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Abstract
We present the parallel and interacting stochastic approximation annealing (PISAA) algorithm, a

stochastic simulation procedure for global optimisation, that extends and improves the stochastic ap-
proximation annealing (SAA) by using population Monte Carlo ideas. The standard SAA algorithm
guarantees convergence to the global minimum when a square-root cooling schedule is used; however the
efficiency of its performance depends crucially on its self-adjusting mechanism. Because its mechanism is
based on information obtained from only a single chain, SAA may present slow convergence in complex
optimisation problems. The proposed algorithm involves simulating a population of SAA chains that in-
teract each other in a manner that ensures significant improvement of the self-adjusting mechanism and
better exploration of the sampling space. Central to the proposed algorithm are the ideas of (i) recycling
information from the whole population of Markov chains to design a more accurate/stable self-adjusting
mechanism and (ii) incorporating more advanced proposals, such as crossover operations, for the explora-
tion of the sampling space. PISAA presents a significantly improved performance in terms of convergence.
PISAA can be implemented in parallel computing environments if available. We demonstrate the good
performance of the proposed algorithm on challenging applications including Bayesian network learning
and protein folding. Our numerical comparisons suggest that PISAA outperforms the simulated anneal-
ing, stochastic approximation annealing, and annealing evolutionary stochastic approximation Monte
Carlo especially in high dimensional or rugged scenarios.

Keywords: Stochastic approximation Monte Carlo, simulated annealing, population Markov chain Monte
Carlo, local trap, stochastic optimisation
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1 Introduction

There is a continuous need for development of efficient algorithms to tackle mathematical optimisation

problems often met in several fields of science. For instance, in computational chemistry, predicting the

native conformation of a protein can be performed by minimising its potential energy. In classical or Bayesian

statistics, inference can be performed by maximising the likelihood function (a statistical model assumed

to have generated an observed data set) (Casella and Berger, 1990) or the associated posterior distribution

density (a distribution that reflects the researcher’s belief in the unknown quantities of interest) (Robert,

2007), correspondingly.

We assume that there is interest in minimising a function Upxq, called cost function, defined on a space

X Ă Rd; i.e. we seek px˚, Upx˚qq such that x˚ “ arg min@xPX Upxq. Hereafter, we will discuss in terms

of minimisation because maximisation of Upxq can be performed equivalently by minimising the function

Ũpxq :“ ´Upxq. Several stochastic optimisation algorithms have been proposed in the literature, e.g. simu-

lated annealing (SA) (Kirkpatrick et al., 1983; Metropolis et al., 1953), genetic algorithm (Goldberg, 1989;

Holland, 1975), annealing stochastic approximation Monte Carlo (ASAMC ) (Liang, 2007), annealing evolu-

tionary stochastic approximation Monte Carlo (AESAMC) (Liang, 2011), stochastic approximation annealing

(SAA) (Liang et al., 2014). Albeit their success, they encounter various difficulties in converging to the global

minimum, an issue that becomes more severe when Up¨q is highly rugged or high dimensional.

Simulated annealing (SA) (Kirkpatrick et al., 1983; Černỳ, 1985) aims at finding the global minimum

based on the fact that minimisation of Upxq can be addressed in statistical terms by simulating the Boltzmann

distribution fτ˚pxq, with density fτ˚pxq9 expp´ 1
τ˚
Upxqq, at a small value of temperature parameter τ˚ ą 0

close to 0. SA considers a temperature ladder tτtu that is a monotonically decreasing sequence of temperat-

ures with τ1 reasonably large. A standard version of SA involves simulating consecutively from a sequence

of Boltzmann distributions tfτtpxq; t “ 0, 1, ...u, parametrised by the temperature ladder, via Metropolis-

Hastings MCMC updates (Hastings, 1970; Metropolis et al., 1953). A standard version of SA is presented in

Algorithm 1 as a pseudo-code. At early iterations, the algorithm aims at escaping from the attraction of local

minima by flattening fτtpxq through τt. During the subsequent iterations, τt decreases progressively towards

0, and hence the values simulated from fτtpxq concentrate in a narrower and narrower neighbourhood of

the global mode of fτtpxq (or equiv. the global minimum of Upxq). In theory, convergence of SA to the

global minimum can be ensured with probability 1 if a logarithmic cooling schedule Op1{ logptqq is adopted

(Geman and Geman, 1984; Haario and Saksman, 1991), however this rate is too slow to be implemented in

practice because it requires an extremely long CPU time. In practice, linear or geometric cooling schedules

are used, however they do not guarantee convergence to the global minimum, and hence the algorithm tends

to become trapped to local minima in complex scenarios.

The stochastic approximation annealing (SAA) (Liang et al., 2014) is a stochastic optimisation algorithm
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Algorithm 1 Simulated annealing algorithm used to detect the minimum of a cost function Upxq, x P X
Requires : Seed x0 P X , temperature ladder tτtu, density fτtpxq9 expp´ 1

τt
Upxqq.

Initialise : At t “ 0, set x0 P X , and τ0 ą 0.

Iterate : For t “ 1, ..., T ,

For nt iterations repeat simulating fτtp¨q by using a Metropolis-Hastings algorithm:

1. Propose x1 „ Qpd ¨ |xq, where Qpd ¨ |¨q is a proposal distribution that can be sampled directly.

2. Accept x1 as xt with prob. aMH “ minp1,
fτt px

1
q

fτt pxt´1q

Qpxt´1|x
1
q

Qpx1|xt´1q
q.

that builds upon the SA and SAMC1 ideas. It involves simulating a time-inhomogeneous Markov chain via

MCMC transitions targeting a sequence of modified Boltzmann distributions whose densities adaptively

adjust via a stochastic approximation mechanism (inherited by SAMC). Each distribution of the sequence is

biased according to a partitioning scheme (inherited by SAMC) and parametrised by a temperature ladder

(inherited by SA). SAA aims at gradually forcing sampling toward the local minima of each subregion of the

partition through lowering the temperature with iterations, while it ensures that each subregion is visited

by the chain according to a predetermined frequency. This strategy shrinks the sampling space in a soft

manner and enables SAA to escape from local traps. The global minimum is guaranteed to be reached as

the temperature tends to 0 if the temperature ladder uses a square root cooling schedule Op1{
?
tq (Liang

et al., 2014). We emphasise that, compared to SA, SAA ensures convergence to global minimum at a much

faster cooling schedule (square-root). In spite of these appealing features, the performance of SAA crucially

depends on the efficiency of the self-adjusting mechanism and the exploration of the sampling space involved.

In scenarios that the cost function is rugged or high-dimensional, the exploration of the sampling space can

be slow because it is performed by a single Markov chain. Moreover, the information obtained to support

the self-adjusting process is limited which makes the adjustment of the target density quite unstable and too

slow to convergence. When the target distribution is poorly adjusted, the convergence of the whole algorithm

to the global minimum decays severely, and the chain may be trapped in local minima. This problematic

behaviour can downgrade severely the overall performance of SAA, or even cause local trapping, in complex

optimisation problems.
1SAMC (Liang et al., 2007, 2010; Wu and Liang, 2011; Bornn et al., 2013; Song et al., 2014) is an adaptive MCMC sampler

that aims at addressing the local mode trapping problem that standard MCMC samplers encounter. It is a generalisation of

the Wang-Landau algorithm (Wang and Landau, 2001) but equipped with a stochastic approximation scheme (Robbins and

Monro, 1951) that adjusts the target distribution. It involves generating a time-inhomogeneous Markov chain that targets a

biased distribution, adjusted as the iterations evolve, instead of the distribution of interest itself. The biased distribution is

parametrised by a partition scheme and designed such that the generated chain equally visits each subregion of the partition

with a predetermined frequency as the iterations evolve. For an overview see (Liang, 2014).
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In this article, we develop the parallel and interacting stochastic approximation annealing (PISAA), a

general purpose stochastic optimisation algorithm, that extends SAA (Liang et al., 2014) by using population

Monte Carlo ideas (Song et al., 2014; Bornn et al., 2013; Liang and Wong, 2000, 2001; Wu and Liang, 2011).

Essentially, PISAA works on a population of SAA chains that interact each other in a manner that eliminates

the aforementioned problematic behaviour of SAA, and accelerates the overall convergence. This allows the

proposed algorithm to demonstrate great performance, and address challenging optimisation problems with

high-dimensional and very rugged cost functions. PISAA is enabled to use advanced MCMC transitions that

incorporate crossover operations. These operations allow the distributed information across chains of the

population to be used in guiding further simulations, and therefore lead to a more efficient exploration of the

sampling space. Furthermore, PISAA is equipped with a more accurate and stable self-adjusting mechanism

for the target density, that uses information gained from the whole population, and therefore accelerates the

overall convergence of the algorithm to the global minimum. The use of multiple chains allows PISAA to

initialise from various locations and search for the global minimum at different regions of the sampling space

simultaneously. PISAA can be implemented in parallel, if parallel computing environment is available, and

hence the computational overhead due to the generation of multiple chains can be reduced dramatically. It is

worth emphasising that PISAA is not just an implementation of the SAA running in parallel; its key feature

is the way the parallel chains interact in order to overcome the aforesaid problematic behaviour and improve

performance. Our numerical examples suggest that the performance of PISAA improves with the size of the

population. Also, in problems where the cost function is rugged or high-dimensional, PISAA significantly

outperforms other competitors, SA, ASAMC, and SAA, and their population analogues, VFSA, AESAMC,

as it was able to discover the global minimum much quicker.

The layout of the article is as follows. In Section 2, we give a brief review of SAA and discuss problems

concerning the efficiency of the algorithm; in Section 3, we present the proposed algorithm PISAA; in Section

4, we examine the performance of the proposed algorithm and compare it with those of other stochastic op-

timisation algorithms (such as SA, ASAMC, AESAMC, and SAA) against challenging optimisation problems;

and in Section 5, we conclude.

2 Stochastic approximation annealing: A review

Stochastic approximation annealing (SAA) algorithm (Liang et al., 2014) casts the optimisation problem

in a combined framework of SAMC and SA, in the sense that the variant distribution is self-adjusted and

parametrised by a sampling space partition and temperature ladder.

Let E “ tEj ; j “ 1, ...,mu be a partition of the sampling space X with subregions E1 “ px P X :

´8 ă Upxq ď u1q, ..., Ej “ px P X : uj´1 ă Upxq ď ujq, ..., Em “ px P X : um´1 ă Upxq ă 8q, and

grid tuj ; uj P R, j “ 1 : m ´ 1u, for m ą 1. SAA aims at drawing samples from each subregion with a

pre-specified frequency. Let π :“ pπj ; j “ 1, ...,mq, such that πj “ Prpx P Ejq, πj ą 0 and
řm
j“1 πj “ 1,

4



Parallel and Interacting Stochastic Approximation Annealing algorithms for global optimisation

Georgios Karagiannis, Bledar A. Konomi, Guang Lin, and Faming Liang

denote the vector of desired sampling frequencies of the m subregions tEju. We refer to tπju as the desired

probability. How to choose the partition scheme E for the sampling space or the desired probability tπju are

problem dependent. SAA seeks to draw samples from the modified Boltzmann distribution with density

fθ˚,τ˚px; Eq “
m
ÿ

j“1

πj
1

w
pjq
˚

expp´
1

τ˚
Upxqq1px P Ejq; (2.1)

9

m
ÿ

j“1

expp´
1

τ˚
Upxq ´ θ

pjq
˚ q1px P Ejq,

at a low temperature value τ˚, where w˚ :“ pw
pjq
˚ ; j “ 1 : mq, wpjq˚ “

ş

Ej
expp´ 1

τ˚
Upxqqdx ă 8 are called

bias weights, and θpjq˚ is such that exppθ
pjq
˚ q9w

pjq
˚ {πj , for j “ 1, ...,m.

The rational behind SAA is that, if tθ˚u were known, sampling from (2.1) could lead to a random walk

in the space of subregions (by regarding each subregion as a point) with each subregion being sampled with

frequency proportional to tπju. Ideally, this can ensure that the lowest energy subregion can be reached by

SAA in a long enough run and thus samples can be drawn from the neighbourhood of the global minimum

when τ˚ is close to 0.

