reducing the time incurred in simulation.
We achieve this speedup by: (i) completely circumvent-
ing the process of integrating the differential equation by
operating on the derivative space and (ii) by smoothing
the derivatives using Gaussian processes (GP). It should
be noted that using Gaussian processes as functional
emulators in the derivative space, as a concept, has been
proposed in [1],[2] for speeding up parameter estimation
in deterministic differential equations. For parameter
estimation, GP-based gradient matching has been used
for ODEs and DDEs using a population Monte Carlo
sampling [1]; an adaptive variant of this approach is pro-
posed for ODEs [2]. See [3] for a review and comparison
between these approaches. The novelty of our proposed
method is the fusion of GP regression with ABC-SMC.
Our algorithm for fast parameter estimation can be
easily incorporated into methods for model selection
and recovering parameter sensitivities for deterministic
differential equations.

This paper is organised as follows: in section 2 we
will introduce the ABC-SMC algorithm for parameter
estimation in differential equations. In section 3 we will
show how the algorithm can be sped up by circumvent-
ing the need for the numerical solution of the differential
equations. In section 4 we will introduce Gaussian pro-
cesses for function estimation and subsequently in sec-
tion 5 we will use GPs within the ABC-SMC to operate
on the derivative space. In section 6 we will compare
the performance of our proposed modification with the
ABC-SMC algorithm [5] and also with its improved
variant proposed in [6]. In conclusion, we summarise our
achievements in this paper and give some indication of
future work in section 7.

2 THE BASIC ABC FRAMEWORK

ABC methods generally have the following algorithmic
form:

1) Sample a candidate parameter vector θ from a prior
distribution π(θ) and for each θ ∼ π(θ), simulate a
dataset Y s ∼Mθ from a generative model Mθ.

2) Compute a distance ∆(Y s, Y d) between the simu-
lated dataset, Y s and the experimental data Y d. If
∆(Y d, Y s) ≤ ǫ, where ǫ ≥ 0 is the error tolerance
of accepted solutions, then accept θ and reject
otherwise.

These scheme is repeated until N parameter values are
accepted, which represent a sample from the approxi-

mate posterior distribution pǫ(θ|Y d). Exact posterior can
be obtained from this scheme when ǫ = 0.

2.1 ABC-SMC for parameter estimation in ODE

If the prior distribution is very different from the pos-
terior distribution, the basic ABC framework is very
inefficient as it spends a considerable amount of time
sampling from areas of low likelihood in parameter
space, which makes the acceptance rate extremely low. In
order to improve upon poor acceptance rates and facili-
tate exploration of the parameter space, ABC algorithms
based on the SMC sampling method were proposed
in [7], [8] and [9] and sequential importance sampling
(SIS) in [5], [10]. [5] applied the ABC algorithm based
on SIS for parameter estimation and model selection
for a variety of dynamical systems including non-linear
ODEs and DDEs, which will also be the focus in this
paper. Although all the variants of ABC algorithms that
come under the SMC category can potentially be used
for inference in dynamical systems, we will specifically
focus our attention on the ABC approach as adopted in
[5].

We shall apply ABC-SMC to models of the evolution
of state X(t) = (X1(t), . . . , XK(t) that are governed

by ODEs or DDEs dX(t)
dt

= f(X(t− td), θ), where td
stands for the time delay in DDEs, with td = 0 for
ODEs, and θ is a vector of parameter values. We ex-
press the integrated solution of the differential equations
X(t,X in; θ) as a map ψt(X in; θ) that generates state
trajectories X(t) given a set of parameters θ and initial
conditions X in , X(td ≤ t ≤ 0). To generate the samples
Y s, we add Gaussian noise η ∼ N (0, σ2

IK), where IK is
a K ×K identity matrix to the solutions X(t,X in; θ) to
create the generative model Mθ:

(Y s ∼Mθ)⇔ Y s = X(t,X in; θ). (3)

to be used in the ABC framework.
A collection of parameter values, called particles θ are

sampled from the prior π(θ) to instantiate the generative
model Mθ. To decide whether a particular choice of
parameters θ ∼ π(θ) is accepted, we need to compare if
the simulated trajectory Y s ∼ Mθ is within a tolerance
level ǫ of the observed trajectory Y d, for which we
introduce the distance function

∆(Y d, Y s) =

L∑

i=1

K∑

k=1

(Y d
k (ti)−Xk(ti)− ηk)2, (4)

where we assumed that the data were collected, and the
state evaluated, at integer time points tL , {ti}i=1,...,L.
Note that for dynamical systems such distance functions
are generally built by considering the entire time-series
data instead of some sufficient statistics.

The sequential stage of this algorithm involves replac-
ing a single tolerance value ǫ by a sequence of tolerance
values ǫτ , where τ = 0, . . . , SMC denotes the sequential
steps, and ǫτ > ǫτ+1. The particles θτ are indexed by
τ labelling the tolerance level, and are sampled from
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the posterior distribution obtained from the previous
sequential step, thus introducing a step-wise procedure
for generating parameters from a sequence of more
informative distributions, starting at τ = 0 with the
prior distribution π(θ). To accept or reject the sampled
particles for sequence index τ , the generated trajectories
from the model with parameters θτ must be closer to
the observed data Y d than those generated from the
model with parameters θτ−1 in step τ − 1. The gener-
ative mechanism for the particles θτ differs from that
of θτ−1 in that they are sampled from the N particles

{θ(i)
τ−1}i=1,...,N with importance weights [5] wτ−1 and

each θ
∗ ∼ {θ(i)

τ−1}i=1,...,N is perturbed by a perturbation
kernel Kτ (θ|θ∗) [5].

For each τ = 0, . . . , SMC , the N particles meeting the
acceptance criterion ∆(Y s, Y d) ≤ ǫτ represent a point-
wise approximation for the posterior distribution over
the parameter values:

pǫτ (θ|Y d) ≈ 1

N

N∑

i=1

w(i)
τ δ(θ − θ(i)

τ ), (5)

where w
(i)
τ is the importance weight of the particle i [5]

and δ(θ−θ(i)) is a product of Dirac delta functions, one
for each component of θ. For a small value of ǫSMC
the final collection of particles should be a good point-
wise approximation to the true posterior distribution.
The ABC-SMC algorithm is listed in Algorithm 1.

