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Abstract

Functional principal component analysis is one of the most commonly employed
approaches in functional and longitudinal data analysis and we extend it to analyze
functional/longitudinal data observed on a general d-dimensional domain. The com-
putational issues emerging in the extension are fully addressed with our proposed
solutions. The local linear smoothing technique is employed to perform estimation
because of its capabilities of performing large-scale smoothing and of handling data
with different sampling schemes (possibly on irregular domain) in addition to its nice
theoretical properties. Besides taking the fast Fourier transform strategy in smooth-
ing, the modern GPGPU (general-purpose computing on graphics processing units)
architecture is applied to perform parallel computation to save computation time. To
resolve the out-of-memory issue due to large-scale data, the random projection proce-
dure is applied in the eigendecomposition step. We show that the proposed estimators
can achieve the classical nonparametric rates for longitudinal data and the optimal
convergence rates for functional data if the number of observations per sample is of
the order (n/ log n)d/4. Finally, the performance of our approach is demonstrated
with simulation studies and the fine particulate matter (PM 2.5) data measured in
Taiwan.
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1 INTRODUCTION

Functional principal component analysis (FPCA), inherited from principal component anal-
ysis (PCA), has been widely employed in various fields of functional data analysis (FDA)
and longitudinal data analysis; e.g., functional regression (Yao et al., 2005b, Gertheiss et al.,
2013), functional classification (Leng and Müller, 2006, Chiou, 2012), functional cluster-
ing (Chiou and Li, 2007, 2008), outlier detection (Gervini, 2009), survival analysis (Chiou
and Müller, 2009), time series analysis (Hyndman and Shang, 2009, Aue et al., 2015), etc.
Its applications also cover a wide range of topics (e.g., Leng and Müller (2006), Chiou
and Müller (2009), Liu and Müller (2009), Aston et al. (2010), Chiou (2012), Jiang et al.
(2015), etc.), and various estimation methods have been proposed for FPCA: Rice and
Silverman (1991) and Silverman (1996) represented the latent functions with B-splines and
extracted the eigenfunctions by performing generalized eigendecomposition owing to the
roughness penalty; James et al. (2000) and Rice and Wu (2001) adopted the mixed effect
models where the mean function and the eigenfunctions were represented with B-splines
and the spline coefficients were estimated by the EM algorithm; Yao et al. (2005a) applied
the local linear smoothers (Fan and Gijbels, 1996) to estimate the mean and the covariance
functions and obtained the eigenfunctions by solving the corresponding eigen-equations.
The principal component scores were predicted by the conditional expectation approach,
named “PACE”. Some computational tricks for densely observed functional data can be
found in (Chen et al., 2015) to accelerate the computation.

Even though FDA has received considerable attention over the last decade, most ap-
proaches still focus on one-dimensional functional data. Few are developed for general d-
dimensional functional data. To extend FPCA to its multi-dimensional version, in practice
one has to take good care of the following issues. Issue A is that the conventional strat-
egy for obtaining eigenfunctions needs to be modified as the covariance of d-dimensional
functional data becomes a 2d-dimensional function instead of a matrix. Issue B is the
enormous size of an empirical covariance function and applying any computation to an
object of this scale is demanding. The last issue, Issue C, is that the d-dimensional do-
main may not be rectangle which could cause challenging problems in many smoothing
approaches.

Recently, some attention has been drawn to spatial and image data in the Statistics
society (e.g., Zhu et al. (2007), Aston and Kirch (2012), Tian et al. (2012), Zhang et al.
(2013), Risk et al. (2014), etc.). In particular, several attempts have been made to extend
FPCA for spatial and image data. Zipunnikov et al. (2011a,b) vectorized the pre-smoothed
images and extracted the eigenfunctions by singular value decomposition (SVD). Wang
and Huang (2015) proposed a regularized SVD approach for two-dimensional spatial data.
However, SVD could only be applied to functional data observed on a regular grid. To
handle bivariate functional observations made on irregular domain, Zhou and Pan (2014)
extended the functional mixed effect models (James et al., 2000, Rice and Wu, 2001) to
bivariate functional data by utilizing the triangularized bivariate splines (Chui and Lai,
1987, Lai and Wang, 2013). However, the triangularized bivariate splines are designed for
two-dimensional functions only. Extending spline basis functions for general d-dimensional
data observed on an irregular domain is very sophisticated and becomes extremely complex
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as d increases. Hung et al. (2012) applied the multilinear PCA (MPCA) (Lu et al., 2008) to
analyze two-dimensional facial images. MPCA requires less computational resources and
is much faster than general d-dimensional FPCA, referred as d-FPCA hereafter. However,
the eigentensors obtained by MPCA are usually uninterpretable. Moreover, MPCA is not
applicable if the d-dimensional functions are not observed on rectangle meshes.