Since twpjq˚ u are generally unknown, in order to simultaneously approximate these values and perform

sampling, SAA is equipped with an adaptive MCMC scheme that combines SAMC and SA algorithms. Let

tγt; t “ 1, ...u denote the gain factor, in terms of SAMC algorithm, that is a deterministic, positive, and

non-increasing sequence such as γt “ t0{t
β with β P p0.5, 1s. Let tτtu denote a temperature ladder, in terms

of SA algorithm, that is a deterministic, positive and non-increasing sequence such as τt “ t1{
?
t` τ˚ with

t1 ą 0, and τ˚ ą 0 very small. We consider a sequence θt :“ pθ
pjq
t , j “ 1 : mq, as a working estimator of

tθ˚u, where θt P Θ and Θ Ď Rm is a compact set, e.g. Θ “ r10´10, 1010sm. A truncation mechanism is also

considered in order to ensure that tθtu remains in compact set Θ. We define tMc; c “ 1, ...u as a positive,

increasing sequence of truncation bounds for tθtu, and tctu as the total number of truncations until iteration

t.

SAA algorithm proceeds as a recursion which consists of three steps, at iteration t: The sampling up-

date, where a sample xt is simulated from a Markov chain transition probabilities Pθt´1,τtpxt, d¨; Eq (e.g. a

Metropolis-Hastings kernel) with invariant distribution fθt´1,τtpd¨; Eq; the weight update, where the unknown

bias weights of the target density are approximated through a self-adjusting mechanism; and the truncation

step, where tθtu is ensured to be in a compact set of Θ. Given the notation above, SAA is presented as a

pseudo-code in Algorithm 2.

5
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Algorithm 2 Stochastic approximation annealing algorithm
Requires : Insert tτtu, tγtu, tEju, tπju, tMku, θ̃0

Initialise : At t “ 0, set x0 P X , θ̃0 P Θ, such that }θ̃0}2 ăM0, and c0 “ 0.

Iterate : For t “ 1, ..., n,

1. Sampling update:

Simulate xt from the Metropolis-Hastings transition probability Pθt´1,τtpxt´1, d¨; Eq that targets

fθt´1,τtpd¨; Eq

2. Weight update:

Compute θ1 “ θt´1 ` γtHτtpθt´1, xtq, where Hτtpθt, xtq “ rpt ´ πs, pt :“ pp
pjq
t , j “ 1 : mq, and

p
pjq
t “ 1pxt P Ejq for j “ 1, ...,m.

3. Truncation step:

Set θt “ θ1, and ct “ ct´1 if }θ1pjq}2 ďMct , or set θt “ θ̃0, and ct “ ct´1 ` 1 if otherwise.

Note that additive transformations of tθtu leave fθt´1,τtp¨; Eq invariant. Therefore, it is possible to apply a

θ-normilisation step at the end of the run, such that θ̃n Ð θn ` z, where
řm
j“1 exppθ

pjq
n ` zq “ Z, and Z

is a pre-specified constant, e.g. z “ p´ logp
řm
j“1 exppθ

pjq
n qq; j “ 1 : mq for Z “ 1. Appropriate conditions

under which SAA is a valid adaptive MCMC algorithm that converges to the global minimum are reported

in detail in (Conditions A1-A3 in Liang et al., 2014).

SAA presents a number of appealing features when employed to minimise complex systems with rugged

cost functions. SAA can work with an affordable square-root cooling schedule Op1{
?
tq for tτtu, which

guarantees the global minimum to be reached as the temperature tends to τ˚ « 0, limtÑ8 τt “ τ˚. It is able

to locate the minima of each subregion simultaneously (including the global minimum), after a long run,

if τ˚ is close to 0 (Corollary 3.1 in Liang et al., 2014). It is worth mentioning that the square-root rate

is much faster than the logarithmic rate that guarantees convergence in the SA algorithm. SAA gradually

forces sampling toward the local minima of each subregion of the partition through lowering the temperature

with iterations while it ensures that each subregion is visited by the chain according to the predetermined

frequency tπju; this reduces the risk of getting trapped into local minima.

The superiority of SAA is subject to its self-adjusting mechanism that operates based on the past samples

in order to estimate the unknown tθ˚}. This remarkable mechanism, which distinguishes SAA from SA,

proceeds as follows: Given that the current state of the Markov chain is at the subregion Ej and that a

proposal has been made to jump to subregion Ej1 , if the proposal is rejected during the sampling update, the

working value θpj
1
q

t will be adjusted to increase during the weight update and make it easier to be accepted in

the next iteration; if otherwise, θpj
1
q

t will be adjusted to decrease during the weight update step and make it

6



Parallel and Interacting Stochastic Approximation Annealing algorithms for global optimisation

Georgios Karagiannis, Bledar A. Konomi, Guang Lin, and Faming Liang

harder to be accepted in the next iteration. Essentially, it penalises the over-visited subregions and rewards

the under-visited subregions, and hence makes easier for the system to escape from local traps. This striking

mechanism makes the algorithm appealing to address optimisation problems with rugged cost functions.

Although SAA can be quite effective, its success depends crucially on whether the unknown bias weights

tθtu can be estimated accurately enough through the adjustment process, and whether the Markov chain,

generated through the sampling step, can explore the sampling space adequately. In complex problems where

the ruggedness or the dimensionality of the cost function are high, the convergence of tθtu is usually slow;

an issue that significantly downgrades the overall performance of SAA. The reason is that, at each iteration,

the self-adjusting process relies on limited information obtained based on a single draw from the sampling

step. Essentially, the function Hτtpθt´1, xtq is computed by only one single observation: at iteration t, pt

in Algorithm 2 is an m-dimensional vector of 0 & 1 (occurrence & absence) indicating to which subregion

the sample xt belongs. Even after a long run, this can cause a large variation on the estimate of tθtu and

slow down severely the convergence of tθtu, especially if the number of subregions m is large. Consequently,

the adjustment of the target density becomes quite unstable and the self-adjusting mechanism becomes less

effective. That can slow down the convergence of SAA, or even cause the chain to be trapped in local minima.

This problematic behaviour can downgrade severely the ability of SAA to discover the global minumun in

challenging optimisation problems.

Because SAA presents appealing properties, it is of great importance to design an improved algorithm

that inherits the aforementioned desired features and eliminates the aforementioned problematic behaviour

of SAA.

3 Parallel and interacting stochastic approximation annealing

The parallel and interacting stochastic approximation annealing (PISAA) builds on the main principles of

SAA (Liang et al., 2014) and the ideas of population MC (Song et al., 2014; Bornn et al., 2013). It works on a

population of parallel SAA chains that interact each other appropriately in order to facilitate the the search

for the global minimum by improving the self-adjusting mechanism and the exploration of the sampling

space. In what follows, we use the notation introduced in Section 2.

3.1 The procedure

PISAA works with a population of samples at each iteration. At iteration t, let xp1:κq
t :“ px

piq
t ; i “ 1 : κq

denote the population of samples (abbr. population) which is defined on the population sample space

X κ :“ X ˆ . . . ˆ X . We refer to xpiqt as population individual and assume that xpiqt P X , for i “ 1, ..., κ,

where X P Rd is called marginal sample space. The total number of population individuals κ ě 1 is called

population size.

7



Parallel and Interacting Stochastic Approximation Annealing algorithms for global optimisation

Georgios Karagiannis, Bledar A. Konomi, Guang Lin, and Faming Liang

We assume that the whole population shares the same common partition scheme E “ tEj ; j “ 1 : mu

with subregions tEju defined according to a grid tuj ; uj P R, j “ 1 : m ´ 1u, as in Section 2. For

each individual, PISAA aims at drawing samples from each subregion tEju with a desired probability π :“

pπj ; j “ 1, ...,mq defined as in Section 2. Thus, under these specifications, we define a population modified

Boltzmann distribution with density

f
pκq
θ˚,τ˚

pxp1:κq; Eq “
κ
ź

i“1

fθ˚,τ˚px
piq; Eq; (3.1)

“

κ
ź

i“1

m
ÿ

j“1

πj
1

w
pjq
˚

expp´
1

τ˚
Upxpiqqq1pxpiq P Ejq;

9

κ
ź

i“1

m
ÿ

j“1

expp´
1

τ˚
Upxpiqq ´ θ

pjq
˚ q1px

piq P Ejq,

where twpjq˚ u, and tθ
pjq
˚ u are defined as in Section 2. Note that, the individuals xpiq of the population xp1:κq

are independent and identically distributed (i.i.d.) such that each individual xpiq has marginal distribution

fθ˚,τ˚px
piq; Eq “

ş

Xn´1 f
pκq
θ˚,τ˚

pxp1:κq; Eqdpxp1:i´1q, xpi`1:κqq –the SAA target distribution. Moreover, that the

total number of the unknown weights tθpjq˚ u is invariant to the population size. The reason why we consider

the individuals to be i.i.d. (share common E , tπju, tθpjq˚ u) will become more clear later in the section.

PISAA aims at simulating from the distribution f pκqθ˚,τ˚
pd¨; Eq at a low temperature τ˚ ą 0. The reason

is similar to that of SAA: if tθpjq˚ u were known, sampling from (3.1) could lead to a random walk in the space

of subregions with each subregion being sampled with frequency proportional to tπju, for each individual.

Ideally, this can ensure that the lowest energy subregion can be reached, and thus samples can be drawn

from the neighbourhood of the global minimum when τ˚ is close to 0. Because tθpjq˚ u are unknown, PISAA

employs a population SAMC (Song et al., 2014; Bornn et al., 2013) embedded with the SA in order to

simultaneously approximate their values and sample the population. Therefore, we consider a sequence of

population modified Boltzmann distributions tf pκqθt´1,τt
pd¨; Equ with density

f
pκq
θt´1,τt

pd¨; Eq9
κ
ź

i“1

m
ÿ

j“1

expp´
1

τt
Upxpiqq ´ θ

pjq
t q1px

piq P Ejq, (3.2)

where the temperature sequence tτtu, gain factor tγtu, working estimates tθtu are defined as in Section 2.

PISAA is a recursive procedure that iterates three steps: the sampling update, the weight update, and the

truncation step. Although the structure of PISAA is similar to that of SAA, the sapling update and weight

update are different and in fact significantly more efficient.

The sampling update, at iteration t, involves simulating a population of κ chains from a Markov transition

probability P pκqθt´1,τt
p¨, d¨; Eq that admits f pκqθt´1,τt

pd¨; Eq as the invariant distribution. The Markov transition

probabilities tP pκqθt´1,τt
p¨, d¨; Equ can be designed as a mixture of different MCMC kernels. Because it uses

a population of chains, PISAA allows the use of advanced updates for the design of these MCMC kernels

which facilitate the exploration of the sampling space and the search for the global minimum. Two types of

such operation updates are the mutation, and the crossover operations.

8
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• Mutation operations update the population individual-by-individual through Metropolis-Hastings within

Gibbs algorithm (Müller, 1991; Robert and Casella, 2004) by viewing the population as a long vector.

Because the population individuals in (3.2) are independent and identically distributed, in practice the

whole population can be updated simultaneously (in parallel) by using the same operation with the

same bias weights for each individual. This eliminates the computational overhead due to the genera-

tion of multiple chains. Parallel chains allow breaking the sampling into parallel simulations, possibly

initialised from different locations, which allows searching for global minimum at different subregions

of the sampling space simultaneously. Moreover, it avoids the need to move a single chain across a

potentially large and high modal sampling space. Therefore, it facilitates the search for the global

minimum and the exploration of both the sample space and partition space, while it discourages local

trapping. They include the random walk Metropolis (Metropolis et al., 1953), hit-and-run (Smith,

1984; Chen and Schmeiser, 1996), k-point (Liang, 2011; Liang and Wong, 2001, 2000), Gibbs (Müller,

1991; Geman and Geman, 1984) updates etc.

• Crossover operations, originated in genetic algorithms (Holland, 1975), update the population through

a Metropolis-Hastings algorithm that operates on the population space and constructs the proposals

by using information from different population chains. Essentially, the distributed information across

the population is used to guide further simulations. This allows information among different chains

of the population to be exchanged in order to improve mixing. As a result, crossover operations can

facilitate the exploration of the sample space. Crossover operations include the k-point (Liang, 2011;

Liang and Wong, 2001, 2000), snooker (Liang, 2011; Liang and Wong, 2001, 2000; Gilks et al., 1994),

linear (Liang, 2011; Liang and Wong, 2001, 2000; Gilks et al., 1994) crossover operations etc.

The weight update aims at estimating tθpjq˚ u by using a mean field approximation at each iteration

with the step size controlled by the gain factor. It is performed by using all the population of chains: At

iteration t, the update of tθpjqu is performed as θ1 “ θt´1 ` γtH
pκq
τt pθt´1, x

p1:κq
t q, where Hpκqτt pθt´1, x

p1:κq
t q “

1
κ

řκ
i“1Hτtpθt´1, x

piq
t q “ rp

pκq
t ´ πs, ppκqt :“ pp

pκ,jq
t , j “ 1 : mq, and p

pκ,jq
t “ 1

κ

řκ
i“1 1px

piq
t P Ejq, for

j “ 1, ...,m. Intuitively, because all the population chains share the same partition E and bias weights

tθ˚u, and the population individuals are independent and identically distributed, the indicator functions of

pt (used in Algorithm 2) can be replaced here by the proportion p
pκq
t of the population in the associated

subregions at each iteration. Namely, the indicator functions of pt (in Algorithm 2) is replaced by the law of

the MCMC chain associated with the current parameter. A theoretical analysis in Appendix A shows that

the multiple-chain weight update (in Algorithm 3) is asymptotically more efficient that the single-chain one

(in Algorithm 2).