One way of speeding up the ABC-SMC algorithm is
by increasing the acceptance rate. To this end a range
of perturbation kernels were proposed in [6] that result
in a noticeable change in terms of acceptance rates
and run-time. However, the major computational burden
stems from the numerical integration of the differential
equation and thus a faster simulation method within the
ABC-SMC is likely to speed up this algorithm possibly
more than what is gained by clever choice of perturba-
tion kernels.

3 GRADIENT BASED PARAMETER ESTIMATION
IN DIFFERENTIAL EQUATIONS

We have mentioned previously that the computational
bottleneck stems from the explicit integration carried out
in each simulation step. In order to avoid the integration
one could essentially use a gradient based estimation.
If the temporal variations in observations Y d(t) are
believed to be less smooth than the underlying state
evolution that is modelled by differential equations, we

shall introduce the target state variable X̂(t) to be the

smoothed version X̂(t) , S(Y d) of the observations.
Here, S represents any smoothing procedure, and we
will use Gaussian Process (GP) regression to perform
the smoothing below. In the ABC framework, we shall
accept the trajectories X(t) from the modelMθ (see (3))

if they are close to X̂(t). Once we have X̂(t) we can
compute its numerical derivative to obtain the empirical

Algorithm 1 ABC-SMC as proposed in [5]

1. Given Y d, π(θ), Mθ.
2. Initialise ǫτ > 0, τ = 0, . . . , SMC , ǫτ > ǫτ+1. Set τ = 0.

3. Set i = 1.
4. if τ = 0 then
5. sample θ∗∗ independently from π(θ):

θ∗∗ ∼ π(θ)
6. else
7. from the previous population {θ(i)

τ−1}i=1,...,N

sample θ∗ ∼ {θ(i)
τ−1}i=1,...,N with associated nor-

malized weights w∗τ−1 and use the perturbation
kernel Kτ (θ|θ∗) to produce θ∗∗ ∼ Kτ (θ|θ∗).

8. end if
9. if π(θ∗∗) = 0 then

10. go to 4.
11. else
12. Simulate a candidate dataset Y s from the model

Mθ with parameter θ∗∗: Y s ∼Mθ|θ←θ∗∗ .
13. end if
14. if ∆(Y d, Y s) ≥ ǫτ then
15. go to 4.
16. else
17. Set θ(i)

τ ← θ∗∗ and calculate the weight for particle
θ(i)
τ ,

w(i)
τ =





1, if τ = 0

π(θ(i)
τ )

N∑

j=1

w
(j)
τ−1Kτ (θ

(i)
τ |θ(j)

τ−1)

, if τ > 0

18. end if
19. if i < N then
20. Set i← i+ 1 and go to 4.
21. else
22. Normalise the weights.
23. end if
24. if τ < SMC then
25. Set τ ← τ + 1 and go to 3.
26. else
27. return particles θ

(i)
SMC

at τ = SMC .
28. end if

vector field V d(t) of the dynamical system Mθ:

for X̂(t) , S(Y d),V d(t) ,
d

dt
X̂(t). (6)

In addition, while the left hand side of the ODE
d
dt
X(t) = f(X(t), θ) is estimated by the empirical

derivative V d(t), it should be matched by the model
vector field f (X(t), θ) on the right hand side, when

evaluated on the smoothed state data f(X(t) = X̂(t), θ).

Upon introducing a new distance measure between

V d(t) obtained from the smoothing and f(X̂(t), θ) ob-
tained from the vector field we can eliminate the original
distance metric for ABC-SMC between observed, Y d,
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and the simulated, Y s ∼ Mθ , trajectories, thus unbur-
dening ABC-SMC of ODE integration at each simulation
step. The gradient based method was first suggested
in [11] where a spline-based smoothing was used to
denoise the observed data. In this method a cost func-
tion was built using the distance metric in derivative
space and optimisation was used to minimise this cost
function in order to obtain point estimates. Recent de-
velopments of this methods are described in [12]. All
these approaches suffer from similar problems of using
additional regularisation parameters for smoothing and
often the estimates are sub-optimal point estimates. Al-
though porting the derivative based distance within an
ABC scheme alleviates the computational bottleneck, this
approach suffers from an inherent shortcoming that is
rooted in obtaining a numerical derivative as this might
lead to information loss.

In our approach, we replace the numerical differenti-
ation with a zero mean Gaussian Process (GP) prior on
the state X(t) given by

p(X(t)|φ) ∼ GP(0,K(t, t′;φ)), (7)

where K(t, t
′

;φ) denotes a covariance function with
hyperparameters φ. Once such a prior is established then
Gaussian Process regression techniques can be applied to

estimate both the state vector X̂(t) and also the deriva-
tive process V d(t). Using GP regression the derivative
process can be inferred within a probabilistic framework.
Hence, we propose to use a distance function in the

derivative space where the state X̂(t) and derivative
V d(t) is modelled using GP regression,within the ABC-
SMC algorithm. In this way our proposed method is
based on the GP construction in the derivative space as
in [1] and [3], combined with the ABC-SMC algorithm
as proposed in [5]. Next, we will briefly introduce GP re-
gression and will apply this to the ABC-SMC algorithm.