We will employ the local linear smoothing technique to perform estimation in d-FPCA
in this paper because of its nice theoretical properties (Hall and Hosseini-Nasab, 2006, Hall
et al., 2006, Li and Hsing, 2010) and its capability of handling data with different sampling
schemes over various domains. Thus, Issue C is solved. A local linear smoother is also
more appropriate for large-scale smoothing as most smoothing techniques, such as spline-
based approaches, require the users to solve a global linear system where all the data are
involved. However, for large-scale problems loading all the data into a computer’s memory
is nearly impossible. On the contrary, a local linear smoother estimates the function locally
and independently, and thus can be performed parallelly and distributively; for example, it
can be done through a modern GPGPU (general-purpose computing on graphics processing
units) architecture. Another nice aspect of a local linear smoother is that it can easily be
incorporated with the random projection procedure (Halko et al., 2011) and block matrix
operations, which make the eigendecomposition step feasible when the empirical covariance
function is of an enormous size. When the observations are made at the nodes of a regular
grid, Issue C no longer exists and the local linear smoothing procedure can be further
accelerated by using the FFT (fast Fourier transform) based approaches (e.g., Silverman
(1982), Breslaw (1992), Wand (1994), etc.). These FFT based approaches can be easily
parallelized as well and these arguments regarding to computational issues will be further
elaborated in Section 3.

The rest of this paper proceeds as follows. Section 2 is comprised of the d-FPCA frame-
work, the proposed estimators and their asymptotic properties. The major computational
issues with solutions are provided in Section 3. Simulation studies and an illustrative real
data analysis are presented in Sections 4 and 5, respectively. Section 6 contains concluding
remarks. The theoretical assumptions are delegated to an appendix.

2 METHODOLOGY

We consider the stochastic process, for t ∈ Ω,

X(t) = µ(t) +
∞∑
`=1

A`φ`(t), (2.1)

where µ(t) is the mean function, φ`(t) is the `-th eigenfunction of Γ(s, t), the covariance
function of X(t), and A` is the `-th principal component score. Without loss of generality,
the domain of X(t) is assumed to be a compact space Ω ⊂ [0, 1]d and thus the domain
of Γ(s, t) is Ω × Ω. The principal component scores, A`’s, are uncorrelated random vari-
ables with mean 0 and variance λ`, where λ` is the eigenvalue of Γ(s, t) corresponding to
eigenfunction φ`(t). We further assume that µ(t), Γ(s, t) and φ`(t) are smooth functions.
Detailed assumptions can be found in the Appendix.
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2.1 Estimation

In practice, most data are available at discrete time points and might further be contam-
inated with measurement errors. We denote the observations of the i-th sample made at
tij = (tij,1, . . . , tij,d)

T as

Yij = Xi(tij) + εij

= µ(tij) +
∞∑
`=1

Ai`φ`(tij) + εij,
(2.2)

where 1 ≤ j ≤ Ni, 1 ≤ i ≤ n, and εij is the random noise with mean 0 and variance σ2.
In order to reconstruct Xi(t) in (2.2) at any given t = (t1, . . . , td)

T ∈ Ω, we need to
estimate µ(t), Γ(s, t) and σ2. When the observations are not made on a regular grid, con-
ventional approaches, where functional data are treated as high dimensional data, can not
be directly applied. Statistical approaches with smoothing techniques are often considered;
here we employ the local linear smoothers. Specifically, the mean function is estimated by

µ̂(t) =b̂0,

b̂ = arg min
b=(b0,...,bd)T∈Rd+1

n∑
i=1

1

Ni

Ni∑
j=1

Kh(t− tij)

× [Yij − b0 −
d∑

k=1

bk(tk − tij,k)]2,

(2.3)

where

Khµ(t− tij) = K

(
t1 − tij,1
hµ,1

, . . . ,
td − tij,d
hµ,d

) d∏
k=1

1

hµ,k
,

hµ,k is the bandwidth for the k-th coordinate and K(·) is a d-dimensional kernel function.
Once the mean function is estimated, the covariance function can be obtained by

Γ̂(s, t) =b̂0 − µ̂(s)µ̂(t), where

b̂ = arg min
b=(b0,...,b2d)T∈R2d+1

n∑
i=1

1

Ni(Ni − 1)

×
∑

1≤j 6=`≤Ni

KhΓ
(s− sij)KhΓ

(t− ti`)

×

[
YijYi` − b0 −

d∑
k=1

bk(sk − sij,k)

−
d∑

k=1

bd+k(tk − ti`,k)

]2

,

(2.4)

hΓ,k’s are the bandwidths and K(·) is defined as (2.3). The eigenvalues and eigenfunctions

can be estimated by solving (3.1) with Γ(s, t) replaced by Γ̂(s, t). Details could be found
in Section 3.
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When Yij’s are densely observed, the principal component scores, Ai`’s, can be predicted
by inner products. However, when the observations are not dense enough, applying inner
products might not generate satisfactory results. To solve this issue for irregularly observed
longitudinal data, Yao et al. (2005a) proposed PACE. It is known that the PACE is a BLUP
(best linear unbiased predictor) even when the normality assumption is violated. To employ
PACE, we further need the estimate of σ2. Since cov(Yij, Yij′) = Γ(tij, ttj′) + σ2δjj′ , where
δjj′ = 1 if j = j′ and 0 otherwise, σ2 can be estimated by the strategy taken in Yao et al.