The truncation step applies a truncation on θt to ensure that θt lies in a compact set Θ as in SAA; hence

we consider quantities θ̃0, tMcu, and tctu as in Section 2.

The proposed algorithm works as follows: At iteration t, we assume that the Markov chain is at

9
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Algorithm 3 Parallel and interacting stochastic approximation annealing algorithm
Requires : Insert tτtu, tγtu, tEju, tπju, tMcu, κ, θ̃0

Initialise : At t “ 0, set xp1:κq
0 P X κ, θ̃0 P Θ, such that }θ̃0}2 ăM0, and c0 “ 0.

Iterate : For t “ 1, ..., n,

1. Sampling update:

Simulate xp1:κq
t from the Metropolis-Hastings transition probability P pκqθt´1,τt

pxt´1,d¨; Eq that tar-

gets f pκqθt´1,τt
pd¨; Eq

2. Weight update:

Compute θ1 “ θt´1`γtH
pκq
τt pθt´1, x

p1:κq
t q, where Hpκqτt pθt´1, x

p1:κq
t q “ rp

pκq
t ´πs, ppκqt :“ pp

pκ,jq
t , j “

1 : mq, and ppκ,jqt “ 1
κ

řκ
i“1 1px

piq
t P Ejq, for j “ 1, ...,m.

3. Truncation step:

Set θt “ θ1, and ct “ ct´1 if }θ1pjq}2 ďMct , or set θt “ θ̃0, and ct “ ct´1 ` 1 if otherwise.

state xp1:κq
t´1 with a working estimate θt´1. Firstly, simulate a population sample xp1:κq

t from the Markov

transition probability P
pκq
θt´1,τt

px
p1:κq
t´1 , d¨; Eq . Secondly, update the working estimate θt according to θ1 “

θt´1 ` γtH
pκq
τt pθt´1, x

p1:κq
t q, where Hpκqτt pθt´1, x

p1:κq
t q “ rp

pκq
t ´ πs, ppκqt :“ pp

pκ,jq
t , j “ 1 : mq, and p

pκ,jq
t “

1
κ

řκ
i“1 1px

piq
t P Ejq, for j “ 1, ...,m, by using the whole population txp1:κq

t u. Thirdly, if }θ1pjq}2 ď Mct ,

truncate such that θt “ θ̃0, and ct “ ct´1 ` 1. At the end of the run, t “ n, it is possible to apply a

θ-normalisation step (see Section 2) –an alternative θ-normalisation step can be θ̃pjqn Ð θ
pjq
n ` z, where

z “ ´ logp
řm
j“1 πj exppθ

pjq
n qq. PISAA is summarised as a pseudo-code in Algorithm 3. A more rigorous ana-

lysis about the convergence and the stability of PISAA is given in Appendix A and summarised in Section

3.2.

3.2 Theoretical analysis: a synopsis

Regarding the convergence of the proposed algorithm, PISAA inherits a number of desirable theoretical

results from SAA (Liang et al., 2014) and pop-SAMC (Song et al., 2014). A brief theoretical analysis related

to the convergence of PISAA is included in Appendix A, where we show that theoretical results of Song

et al. 2014 for pop-SAMC hold in the PISAA framework as well, and we present theoretical results in Liang

et al. (2014) for SAA that hold for PISAA as well. The Theorems A.1, A.2, A.4, and A.5, as well as related

conditions on PISAA, are included in the Appendix A. We recall, the temperature ladder: τt “ t1{
?
t` τ˚,

t1 ą 0, the gain function: γt “ t0{t
β , t0 ą 0, β P p0.5, 1q, and consider that Xp1:κq

t :“ pX
piq
t ; i “ 1, ..., κq

denotes a draw from PISAA at the t-th iteration.

10
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PISAA can achieve for any individual the following convergence result: For any ε ą 0, as t Ñ 8, and

τ˚ Ñ 0

PpUpXpiqt q ď u˚j ` ε|JpX
piq
t q “ jq Ñ 1, a.s.,

where Jpxq “ j if x P Ej , and u˚j “ minxPEj Upxq, for j “ 1, ...,m. Namely, as the number of iterations

t becomes large, PISAA is able to locate the minima of each subregion in a single run if τ˚ is small. This

comes as a consequence of Liang et al. (2014, Corollary 3.1) and the Theorems A.1, and A.2 in Appendix A.

Theorem A.1 in Appendix A (a restatement of Theorems 3.1 and 3.2 of Liang et al. (2014)) indicates that

the weights tθtu remain in a compact subset of Θ and hence θ˚ “ pθ
pjq
˚ ; j “ 1, ...,mq can be expressed in the

form θ
pjq
˚ “ c ` logp

ş

Ej
expp´Upxpiqq{τ˚qdxpiqq ´ logpπjq, for j “ 1, ...m, and any i “ 1, ..., κ, where c P R

is an arbitrary constant. Namely, as t Ñ 8, f pκqθt,τt`1
pxp1:κq|Eq Ñ f

pκq
θ˚,τ˚

pxp1:κq|Eq, a.s.; since f pκqθ,τ px
p1:κq|Eq

is invariant to transformations θ Ð θ ` c. Furthermore, Theorem A.2 in Appendix A (a restatement of

Theorem 3.3 of Liang et al. (2014)) implies that Xp1:κq
t`1 „ f

pκq
θt,τt`1

pxp1:κq|Eq, in a SLLN fashion; where Xp1:κq
t`1

a draw from PISAA at the pt` 1q-th iteration.

It is not trivial to show that the results of (Song et al., 2014) for pop-SAMC hold in the PISAA framework

as well. The reason is that, unlike in pop-SAMC, in the PISAA framework the target distribution is

parametrised by an additional control parameter the temperature ladder tτtu, and hence the density of the

target distribution changes at each iteration. I.e. fθt,τtp¨|Eq ‰ fθt1 ,τt1 p¨|Eq if t ‰ t1 in the PISAA framework.

In Appendix A, Lemma A.3 considers the decomposition of the noise in the PISAA framework, and allows

us to be able to extent the main theoretical results of (Song et al., 2014) to the PISAA framework as stated

in Theorems A.4 and A.5 in the Appendix A. Theorem A.4 implies that the weights tθtu generated by

PISAA are asymptotically distributed according to the Gaussian distribution, and constitutes an extension

of (Theorem 2, Song et al., 2014) in the PISAA framework. Theorem A.5 considers the relative efficiency

of the bias weight estimate tθpt u generated by the self-adjusting mechanism of the multiple-chain PISAA

(with population size κ) at iteration t, against estimate tθsκtu generated by the self-adjusting mechanism of

the single-chain SAA at iteration κ ¨ t. Theorem A.5 implies that pθpt ´ θ˚q{
?
γt and pθsκt ´ θ˚q{

?
κγt follow

the same distribution asymptotically with convergence rate ratio κβ´1, where β P p0.5, 1s, and hence is the

extension of (Theorem 4, Song et al., 2014) in the PISAA framework.

In other words, when β ă 1, the multiple-chain PISAA estimator of the bias weights is asymptotically

more efficient than that of the single-chain SAA; while when β “ 1, the two estimators present similar

efficiency. In practice, PISAA estimator is expected to outperform the single-chain SAA estimator even

when β “ 1 because of the so called population effect; the use of multiple-chains to explore the sampling

space and approximate the unknown tθtu. Theorem A.5 implies rigorously that the adjustment process in

PISAA is more stable than that in SAA.
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3.3 Practical implementation and remarks

Liang et al. (2014) discussed several practical issues on the implementation of SAA (including the algorithmic

settings tπju, tγtu, tτtu E , tMcu, n ) that are still applicable to PISAA. Here, we adopt these algorithmic

settings, i.e.: πj9 expp´λpj−1qq with ζ ě 0; γt “ p npγq

maxpt,npγqq
qβ with β P p0.5, 1s; τt “ τh

b

npτq

maxpt,npτqq
` τ˚

where τ˚ ą 0, τh ą 0, and npτq ą 0; and Mc “ 1010Mc´1 with M0 “ 10100. We briefly discuss additional

practical details of PISAA:

• The population seed x
p1:κq
0 controls the initialisation of the population. It is preferable, but not ne-

cessary, for the population of chains to initiate from various locations, possibly around different local

minima. This could benefit the exploration of the space and the search for the global minimum. This

can be achieved, for example, by sampling from a flat distribution e.g. fτ0pxq9 expp´Upxq{τ0q, with

τ0 ą 0 large enough, via a random walk Metropolis algorithm.

• The MCMC operations must result in reasonable expected acceptance probabilities because they can

affect the sampling update. It is possible to calibrate the scale parameter of the proposals adaptively

(on-the-fly) by using an adaptation scheme (Andrieu and Thoms, 2008), during the first few iterations.

• The rates of the operations in the MCMC sweep at each iteration are problem dependent. One may

favour specific operations by increasing the corresponding rates if it is believed that they are more

effective or cheaper to run for the particular application.

PISAA can be modified to deal with empty subregions similar to SAA. Let St denote the set of non-empty

subregions until iteration t, θStt denote the sub-vector of θt corresponding to elements of St, and ΘSt denote

the sub-space of Θ corresponding to elements of St. Yet, let yp1:nq denote the proposed population value

generated during the sampling update, and Jpxq “ j if x P Ej . Then Algorithm 3 can be modified as follows:

• (Sampling update): Simulate xp1:κq
t „ P

pκq
θt´1,τt

px
p1:κq
t´1 , d¨; Eq (as in Algorithm 3), and set St Ð St´1 Y

tJpypiqq; i “ 1, ..., κu.

• (Weight update): Compute θ1pjq “ θ
pjq
t´1 ` γtH

pκq
τt pθ

pjq
t´1, x

p1:κq
t q, for j P Sptq.

• (Truncation step): Set θt “ θ1, and ct “ ct´1 if }θ1St}2 ď Mct , or set θt “ θ̃0, and ct “ ct´1 ` 1 if

otherwise.

This modification ensures tθtu to remain in a compact set. Note that the desired sampling distribution

becomes actually tπj ` πe; for j “ 1 : mu, and

θ
piq
˚ “

$

’

&

’

%

C ` logp
ş

Ei
expp´Upxq{τ˚qdxq ´ logpπi ` πeq , if Ei ‰ H

θ̃
piq
0 , if Ei “ H

,

where πe “
ř

jRS8
πj{ }S8}, and S8 is the limiting set of St.
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For population size κ “ 1, PISAA is identical to the single-chain SAA.

PISAA can be used, in the same spirit as the tempered transitions (Neal, 1996), for sampling from a

multi-modal distribution fpd¨q. One can run PISAA with Upxq :“ ´ logpfpxqq, τt “ τh

b

npτq

maxpt,npτqq
` τ˚,

τh ą 1, τ˚ “ 1, and collect the sample xp1:κq
n . Then, inference can be performed by importance sampling

methods due to Theorems A.1 and A.2 in Appendix A.

4 Applications

We compare the performance of PISAA with those of other stochastic optimisation procedures such as the

simulated annealing (SA) (Kirkpatrick et al., 1983), very fast simulated re-annealing (VFSA) (Ingber, 1989;

Sen and Stoffa, 1996; Jackson et al., 2004), annealing stochastic approximation Monte Carlo (ASAMC)

(Liang, 2007), annealing evolutionary stochastic approximation Monte Carlo (AESAMC) (Liang, 2011), and

stochastic approximation annealing (SAA) (Liang et al., 2014).

As a performance measure, we consider the average best function value discovered by the algorithm.

We perform 48 independent realisations for each simulation, and average out the values of the performance

measures, in order to eliminate nuisance variation in the output of the algorithms (caused by their stochastic

nature or random seeds). To monitor the convergence of PISAA and the stability of its self-adjusting

mechanism, we consider the MSE of the bias weights as in (Song et al., 2014) MSE :“
›

›

›
θ
pκq
t ´ wt

›

›

›
, where

wt :“ pw
pjq
t ; j “ 1 : mq, wpjqt :“

ş

Ej
1
τt
Upxqdx are the real values of the bias weights, and θ

pκq
t are the

estimates of wt approximated by the self-adjusting mechanism of PISAA with population size κ.