4 GAUSSIAN PROCESSES

For real-valued functions f : A → R of one or more
input variables defined over A, a Gaussian process (GP)
is a Bayesian non-parametric model that specifies a
distribution P (f) [13], [14], [15], [16] characterised by a
mean function µ(x) and a covariance function or kernel,
K(x, x′;φ):

f(x) ∼ GP(µ(x),K(x, x′;φ)), (8)

where φ are hyperparameters. For example, the squared
exponential covariance function, which we use below, is
given by

KSE(x, x
′) = σ2

kern exp

(
−1

2

(x− x′)2
l2

)
, (9)

with hyperparameters σ2
kern and l2 (variance and char-

acteristic length-scale).
For a finite number (n) of inputs x∗ = (x1, . . . .xn),

xi ∈ A and for f(x) ∼ GP(µ(x),K(x, x′;φ)), the n-
dimensional vector of function values evaluated at n

points f(x∗) , (f(x1), ..., f(xn)) is a random vector
drawn from a multivariate Gaussian distribution:

p(f(x∗)|x∗) = N (µ(x∗),K(x∗,x′∗)). (10)

For performing regression, observations y(x) ,

(y(x1), . . . , y(xL) at L training points x = (x1, . . . , xL)
are fit to function f evaluated at x:

y(x) = f (x) + η, (11)

as in (3). Given the training data (xi, y(xi)), i = 1, . . . , L
the conditional predictive distribution of the function
f∗ , f(x∗) evaluated at the test points x∗ is a Gaussian
with mean and variance given by [16]

E[f∗|y,x,x∗,Φ] = µ(f∗)+

[K(x∗,x)(K(x,x) + σ2
I)−1

× (y − µ(f∗))],
V ar[f∗|y,x,x∗,Φ] = K(x∗,x∗)−

[K(x∗,x)(K(x,x) + σ2
I)−1

×K(x,x∗)],

(12)

where Φ = {φ, σ}.
The hyperparameters Φ are inferred as point estimates

by optimising the logarithm of the marginal likelihood,
with a zero mean assumption [16]:

log p(y|Φ) = log

∫
p(y|f ,Φ)p(f |Φ)df

= −1

2
yT (K(x,x) + σ2

I)−1y

− 1

2
log
∣∣K(x,x) + σ2

I
∣∣− L

2
log(2π).

(13)

4.1 Derivative Gaussian processes

Since differentiation is a linear operator, the derivative of
a Gaussian process is another Gaussian process [17]. This
makes it possible to include derivative observations in
the GP model, or to compute predictions about deriva-
tives. We have

E

[
∂f(x)

∂x

]
=
∂E [f(x)]

∂x
. (14)

And likewise the covariance between partial derivative
and a function value can be written as

K

(
∂f(x)

∂x
, f(x∗)

)
=

∂

∂x
K (x, x∗) , (15)

and the covariance between partial derivatives follows

K

(
∂f(x)

∂x
,
∂f(x∗)

∂x∗

)
=

∂2

∂x∂x∗
K (x, x∗) . (16)

For example considering the squared exponential covari-
ance function given in (9), we can write the covariance
between partial derivative and a function value as

K

(
∂f(x)

∂x
, f(x∗)

)
= − (x− x∗)

l2
K(x, x∗) (17)
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The conditional distribution of the derivative of a test
function ∂f(x∗)

∂x∗
having observed the output (x, y) =

(x, f(x)) of a noisy function f is given as

P (
∂f(x∗)

∂x∗
|f(x)) = N (m,Σ), (18)

where we have the mean function m and covariance
function Σ (obtained by using (14) and (15) and con-
sidering the prior mean of the test and training function
to be zero) given as

m =
∂K (x∗, x)

∂x∗
[
K(x, x) + σ2

I
]−1

f(x),

Σ =
∂2K (x∗, x∗)

∂x∗∂x∗

− ∂K (x∗, x)

∂x∗
[
K(x, x) + σ2

I
]−1 ∂K (x, x∗)

∂x∗
.

(19)

5 ABC-SMC WITH DERIVATIVE GP
In this section we apply the machinery reviewed in the
previous sections to the task of inferring parameters in
differential equation models whose solution is the state
trajectory X(t). If we assign a GP prior to the state
evaluated at time points tL , {ti}i=1,...,L, then the set
of values of the state X(tL) takes on a Gaussian prior
distribution:

p(X(tL)|tL) = N (X(tL)|0,K(tL, tL)). (20)

The modelling task is to represent the experimental data
as (3) Y d = {X(tL) + ηL} where ηL refers to L i.i.d.
samples from N (0, σ2

I) and X(t) satisfies a differential
equation. We can use GP regression to obtain the expec-
tation and variance of the posterior (given training data
Y d at tL) state X(t∗) for some test input time point t∗

as in Section 4 [16]:

E[X(t∗)|Y d] = K(t∗, tL)(K(tL, tL) + σ2
I)−1Y d,

V ar[X∗] = K(t∗, t∗)−K(t∗, t)(K(t, t) + σ2
I)−1K(t, t∗).

(21)
This expected posterior state variable X(t∗) for arbitrary
choice of t∗ models the smoothed evolution of the state
X̂(t) introduced above, and where it is assumed that
observational noise accounts for deviations from the
smoothed time course. The smoothed state estimation
enables us to compute the velocity field using the deriva-
tive GP (as in Section 4.1):

E[
d

dt
X] =

∂K(t, t)

∂t
(K(t, t) + σ2

I)−1E[X]. (22)

This completes the procedure for deriving the empirical
velocity field (6) V d(t) = E[ d

dt
X ].

To apply this derivative process within the ABC
framework we need to define a distance metric
∆(V d(t),f(X̂(t), θ)) between the smoothed velocity
field derived from the observed data, and the velocity
field postulated in a differential equation model, where

the expected state estimation X̂(t) has been substituted

for the state variable. Hence our proposed fast alterna-
tive ABC-SMC based on GP gradient distance (GP-ABC-
SMC) works as follows:

1) Having given data Y d as a noisy observation of
the true state variable X(t), assign a GP prior on
X(t) using (7) and choose a covariance function,
with some unknown hyperparameters, needed to
define the GP prior.

2) Learn the hyperparameters of the covariance func-
tion from the original noisy experimental data Y d

using maximum likelihood estimation and then
run GP regression to obtain an estimation of the

smoothed state evolution X̂(t) = E[X] using (21)
and the experimental time points t as both the
training and test input points.