(2005a). First, we estimate Γ(t, t) + σ2 by b̂0, where

b̂ = arg min
b=(b0,...,bd)T∈Rd+1

n∑
i=1

1

Ni

Ni∑
j=1

Khσ(t− tij)

×

[
Y 2
ij − b0 −

d∑
k=1

bk(tk − tij,k)

]2

, (2.5)

Khσ is defined as (2.3) and hσ,k’s are the bandwidths. Then,

σ̂2(t) = b̂0 − Γ̂(t, t) + µ̂(t)µ̂(t).

If σ2 does not change over t, we consider to estimate it by

σ̂2 =

∫
Ω

σ̂2(t)dt. (2.6)

Note that more sophisticated approaches could be considered to produce more robust esti-
mates for σ2. With σ̂2, we can now predict Ai,` by PACE. Specifically,

Âi,` = λ̂`Φ̂
T
i`Σ̂
−1
Yi
Y C
i , (2.7)

where

Φ̂i` = (φ̂`(ti1), . . . , φ̂`(tiNi))
T ,

Σ̂Yi =
L∑
`=1

λ̂`Φ̂i`Φ̂
T
i` + σ̂2INi×Ni ,

and Y C
i = (Yi(ti1)− µ̂(ti1), . . . , Yi(tiNi)− µ̂(tiNi))

T .

By combining the above estimates, Xi(t) can be reconstructed as

X̂i(t) = µ̂(t) +
L∑
`=1

Âi`φ̂`(t),

where L can be selected by AIC, BIC, FVE (fraction of variation explained) or other
model selection criteria; FVE is employed in this paper. The product Epanechnikov kernel
function is employed in our numerical studies. The bandwidths in the aforementioned
estimators can be decided with some data-driven approach, such as the method proposed
in Ruppert et al. (1995). We will elaborate our bandwidth selection procedure in section
3.3.
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2.2 Asymptotical properties

The strategies taken in Li and Hsing (2010) may be employed to show the asymptotical
properties of our estimators and similar asymptotic properties are obtained. Below we
will provide the results while the assumptions are listed in the Appendix. Two sampling
schemes on Ni for d ≥ 2 will be discussed; one corresponds to functional data, while the

other corresponds to longitudinal data. Denote γnk =
(
n−1

∑n
i=1 N

−k
i

)−1
for k = 1 and 2,

δn1(h) = [{1+1/(hdγn1)} log n/n]1/2 and δn2(h) = [{1+1/(hdγn1)+1/(h2dγn2)} log n/n]1/2.
We first provide the convergence rate for µ̂(t).

Theorem 2.1. Assume that A.1-A.4 hold. Then,

sup
t∈Ω
|µ̂(t)− µ(t)| = O(h2

µ + δn1(hµ)) a.s. (2.8)

On the right hand side of (2.8), O(h2
µ) is a bound for bias and the other term is the

uniform bound for |µ̂(t)−E(µ̂(t))|. We next investigate the asymptotical results of Theorem
2.1 under two special sampling schemes.

Corollary 2.1. Assume that A.1-A.4 hold.
(a) If max1≤i≤nNi ≤M for some fixed M, then

sup
t∈Ω
|µ̂(t)− µ(t)| = O(h2

µ + {log n/(nhdµ)}1/2} a.s.

(b) If max1≤i≤nNi ≥Mn, where
M−1

n ≈ hdµ ≈ (log n/n)d/4 is bounded away from zero, then

sup
t∈Ω
|µ̂(t)− µ(t)| = O((log n/n)1/2} a.s.

Corollary 2.1 indicates that the the classical nonparametric rate for estimating a d-
dimensional function can be achieved for longitudinal data and that the optimal conver-
gence rate can be achieved if Ni, the number of observations per sample, is of the order
(n/ log n)d/4.

The following results are the convergence rates for Γ̂(s, t) and σ̂2.

Theorem 2.2. Assume that A.1-A.6 hold. Then,

sup
s,t∈Ω
|Γ̂(s, t)− Γ(s, t)|

= O
(
h2
µ + δn1(hµ) + h2

Γ + δn1(hΓ)
)
a.s.

Theorem 2.3. Assume that A.1-A.2 and A.5-A.7 hold. Then,

sup |σ̂2 − σ2|
= O

(
h2

Γ + δn1(hΓ) + δ2
n2(hΓ) + h2

σ + δ2
n1(hσ)

)
a.s.
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Corollary 2.2. Assume that A.1-A.6 hold.
(a) If max1≤i≤nNi ≤M for some fixed M and h

1/2
Γ . hµ . hΓ then

sup
s,t∈Ω
|Γ̂(s, t)− Γ(s, t)|

= O
(
h2

Γ + {log n/(nh2d
Γ )}1/2

)
a.s.

(b) If max1≤i≤nNi ≥ Mn, where M−1
n . hdΓ . hdµ . (log n/n)d/4 is bounded away from

zero, then
sup
s,t∈Ω

|Γ̂(s, t)− Γ(s, t)| = O
(
(log n/n)1/2

)
a.s.

Corollary 2.2 shows that the classical nonparametric rate for estimating a 2d-dimensional
function can be obtained for longitudinal data and the optimal convergence rates can be
achieved if Ni is of the order (n/ log n)d/4 for functional data which is the same as the
condition required for µ̂(t) to have optimal convergence rate.

Further, we assume the nonzero eigenvalues are distinct as Li and Hsing (2010) due to
the identifiability of eigenfunctions.