The mutation operations and crossover operations, used in the examples, are presented in Appendix B

as pseudo-codes.

4.1 Gaussian mixture model

We consider the Gaussian mixture with density

f1pxq “
20
ÿ

i“1

$iN2px|µi, σ
2q1px P X q, (4.1)

where x P R2, X “ r´1010, 1010s2, σ2 “ 0.001, t$i “ 1{20; i “ 1 : 20u, and tµiu are given in (Table 1 in

Liang and Wong, 2001). Sampling from (4.1) is challenging because this distribution is multi-modal and has

several isolated modes. Here, our purpose is to check the validity of PISAA instead of optimisation.

We consider default algorithmic settings for PISAA: (i) energy function U1pxq “ ´ logpf1pxqq, (ii) uni-

formly spaced grid tuju with m “ 19, u1 “ 0, and u19 “ 9.0, (iii) gain factor tγtu with npγq “ 100, β “ 0.55,

(iv) temperature sequence tτtu with npτq “ 1, τh “ 5, and τ˚ “ 1´τh
a

1{n, and (v) MCMC transition prob-

ability that uses mutation operations (Metropolis, hit-and-run, k-point) and crossover operations (k-point,

snooker, linear), with equal operation rates, and proposal scales calibrated so that the expected acceptance

13



Parallel and Interacting Stochastic Approximation Annealing algorithms for global optimisation

Georgios Karagiannis, Bledar A. Konomi, Guang Lin, and Faming Liang

probabilities to be around 0.234. At the end of the simulation, at iteration n “ 106, the temperature will be

τn “ 1; and hence one may see this example as tempered transition sampling from multi-modal distribution

f1pd¨q via PISAA.

We run PISAA with different combinations of population size κ P t1, ..., 30u and gain factor power

β P t0.55, 0.65, 0.75, 0.85, 0.95, 1.0u. Each of these runs was repeated for 100 realisations in order to com-

pute the estimates, error bars, mean square error MSE :“
›

›

›
θ
pκq
t ´ wt

›

›

›
, and relative efficiency REpκ;βq :“

›

›

›
θ
pκq
tn{κu

´ w˚

›

›

›
{

›

›

›
θ
p1q
n ´ w˚

›

›

›
of the bias weights. Note, that the bias weights are estimated by the self-adjusting

mechanism of PISAA using the θ-normalisation step
řm
j“1 exppθ

pκ,jq
n ` zq “ 1.

Figure 4.1a presents the estimates of the bias weights θpκq
tn{κu

, for j “ 1, ..., 6, and n “ 106, as produced by

the self-adjusting mechanism of PISAA with different population sizes n P t1, 10, 30u. We observe that the

tθ
pκ,jq
n u of PISAA have converged to the true values at any of the population sizes considered, and that the

associated error bars are narrower for larger population sizes. Figure 4.1b presents the MSEs produced by

PISAA at different iteration steps, and for different population sizes. We observe that PISAA with larger

population sizes has produced smaller MSEs throughout the whole simulation time. Yet, MSE decays as

the iterations evolve; this behaviour, although not surprising, may be non-trivial due to the heterogeneous

nature of the sequence twtu (that is wt ‰ wt1 , for t ‰ t1). Figure 4.1c presents the progression of the MSEs

produced by PISAA for different gain factor powers. We observe that MSE decreases when the population

size increases. Furthermore, we observe that this behaviour is more significant for slower decaying gain

factors –namely when the power of the gain factor is smaller and close to 0.5.

Figure 4.1d presents the relative efficiency REpκ;βq of the self-adjusting process estimator for the biased

weights w˚ as a function of the population size κ P t2, ..., 30u, and for different powers of gain factors

β P t0.55, 0.65, 0.75, 0.85, 0.95, 1u. In serial computing environments, the computational cost can be defined

as the iterations times the population size. For the computation of relative efficiency REpκ;βq, we considered

constant computational cost, and hence PISAA with population size κ ran for tn{κu iterations, where n “ 106.

In Figure 4.1d, the marks refer to the estimated relative efficiency, the dashed lines are lines with slop β ´ 1

and refer to the theoretical behaviour of the relative efficiency (i.e. lgpREpκ;βqq « pβ ´ 1q lgpκq) from

Theorem A.5, while the different colours correspond to different values of β. We observe that the empirical

results are consistent with Theorem A.5 since the marks lie close to their corresponding lines. The efficiency

of the estimates of the bias weights produced by the self-adjusting mechanism of PISAA improves as κ

increases. Thus, increasing the population size improves the stability of PISAA even in the case that a serial

computing environment is used and a fixed computational budget is given. We observe that this behaviour

is even more significant for slower decaying gain factors.

The results support that, PISAA produces the ‘real’ estimates for w˚ as τt Ñ τ˚, the MSE of those

estimates reduces as κ increases, and the efficiency of the self-adjusting mechanism improves as κ increases.
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Figure 4.1: (Section 4.1) Estimates, MSEs, and relative efficiency of the bias weights twpjqn u produced

by PISAA at different iteration, population sizes, and power of gain factor β.
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4.2 Rastrigin’s function

We test the proposed algorithm on a benchmark optimisation problem where the goal is to minimise the

rotated Rastrigin’s function U2p¨q

U2pxq “ Rapypxqq; (4.2)

Rapyq “ 10d`
d
ÿ

k“1

py2
k ´ 10 cosp2πykq; (4.3)

ypxq “ Rx, (4.4)

x P X , on space X “ r´5.12, 5.12sd, d P N ´ t0u, where Ra : X Ñ R is the Rastrigin’s function (Törn

and Zilinskas, 1989; Mühlenbein et al., 1991; Liang, 2011), and R is a rotation matrix generated according

to the Salomon’s method, see details in (Appendix B in Salomon, 1996). The global minimum of (4.2) is

Rapx˚q “ 0 at x˚ “ p0, ..., 0q, for d P N´ t0u (Mühlenbein et al., 1991).

Rastrigin’s function has been used by several researchers as a hard benchmark function to test experi-

mental optimisation algorithms (Dieterich and Hartke, 2012; Törn and Zilinskas, 1989; Mühlenbein et al.,

1991; Liang, 2011; Liang et al., 2006; Ali et al., 2005). It presents features that can complicate the search

for the global minimum: it is non-convex, non-linear, relatively flat and presents several local minima that

increase with dimension; e.g. about 50 local minima for d “ 2 (Ali et al., 2005). The rotation transformation

(4.4) is a well established technique that transforms originally separable test functions, such as the Rastri-

gin’s one, into non-separable. Non-separability makes the optimisation task even harder by preventing the

optimisation of a multidimensional function to be reduced into many separate lower-dimensional optimisa-

tion tastks. For instance, in (4.4), all the dimensions in vector y are affected when one dimension in vector

x changes in value.

Here, if not stated otherwise, we consider default settings for PISAA: (i) n “ 106 iterations, (ii) uniformly

spaced grid tuju with m “ 400, u1 “ ´0.01, u400 “ 40, (iii) desirable probability with parameter λ “ 0.1,

(iv) temperature ladder tτtu with τh “ 1, npτq “ 1, τ˚ “ 10´2, (iv) gain factor tγtu with npγq “ 105, β “ 0.55.

One MCMC sweep is considered to be a random scan of mutation operations (Metropolis, hit-and-run, k-

point) and crossover operations (k-point, snooker, linear), with equal operation rates, and scale parameters

calibrated so that the expected acceptance ratio to be around 0.234.

In Figure 4.2a, we present the average progression curves of the best function value (best value), discovered

by PISAA for different population sizes κ P t1, 4, 5, 14, 30u. We observe that by using larger population sizes,

the algorithm quicker discovers smaller best values, and quicker converges towards the global minimum. The

difference in performance between SAA (aka PISAA with κ “ 1) and PISAA using a moderate population

size, such as κ “ 5, is significant. In Figure 4.2b, we plot the best value against the population size for

different dimensionality of the Rastrigin’s function. We observe that PISAA discovers smaller best values as

the population size increases for the same number of iterations. Increasing the population size improves the
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performance of the algorithm significantly at any dimensionality considered, while it is particularly effective

in large or moderate dimensionalities. We highlight that the most striking performance improvement is

observed in the range of small population sizes. In Figure 4.2c, we observe that the MSE of the bias weights

approximated by the self-adjusting mechanism of PISAA becomes smaller when larger population sizes are

used. This indicates that increasing the population size makes the self-adjusting mechanism of PISAA more

stable.

The performance of PISAA with respect to the grid size, for different desired probabilities, is presented

in Figure 4.2d. In particular, we ran PISAA with a large enough population size (κ “ 30) to ensure that all

the subregions are visited. We observe that larger grid sizes lead to a better performance for PISAA, given

that the population size is large enough. We observe that the choice of the desired probability has bigger

impact for large grid sizes (m ą 50) than for smaller grid sizes (m ă 50). However, for any grid size, we

observe that a moderately biased desired distribution (λ « 0.1, ..., 0.9) is preferable. The performance of

PISAA against the population size for different desired probabilities is presented in Figure 4.2e. We observe

that increasing the population size is more effective for desired probabilities with (λ « 0.1, ..., 0.9). Hence,

although biasing towards low energy subregions is preferable for optimisation problems, over-biasing can slow

down the convergence towards the global minimum. Figure 4.2f presents the performance of PISAA against

the population size for different grid sizes. The performance improvement of PISAA due to the population

size increase becomes more significant when finer grids (larger grid sizes) are used. As mentioned, finer

grids improve the exploration of the sampling space, however they require a more efficient self-adjusting

mechanism to fight against possible larger variance in the approximation of tθtu due to the increased number

of subregions. Here, we observed that increasing the population size allows the use of finer grids, while it

reduces the aforesaid consequence.

We compare PISAA with VFSA using the same operations and temperature ladder as PISAA, and with

AESAMC using the settings used by (Liang, 2011), against the 30D Rastrigin’s function. In Figures 4.3a and

4.3b, we plot the average progression curves of the best values discovered by each algorithm for population

sizes κ “ 5, and 14 respectively. We observe that PISAA converges quicker to global minimum than VFSA

and AESAMC in both cases. Figure 4.3c presents the performance of the algorithms against the population

size. We observe that increasing the population size improves the performance of PISAA, in terms of average

best values discovered, significantly faster than the performance of VFSA and AESAMC. It is observed that,

although the population size increases, VFSA and AESAMC stop improving after κ “ 10, while PISAA

continues to improve even after κ ą 10 but at a slower rate. This is because the underline adjustment

process of twtu keeps on improving, in terms of variance, and converges faster as κ increases. Therefore,

PISAA outperforms significantly VFSA, and AESAMC.
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Figure 4.2: (Section 4.2) Performance plots of PISAA. The results reported consider averaged values

over 48 independent runs.

18



Parallel and Interacting Stochastic Approximation Annealing algorithms for global optimisation

Georgios Karagiannis, Bledar A. Konomi, Guang Lin, and Faming Liang

0 2 4 6 8 10
x 10

5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Rotated Rastrigin in 30D

Iteration

B
es

t v
al

ue
 (

lg
−

sc
al

e)

 

 

PISAA
VFSA
AESAMC

Algorithm

(a) Average progression curves of the

best function values generated by

PISAA, AESAMC, and VFSA with

population size 5.

0 2 4 6 8 10
x 10

5

10
−6

10
−4

10
−2

10
0

10
2

Rotated Rastrigin in 30D

Iteration

B
es

t v
al

ue
 (

lg
−

sc
al

e)

 

 

PISAA
VFSA
AESAMC

Algorithm

(b) Average progression curves of the

best function values generated by

PISAA, AESAMC, and VFSA with

population size 14.

0 10 20 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rotated Rastrigin in 30D

Population size

B
es

t v
al

ue
 (

lg
−

sc
al

e)

 

 

PISAA
VFSA
AESAMC

Algorithm

(c) Average best function values gen-

erated by PISAA, AESAMC, and

VFSA against the population size.

Figure 4.3: (Section 4.2) Average best values (averaged over 48 independent runs) discovered by PISAA,

AESAMC, and VFSA.

4.3 Protein folding

Proteins are essential to the living organisms as they can carry out a multitude of biological processes,

e.g. production of enzymes, antibodies etc. In biophysics, understanding the protein folding mechanism is

important because the native conformation of a protein strongly determines its biological function. Predicting

the native conformation of a protein from its sequence can be treated as an optimisation problem that involves

finding the coordinates of atoms so that the potential energy of the protein is minimised. This is a challenging

optimisation problem (Liang, 2004), because (i) the dimensionality of the system is usually high, and (ii)

the landscape of the potential energy is rugged and characterised by a multitude of local energy minima

separated by high energy barriers.