3) Construct the first derivative of the covariance
matrix and estimate the derivative process V d(t) =
E[ d

dt
X |

X=X̂
] using (22).

4) Run the ABC-SMC algorithm with a modified dis-

tance metric ∆(V d(t),f (X̂(t), θ)) ≤ ǫτ for toler-
ance schedule {ǫτ}, where at each simulation step

the simulated data Y s = f(X̂(t), θ) is generated
by evaluating the velocity field on the right hand
side of the differential equation. This yields the
posterior distribution of the parameters p(θ|Y d) (5).

Note that no explicit solution of differential equation
is required to generate the simulated data within the
iterations of the GP-ABC-SMC algorithm. Also note the
fact that, in order to run the GP-ABC-SMC algorithm,
no knowledge of the initial condition is required.

For the sake of conformity with the ABC terminolo-
gies, we will persist in using the terms Y d for observed
data and Y s for simulated data, as before. However,
within the context of GP-ABC-SMC algorithm, observed

and simulated data refer to V d(t) and f(X̂(t), θ) respec-
tively. That is what Y d and Y s will refer to for the rest
of the paper.

5.1 Algorithmic settings

The success of ABC-SMC algorithm both in terms of
computational complexity and quality of the solution
depends on the choice of the ǫτ schedule and the pertur-
bation kernel Kτ . In this section we will briefly describe
how we have chosen these two algorithmic settings.
A detailed discussion concerning the effects of these
settings can be found in [6].

5.1.1 Tolerance schedule
Until recently, tolerance values were manually tuned in
practice based on prior empirical knowledge about the
model. An adaptive choice of the tolerance values has
been proposed in [18] and [19]. In an adaptive schedule
the value of the tolerance ǫτ is chosen as the α-th
quantile, where 0 ≤ α ≤ 1 of the distances between the
observed data Y d and simulated data Y s

τ−1 generated at
the previous algorithmic time.
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5.1.2 Perturbation kernel

Perturbation kernels hold the key to the acceptance rates
in ABC-SMC and the speed of the algorithm as exploited
in [6]. Perturbation kernels can be broadly divided into
two categories: a component-wise perturbation kernel
and a multivariate perturbation kernel. In a component-
wise perturbation kernel θ ∼ N (θ,Στ ) where Στ is a
diagonal covariance matrix whose diagonal entries σ2

τ,j

j = 1, . . . , d are chosen adaptively according to the
previous population labelled by τ − 1 [10], [20], [6].

A component-wise perturbation kernel is, by con-
struction, unable to generate particles with correlated
components; therefore, for models with strongly corre-
lated parameters the ABC-SMC sample generator will
not be able to reflect the structure of the posterior
and the acceptance rate will be low. Thus, in order to
capture such correlations the particles can be perturbed
according to a multivariate normal distribution with a
non-diagonal covariance matrix Στ that depends on the
covariance of the particles as reflected in the population
in the previous sequential step (τ − 1) [6]. Furthermore,
a multivariate perturbation kernel operating on a subset
of size N ′ of the N particles (a local kernel) was also
shown [6] to produce a noticeable improvement in the
acceptance rate. In order to define this kernel we will

introduce some notation. Let Y
s(i)
τ denote the simulated

data generated from Mθ with particle θ ← θ
(i)
τ , i =

1, . . . , N from a population of size N at algorithmic time
τ . The corresponding importance weights are denoted as

w
(i)
τ . We collect all such particles (along with the weights)

from algorithmic time τ − 1 for which Y
s(i)
τ is not only

within distance ǫτ−1 of the observed data Y d but also

within distance ǫτ of it. We denote such particles as θ̃
(j)
τ−1:

{
θ̃
(j)
τ−1

}
1≤j≤N ′

=
{
θ
(i)
τ−1|∆(Y d, Y

s(i)
τ−1) ≤ ǫτ , 1 ≤ i ≤ N

}
,

(23)

with associated normalised weights w̃
(j)
τ−1 , (w

(j)
τ−1/w̄),

with w̄ ,
∑

j w
(j)
τ−1.

Having defined the pairs
(
θ̃
(j)
τ−1, w̃

(j)
τ−1

)
we can now

use a multivariate normal distribution N (θ
(i)
τ−1,Σ

i
τ ) ,

with a local covariance Σi
τ (termed the optimal local

covariance in [6]), to perturb a particle θ
(i)
τ−1, where local

refers to particle i. This covariance is given by

Σi
τ =

N ′∑

j=1

w̃
(j)
τ−1

(
θ̃
(j)
τ−1 − θ

(i)
τ−1

)(
θ̃
(j)
τ−1 − θ

(i)
τ−1

)T
. (24)

In the next section we will implement the GP-ABC-
SMC algorithm to infer parameters of some standard
non-linear differential equations through some toy exam-
ples and in that process we will compare and contrast
our GP gradient based approach to that of ABC-SMC
algorithm with explicit integration.

6 EVALUATION OF THE ALGORITHM ON
BENCHMARK MODELS

To evaluate the GP-ABC-SMC algorithm we have chosen
three benchmarking differential equations: The Lotka
Volterra predator-prey model [21], the Hes1 loop model
[22] and signal transduction cascade model [4],[3]. Each
is a set of non-linear differential equations modelling
biological systems and show non-trivial dynamical phe-
nomenon such as limit cycle oscillations and non-
stationary time evolution. For all these examples we
have used the distance function given by (4) and have
run the ABC-SMC algorithm with explicit integration
using a component-wise univariate normal kernel (ABC-
SMC-Comp) [5] as well as a multivariate normal kernel
with the optimal local covariance matrix (ABC-SMC-
OLCM) [6]. For our proposed GP-ABC-SMC we have
also used both the aforementioned perturbation kernels.
We refer these as the GP-ABC-SMC and GP-ABC-OLCM
respectively. We believe a comparison between these four
variants of ABC-SMC is required to capture the differ-
ence in speed of execution between the GP based ABC-
SMC and the previous approaches reported in [5], [6],
while comparing posterior estimates of the parameters.
For all the examples presented here, we ran all these
variants of ABC-SMC, including the proposed GP based
ones, with N = 100 particles using an adaptive tolerance
schedule set to the α = 0.1 quantile of the distances
in the previous populations. The ABC-SMC routines
are written in MATLAB and for the GP regressions the
GPML package [23] for MATLAB is used in the predator-
prey and Hes1 loop example. For the signal transduc-
tion cascade model the GPMat toolbox for MATLAB
https://github.com/SheffieldML/GPmat is used
which has an implementation of the multi-layer per-
ceptron (MLP) covariance kernel [3], required to handle
the non-stationarity of some of the state variables. The
explicit integrations are carried out using MATLAB’s
built in ODE and DDE solver routines.