Theorem 2.4. Assume that A.1-A.6 hold, for 1 ≤ j ≤ J ,

(i)|λ̂j − λj|
= O

(
(log n/n)1/2 + ζ + δ2

n1(hµ)
)

a.s.,

(ii)‖φ̂j(t)− φj(t)‖
= O (ζ + δn1(hµ) + δn1(hΓ)) a.s.,

(iii) sup
t∈Ω
|φ̂j(t)− φj(t)|

= O (ζ + δn1(hµ) + δn1(hΓ)) a.s.,

where ζ = h2
µ + h2

Γ + δ2
n2(hΓ), and J is an arbitrary fixed constant.

Again, we discuss the above results with two different sampling schemes for d ≥ 2.

Corollary 2.3. Assume that A.1-A.6 hold and 1 ≤ j ≤ J for an arbitrary fixed constant
J .
(i) Suppose that max1≤i≤nNi ≤ M for some fixed M. If (log n/n)1/2 < hdµ . hdΓ .
(log n/n)1/3,

(a) |λ̂j − λj| = O
(
h2

Γ + {log n/(nh2d
Γ )}

)
a.s.;

(b) both supt∈Ω |φ̂j(t)−φj(t)| and ‖φ̂j(t)−φj(t)‖ are of the rate O
(
h2

Γ + {log n/(nh2d
Γ )}

)
.

(ii) Suppose max1≤i≤nNi ≥Mn, whereM−1
n . hdΓ, h

d
µ . (log n/n)d/4 is bounded away from

zero. |λ̂j − λj|, supt∈Ω |φ̂j(t)− φj(t)| and ‖φ̂j(t)− φj(t)‖ are of the rate O
(
(log n/n)1/2

)
.
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3 COMPUTATIONAL ISSUES

Now, we provide solutions to Issues A and B and introduce GPU (graphics processing
unit) parallelization as well as the FFT calculation for local linear smoothers.

3.1 Matrixization

Issue A can be tackled by properly matrixizing Γ(s, t) as the following eigen-equations∫
Ω

Γ(s, t)φ`(s)ds = λ`φ`(t),∫
Ω

φ`(t)φι(t)dt = 0 for all ` 6= ι,

(3.1)

can be well-approximated by their corresponding Riemann sums, which can be represented
with matrix operations. We will illustrate the trick with a simple case where d = 2. Suppose
that Γ(s, t) is available on a dense regular grid (s1,i, s2,j, t1,i′ , t2,j′) for 1 ≤ i, i′ ≤ M1 and
1 ≤ j, j′ ≤M2. Let Σ = [Σii′ ]1≤i,i′≤M1

be a matrix consisting of block matrices

Σii′ =
[
Γ(s1,i, s2,k, t1,i′ , t2,`)

]
1≤k,`≤M2

,

and ψ` be the eigenvector of Σ corresponding to eigenvalue λ̃`. The eigenvalues, λ`, and
eigenfunctions, φ`(t), can be well-approximated by properly rescaling λ̃` and ψ` when M1

and M2 are sufficiently big. The rescaling is to ensure
∫
φ2
`(t)dt = 1. This matrixization

idea holds for general d-dimensional cases, and the construction of Σ is fairly simple. It is
done by reshaping Γ to a 2-dimensional matrix; for example, it can be done by the reshape
function in MATLAB. Note that if the domain Ω is not a rectangle, one could simply find
a rectangle compact domain Ω̃ ⊃ Ω, and performs integration on it by setting Γ(s, t) = 0
if s or t is not in Ω (e.g., Chapter 12 in Stewart (2012)).

3.2 Large-scale local polynomial smoothing

Computing the local linear estimators, (2.3)–(2.5), is time-consuming when N =
∑n

i=1Ni

is large. Fortunately, a local linear smoother possesses some key characteristics that make
GPU parallelization easy. Now, we take (2.3) as an illustrative example. The computations
of b̂ at any two distinct t’s are identical, but independent of each other and do not com-
municate with each other. A GPU comprises hundreds to thousands of micro computing
units, and each of them can conduct simple calculations simultaneously. However, these
computing units do not communicate with each other, and hence GPU parallelization may
not be suitable for other smoothing approaches, such as smoothing splines. Our numerical
experience indicates that the GPU implementation d-FPCA is nearly 100 times faster than
the existing MATLAB package on a machine with a cheap GPU (NVIDIA Quadro K600)
consisting of 192 threads.

When N is very large, simply considering the GPU paralleled implementation may not
be enough since the computational complexities of both (2.3) and (2.5) are O(N2), and
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that of (2.4) is O(N4). Taking the FFT strategy (Wand, 1994) could greatly reduce the
computational complexities of (2.3)– (2.5) to O(N logN), O(N2 logN) and O(N logN),
respectively. Although the FFT is restricted for regularly observed functional data, the
binning strategy (Wand, 1994) can be taken for irregularly observed data. Even though
binned local linear estimators are asymptotically consistent (Hoti and Holmström, 2003),
the consistency highly relies on the order of bin widths. In order to achieve it, the orders
of bin widths have to be smaller than those of the optimal bandwidths and Hall and Wand
(1996) discussed the minimum number of bins so that the binning effect is negligible.
To relax the memory limitation of FFT without sacrificing the computational speed, we
partition the domain into several overlapping blocks and apply the FFT-based local linear
smoothing to each block. We choose overlapping blocks to avoid additional boundary effects
due to smoothing. The block size is decided to achieve a balance between system memory
and computational speed.

