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Abstract

Particle filters are a powerful and flexible tool for performing inference on state-space models. They
involve a collection of samples evolving over time through a combination of sampling and re-sampling
steps. The re-sampling step is necessary to ensure that weight degeneracy is avoided. In several situations
of statistical interest, it is important to be able to compare the estimates produced by two different particle
filters; consequently, being able to efficiently couple two particle filter trajectories is often of paramount
importance. In this text, we propose several ways to do so. In particular, we leverage ideas from the
optimal transportation literature. In general, though, computing the optimal transport map is extremely
computationally expensive; to deal with this, we introduce computationally tractable approximations to
optimal transport couplings. We demonstrate that our resulting algorithms for coupling two particle
filter trajectories often perform orders of magnitude more efficiently than more standard approaches.

1 Introduction

Hidden Markov models (e.g. [CMR09]) are of widespread importance throughout science and engineering and
have been studied under different names including state-space models (e.g. [DK12]) and dynamic models
(e.g. [HW99]). Some applications include ecology (e.g. [NFTBO09]), epidemiology (e.g. [KIPBO08]), fault
detection [YZ15], finance (e.g. [JPS09]), medical physics [IMV15], multitarget tracking [SKLM12], and
reliability prediction [WTZZ13].

A hidden Markov model (HMM) with measurable state space (X, X), parameter § € © and observation
space (Y,)) is a process {(X,, Y,);n > 0} where {X,,;n > 0} is a Markov chain on X, and each observation
Y., valued in Y, is conditionally independent of the rest of the process given X,,. Let uy and fy be respectively
a probability distribution and a Markov kernel on (X, X'), and let gg be a Markov kernel acting from (X, X)
to (Y,Y), with go(z,-) admitting a strictly positive density, denoted similarly by gg(x,y), with respect to
some dominating o-finite measure. The hidden Markov model specified by g, fo and gy is

Xo ~ po(+),
XnI{Xn—l = xn—l} ~ ft9(-rn—1; ')7 n > 17 (1)
Yo { X, = 20} ~ go(zn, "), n>0.

In the remainder of this text, we fix a time horizon T' > 1. For a sequence of observations yo.r = {vo, ..., y1},
write vg r(zr) for the conditional distribution of Xp|yo.r and £(6) for the log-likelihood; the likelihood equals

T
/ N 116(0) 9o (w0, y0) [ [ folwe—1,x4) go (e, ye) doss -
XT+1

t=1

The distribution vy p(z7) is known as the filtering distribution.
Except in a few situations (e.g. finite state spaces or Gaussian models), the log-likelihood as well as
the filtering distribution are intractable and have to be estimated numerically. The particle filter algorithm,



known as the “bootstrap” algorithm [GSS93], is a Monte-Carlo algorithm that involves a collection of particles
evolving over time through a combination of sampling and re-sampling steps; we refer the reader to [DJ09]
for a recent and very readable account on the subject. The particle filter can be used to produce an estimate
ZA(G) of £(#) and an estimate Uy r(z7) of vg r(z7). We sometimes write ?{N}(G) and ﬁé{]p (xr) to stress that
the stochastic estimates to the log-likelihood #(6) and the filtering distribution ug’T(xf) have been obtained
through a particle filter that employs N > 1 particles.

Note that in practice, the re-sampling step is done adaptively, only when a measure of particle diversity
such as the effective sample size (ESS) [KLW94] falls below a predetermined threshold. For clarity of
exposition, we only describe the algorithms presented in this text with a re-sampling step at each iteration;
however, our numerical examples use an adaptive re-sampling strategy which we describe in the appropriate
sections while presenting them.

For t = 0:

Sample (X; o), independently from .
Report 2() = (1/N) sz\il gg(XZ‘,Q,y()).

For 1 <t<T:

SN ge(Xi—1,ye—1) fo(Xi—1,)

Sample (X; )N, | (Xi 1)), independently from SN o0 (X e e 1)

Report Z = Z,l X {(l/N) Zf\il gg(Xi,t,yt)}.

Output: /(0) = log Zy and vro(zr) = Zivzl %5&3 (z7).
Jj= 7,45

Algorithm 1: Bootstrap Particle Filter.

In the last line of Algorithm 1, é, denotes the Dirac measure at x € X. There are many situations in
which there is interest in comparing the value of the log-likelihood function £(#) and the filtering distribution
vgr(z7) at two different values of the parameters, 6 # 6'; in other situations, the log-likelihood and filtering
distribution of several probabilistic models for (X;,Y}),s, need to be compared. In general, this typically
involves concurrently running several particle filters. We now give several examples.