6.1 ODE: The predator prey model

The Lotka Voltera [21] model depicts an ecological sys-
tem that is used to describe the interaction between a
predator and prey species. This ODE given by

ẋ = αx− xy
ẏ = βxy − y, (25)

shows limit cycle behaviour and has been used for
benchmarking in [5], [2]. θ = (α, β) is the set of parame-
ters and X(t) = (x(t), y(t)) is the state vector comprising
the concentrations of the predator and the prey species
respectively. To create a realistic dataset we generated
11 uniformly spaced samples between the time interval
(0 ≤ t ≤ 10) from the model with parameters θ = (1, 1)
and added random Gaussian noise with zero mean and
standard deviation σ = 0.5 to each point. The initial
values of the ODE for generating the synthetic data are
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chosen as X(t = 0) = (1.0, 0.5). In order to inspect the
consistency of our proposed algorithm we created two
more datasets obtained by adding two other realizations
of the random noise to the ODE time courses. Thus we
have three sets of artificial data (denoted as Dataset 1, 2
and 3), each of which has been corrupted by Gaussian
noise with zero mean and standard deviation σ = 0.5
and sampled separately. Note that the GP-ABC-SMC
algorithm does not require the estimation of additional
nuisance parameters related to the initial values. The
time evolution of the state and its derivative is predicted
through the GP regression as described in Section 5. We
have used the squared exponential covariance function
given by (9) for the GP regression in this example.

From the synthetic data we perform the task of pa-
rameter inference using the four different variants of
ABC-SMC discussed in the last section to compare their
performance. Both α and β are chosen from uniform
prior distributions U(−10, 10) in all cases. The number of
algorithmic iterations, the value of SMC is set to SMC = 6
for the ABC-SMC-Comp and ABC-SMC-OLCM while
it is set to SMC = 5 for GP-ABC-SMC and GP-ABC-
OLCM. The values differ because we have chosen these
on the criteria of minimum number of adaptive iteration
required for estimating a reliable posterior distribution.
As the ABC-SMC with integration and the GP based
variants operate on different spaces thus setting same
values for SMC does not produce comparable results.
The specific values of SMC for this and subsequent ex-
amples are chosen on the basis of multiple trials of all the
four ABC-SMC algorithm on each of the datasets. The
resulting parameter estimates are listed in Table 1 and
the evaluation of the performance in Table 2 (left). We
show in Table 1 the mean with 95% confidence intervals
of the last population of parameters, approximating the
marginal posterior, for each variants of the ABC-SMC.
Note that the run-time of the GP-ABC-SMC and the GP-
ABC-OLCM algorithms is the sum of the run-time of the
ABC and the GP regression (including the estimation of
covariance hyperparameters). The value of σ is estimated
as part of the GP regression. These estimated values
are σ = {0.4752, 0.8090}, σ = {0.6219, 0.3940} and
σ = {0.6432, 0.4592} for the dataset 1, 2 and 3 respec-
tively. The results show that the GP-ABC-SMC and the
GP-ABC-OLCM are considerably faster than the other
two variants while producing similar results in terms
of the mean of the estimates. However, the variants of
ABC-SMC with explicit integration produces narrower
confidence intervals compared to the GP variants. Inter-
estingly the GP variants generate comparatively fewer
number of samples, as evident from Table 2 (left), in-
dicating higher parameter sensitivities in the derivative
space. Also note that the variants of ABC-SMC with a
local multivariate kernel generate fewer particles com-
pared to the ones with univariate perturbation kernels,
reducing the run-times. Since dimensionality of the local
covariance is very small (equal to the ODE parameter
space) much less effort is required in its computation

than generating simulated data, even in the derivative
space.

6.2 DDE: The Hes1 model

Our proposed algorithm is also able to estimate param-
eters of delay differential equations. The Hes1 model
system is used in systems biology to provide a simplified
account of the oscillatory behaviour of the concentrations
(µ(t), p(t)) of a species of mRNA and its corresponding
protein. The model, introduced in [22], is described by
the following delay differential equations:

µ̇ =
1

1 + (p(t− td)/p0)n
− µmµ

ṗ = µ− µpp,

(26)

where the parameters µm and µp are decay rates, p0 is
the repression threshold, n is the Hill coefficient and td is
the time delay. We generated data from the above model
with parameters µm = 0.03, µp = 0.03, p0 = 100 and
td = 25 and initial conditions µ(t0) = 3 and p(t0) = 3 for
the concentrations between the interval (0 ≤ t ≤ 300)
with uniform spacing of ∆t = 2 by numerically solving
the DDE. n is fixed at a value of 5 [22]. We estimated
the standard deviations σµ = 6.0020 and σp = 121.7670
of the generated data, for each of the concentrations µ(t)
and p(t). We then added noise, with standard deviation
set to 0.1 times these estimated standard deviations σµ
and σp, to the data to create the artificial datasets. As
in the previous example we created three datasets in a
similar fashion.