3.3 Bandwidth selection

Bandwidth selection is crucial in smoothing. The bandwidth minimizing the distance
between fitted and true functions, i.e. conditional mean integrated squared error (MISE),
is often considered as an optimal bandwidth. To avoid overfitting, one commonly considers
a cross-validation (CV) procedure to select a proper bandwidth and a valid scheme in
FDA is the leave-one-sample-out CV due to theoretical considerations. Unfortunately,
performing the leave-one-sample-out CV is very time-consuming and unlike traditional
smoothing problems, the equivalent form in MISE between CV and GCV does not exist.
Therefore, a different viewpoint is taken here. The bandwidth selection procedure is to
provide some guidance on suitable bandwidths for a given dataset and in practice one
may need to further adjust these objective suggestions manually Liu and Müller (2009).
Also, GCV generally generates satisfactory results as the MATLAB package PACE (Yao
et al., 2005a) considers GCV as a default option. As a consequence, we consider the the
leave-one-observation-out CV to perform bandwidth selection for its nice connection to
GCV.

Although the conditional MISE is asymptotically a smooth and convex function of
bandwidths, its empirical version could be very noisy and thus with multiple local minima.
So, traditional numerical minimization algorithms cannot be directly applied for searching
the optimal bandwidths. The CV or GCV procedures in most statistical packages are
carried out by grid search; however, grid search is very time-consuming, especially when
d is not small. Therefore, we propose a numerical optimization procedure adaptive to
the noisy CV or GCV criteria. Our idea originates from the derivative-free trust-region
interpolation-based method (Marazzi and Nocedal, 2002), a Newton-like algorithm. Here,
the gradient and hessian of the objective function are “estimated” by locally quadratic
interpolations. To be adaptive for the noisy criteria, we replace the interpolation step in
Marazzi and Nocedal (2002) with a quadratic regression. Our algorithm requires O(d6)
iterations to converge in the worst case (Conn et al., 2009), which is a great improvement
over grid search.
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3.4 Random projection

Issue B could be vital even with a moderate d as the size of Σ grows exponentially. Suppose
we have d-dimensional functional data with 100 observation grids in each coordinate and
Σ will consist of 104d elements. It is challenging to perform eigendecomposition on Σ due
to the memory issue. Take d = 3 for example; it requires approximately 4 × 1012 ≈ 4TB
to store Σ with single precision floating points. One remedy is employing the random
projection approximation (Halko et al., 2011), which is based on the following algebraic
property. Suppose Σ = ΨΛΨT by eigendecomposition. For any p× q matrix Q satisfying
QQT ≈ Ip and q � p, Σ′ = QTΣQ can be expressed as QTΨΛΨTQ. This implies
that one can perform eigendecomposition on a smaller matrix Σ′ to obtain Λ and Ψ.
Specifically, Ψ ≈ Q(QTΨ), where QTΨ are the eigenvectors of Σ′. To choose a proper Q,

Halko et al. (2011) proposed to employ a random matrix Q̃ = {q̃ij}, where q̃ij
i.i.d.∼ N(0, 1/q),

because E
(
Q̃Q̃T

)
= Ip. The computer codes for the random projection approximation

are available on the parallel computing platforms, such as Hadoop and Spark. Note that
with our block-wise FFT strategy, Σ′ can be obtained by block matrix multiplications and
thus QTΨ without storing the entire Σ in a computer’s memory. However, this random
projection strategy is based on the assumption that the rest (p − q) eigenvalues are all
zeros. If this assumption is violated, we will need to investigate a new algorithm for
eigendecomposition and this will be our future project.

Two simulation studies are conducted to demonstrate the performance of our approach.
In the first study, we compare the computational speed of our implementations on the local
linear smoothing procedure with that of existing statistical packages. Among them, the
MATLAB package PACE (Yao et al., 2005a) is selected as it was specifically designed
for one-dimensional FPCA and generates satisfactory results. We consider two different
implementations on the local linear smoothing procedures: the GPU parallelization and
the FFT strategy. The GPU parallelization implementation is written in C using the
OpenACC toolkit Herdman et al. (2014) and called in MATLAB; the FFT implementation
is written in MATLAB using the MATLAB subroutine fftn. In the second study, we
consider d = 3 to demonstrate the potential of our approach for 3D functional data. We
will demonstrate the computational advantages of taking the random projection strategy.
The random projection approximation is implemented in MATLAB on our own.