To understand the relevant mechanics of protein folding, simplified, but still non-trivial, theoretical

protein models exist; among them is the off-lattice AB protein model (Stillinger et al., 1993). The off-lattice

AB protein model incorporates only two types of monomers A and B, in place of the 20 that occur naturally,

which have hydrophobic and hydrophilic behaviours respectively. The atom sequence Si, i P t2, 3, ...u, of

a Ni-mer, can be determined by a Fibonacci sequence (Stillinger et al., 1993; Stillinger and Head-Gordon,

1995; Hsu et al., 2003) which is defined recursively as S0 “ A, S1 “ B, Si “ Si´2Si´1 and has length given

by the Fibonacci number Ni “ Ni´2 ` Ni´1, i ě 2. The atoms are assumed to be linked consecutively by

rigid bonds of unit length to form a linear chain which can bend continuously between any pair of successive

links. The chain can reside in the 2–, or 3– dimensional physical space which defines the 2D, or 3D off-lattice

AB model, correspondingly.

For the 2D AB model (Stillinger et al., 1993; Stillinger and Head-Gordon, 1995; Liang, 2004), the potential
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energy is

U3,1pθ2:N´1q “

N´2
ÿ

i“1

Vθpiq `
N´2
ÿ

i“1

N
ÿ

j“i`2

VLJpi, jq; (4.5)

Vθpiq :“ 0.25p1´ uᵀi ¨ ui`1q, VLJpi, jq :“ 4pr´12
i,j ´ C2Dpi, jqr

´6
i,j q,

where C2Dpi, jq is 1, 1{2, and ´1{2, for AA, BB, and AB pairs respectively, ui :“ pcospθiq, sinpθiqq
ᵀ is the

unit vector joining monomer i to monomer i`1, ri,j :“ ri,jpθ2:N´1q denotes the distance between monomers

i and j, and θ1 “ 0, θi P r0, 2πq, for i “ 2, ..., N´1, are polar coordinates. The dimensionality of the problem

is d “ N ´ 2. For the 3D AB model (Irbäck et al., 1997; Hsu et al., 2003; Bachmann et al., 2005; Kim et al.,

2005; Liang, 2004), the potential energy is

U3,2pθ2:N´1, φ3:N´1q “

N´2
ÿ

i“1

Vθpiq `
N´3
ÿ

i“1

Vτ piq `
N´2
ÿ

i“1

N
ÿ

j“i`2

VLJpi, jq; (4.6)

Vθpiq :“ ui ¨ ui`1, Vτ piq :“ ´0.5pui ¨ ui`2q, VLJpi, jq :“ 4pr´12
i,j ´ C3Dpi, jqr

´6
i,j q,

where C3Dpi, jq is 1, for AA, and 1{2, for BB, and AB pairs, ui :“ pcospθiq sinpφiq, sinpθiq sinpφiq, cospφiqq
ᵀ,

θi is the azimuthal angle, and φi is the polar angle of ui such that θ1 “ φ1 “ φ2 “ 0, θi P r0, 2πq, φi P r0, πs,

for i “ 1, ..., N´1. The dimensionality of the problem is d “ 2N´5. Here, for the purpose of demonstration,

we concentrate on the 13–, 21–,34–, and 55– mers AB.

We consider default settings for PISAA (valid if not stated otherwise): (i) n “ 2 ¨ 107 iterations, (ii)

uniformly spaced grid tuju withm “ 101, (iii) desirable probability with parameter λ “ 0.1, (iv) temperature

ladder tτtu with τh “ 10, npτq “ 106, τ˚ “ 10´2, (iv) gain factor tγtu with npγq “ 103, β “ 0.55, and (v)

MCMC transition probability with mutation operations (Metropolis, hit-and-run, k-point) and crossover

operations (k-point, snooker, linear), equal operation rates, and operation scale parameters σj{pm ` 1q,

where σ is calibrated so that the expected acceptance ratio to be around 0.234, and j is the label of the

subregion the current state belongs to. Each experiment ran 48 times independently to eliminate possible

variation in the output caused by nuisance factors.

We examine the performance of PISAA as a function of the iterations and the population size. In Figures

4.4a and 4.4d, we illustrate the average progressive curves of the best values discovered by PISAA using

different population sizes against the 55-mer 2D and 3D AB models. We observe that PISAA using larger

population sizes converges quicker towards smaller average best values. In Figures 4.4b and 4.4e, we present

the performance of PISAA with respect to the ‘best values’ discovered until the iteration n “ 2 ¨ 107 as

a function of the population size against the 2D and 3D AB models, respectively. In our simulations, we

have considered the 13–, 21–,34–, and 55–mers AB sequences. We observe that increasing the population

size of PISAA is particularly effective in longer AB sequences (and so higher in dimension problems), while

moderate population sizes are adequate in shorter AB sequences (and so moderate in dimension problems).

In fact, PISAA improves significantly as the population size increases in the high dimensional case of 55–

mers, however it performs acceptably even with a moderate population size (κ « 10) in the lower dimensional
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Figure 4.4: (Section 4.3) Performance plots of PISAA. The results reported consider averaged values

over 48 independent runs. The 1st and 2nd rows refer to the 2D and 3D AB models correspondingly.

cases of 13–, 21–,34–mers. Compared to the standard SAA (aka PISAA with κ “ 1), PISAA (with κ ą 1)

presents significantly improved performance, in the 55-mer 2D and 3D AB models when the same number of

iterations is considered. Note that increasing the population size of PISAA does not necessarily mean that

the CPU time required for the algorithm to run increases significantly because PISAA can be implemented in

parallel computational environment if available. In Figures 4.4c and 4.4f, we observe that when PISAA uses

larger population sizes, the bias weights generated by the self-adjusting mechanism of PISAA have smaller

MSE, and hence the algorithm tends to present a more stable self-adjusting process.

We compare the performance of PISAA with those of VFSA and AESAMC, against the 55-mer 2D, and

3D off-lattice AB models. We run each simulation 48 times independently to eliminate possible variation

in the output caused by nuisance factors. About the algorithmic settings: PISAA uses the aforementioned

settings, VFSA shares common settings with PISAA, and AESAMC uses an equally spaced partition of 104

subregions, temperature τ “ 1.0, and threshold values ℵ “ 10. VFSA and AESAMC use the same crossover
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and mutation operations as PISAA.

The results from the empirical comparison of PISAA, AESAMC, and VFSA associated to the 2D and

3D AB models are summarised in the 1st and 2nd rows of Figure 4.5, respectively. Figures 4.5a, 4.5b, 4.5d

and 4.5e show the average progression curves, up to iteration n “ 107, generated by the algorithms under

comparison. We observe that the average progression curves generated by PISAA converge quicker towards

smaller ‘best values’ than those generated by AESAMC, and VFSA. This behaviour is observed in both large

population sizes (κ “ 30) and small population sizes (κ “ 3 and κ “ 10), in 2D and 3D AB models. PISAA

does not appear to become trapped into local minima although, during the first iteration steps, the curves

generated by PISAA reduce at a faster rate than those generated by AESAMC and VFSA. Possibly, the

reason is because compared to AESAMC, PISAA uses a smoother shrink strategy towards areas of minima,

while compared to VFSA, PISAA uses an enhanced self-adjusting mechanism.

In Figures 4.5c and 4.5f, we compare the performance of PISAA, AESAMC, and VFSA with respect to

the averaged best values discovered as a function of the population size, in the 2D and 3D AB models. We

observe that PISAA has discovered smaller ‘best values’ than AESAMC and VFSA for any population size

considered in both 2D, and 3D AB models. However, if parallel environment is available, PISAA is expected

to further outperform AESAMC, for a given budget of execution time, because at each iteration PISAA can

generate the population simultaneously by using several CPU cores in parallel while AESAMC has to do it

serially. Thus, we observe that PISAA significantly outperforms AESAMC and VFSA.

4.4 Spatial imaging

We consider an image restoration problem where there is need to remove the noise from a 2D binary image.

The image under consideration was obtained from PNNL’s project supported by the U.S. Department of

Energy’s Office of Energy Efficiency and Renewable Energy to improve advanced transportation technologies.

The image is a gray-scale photo-micrograph of the micro-structure of the Ferrite-Pearlite steel (Figure 4.6a),

where the lighter part is ferrite while the darker part is pearlite. It can help us investigate how the micrograph

of the microstructure of the Ferrite-Pearlite steel (and hence strength level) develops during hot rolling

(Gladshtein et al., 2012), and therefore better understand how to control the strength of a strip steel. We

focus our analysis on the first quarter fragment of size 240ˆ 320 pixels (red frame in Figure 4.6a). Since the

image is contaminated by noise, our purpose is to restore the original image x given the degraded (observed)

image y.

We employ the Bayesian image restoration model of (Besag, 1977; Geman and Geman, 1984; Besag, 1986)

which is based on the Ising model (Ising, 1925) and has posterior distribution with density πpx|yq such that

πpx|yq9 exppa
ÿ

@i

1tyiupxiq ` b
ÿ

@i„j

1txjupxiqq, (4.7)

where a ą 0, and b ą 0 are fixed parameters (here, a “ 1.1, and b “ 0.9). The symbol ‘„’ denotes the
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Figure 4.5: (Section 4.3) Average best values (averaged over 48 independent runs) discovered by PISAA,

AESAMC, and VFSA. We consider the 55-mer AB model in 2D and 3D, 1st and 2nd rows correspond-

ingly.
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(a) Gray scale image (480 ˆ 640 pixels), and the

fragment under consideration (240ˆ 320 pixels)

(b) MAP estimate of image fragment (240 ˆ 320

pixels)

Figure 4.6: (Section 4.4) Gray scale digital photo-micrograph of the micro-structure of the Ferrite-

Pearlite steel, and the MAP estimate of its, red in colour, framed fragment.

neighbourhood of the eight adjacencies (vertical, horizontal, and diagonal) of each interior pixel. In Eq. 4.7,

the first term is associated to the likelihood and encourages states xi to be identical to the observed pixel yi,

while the second term is associated to the Ising prior model, encourages neighbouring pixels to be equal and

hence provides smoothing. In this context, image restoration can be achieved by computing the maximum a

posteriori (MAP) estimate of the original image which can be found by minimising the negative log posterior

density, U4pxq :“ ´ logpπpx|yqq (Geman and Geman, 1984).

Computational difficulties raise when algorithms based on standard MCMC samplers with component-

wise structure of single-pixel updates are employed (Higdon, 1998). Such an update design tends to either

converge slow or get trapped because the prior term in (4.7) strongly prefers large blocks of pixels. This issue

becomes even more serious for large values of b which favour strong dependencies. Against this application, we

compare the PISAA, VFSA, and PSAA. PSAA refers to the parallel SAA, a multiple-chain implementation

of SAA that involves running a number of standard SAA procedures with the same algorithmic settings

in parallel and completely independently. PISAA and PSAA use the following algorithmic settings: (i)

n “ 5 ¨ 105 iterations, (ii) uniformly spaced grid tuju with m “ 200, u1 “ ´826315.5, u100 “ ´971500.5,

(iii) desirable probability with parameter λ “ 0.1, (iv) temperature ladder tτtu with τh “ 5, npτq “ 103,

τ˚ “ 10´2, (iv) gain factor tγtu with npγq “ 103, β “ 0.55. The MCMC kernel of PISAA is designed to be

a random scan of a Gibbs update (updating one pixel at a time) and k-point crossover operations (where

k “ 2). VFSA and SAA use only Gibbs updates.

We observe that PISAA discovers quicker smaller best values when the population size increases (Figures

4.7a, and 4.7c). Figure 4.7c shows that PISAA converges quicker than PSAA as the number of the parallel

chains involved increases. This implies that it is preferable to run a PISAA with a population size κ ą 1
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Figure 4.7: (Section 4.4) Performance and comparison plots of PISAA, PSAA, and VFSA.

rather than run κ SAA procedures completely independent from each other. Moreover, it shows that the

interacting character of PISAA is a necessary ingredient for significantly improving the performance of the

algorithm by increasing the population size. By ‘interacting character’ of PISAA, we refer to the distinctive

way that the crossover operations and self-adjusting mechanism of PISAA use the distributed information

gained from all the population chains to operate. Moreover, we observe that PISAA outperforms VFSA

(Figures 4.7b, and 4.7c). Finally, the MAP estimate of the original image as computed by PISAA with

population size 30 is shown in Figure 4.6b.