For comparison of performance of the four methods
in the parameter estimation task, we keep the same
algorithmic settings, as well as the same covariance func-
tion for the GP regression as in the previously example.
Unlike the ODE case where our algorithm does not need
to guess the initial state values, it does need a history
function for X(t ≤ 0) for DDEs in order to work. In most
practical cases the initial history function is taken as a
constant function. Thus in order to make our algorithm
work, we shifted the first element of the estimated
state evolution backward in time to create the history
function. The four variants of ABC-SMC having the same
settings as before, are applied to this artificial dataset. We
chose uniform priors for each of the parameters: µm ∼
U(−2, 2), µp ∼ U(−2, 2), po ∼ U(0, 200) and td ∼ U(0, 50).
The number of iterations are chosen as SMC = 14
while running ABC-SMC-Comp and ABC-SMC-OLCM.
For GP-ABC-SMC and GP-ABC-OLCM this is chosen
as SMC = 9. As in the previous example these SMC

values are found through multiple trials of each of the
algorithms on these datasets and inspecting the quality
of the posterior estimates. The results are listed in Table
3 and Table 2 (right). In this example we see a huge
speedup while using our proposed GP-ABC-SMC and
GP-ABC-OLCM algorithms, demonstrating the benefits
of this approach. As in the previous example we noticed
higher acceptance rates (fewer generated particles) for
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TABLE 1
Estimated parameters of the Lotka Volterra predator-prey model denoted by the mean of the particles of the final

population and 95% confidence intervals for datasets 1-3 respectively in each row.

Parameters True value ABC-SMC-Comp ABC-SMC-OLCM GP-ABC-SMC GP-ABC-OLCM

α 1
1.0688 ± 0.0021 1.0722± 0.0032 1.0373 ± 0.0080 1.0356 ± 0.0070
1.0389 ± 0.0062 1.0305± 0.0054 1.0843 ± 0.0092 1.0718 ± 0.0102
1.0293 ± 0.0157 1.0421± 0.0073 1.0103 ± 0.0172 1.0144 ± 0.0139

β 1
0.9698 ± 0.0025 0.9763± 0.0033 0.9567 ± 0.0083 0.9540 ± 0.0067
0.9749 ± 0.0093 0.9966± 0.0082 0.9846 ± 0.0080 0.9760 ± 0.0083
1.0103 ± 0.0206 0.9924± 0.0095 0.9887 ± 0.0154 0.9906 ± 0.0126

TABLE 2
Run-time and the ratio of total number of particles accepted to that of generated for the four ABC-SMC algorithms
when applied to the three artificial datasets pertaining to the Lotka Volterra predator-prey model (left) and Hes1

model (right). The values for run-time are rounded to nearest integers.

Algorithms Run-time (seconds) Accept/Generate

ABC-SMC-Comp
397 700/14737
477 600/12294
516 500/13381

ABC-SMC-OLCM
184 800/7846
221 700/6369
212 600/6086

GP-ABC-SMC
25 500/7650
26 500/7547
26 500/7642

GP-ABC-OLCM
21 500/4655
20 500/4316
16 500/3193

Algorithms Run-time (seconds) Accept/Generate

ABC-SMC-Comp
106980 1300/763045
840330 1600/8026943
201710 1600/1656197

ABC-SMC-OLCM
5496 1300/31342
8399 1500/50968
5999 1400/36519

GP-ABC-SMC
30 1100/31439
38 1000/38911
32 1000/36521

GP-ABC-OLCM
18 1000/7387
18 1000/8183
17 1000/7969

TABLE 3
Estimated parameters of the Hes1 loop model.

Parameters True value ABC-SMC-Comp ABC-SMC-OLCM GP-ABC-SMC GP-ABC-OLCM

µm 0.03
0.0307 ± 2.1608 × 10−4 0.0305 ± 2.9381× 10−4 0.0295± 1.3929 × 10−4 0.0293 ± 1.1127 × 10−4

0.0341 ± 6.5563 × 10−5 0.0342 ± 4.3428× 10−5 0.0304± 2.6599 × 10−4 0.0302 ± 2.3190 × 10−4

0.0336 ± 4.1649 × 10−5 0.0336 ± 8.5782× 10−5 0.0291± 1.8721 × 10−4 0.0292 ± 1.8657 × 10−4

µp 0.03
0.0294 ± 2.0457 × 10−4 0.0297 ± 2.8397× 10−4 0.0300± 3.8592 × 10−6 0.0300 ± 2.8604 × 10−6

0.0267 ± 4.4742 × 10−5 0.0267 ± 2.9662× 10−5 0.0300± 4.1123 × 10−6 0.0300 ± 3.0506 × 10−6

0.0268 ± 2.9233 × 10−5 0.0268 ± 5.9925× 10−5 0.0297± 3.5370 × 10−6 0.0297 ± 3.6808 × 10−6

p0 100
99.4130 ± 0.0537 99.4518 ± 0.0697 99.5991 ± 0.2946 99.6997 ± 0.2058
102.1872 ± 0.0362 102.2306 ± 0.0281 100.8624 ± 0.2628 100.8624 ± 0.2302
101.2097 ± 0.0279 101.2549 ± 0.0495 100.0403 ± 0.2796 100.0593 ± 0.2459

td 100
25.1318 ± 0.0109 25.1580 ± 0.0151 25.0496 ± 0.1139 25.0502 ± 0.0871
25.2317 ± 0.081 25.2428 ± 0.0056 25.9357 ± 0.2031 25.6215 ± 0.1589
25.0730 ± 0.0055 25.0714 ± 0.0107 25.3187 ± 0.1414 25.4469 ± 0.1519

the GP variants of ABC-SMC. The noise is estimated as
σµ = 6.8080, σp = 128.6910, σµ = 6.9280, σp = 123.2920
and σµ = 6.1220, σp = 128.1290 for the dataset 1, 2 and
3 respectively. Furthermore, from Table 3 it is apparent
that although the means of the parameters have similar
estimates, their corresponding confidence intervals are
different between the proposed GP variants and the orig-
inal ABC-SMC algorithms. However it should be consid-
ered that for GP-ABC-SMC (with both the perturbation
kernels) no knowledge of the initial history function is
required. Thus in a practical setting we believe a GP
based ABC-SMC algorithm is the optimal choice among
these four methods for parameter estimation in DDEs.