3.5 Simulation I

Following Yao et al. (2005a), we generate the data from

Yi(t) = Xi(t) + ε

= µ(t) +
2∑
`=1

Ai`φ`(t) + ε,
(3.2)

where µ(t) = t+ sin(t), φ1(t) = − cos(πt/10)/
√

5,
φ2(t) = sin(πt/10)/

√
5, Ai1 ∼ N(0, 4), Ai2 ∼ N(0, 1), and ε ∼ N(0, 0.25). The simulation
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consists of 100 runs and each run contains 100 random curves sampled from 10000 equis-
paced points in [0, 10]. To have fair comparisons, we select the number of eigenfunctions
by setting the FVE to be at least 95%, and the principal component scores are estimated
through integration for both PACE and our d-FPCA. While applying PACE, we choose the
data type as “dense functional”, and all the other options are set as default. To accelerate
the computational speed, PACE bins the original data into 400 equispaced bin grids and
selects the bandwidths via GCV. The experiment is performed on a machine with Intel
E3-1230V3 CPU, 32GB RAM and NVIDIA Quadro K600 GPU. The computational time
as well as the MISE,

1

100

100∑
i=1

∫ 10

0

[X̂i(t)−Xi(t)]
2dt,

are summarized in Table 1, indicating that our d-FPCA provides slightly (but, not sig-
nificantly) better reconstructed curves than PACE does, while our computational speed is
about 100 times and 300 times faster than PACE with GPU and FFT implementations,
respectively.

Table 1: Computational time (in seconds) and MISE for PACE and d-FPCA (mean±std).
PACE d-FPCA (GPU) d-FPCA (FFT)

Time 314.1±11.1 3.2±1.0 1.0±0.3
MISE .015±.019 .014±.016 .014±.016

3.6 Simulation II

In the second experiment, we consider the following model

Yi(t) = Xi(t) + ε

= µ(t) +
4∑
`=1

Ai`φ`(t) + ε,
(3.3)

where

µ(t) = exp{(t− 0.5)T (t− 0.5)},

φ`(t) =
3∏
i=1

{sin(2`πti)/2} for ` = 1, . . . , 4,

t = (t1, t2, t3)T ∈ [0, 1]3, Ai` ∼ N(0, 43−`), and ε ∼ N(0, 1/16). In each run, we generate 100
random functions on the nodes of a 643 equispaced grid. Notice that we need 646×4 ≈ 256
GB RAM to store the entire covariance function Σ if single precision floating points are
used, and so performing eigendecomposition directly is demanding. Two approaches are
compared here.

Both approaches adapt the FFT strategy in the step of estimating µ(t) and Σ; the
difference is that the first approach performs conventional eigendecomposition to obtain
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eigenfunctions while the other employs the random projection strategy and the blockwise
FFT to obtain eigenfunctions. Performing conventional eigendecomposition on Σ requires
additional 256 GB of RAM to obtain all the eigenfunctions; clearly, it does not appear
feasible in practice. To be conservative in memory usage, we only extract the first 99
eigenfunctions, which is much more than the number of true eigenfunctions. The exper-
iment is carried out on a Microsoft Azure G5 instance, a virtual machine with 32 cores
of Intel Xeon E5 V3 CPU and 448GB of RAM. The Microsoft Azure G5 instance is the
machine with the largest memories that we can access. In the second approach, the random
projection, Σ′ = QTΣQ, can be obtained by blockwise matrix multiplications, and hence
it does not require 256 GB RAM to secure Σ′. To perform blockwise FFT, we partition
the covariance function into 8 overlapping blocks. In the random projection step, we use
q = 99. The experiment is carried out on a Microsoft Azure D14 instance, a virtual machine
with 16 cores of Intel Xeon E5 V3 CPU and 112GB of RAM.

To save cost, this simulation only consists of 20 runs. To complete one run, the first
approach takes approximately 8.5 hours, while the second one takes approximately 5 hours.
The integrated squared error (ISE) of the `th eigenfunction is defined as∫

Ω

[φ̂`(t)− φ`(t)]2dt,

and the results are summarized in Table 2. The reconstruction errors of both methods
are almost equivalent, but the one based on the random projection does introduce very
little errors into the estimated eigenfunctions. However, those errors are insignificant and
negligible compared to its computational advantage.

Table 2: The reconstruction errors (mean±std) and the ISE of estimated eigenfunctions
(mean±std) for d-FPCA with/without random projection (RP).

Reconstruction φ̂1 φ̂2 φ̂3 φ̂4

RP .003±6.2×10−6 .1122±.0035 .1137±.0038 .1137±.0038 .1140±.0037
w.o. RP .003±6×10−6 .1125±.0036 .1133±.0038 .1133±.0038 .1137±.0036

4 DATA ANALYSIS

Recent studies have shown PM2.5 is a potential risk factor for lung cancer (Raaschou-
Nielsen et al., 2013) and heart attack (Cesaroni et al., 2014); thus, monitoring the level of
PM2.5 becomes urgent. The dataset consisting of PM2.5 measurements (in µg/m3) made
at 25 irregularly located monitor sites on western Taiwan from Nov. 29, 2012 to Mar. 1,
2015 (available at http://taqm.epa.gov.tw/pm25/tw/) is considered in this section. The
measurements were carried out manually every three days; therefore, the sample size is
275. Due to experimental failures, machine malfunction and that all the monitor sites were
not established simultaneously, the measurements are not complete. One might consider
to perform one-dimensional FPCA to this dataset, i.e., the measurements made at each
monitor site represent one sample curve. However, doing so leads to serious problems; the
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sample size becomes very small (i.e., n = 25) and the samples are highly correlated due
to their spatial locations. Moreover, because the measurements were made every three
days and they are highly dependent on the weather conditions (e.g., winds and rains), the
true temporal correlation is difficult to estimate consistently with current available data
resolution. All these are problematic in performing FPCA. To the best of our knowledge,
no existing functional approach is capable of analyzing such type of data. So, only d-FPCA
is applied to this dataset and the following model is considered