1. Multi-level particle filters. For estimating the log-likelihood £(6), instead of running a single particle
filter with a large number N > 1 of particles to obtain an approximation 7N} (0), it is sometimes more
efficient to use a telescoping decomposition of the type

K K
Co(0) + Y {k(0) — te1(0)} = Lo(6) + > Aly(6)
k=1 k=1

where (5 () designates the log-likelihood of the parameter 6 € © associated to an approximate prob-
abilistic model for {X;,Yi}i>0 and ALi(0) = £x(0) — £x—1(0) is the delta log-likelihood between
levels k and & — 1. This idea [Gil08] has appeared in the literature under the name of multi-level
Monte Carlo simulation; the reader is referred to [Gill5] for a recent review of the state-of-the-art;
see also [JKOZ16]. A recent stream of work has adapted these ideas to the context of particle fil-
ters [HLT15, BJL*15, DMJLZ16, JKLZ15, JKOZ16]. Thus, for estimating the filtering distribution
vg r(xr), instead of running a single particle filter with a large number N > 1 of particles to obtain an



approximation ﬁgj;}(x:p), it is sometimes more efficient to use a telescoping decomposition of the type

K

vo,0,r(TT) + Z {vk0,7(x7) — vk—1,0,7(27) }
k=1

where vy, o 7 (z7) designates the filtering distribution associated to an approximate probabilistic model
for {X;,Y;}+>0 . Typically, the approximate probabilistic models are of increasing accuracy as k — K
but are also more computationally demanding to simulate. In the context of inference for diffusion
processes, the approximate filtering distribution vy, g 7 (x) may refer to an Euler-Maruyama discretiza-
tion with time step At = §/2F, for some level-independent constant § > 0; we refer the reader to
[JKLZ15, JKOZ16] for non-asymptotic analyses of multi-level particle filtering methods in this con-
text. It is often the case that at low levels, that is, k <« K, the filtering distribution vy ¢ r(z7) can be
estimated extremely efficiently. The approximation Dyr,.er(z7) of the filtering distribution vy r(xr)
is given by

K

~{N, ~{N, ~

P @r) + Y (o @) -9 )}
k=1

and the log-likelihood #(0) is approximated by quantities of the type
R K
Bu®) ~ B0+ {00 -1 0).

The estimates EEN’“}(H) and ﬁ,i Gk:,l (xr) are obtained by running a standard particle filter with N > 1

particles. In many situations, the so called multi-level estimates ZML(O) and Dy, r(zr) can achieve

an accuracy similar to the standard estimates Z{N}(H) and ﬁ(;{ T} (z7) with a number of particles N

at level k, for k =~ K, orders of magnitude less than N; this can result in important computational
savings.

. Gradient estimate. Consider the case where © C R?. In many situations, the transition densities
of the latent process {X;}+>0 are unavailable while it is still possible to simulate realizations of it. In
these cases, algorithms for maximum likelihood estimation (or maximum a posteriori) typically rely
on finite-difference approximations of the gradient of the log-likelihood. The property that the model
for the latent process enters the algorithm only through the requirement that realizations of it can be
simulated at any value of the parameter has been called plug-and-play [IBAT11] since the simulation
code can simply be plugged into the inference algorithm. The gradient can be approximated by finite
differences R R

LO0+ce;)—L0—ce;)

2¢e

for an orthonormal basis (e, ...,eq) of R? and discretization parameter ¢ > 0. It is worth pointing
out that when the transition densities of the latent process are available, much more efficient methods
are available; see [PDS11, NFM14, KDST15].

(Ve(0), e:) ~

. Markov chain Monte Carlo. Several sophisticated Markov chain Monte Carlo (MCMC) approaches
have recently been proposed for Bayesian inference in state space models. If p(0) df denotes a prior den-
sity on the parameter § € © and q(6,6") d§’ a Markov proposal kernel, the Markov chain Monte Carlo
approaches described in [OBB100, AR09, ADH10] consider an acceptance probability of a proposed

move 6 — 6’ of the type
/ / —~
P



~ ~ o~

where A£(0,0") = £(0") — £(0) is an estimate of the delta log-likelihood ¢(6”) — £(6). Tt is by now well
understood that the performances of such Markov chain Monte Carlo algorithms is dictated by the

o~

variability of the estimate A £(6,6’) to the delta log-likelihood [AV14, AV*15, DPDK15, STR*15].