6.3 ABC variability

Our proposed method comprises of two levels of ap-
proximation, one induced through the GP regression and
the other one resulting from the approximate inference
scheme. Thus in order to check the robustness of our
proposed algorithm we repeated the GP-ABC-SMC and
GP-ABC-OLCM parameter inference steps for 50 runs
on each of the three artificial datasets for both the Lotka
Volterra and Hes1 models. We used the same algorithmic
settings and prior distributions as in the previous ex-
amples. Fig. 1. and Fig. 2. summarizes the distributions
of the sample mean and variance (corresponding to the
final particle population for each run of of GP-ABC-
SMC and GP-ABC-OLCM on the three artificial datasets)
across all the 50 runs on the data from Lotka Volterra and
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Hes1 respectively.

It is evident from Fig. 1. that the GP-ABC-OLCM algo-
rithm produces fewer outliers compared to the GP-ABC-
SMC for both the mean and variance estimates. This can
be attributed to the local moves in the parameter space
caused by the multivariate (OLCM) perturbation kernel.
Furthermore, note that the distributions of the variances
resulting from each of the algorithms are skewed in a
similar manner with the outliers located at the same
direction (for both GP variants) from the median. Thus
these outliers represent greater variance of posterior dis-
tribution of the parameters. However, in more than 90%
out of the 50 runs the moments for both the parameters
lie within the inter-quantile range.

In case of the Hes1 model it is apparent from Fig. 2.
that the distributions are less variable across multiple
runs and variants of the algorithms. Moreover, in this
case we notice that the distribution of the variances have
very few outliers indicating greater accordance among
the posteriors learnt after each run of the algorithms.
However, it should be noted that an adaptive toler-
ance schedule results in different (marginally) tolerance
values for each new run of the ABC-SMC. Thus some
amount of variabilty in the moments corresponding to
different runs is attributed to the differing tolerances.
Fig. 3. and Fig. 4. show the learnt state trajectories of
the Lotka Volterra and Hes1 model compared against
the true state trajectories for each of the datasets. The
true trajectories correspond to the true parameters and
the reconstructed trajectories are generated by solving
the Lotka Volterra (25) and Hes1 (26) model equations.
While solving (numerically integrating) these differential
equations the parameters are taken as the median of
the parameters learnt by the GP-ABC-SMC algorithm
considering all the 50 runs. The median value is consid-
ered here to reflect the effect of variability (in parameter
learning by the GP-ABC-SMC) in reconstructing the
dynamics of the considered models.

6.4 Signal transduction cascade

We have, so far, used the benchmarking examples to
compare our proposed GP-based ABC-SMC approach to
others of that ilk that exist in the literature. In this exam-
ple we will compare the parameter estimation results for
the proposed GP based ABC-SMC with other (methods
not falling under ABC) recent GP based approximate in-
ference methods for parameter estimation in ODEs. For
this purpose we have chosen the signal transduction cas-
cade model [4]. Using this model, a comparison between
the competing GP based approaches were reported in [3].
Thus evaluating the proposed GP based ABC-SMC algo-
rithm on this model (with identical settings to those in
[3]) will enable us to draw comparisons with these other
methods. This model is described by a 5-dimensional
coupled ODEs given by
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Fig. 1. The boxplots represent the distributions of the
mean and variances (across 50 runs) of the final pop-
ulation representing the marginal approximate posterior
parameter distributions learnt by the GP-ABC-SMC and
the GP-ABC-OLCM from the three artificial datasets of
Lotka Volterra model.

d[S]

dt
= −k1[S]− k2[S][R] + k3[RS]

d[Sd]

dt
= k1[S]

d[R]

dt
= −k2[S][R] + k3[RS] +

V [Rpp]

Km + [Rpp]

d[RS]

dt
= k2[S][R]− k3[RS]− k4[RS]

d[Rpp]

dt
= k4[RS]−

V [Rpp]

Km + [Rpp]

,

(27)

where θ = (k1, k2, k3, k4, V, km) are the parameters
of this model and X(t) = ([S], [Sd], [R], [RS], [Rpp])
are the concentrations of the state variables. Following
[3] we generated data from the model between the
time interval (0 ≤ t ≤ 100) with parameters θ =
(0.07, 0.6, 0.05, 0.3, 0.017, 0.3) and initial values of the
state variable [S] = 1, [Sd] = 0, [R] = 1, [RS] = 0,
[Rpp] = 0. We then sampled the data at time tL =
{0, 1, 2, 4, 5, 7, 10, 15, 20, 30, 40, 50, 60, 80, 100} and added
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Fig. 2. Distributions of the mean and variances learnt by
the GP-ABC-SMC and the GP-ABC-OLCM from the three
artificial datasets of Hes1 model.

random noise with standard deviation σ[S], σ[Sd], σ[R],
σ[RS], σ[Rpp] set to 0.1 for generating the synthetic data.
For inferring parameters in this example we apply the
GP-ABC-OLCM algorithm from our study with multiple
runs, where we found this algorithm to provide a stable
and fast inference mechanism. The non-stationarity in
the time evolution of the state variables is captured by
the MLP covariance function given by

k(t, t′) = σ2
kern×

2

π
asin

(
σ2
wt
⊤t′ + σ2

b√
σ2
wt
⊤t+ σ2

b + 1
√
σ2
wt
′⊤t′ + σ2

b + 1

)
,

(28)
where the kernel variance σ2

kern, the neural network
weight variance σ2

w, and the bias variance σ2
b are the hy-

perparameters of the covariance function. The derivative
of this kernel with respect to the input time t is given
by

∂k(t, t′)

∂t
=

σ2
kern√
1− Z2

∂Z

∂t
, (29)

where

Z =
σ2
wt
⊤t′ + σ2

b

Znorm

(30)

with Znorm =
√
σ2
wt
⊤t+ σ2

b + 1
√
σ2
wt
′⊤t′ + σ2

b + 1. All
the other algorithmic settings were kept the same. The
prior distributions are chosen as k1 ∼ U(0.05, 0.09),
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(a) Trajectories of x(t).
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(b) Trajectories of y(t).