4.5 Bayesian network learning

The Bayesian network (Ellis and Wong, 2008) is a directed acyclic graph (DAG) whose nodes represent

variables in the domain, and edges correspond to direct probabilistic dependencies between them. It is

a powerful knowledge representation and reasoning tool under conditions of uncertainty that is typical of

real-life applications. Mathematically, it can be defined as a pair B “ pG, ρq, where G “ pV, Eq is a DAG

representing the structure of the network, V denotes the set of nodes, E denotes the set of edges, and ρ is

the vector of the associated conditional probabilities. In the discrete case we consider here, V :“ tVi; i “ 1 :

du P V denotes a node that takes values in a finite set tvj ; j “ 1 : riu, ri P N´ t0u and hence V is assumed

to be a categorical variable. Therefore, there are qi “
ś

VjPpapViq rj possible values for the joint state of the

parents of V , where papViq denotes the set of parents of Vi node. In this example, we consider the prior

model of Ellis and Wong (2008); Liang and Zhang (2009), and hence we focus our interest in the marginal

posterior probability PrpG|Dq such that

PrpG|Dq9
d
ź

i“1

p
b

1´ a
q|papViq|

qi
ź

k“1

Γpai,j,kq

Γp
řri
j“1 ai,j,k ` ni,j,kq

ri
ź

j“1

Γpai,j,k ` ni,j,kq

Γpai,j,kq
, (4.8)
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where D “ tVi; i “ 1 : Nu denotes the data set, considered to be IID samples, ni,j,k denotes the number

of samples for which Vi is in state j and papViq is in state k, ai,j,k “ priqiq´1 (Ellis and Wong, 2008), and

b P p0, 1q (here, b “ 0.1 (Liang and Zhang, 2009)). The negative log-posterior distribution function, or else

energy function, of the Bayesian network is U5pGq :“ ´ logpPrpG|Dqq.

Existing methods for learning Bayesian networks include conditional independence tests (Wermuth and

Lauritzen, 1982), optimisation (Heckerman et al., 1995), and MCMC simulation (Madigan and Raftery, 1994;

Liang and Zhang, 2009) approaches. Often interest lies in finding the maximum a posteriori (MAP) putative

network that can be performed by minimising the negative log-posterior distribution density U5p¨q. Determ-

inistic optimisation procedures often stop at local optima structures. Standard MCMC based approaches,

although seemingly more attractive (Liang and Zhang, 2009), are still prone to get trapped in local energy

minima indefinitely. This is because the energy landscape of the Bayesian network can be quite rugged, with

a multitude of local energy minima being separated by high energy barriers, especially when the network

size is large. Here, we examine the performance of PISAA against this challenging optimisation problem.

We consider the Single Proton Emission Computed Tomography (SPECT) data set (Cios et al., 1997;

Kurgan et al., 2001), available at UC Irvine Machine Learning Repository 2 that describes diagnosing of

cardiac SPECT images. It includes 267 SPECT image sets (patients) processed to obtain 22 binary feature

patterns that summarise the original SPECT images. Each patient is classified into two categories: normal,

and abnormal.

We examine the performance of PISAA as a function of the iterations and the population size, and

compare it with those of PSAA, and VFSA. PISAA uses algorithmic settings: (i) n “ 2 ¨ 108 iterations,

(ii) uniformly spaced grid tuju with m “ 2001, u1 “ 2000, u2001 “ 3999, (iii) desirable probability with

parameter λ “ 0.05, (iv) temperature ladder tτtu with τh “ 50, npτq “ 1, τ˚ “ 10´1, (iv) gain factor tγtu

with npγq “ 106, β “ 0.55. The MCMC kernel is designed to be a random scan of mutation operations

only (temporal order, skeletal and double skeletal suggested by (Liang and Zhang, 2009; Wallace and Korb,

1999)) with equal operation rates. PSAA and VFSA share common settings with PISAA. Each simulation

runs for 48 times to eliminate output variations caused by nuisance factors.

Figure 4.8a presents the average progression curves of the best values discovered by PISAA at different

population sizes. We observe that increasing the population size accelerates the convergence of the algorithm

towards smaller best values. Figure 4.8b shows the best function values discovered by PISAA, PSAA, and

VFSA using 30 chains each. We observe that PISAA tends to discover smaller best values quicker than

PSAA and VFSA. In Figure 4.8c, we present the best values discovered by the algorithms under comparison

after 2 ¨108 iterations as functions of the population size. We observe that PISAA has discovered smaller best

values than PSAA and VFSA. A reader, non-familiar to the Bayesian network modelling, might argue that

the observed improvement in performance of PISAA due the population size increase is not that eye-catching

in Figure 4.8c because of the decisively small slope of the curve. In Bayesian networks (Liang and Zhang,
2http://archive.ics.uci.edu/ml, unless changed
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Figure 4.8: (Section 4.5) Performance and comparison plots of PISAA, PSAA, and VFSA.

2009), even slightly different negative log-posterior probabilities can correspond to very different network

structures leading to different statistical inferences.

The MAP putative network computed by running PISAA with population size 30 and 2 ¨ 108 iterations

is shown in Figure 4.9

5 Summary and conclusions

We developed the parallel and interacting stochastic approximation annealing (PISAA) algorithm, a stochastic

simulation procedure for global optimisation, that builds upon the ideas of the stochastic approximation

annealing and population Monte Carlo samplers. PISAA inherits from SAA a remarkable self-adjusting

mechanism that operates based on past samples and facilitates the system to escape from local traps. Fur-

thermore, the self-adjusting mechanism of PISAA is more accurate and stable because it uses information

from all the population of chains. Yet, the sampling mechanism of PISAA is more effective because it allows

the use of advanced MCMC transitions such as the crossover operations. Furthermore, it breaks sampling

into multiple parallel procedures able to search for minima at different sampling space regions simultan-

eously. This allows PISAA to demonstrate a remarkable performance, and be able to address challenging

optimisation problems with high dimensional and rugged cost functions that it would be quite difficult for

SAA to tackle acceptably. The computational overhead due to the generation of multiple chains can be

reduced dramatically if parallel computing environment is available.

We examined empirically the performance of PISAA against several challenging optimisation problems.

We observed that PISAA significantly outperforms SAA in terms of convergence to the global minimum

as it effectively mitigates the problematic behaviour of SAA. Our results suggested that, as the population
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Figure 4.9: (Section 4.5) MAP estimate

GMAP of the putative network, as computed

by running PISAA with population size 25 for

2 ¨ 108 iterations. (U5pGMAPq “ 3026.935103)

The data set considers 267 cardiac Single

Proton Emission Computed Tomography

(SPECT) images and particularly variables

that corespond to features :

The overal diagnosis, coded as ‘Overal

diagnosis’, that is a class attribute with values

‘normal’ and ‘abnormal’,

The j-th partial diagnosis, coded as ‘Fj’,

that takes values ‘normal’ and ‘abnormal’,

where j “ 1, ..., 22.

size increases, the performance of PISAA improves significantly in terms of discovering the global minimum

and adjusting the target density. Precisely, when the population size increases, PISAA discovers the global

minimum quicker, and the adjustment of the target density is more stable. More importantly, we observed

that instead of running several SAA procedures completely independently, it is preferable to run one PISAA

procedure with the same number of chains (or equiv. population size). In our examples, PISAA significantly

outperformed other competitors, such as SA and ASAMC, and their population analogues, such as VFSA

and AESAMC. In fact, it was observed that as the population size increases, the performance of PISAA

improves significantly quicker than that of VFSA and AESAMC.

Under the framework of PISAA, we showed that theoretical results of Song et al. (2014) for pop-SAMC

regarding the asymptotic efficiency of the estimates of the unknown bias weights hold for PISAA as well,

and presented theoretical results of Liang et al. (2014) for SAA regarding the convergence of the algorithm

that hold for PISAA as well. The empirical results confirmed that PISAA produces correct estimates for the

unknown bias weights w˚ as τt Ñ τ˚, and that the efficiency of these estimates significantly improves as the

population size increases. Moreover, the theoretical limiting ratio between the rates of convergence of their

estimates generated by PISAA and SAA was also confirmed by our empirical results.

Another important use of PISAA could be that of sampling from multi-modal distributions and then

performing inference via importance sampling methods. PISAA can be extended to use an adaptive binning

strategy for automatically determining the partition of the sampling space similar to (Bornn et al., 2013),

or a smoothing method to estimate the frequency of visiting each subregion similar to (Liang, 2009). Of
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particular interest would be to extend PISAA so that it can allow different partition schemes and desired

probabilities for each population individual while ensuring the stability of the self-adjusted mechanism.

Supplementary material

Supplementary material for the article is available online.

Appendix The appendix contains:

• Theoretical analysis of PISAA.

• The pseudo-algorithms of the MCMC kernel mutation and MCMC kernel crossover opera-

tions considered in the examples (Section 4)
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Appendix

A Theoretical analysis of PISAA

The PISAA algorithm falls into the general class of the stochastic approximation MCMC (SAMCMC) al-

gorithms. In order to study the convergence of PISAA, we adopt the technique developed by Chen and Zhu

(1986). Traditionally, the convergence of such algorithms is studied by reformulating the equation in Step 2 of

Algorithm 3 as θ1 “ θt´1 ` γtph
pκq
τt pθt´1q ` ξ

pκq
t q, where hpκqτt pθt´1q “

ş

H
pκq
τt pθt´1, x

p1:κqqf
pκq
θt´1,τt

pxp1:κqqdxp1:κq

is called the mean field function, and ξpκqt “ H
pκq
τt pθt´1, x

p1:κq
t q ´ h

pκq
τt pθt´1q is called the observational noise.

Similar to SAA, PISAA solves the integral equation hpκqτ˚ pθq “ 0 in the context of stochastic approximation,

by solving sequentially the system of equations thpκqτt pθq “ 0; t “ 1, 2, ...u defined along the temperature

sequence tτtu. The idea is that if tτtu does not decrease too fast, the solution of hpκqτt p¨q “ 0 can be used as

an initial guess for hpκqτt`1p¨q “ 0. Thus, in the limit, the convergence θt Ñ θ˚ can hold under appropriate

conditions, where θ˚ is the solution of the equation of interest. For mathematical simplicity, in what follows,

we treat the temperature τ P T as a continuous variable instead of a sequence, and assume that T is compact,

T “ rτ˚, τ1s. For parameter θ P Θ, we assume Θ “ Rm where m is the number of subregions.

For PISAA, we have

hpκqτ pθq “

ż

Xκ

Hpκqτ pθ, xp1:κqqf
pκq
θ,τ px

p1:κqqdxp1:nq; (A.1)

“

ż

Xκ

r
1

κ

κ
ÿ

i“1

Hτ pθ, x
piqqs

κ
ź

j“1

fθ,τ px
pjqqdxp1:κq;

“
1

κ

κ
ÿ

i“1

ż

X
Hτ pθ, x

piqqfθ,τ px
piqqdxpiq;

“
1

κ

κ
ÿ

i“1

hτ pθq;

“ hτ pθq,

where hτ pθq is the mean field function of SAA (Liang et al., 2014). Likewise, it is easy to show that

Var
f
pκq
θt´1,τt

pξ
pκq
t q “ 1

κVarfp1qθt´1,τt

pξ
p1q
t q. Thus, for κ P N ´ t0u, PISAA solves the same set of integration

equations as the single-chain SAA, while reducing the variation in the mean field approximation. Note that,

if κ “ 1, PISAA reduces to the single-chain SAA.

A.1 Conditions for PISAA

The convergence of PISAA is studied under conditions (A1 - A4) assumed for the mean field function,

observation noise, gain factor, and temperature sequence. We recall from (A.1) that hpκqτ pθq “ hτ pθq for

κ ě 1. To easy the notation we suppress indexes ¨pκq, and ¨p1:kq, when no confusion is caused.

pA1q (Lyapunov condition)
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(i) The function hτ pθq is bounded and continuously differentiable with respect to both θ and τ , and

there exists a non-negative, upper bounded, and continuously differentiable function vτ pθq such

that for any ∆ ą δ ą 0,

sup
δďdppθ,τq,Lqď∆

∇T
θ vτ pθqhτ pθq ă 0, (A.2)

where L “ tpθ, τq : hτ pθq “ 0, θ P Θ, τ P T u is the zero set of hτ pθq, and dpz, Sq “ infyt}z ´ y} :

y P Su. Further, the set vpLq “ tvτ pθq : pθ, τq P Lu is nowhere dense.

(ii) Both ∇θvτ pθq and ∇τvτ pθq are bounded over Θ ˆ T . In addition, for any compact set K Ă Θ,

there exists a constant 0 ă c ă 8 such that

sup
pθ,θ1qPKˆK,τPT

}∇θvτ pθq ´∇θvτ pθ
1q} ď c}θ ´ θ1},

sup
θPK,pτ,τ 1qPT ˆT

}∇θvτ pθq ´∇θvτ 1pθq} ď c|τ ´ τ 1|,

sup
θPK,pτ,τ 1qPT ˆT

}hτ pθq ´ hτ 1pθq} ď c|τ ´ τ 1|.