Yi(s) = µ(s) +
L∑
k=1

Aikφk(s) + ε,

where s is a given spatial location, L is the number of eigenfunctions and i = 1, . . . , 275.
Figure 1 shows the estimated mean function, µ̂(s), and the estimates of the first three

eigenfunctions, φ̂k(s) for k = 1, 2, 3. The fractions of variation explained by the first three
eigenfunctions are 78.6%, 13.0%, and 7.1%, respectively. Figure 1-(a) indicates that the
level of PM 2.5 on southwestern Taiwan is higher than that on northern Taiwan on average.
This may be because most of the coal thermal power stations and heavy industry factories
(e.g., steel mills and petrochemical factories) are on southwestern Taiwan. Note that |φk(s)|
represents the variation magnitude of PM 2.5 level at location s. A positive φk(s) with a
positive Aik implies that the PM 2.5 level at location s at time i is higher than µ(s) given
that other variables remain unchanged. This may be due to the PM 2.5 accumulation at
location s. On the contrary, a negative Aik implies that PM 2.5 level at time i is lower than
its average, which may be because of rains or winds. Figure 1-(b) indicates that the issue
of PM 2.5 is very severe around Yunlin County, where the largest petrochemical complex
in Taiwan is located, as the first eigenfunction explains 78.6% variation of the PM 2.5 data
and the PM 2.5 level could become very high in this area. Figure 1-(c) indicates that
the PM 2.5 levels in Kaohsiung and Tainan (two consecutive cities in southern Taiwan)
could become relatively high. One possible explanation is that most of the petrochemical
factories in Taiwan are located in Kaohsiung. Figure 1-(d) suggests that the PM 2.5 level
in Taipei could also get high even though its average is relatively low and this might result
from the air pollutant in China carried by the northeast monsoon in winter. Figure 2
further confirms this conjecture as the principal component scores are all very close to
zero in summer while they fluctuate a lot in winter. The explanation for negative principal
component scores is that it rains very often on northern Taiwan in winter. Further, all three
estimated eigenfunctions show that a small area in Nantou county could have relatively high
level of PM2.5 and this may be due to the accumulation of fine particulate matter blocked
by the Central Range.

Two experiments are conducted to demonstrate the reconstruction ability of d-FPCA.
In the first experiment, each run we randomly split the data into training and validation
sets with 175 and 100 samples, respectively. It consists of 50 runs. Again, MISE is employed
to evaluate the performance of d-FPCA; the average and standard error are 29.15 and 4.46,
respectively. In the second experiment, we evaluate d-FPCA’s ability to predict missing
values by means of the leave-one-location-out CV strategy. The performance is measured

13



22

23

24

25

120.0 120.5 121.0 121.5 122.0
long

la
t

20

25

30

35
mean

(a)

22

23

24

25

120.0 120.5 121.0 121.5 122.0
long

la
t

0.1

0.2

0.3

eigenfunction

(b)

22

23

24

25

120.0 120.5 121.0 121.5 122.0
long

la
t

-0.1

0.0

0.1

eigenfunction

(c)

22

23

24

25

120.0 120.5 121.0 121.5 122.0
long

la
t

-0.2

0.0

0.2

eigenfunction

(d)

Figure 1: Estimated functions for the PM 2.5 dataset: (a) is the estimated mean function;
(b)-(d) correspond to the estimated first three eigenfunctions, respectively.
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with the squared prediction error,∑
j∈Ii

[
Yj(si)− X̂(−i)

j (si)
]2

, (4.1)

where Yj(si) is the measurement of location si made at time j, X̂
(−i)
j (si) is the prediction

of Yj(si) and Ii is the set of observation times for location si. The average and standard
error of (4.1) are 31.17 and 4.52, respectively. Figure 3 shows the reconstructions at two
specific locations, the closest stations to where the two authors live. Figure 3 indicates
that d-FPCA works very well since distributions of the observations and the corresponding
predictions are very close to the straight line (x = y).
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Figure 3: Underlying observations vs Reconstructed PM 2.5 measurements for Zhongming
and Xizhi monitor sites.

5 CONCLUSIONS

The idea of extending FPCA to analyze multidimensional functional data is very natu-
ral and the extension is quite straightforwad conceptually and theoretically; however, the
emerging computational issues for practical data analyses are not so easy. To tackle these
issues, we employed the estimators based on local linear smoothers because of their ca-
pabilities of performing large-scale smoothing and handling data with different sampling
schemes over various domains in addition to their nice theoretical properties. To acceler-
ate the computational speed, we employed both the FFT strategy and the GPU parallel
computing in the smoothing step. The out-of-memory problem in the eigendecomposition
step due to large-scale data has been properly addressed by using the random projec-
tion approximation and block matrix operations. Our strategies on conducting large-scale
smoothing and performing eigendecomposition on huge covariance matrices are completely
applicable to other FDA approaches for multi-dimensional functional data, such as partial
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least-squares (Preda and Saporta, 2005, Delaigle and Hall, 2012), functional sliced inverse
regression Ferré and Yao (2003, 2005), etc.