Fig. 3. Reconstructed and true state trajectories of the
Lotka Volterra model. The results corresponding to the
three datasets (1, 2, 3) are shown using blue, red and
magenta colours respectively. Reconstructed trajectories
are represented as curves and observations as stars. The
ground truth is the black (dashed and circled) curve.

k2 ∼ U(0.4, 0.8), k3 ∼ U(0.03, 0.07), k4 ∼ U(0.1, 0.5),
V ∼ U(0.015, 0.0195) and km ∼ U(0.1, 0.5). In this
example SMC is set to 3.

The resulting parameter estimates are furnished in
Table 4 along with the parameter estimates obtained
from other GP based algorithms run on the same model.
These algorithms are the GP-ODE method proposed in
[3], the adaptive gradient matching (AGM) proposed in
[2] and the gradient matching (GM) proposed in [1]. The
posterior distributions of the parameters as learnt by the
GP-ABC-OLCM is shown in Fig. 6. We have compared
the true state trajectories with the reconstructed trajecto-
ries in Fig. 5. We generated the reconstructed trajectories
by solving (27) using the mean of the final population
of GP-ABC-OLCM, representing the marginal posterior
densities of the parameters. The estimated values of the
standard deviations are σ[S] = 0.0964, σ[Sd] = 0.0818,
σ[R] = 0.0707, σ[RS] = 0.0591 and σ[Rpp] = 0.0754. We
avoided the comparison of run-time or acceptance rates
as the GP-ABC-OLCM and other GP based algorithms
depend on completely different approximate inference
scheme. However, GP-ABC-OLCM is significantly faster
than the other approaches. The GP-ABC-OLCM finishes



11

TABLE 4
Estimated parameters of the signal transduction cascade by all the GP based approaches including the

GP-ABC-OLCM. The estimates for GP-ODE, AGM and GM are taken from [3].

Parameters True value GP-ABC-OLCM GP-ODE AGM GM

k1 0.070 0.0708 ± 0.0086 0.0747± 0.0130 0.0771± 0.0130 0.0762± 0.0130
k2 0.6 0.5806 ± 0.0706 0.6230± 0.1246 0.5460± 0.1259 0.5632± 0.1256
k3 0.05 0.0480 ± 0.0074 0.0530± 0.0135 0.0593± 0.0111 0.0594± 0.0115
k4 0.3 0.3439 ± 0.0659 0.2960± 0.0281 0.3750± 0.0999 0.3754± 0.1051
V 0.017 0.0170 ± 0.0009 0.0177± 0.0014 0.0172± 0.0015 0.0173± 0.0014
km 0.3 0.3110 ± 0.0774 0.4220± 0.0690 0.4090± 0.0911 0.4186± 0.0953
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(b) Trajectories of p(t).

Fig. 4. Reconstructed and true state trajectories of the
Hes1 model.

the estimation in around 20 seconds while the other
methods were run for 30 minutes to obtain a properly
mixed Markov chain. The ratio of the last two param-
eters V/km [2] is a crucial quantity that determines
the reconstruction accuracy. GP-ABC-OLCM is able to
infer this quantity with the best (based on the estimated
posterior means of V and km) accuracy among all the
GP based algorithms.

7 CONCLUSION

In this paper we have proposed a method that signif-
icantly speeds up the task of parameter inference in
comparison with state of the art methods that use ABC
and SMC based approaches when applied to several
benchmark dynamical system models that are described
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Fig. 6. Posterior distributions of the parameters of the
signal transduction cascade model learnt by the proposed
GP-ABC-OLCM algorithm.

by ordinary and delay differential equations . We achieve
this speed-up by circumventing the need to numeri-
cally integrate the differential equations, a task that is
repeatedly required in other ABC methods to generate
samples from candidate models for comparison with the
observed data. The key idea behind our method lies in
building on [1], [12] and [3] to work directly with the
vector field of the dynamical system, which we model
using Gaussian process regression, and thus create a
distance function in derivative space for use in the ABC-
SMC algorithm as proposed in [5]. Thus we proposed a
modified ABC-SMC algorithm for parameter estimation
in ODEs or DDEs.

We benchmarked the benefits of this approach by eval-
uating our proposed approach on toy problems where
we observed a significant speed-up of the parameter
estimation process. We also compared our proposed
approach with other GP based methods proposed in
recent literature and found that our proposed GP-ABC-
SMC (with the local multivariate perturbation kernel)
performs significantly faster to obtain similar estimates.
Furthermore, improvements of ABC-SMC through per-
turbation kernels as proposed in [6] and has been in-
tegrated with our approach to obtain enhanced perfor-
mance. Thus, our fast approximate inference process can
accommodate the useful features of ABC-SMC (as shown
in [5]) such as model selection and sensitivity analysis.
Our proposed approach is only limited by the ability
of the Gaussian process regression in smoothing the
observed time series data while retaining the essential
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Fig. 5. Results of GP-ABC-OLCM for the signal transduction cascade (([S], [Sd], [R], [RS], [Rpp] in (a),(b),(c),(d) and
(e) respectively). In all the plots observations are the black stars, the true state trajectory is the red (dashed) curve
and the blue curve shows the reconstructed trajectory. We have also plotted the GP mean function as the magenta
curve and GP variance as the shaded area. The reconstructed trajectory is generated by numerically integrating (27)
with the parameters set to the mean of the posterior distribution estimated by the GP-ABC-OLCM algorithm.

characteristics that are meant to be captured by the
dynamical system model. Thus in those cases where
smoothing the experimental data by GP regression in-
troduces artefacts, the GP-ABC-SMC algorithm would
produce poor parameter estimates. As future work we
wish to extend the GP-ABC-SMC algorithm for stochas-
tic differential equation by relating the GP regression
technique with drift estimation technique in [24]. We
will also include models with hidden variables, as the
smoothing procedure on observed data can no longer
provide complete information.
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