(A.3)

pA2q (Doeblin condition)

For any given θ P Θ and τ P T , the Markov transition kernel Pθ,τ is irreducible and aperiodic. In

addition, there exist an integer l, 0 ă δ ă 1, and a probability measure ν such that for any compact

subset K Ă Θ,

inf
θPK,τPT

P lθ,τ px,Aq ě δνpAq, @x P X , @A P BX ,

where BX denotes the Borel set of X ; that is, the whole support X is a small set for each kernel Pθ,τ ,

θ P K and τ P T .

pA3q (Stability Condition on hτ pθq)

For any value τ P T , the mean field function hτ pθq is measurable and locally bounded on Θ. There

exist a stable matrix Fτ (i.e., all eigenvalues of Fτ are with negative real parts), ρ ą 0, and a constant

c such that, for any pθ˚, τq P L (defined in A1),

}hτ pθq ´ Fτ pθ ´ θ˚q} ď c}θ ´ θ˚}
2, @ θ P tθ : }θ ´ θ˚} ď ρu.

pA4q (Conditions on tγtu and tτtu)

(i) The sequence tγtu, which is defined to be γptq as a function of t and is exchangeable with γptq in

this paper, is positive, non-increasing and satisfies the following conditions:

8
ÿ

t“1

γt “ 8,
γt`1 ´ γt

γt
“ Opγιt`1q,

8
ÿ

t“1

γ
p1`ι1q{2
t ?

t
ă 8, (A.4)

for some ι P r1, 2q and ι1 P p0, 1q.
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(ii) The sequence tτtu is positive and non-increasing and satisfies the following conditions:

lim
tÑ8

τt “ τ˚, τt ´ τt`1 “ opγtq,
8
ÿ

t“1

γt|τt ´ τt´1|
ι2 ă 8, (A.5)

for some ι2 P p0, 1q, and
8
ÿ

t“1

γt|τt ´ τ˚| ă 8, (A.6)

(iii) The function ζptq “ γptq´1 is differentiable such that its derivative varies regularly with exponent

β̃ ´ 1 ě ´1 (i.e., for any z ą 0, ζ 1pztq{ζ 1ptq Ñ zβ̃´1 as t Ñ 8), and either of the following two

cases holds:

(iii.1) γptq varies regularly with exponent p´βq, 1
2 ă β ă 1;

(iii.2) For t ě 1, γptq “ t0{t with ´2λFτ t0 ą maxt1, β̃u for any τ P T , where λF denotes the

largest real part of the eigenvalue of the matrix Fτ (defined in condition A3) with λFτ ă 0.

The Lyapunov condition (A1) is related to the mean field function hτ . The mean field function of PISAA

is equal to that of SAA as shown in (A.1), and hence condition (A1) can be verified as a consequence of

Liang et al. (2014, p. 850). Briefly given (A.1), it is hpkqτ pθq “ p
Spjqτ pθq
Sτ pθq

´ πj ; j “ 1, ...,mq where Spjqτ pθq “
řm
j“1 e

´Upθq{τdx{eθ
pjq

and Sτ pθq “
řm
j“1 S

pjq
τ pθq, which is bounded and continuously differentiable with

respect to both θ P Θ and τ P T . We defined the Lyapunov function vτ pθq “ 1
2

řm
j“1p

Spjqτ pθq
Sτ pθq

´ πjq
2, which is

non-negative, upper bounded, and continuously differentiable. The gradient ∇θvτ pθq is bounded over ΘˆT ,

following Liang et al. (2007, p. 318); while ∇τvτ pθq is bounded over Θˆ T , provided that Upxq has a finite

mean with respect to fτ pxq. Yet, the second partial derivatives of vτ pθq with respect to θ and τ are bounded

provided that Upxq has a finite variance with respect to fθ,τ pxq. Then, (A.2) is verified as in (Liang et al.,

2007), on the condition that the partition of the sampling space includes at least two non-empty subregions.

The observation noise condition (A2) is equivalent to assuming that the resulting Markov chain has a

unique stationary and is uniformly ergodic (Nummelin, 2004). It is not too restrictive for a PISAA whose

function Hpκqτt pθt´1, x
p1:κqq is bounded, and thus the mean-field function and observation noise are bounded.

Condition (A2) is satisfied if X is compact, Upxq is bounded, and the proposal distribution used to simulate

from Pθ,τ satisfies the local positive condition pQq: “There exists δq ą 0 and q ą 0 such that, for every

x P X, |x´ y| ď δq ñ qpx, yq ě q”; following (Theorem 2.2 of Roberts and Tweedie, 1996). Condition (A2)

may also be verified in cases that X is not compact, e.g. (Rosenthal, 1995). Multistep Metropolis-Hastings

moves, such as those mentioned in Section 3, can be shown to satisfy (A2); see (Lemma 7 of Rosenthal,

1995) and (Liang, 2009). If (A2) holds for the single-chain kernel Pθ,τ , it must hold for the multiple-chain

one as well; see (Supplementary material of Song et al., 2014).

Condition (A3) constrains the behaviour of the mean field function around the solution points.
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We remark that pA4q-(iii) can be applied to the usual gains γt “ t0{t
β , 1{2 ă β ď 1. Following Pelletier

(1998), we deduce that
ˆ

γt
γt`1

˙1{2

“ 1`
β

2t
` op

1

t
q. (A.7)

In terms of γt, (A.7) can be rewritten as
ˆ

γt
γt`1

˙1{2

“ 1` ζγt ` opγtq, (A.8)

where ζ “ 0 for the case (iii.1) and ζ “ 1
2t0

for β “ 1 for the case (iii.2). Clearly, the matrix Fτ ` ζI is

still stable. Furthermore, condition pA4q-(ii) implies that tτtu cannot decrease too fast, and should be set

according to the gain factor sequence tγtu. A choice of τt “ t1?
t
` τ˚, with t1 ą 0, satisfies (A4)-(ii).

A.2 Main theorems hold in PISAA framework

Under the conditions (A1 - A4), the following theorems for the convergence of PISAA hold. Since Theorems

A.1, A.2 and A.4 are applicable to both the PISAA and single-chain SAA algorithms, we let Xt denote the

sample(s) drawn at iteration t and let X denote the sample space of Xt. For the PISAA algorithm, we have

X “ X κ and Xt “ x
p1:kq
t . For the single-chain SAA algorithm, we have X “ X and Xt “ xt. For any

measurable function f : XÑ Rd, P θfpXq “
ş

X P θpX, yqfpyqdy.

Theorem A.1. (Restatement of Theorems 3.1 and 3.2 of Liang et al. (2014)) Assume that T is compact

and the conditions pA1q, pA2q, pA4q-(i) and pA4q-(ii) hold. If θ̃0 used in the PISAA algorithm is such that

supτPT vτ pθ̃0q ă inf}θ}“c0,τPT vτ pθq for some c0 ą 0 and }θ̃0} ă c0, then the number of truncations in PISAA

is almost surely finite; that is, tθtu remains in a compact subset of Θ almost surely. In addition, as tÑ8,

dpθt,Lτ˚q Ñ 0, a.s.,

where Lτ˚ “ tθ P Θ : hτ˚pθq “ 0u and dpz, Sq “ infyt}z ´ y} : y P Su.

Theorem A.2. (Restatement of Theorem 3.3 of Liang et al. (2014)) Assume the conditions of Theorem

A.1 hold. Let x1, . . . , xn denote a set of samples simulated by PISAA in n iterations. Let g: X Ñ R be a

measurable function such that it is bounded and integrable with respect to fθ,τ pxq. Then

1

n

n
ÿ

t“1

gpxtq Ñ

ż

X
gpxqfθ˚,τ˚pxqdx, a.s.

Therefore, given conditions (A1 - A4) and following Liang et al. (2014, Corollary 3.1), PISAA can achieve

the following convergence result with any individual: For any ε ą 0, as tÑ8, and τ˚ Ñ 0

PpUpXtq ď u˚j ` ε|JpXtq “ jq Ñ 1, a.s.,

where Jpxq “ j if x P Ej , and u˚j “ minxPEj Upxq, for j “ 1, ...,m. Namely, given a square-root cooling

schedule, as the number of iterations t becomes large, PISAA is able to locate the minima of each subregion

in a single run if τ˚ is small.
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Lemma A.3 concerns the decomposition of the noise ξt`1 in the PISAA framework. The proof of Lemma

A.3 is presented separably in Appendix A.3. The importance of this lemma is that by using Lemma A.3,

the Theorems A.4 and A.5 can be proved to hold in PISAA framework as consequences of the results from

(Song et al., 2014). Theorem A.4 concerns the asymptotic normality of θt. With Lemma A.3, the proof

of Theorem A.4 can be referred to the proof of (Theorem 3, Song et al., 2014) except for some notational

changes, replacing hpθtq by hτt`1pθtq. Theorem A.5 concerns the asymptotic relative efficiency of the PISAA

estimator of θt versus that of SAA. The proof of Theorem A.5 is the same as that of (Theorem 4, Song et al.,

2014) using Theorem A.4 and Lemma A.3.

Lemma A.3. (Noise decomposition) Assume the conditions of Theorem A.1 hold. Then there exist Rdθ -

valued random processes tetu, tνtu, and tςtu defined on a probability space pΩ,F ,Pq such that:

(i) ξt`1 “ et`1 ` νt`1 ` ςt`1, where ξt`1 “ Hτt`1pθt, Xt`1q ´ hτt`1pθtq is the observation noise.

(ii) For any constant ρ ą 0 (defined in condition A2),

Epet`1|Ftq1t}θt´θ˚}ďρu “ 0

sup
tě0

Ep}et`1}
α|Ftq1t}θt´θ˚}ďρu ă 8,

where Ft is a family of σ-algebras satisfying σtθ0, X0; θ1, X1; . . . ; θt, Xtu “ Ft Ď Ft`1 for all t ě 0 and α ě 2

is a constant.

(iii) Almost surely on Λpθ˚q “ tθt Ñ θ˚u, as nÑ8,

1

n

n
ÿ

t“1

Epet`1e
1
t`1|Ftq Ñ Γ, a.s., (A.9)

where Γ is a positive definite matrix.

(iv)Ep}νt}2{γtq1t}θt´θ˚}ďρu Ñ 0, as tÑ8.

(v) E}γtςt} Ñ 0, as tÑ8.

Theorem A.4. (Consequence of (Theorem 2, Song et al., 2014) and Lemma A.3) Assume that T is com-

pact and the conditions pA1q, pA2q, pA3q and pA4q hold. If θ̃0 used in the PISAA algorithm is such that

supτPT vτ pθ̃0q ă inf}θ}“c0,τPT vτ pθq for some c0 ą 0 and }θ̃0} ă c0, then, Conditioned on Λpθ˚q “ tθt Ñ θ˚u,

θt ´ θ˚
?
γt

ùñ N p0,Σq, (A.10)

with ùñ denoting the weak convergence, N the Gaussian distribution and

Σ “

ż 8

0

e
pF 1τ˚`ζIqtΓepFτ˚`ζIqtdt, (A.11)

where Fτ˚ is defined in pA2q, ζ is defined in (A.8), and Γ is defined in Lemma A.3.

Theorem A.5. (Consequence of (Theorem 3, Song et al., 2014)) Suppose that both the population PISAA

(with pop. size κ) and single-chain SAA algorithms satisfy the conditions given in Theorem A.4. Let θpt and
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θst denote the estimates produced at iteration t by the multiple-chain PISAA and single-chain SAA algorithms,

respectively. Given the same gain factor sequence tγtu, then pθ
p
t ´ θ˚q{

?
γt and pθsκt ´ θ˚q{

?
κγκt have the

same asymptotic distribution with the convergence rate ratio

γt
κγκt

“ κβ´1, (A.12)

where κ denotes the population size, and β is defined in pA4q. [Note: 1{2 ă β ă 1 for the case A4-(iii.1)

and β “ 1 for the case A4-(iii.2).]

A.3 Proof of theoretical results

In order to prove Lemma A.3, we introduce Lemma A.6 which is a restatement of Lemma 1.1 of Liang et al.

(2014, online supplement) and Proposition 6.1 of Andrieu et al. (2005).