We have also investigated the asymptotic properties of the proposed estimators under
two different sampling schemes. Specifically, we have shown that the classical nonpara-
metric rates can be achieved for longitudinal data and the optimal convergence rates can
be achieved if Ni, the number of observations per sample, is of the order (n/ log n)d/4 for
functional data. The finite sample performance of our approach has been demonstrated
with simulation studies and the fine particulate matter (PM 2.5) data measured in Taiwan.
Although only functional data cases have been considered in our numerical experiments,
the proposed approach is definitely applicable for longitudinal data by employing “PACE”
to predict the principal component scores.

APPENDIX: ASSUMPTIONS

Since the estimators, µ̂(t) and Γ̂(s, t), are obtained by applying the local linear smoothing
approaches, it is natural to make the standard smoothness assumptions on the second
derivatives of µ(t) and Γ(s, t). Assumed that the data (Ti,Yi), i = 1, · · · , n, are from the
same distribution, where Ti = (ti1, · · · , tiNi) and Yi = (Yi1, · · · , YiNi). Notice that (tij, Yij)
and (tik, Yik) are dependent but identically distributed and with marginal density g(t, y).
Additional assumptions and conditions are listed below.

The following assumptions of Y (t) were also made in Li and Hsing (2010). Suppose the
observation of the ith subject at time tij is Yij = µ(tij) + Uij, where cov(Ui(s), Ui(t)) =
Γ(s, t) + σ2I(s = t) and Γ(s, t) =

∑
` λ`φ`(s)φ`(t).

A.1 For some constant mT > 0 and MT < ∞, mT ≤ g(t, y) ≤ MT for all t ∈ Ω and
y ∈ Y . Further, g(·, ·) is differentiable with a bounded derivative.

A.2 The kernel function K(·) is a symmetric probability density function on [−1, 1] and
is of bounded variation on [−1, 1].

A.3 µ(t) is twice differentiable and the second derivative is bounded on Ω.

A.4 E(|Uij|λ) < ∞ and E(supt∈Ω |X(t)|λ) < ∞ for some λ ∈ (2,∞); hµ → 0 and
(h2d

µ + hdµ/γn1)−1(log n/n)1−2/λ → 0 as n→∞.

A.5 All second-order partial derivatives of Γ(s, t) exist and are bounded on Ω× Ω.

A.6 E(|Uij|2λ) <∞ and E(supt∈Ω |X(t)|2λ) <∞ for some λ ∈ (2,∞); hΓ → 0 and
(h4d

Γ + h3d
Γ /γn1 + h2d

Γ /γn2)−1(log n/n)1−2/λ → 0 as n→∞

A.7 E(|Uij|λ) < ∞ and E(supt∈Ω |X(t)|λ) < ∞ for some λ ∈ (2,∞); hσ → 0 and
(h2d

σ + hdσ/γn1)−1(log n/n)1−2/λ → 0 as n→∞.
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K. Leander, P. K. E. Magnusson, E. Migliore, C.-G. Ostenson, K. Overvad, N. L. Peder-
sen, J. P. J, J. Penell, G. Pershagen, A. Pyko, O. Raaschou-Nielsen, A. Ranzi, F. Ricceri,
C. Sacerdote, V. Salomaa, W. Swart, A. W. Turunen, P. Vineis, G. Weinmayr, K. Wolf,
K. de Hoogh, G. Hoek, B. Brunekreef, and A. Peters (2014). Long term exposure to
ambient air pollution and incidence of acute coronary events: prospective cohort study
and meta-analysis in 11 european cohorts from the escape project. BMJ 348.

Chen, K., X. Zhang, A. Petersen, and H.-G. Müller (2015, Nov). Quantifying
in nite-dimensional data: Functional data analysis in action. Statistics in Bio-
sciences (DOI:10.1007/s12561-015-9137-5), 1–23.

Chiou, J.-M. (2012). Dynamical functional prediction and classification, with application
to traffic flow prediction. Annals of Applied Statistics 6, 1588–1614.

Chiou, J.-M. and P.-L. Li (2007). Functional clustering and identifying substructures of
longitudinal data. Journal of the Royal Statistical Society, Series B 69, 679–699.

Chiou, J.-M. and P.-L. Li (2008). Correlation-based functional clustering via subspace
projection. Journal of the American Statistical Association 103, 1684–1692.

Chiou, J.-M. and H.-G. Müller (2009). Modeling hazard rates as functional data for the
analysis of cohort lifetables and mortality forecasting. Journal of American Statistical
Association 104, 572–585.

Chui, C. K. and M.-J. Lai (1987). Computation of box splines and b-splines on triangu-
lations of nonuniform rectangular partitions. Journal of Approximation Theory and its
Application 3, 37–62.

Conn, A. R., K. Scheinberg, and L. N. Vicente (2009). Global convergence of general
derivative-free trust-region algorithms to first- and second-order critical points. SIAM
Journal on Optimization 20, 387–415.

18



Delaigle, A. and P. Hall (2012). Methodology and theory for partial least squares applied
to functional data. Annals of Statistics 40, 322–352.

Fan, J. and I. Gijbels (1996). Local Polynomial Modelling and Its Applications. London:
Chapman and Hall.
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