Lemma A.6. (Restatement of Lemma 1.1 of Liang et al. (2014, online supplement) and Proposition 6.1 of

Andrieu et al. (2005)) Assume that T is compact and the condition pA2q holds. Then the following results

hold for the PISAA algorithm:

pB1q For any θ P Θ and τ P T , the Markov kernel Pθ,τ has a single stationary distribution fθ,τ . In

addition, H : Θˆ X Ñ Θ is measurable for all θ P Θ and τ P T ,
ş

X }Hτ pθ, xq}fθ,τ pxqdx ă 8.

pB2q For any θ P Θ and τ P T , the Poisson equation uθ,τ pXq ´ Pθ,τuθ,τ pXq “ Hτ pθ,Xq ´ hτ pθq has a

solution uθ,τ pXq, where Pθ,τuθ,τ pXq “
ş

X uθ,τ pyqPθ,τ pX, yqdy. For any constant η P p0, 1q and any compact

subset K Ă Θ, the following results hold:

piq sup
θPK,τPT

p}uθ,τ p¨q} ` }Pθ,τuθ,τ p¨q}q ă 8,

piiq sup
pθ,θ1qPKˆK,τPT

}θ ´ θ1}´η t}uθ,τ p¨q ´ uθ1,τ p¨q} ` }Pθ,τuθ,τ p¨q ´ Pθ1,τuθ1,τ p¨q}u ă 8.

piiiq sup
θPK,pτ,τ 1qPT ˆT

}τ ´ τ 1}´η}Pθ,τuθ,τ p¨q ´ Pθ,τ 1uθ,τ 1p¨q} ă 8.

pB3q For any η P p0, 1q,

sup
pθ,θ1qPΘˆΘ

}θ ´ θ1}´η}hτ pθq ´ hτ pθ
1q} ă 8.
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Proof of Lemma A.3

Proof. (i) Define

et`1 “ uθt,τt`1
pxt`1q ´ Pθt,τt`1

uθt,τt`1
pxtq,

νt`1 “
“

Pθt`1,τt`1
uθt`1,τt`1

pxt`1q ´ Pθt,τt`1
uθt,τt`1

pxt`1q
‰

`
γt`2 ´ γt`1

γt`1
Pθt`1,τt`1

uθt`1,τt`1
pxt`1q

`
γt`2

γt`1

“

Pθt`1,τt`2uθt`1,τt`2pxt`1q ´ Pθt`1,τt`1uθt`1,τt`1pxt`1q
‰

,

ς̃t`1 “ γt`1Pθt,τt`1
uθt,τt`1

pxtq,

ςt`1 “
1

γt`1
pς̃t`1 ´ ς̃t`2q,

(A.13)

where up¨q is the solution of the Poisson equation. It is easy to verify that ξt`1 “ et`1 ` νt`1 ` ςt`1 holds.

(ii) By (A.13), we have

Epet`1|Ftq “ Epuθt,τt`1pXt`1q|Ftq ´ Pθt,τt`1uθt,τt`1pXtq “ 0, (A.14)

Hence, tetu forms a martingale difference sequence. Following from Lemma A.6-(B2), we have

sup
tě0

Ep}et`1}
α|Ftq1t}θt´θ˚}ďρu ă 8. (A.15)

This concludes part (ii).

(iii) By (A.13), we have

Epet`1e
T
t`1|Ftq “ E

“

uθtpXt`1quθtpXt`1q
T |Ft

‰

´ PθtuθtpXtqPθtuθtpXtq
T

4
“ lpXtq.

(A.16)

It follows from Lemma A.6-(B2) that lpXkq is bounded, and then it follows from Theorem A.2 that

1

n

n
ÿ

t“1

lpXtq Ñ

ż

X
lpxqfθ˚,τ˚pxqdx “ Γ, a.s. (A.17)

for some positive definite matrix Γ. This concludes part (iii).

(iv) By condition pA3q-(i), we have

γt`2 ´ γt`1

γt`1
“ Opγτt`2q,

for some value τ P r1, 2q. By (A.13) and (B2) of Lemma A.6, there exist constants c1, c11 and η P p0.5, 1q

such that the following inequality holds,

}νt`1} ď c1}θt`1 ´ θt} `Opγ
τ
t`2q ` c

1
1|τt`1 ´ τt`2|

η “ c1}γt`1Hτt`1pθt, Xt`1q} `Opγ
τ
t`2q ` opγ

η
t`1q,

which implies, by the boundedness of Hτ pθ, ¨q, that there exists a constant c2 such that

}νt`1} ď c2γt`1 ` opγ
η
t`1q. (A.18)
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Therefore,

Ep}νt}
2{γtq1t}θt´θ˚}ďρu Ñ 0.

This concludes part (iv).

(v) A straightforward calculation shows that

γt`1ςt`1 “ ς̃t`1 ´ ς̃t`2 “ γt`1Pθt,τt`1uθt,τt`1pXtq ´ γt`2Pθt`1,τt`2uθt`1,τt`2pXt`1q,

By pB2q, E
“

}Pθt,τt`1
uθt,τt`1

pXtq}
‰

is uniformly bounded with respect to t. Therefore, (v) holds.

Proof of Theorem A.4

Proof. With Lemma A.3, the proof of this theorem can be referred to the proof of (Theorem 2, Song et al.,

2014) except for some notational changes, replacing hpθtq by hτt`1
pθtq.

Proof of Theorem A.5

Proof. The proof of this theorem is the same as that of (Theorem 3, Song et al., 2014), with using Theorem

A.4 and Lemma A.3.
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B MCMC kernel crossover operations used in Section 4

Let κ denote the population size of the population xp1:κq, and d denote the number of dimensions of each

individual xpiq for i “ 1, ..., κ.

The pseudo-codes of the MCMC kernel crossover operations, used in Sections 4.1 - 4.4, are presented

below. More details can be found in (Liang, 2011; Liang and Wong, 2000, 2001).

• k-point crossover operation (continuous or discrete target distributions):

1. draw i „ $KC
1 pi;xp1:κqq and j|i „ $KC

2 pj|i;xp1:κqq

2. draw crossover points vector v „ t1, ..., d´ 1u, without replacement and sort them

3. design x1piq and x1pjq from x1piq and x1pjq by swapping their elements between each odd and the

next even crossover points

4. accept x1p1:κq :“ pxp1:i´1q, x1piq, xpi`1:j´1q, x1pjq, xpj`1:κqq with prob. aKC “ minp1,
fθ,τ px

1piq
|Eq

fθ,τ pxpiq|Eq
fθt,τt px

1pjq
|Eq

fθt,τt px
pjq|Eqˆ

$KC
1 pi;x1p1:κqq$KC

2 pj|i;x1p1:κqq`$KC
1 pj;x1p1:κqq$KC

2 pi|j;x1p1:κqq

$KC
1 pi;xp1:κqq$KC

2 pj|i;xp1:κqq`$KC
1 pj;xp1:κqq$KC

2 pi|j;xp1:κqq
q

• Snooker crossover operation (continuous target distributions):

1. draw i „ $SC
1 pi;xp1:κqq and j|i „ $SC

2 pj|i;xp1:κqq

2. compute x1piq “ xpiq ` σ2
SCrSC

xpjq´xpiq

}xpjq´xpiq}
2

, where rSC „ Np0, 1q

3. accept x1p1:κq :“ pxp1:i´1q, x1piq, xpi`1:κqq with prob. aSC “ minp1,
fθ,τ px

1piq
|Eq

fθ,τ pxpiq|Eq
q

• Linear crossover operation (continuous target distributions):

1. draw i „ $LC
1 pi;xp1:κqq and j|i „ $LC

2 pj|i;xp1:κqq

2. compute x1piq “ xpiq ` rLCx
pjq, where rLC „ Up´1, 1q

3. accept x1p1:κq :“ pxp1:i´1q, x1piq, xpi`1:κqq with prob. aLC “ minp1,
fθ,τ px

1piq
|Eq

fθ,τ pxpiq|Eq
q

For the crossover operations, we considered probabilities:

$KC
1 pi;xp1:κqq “

expp´Upxpiqq{τKCq
ř

@` expp´Upxp`qq{τKCq
, i P t1, ..., κu;

$KC
2 pj|i;xp1:κqq “

expp´Upxpiqq{τKCq
ř

@`‰i expp´Upxp`qq{τKCq
, j P t1, ..., i´ 1, i` 1, ..., κu;

$SC
1 pi;xp1:κqq “

1

κ
, i P t1, ..., κu;

$SC
2 pj|i;xp1:κqq “

expp´Upxpiqq{τSCq
ř

@`‰i expp´Upxp`qq{τSCq
, j P t1, ..., i´ 1, i` 1, ..., κu;

$LC
1 pi;xp1:κqq “

1

κ
, i P t1, ..., κu;

$LC
2 pj|i;xp1:κqq “

expp´Upxpiqq{τLCq
ř

@`‰i expp´Upxp`qq{τLCq
, j P t1, ..., i´ 1, i` 1, ..., κu,
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with quantities τKC, τSC, and τLC equal to 0.1, in Section 4.

The pseudo-codes of the MCMC kernel mutation operations, used in Sections 4.1 - 4.3 are given below.

More details can be found in (Smith, 1984; Chen and Schmeiser, 1993; Liang, 2011; Metropolis et al., 1953).

• Metropolis mutation operation:

For i “ 1, ..., κ:

1. compute x1piq “ xpiq ` σ2
MRWrMRW where rMRW „ Np0, Idq

2. accept x1p1:κq :“ pxp1:i´1q, x1piq, xpi`1:κqq with prob. aMRW “ minp1,
fθ,τ px

1piq
|Eq

fθ,τ pxpiq|Eq
q

• Hit-and-run mutation operation:

For i “ 1, ..., κ:

1. compute x1piq “ xpiq ` σ2
HRrHReHR, where rHR „ Np0, 1q and eHR is drawn randomly from a unit

d-dimensional space

2. accept x1p1:κq :“ pxp1:i´1q, x1piq, xpi`1:κqq with prob. aHR “ minp1,
fθ,τ px

1piq
|Eq

fθ,τ pxpiq|Eq
q

• k-point mutation operation:

For i “ 1, ..., κ:

1. compute x1piq “ xpiq ` σ2
KMrKMeKM, where rKM „ Np0, 1q and eKM is a k ă d aces 0-1 d-

dimensional vector randomly drawn

2. accept x1p1:κq :“ pxp1:i´1q, x1piq, xpi`1:κqq with prob. aKM “ minp1,
fθ,τ px

1piq
|Eq

fθ,τ pxpiq|Eq
q

The Gibbs update (updating one pixel at a time) in the Spatial imaging example in Section 4.4 is given

below.

• Gibbs mutation operation in Section 4.4:

For i “ 1, ..., κ:

1. draw j randomly in t1, ..., du

2. draw x
piq
j „ Bernullip$GIpj;x

piqqq, where $GIpj;x
piqq “ p1`

fθ,τ ppx
p1q
1 ,...,x

piq
j´1,0,x

piq
j`1,...,x

piq
d q|Eq

fθ,τ ppx
p1q
1 ,...,x

piq
j´1,1,x

piq
j`1,...,x

piq
d q|Eq

q´1.

The pseudo-codes of the MCMC kernel mutation operations, used for the Bayesian network example in

Section 4.5, are given below. More details can be found in (Liang and Zhang, 2009; Wallace and Korb, 1999).

• Temporal order operation:

For i “ 1, ..., κ:

1. compute G1piq by swapping the order of two randomly selected neighbouring nodes; if there is an

edge between them, reverse its direction.
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2. accept G1p1:κq “ pGp1:i´1q,G1piq,Gpi`1:κqq with prob. aTO “ minp1,
fθ,τ pG1piq|Eq
fθ,τ pGpiq|Eq

q

• Skeletal change:

For i “ 1, ..., κ:

1. compute G1piq by adding or deleting an edge between a pair of randomly selected nodes.

2. accept G1p1:κq “ pGp1:i´1q,G1piq,Gpi`1:κqq with prob. aSC “ minp1,
fθ,τ pG1piq|Eq
fθ,τ pGpiq|Eq

q

• Double skeletal change:

For i “ 1, ..., κ:

1. compute G1piq by randomly choosing two different pairs of nodes, and adding or deleting edges

between each pair of the nodes.

2. accept G1p1:κq “ pGp1:i´1q,G1piq,Gpi`1:κqq with prob. aDS “ minp1,
fθ,τ pG1piq|Eq
fθ,τ pGpiq|Eq

q

Remark B.1. The scale parameters of the proposals of the operations were tuned during pilot runs using the

adaptation scheme:

logpσ2
MRWq Ð logpσ2

MRWq`raMRW´0.234s; this ensures that the associated expected acceptance probabilities

will be around 0.234. In our applications, the performance of this adaptation scheme was acceptable, however

more sophisticated schemes can be used. For more adaptive Metropolis-Hastings schemes see (Andrieu and

Thoms, 2008).
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