In all the above-mentioned examples, approximating the difference between two values of the log-likelihood
function could be carried out by running two independent particle filters. Nevertheless, it is often of
paramount importance for computational efficiency to reduce as much as possible the variability of the
estimate to the delta log-likelihood; this effectively means being able to efficiently couple the trajectories of
two particle filters. We present in this text several strategies that provide orders of magnitude improvements
over the naive strategy that consists of running two independent particle filters. To this end, we propose ap-
proaches based on optimal transport and describe ways to efficiently implement them through sparse matrix
computations. Extensive numerical simulations comparing the different approaches for coupling particles
filters, taking computational time into account, are presented in the Section 4 of the paper; our proposed
methodology is up to three orders of magnitude faster than its competitors.

The application of the optimal transportation methodology to particle filtering is not new. In the seminal
paper [Reil3b], the authors replace the standard re-sampling step of sequential Monte Carlo methods by an
optimal transport problem; see also [Reil3a, GCR16]. By exploiting the optimal transport approach, the
authors are able to obtain state-of-the-art result for data-assimilation in high-dimensional systems. In this
paper, we leverage optimal transportation methodologies for a very different purpose: the efficient coupling
of two particle filter trajectories. In a work independent from ours, the authors of [JLS16] also consider
optimal transport for the coupling of particle filters; this is used to develop new smoothing methods. The
focus of our paper is different; we design scalable methods that can be employed for a large number of
particles through the use of sparse linear algebra approaches.

Notations R denotes the real line (—oo, 00) and Ry denotes its non-negative part [0, c0). For real numbers
a and b, a A b denotes their minimum. For a number of particles N > 1, the vector of zeros (respectively
ones) of length N is denoted by Oy (respectively 1n); we set [N] = {1,...,N} and yp.q = (Yps---,Yq)
for p < q. The notation N (u,Y) designates the Gaussian distribution with mean y € R% and covariance
¥ € R44, For two vectors u, v € R, the usual inner product is denoted by (u,v) and we set ||ul® = (u,u).
For two matrices M, N € R*“, the Frobenius scalar product is (M, N) = tr(M™ N) = 37, - M; j N; ;. For
two distributions g and v on the measurable space X, the product p ® v designates the trivial coupling such
that u ® v(A x B) = u(A) v(B) for all measurable subsets A and B of X.

Organization of paper The rest of this paper is organized as follows. We discuss coupling of particle
filters in Section 2. In particular, we formalize the set-up in Section 2.1 and present in Algorithm 2 a generic
coupled particle filter. We describe the idea of a coupled re-sampling step within this context and in Sections
2.2 and 2.3 present some coupling schemes. However, we demonstrate that these schemes can be improved
upon, and Section 3 introduces the idea of using optimal transport [Kan58] to perform a coupled re-sampling
step. Since in general computing the optimal transportation distance is computationally expensive, Section
3.2 considers approximate solutions to the optimal transportion problem that scale quadratically in the total
number of particles, and then Section 3.3 further reduces the cost down to sub-quadratic in the total number
of particles. We demonstrate numerically the benefit of performing a coupled re-samplng step in Section 4
using our proposed sub-quadratic approximate optimal transport solution. Finally, Section 5 concludes.

2 Coupling of particle filters

2.1 Formal set-up

In the remainder of this paper, we will use some slightly more generic notations to describe particle filters;
this will ease the presentation of the algorithms to follow. A particle filter on the state space (X, X) with
time horizon T' > 1 can be described by an initial density u, a sequence of Markov kernels {m;(z,dx)}_,



and weight functions {g;(z)}]_,, where g; : X — (0,00) is assumed to be strictly positive for simplicity; the
associated particle filter gives a way, among other things, to approximate the marginal likelihood

t(@i—1,2¢) ge () do. 7, (3)
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which we assume is finite.

We consider two particle filters with associated initial densities p/), Markov kernels m(J ) and weight

functions gt(J ) with j € {1,2}. For simplicity, we assume in the remainder of this text that the state space

X is endowed with a distance dist(,-), although more general settings can easily be accommodated. The
first step when attempting to couple two particle filter trajectories is to use the same “noise” to drive the
two particle systems. To this end, let us consider the usual algorithmic description of a Markov kernel
m( )(x dx): there is a function M(]) X x [0,1] — X that is such that, if U ~ Uniform ([0,1]) and z;— € X

is a fixed element of X, the random variable X; = M(J)(mt,l, U) is distributed as m(J)(:Et,h dz). The main

underlying assumption for being able to efficiently couple the two particle filters is that, if Xt(i)l and Xt(i)l

are two random variables that are highly coupled (e.g. the mean distance E [dist(Xt(Pl,Xt(z)l)] is small,
although other notions of closeness can be used instead) then, if U ~ Uniform ([0, 1]) is a uniform random
variable independent from all other sources of randomness, the two random variables Xt(l) and Xt(Q) defined
as Xt(l) = Mt(l)(Xt(i)l, U) and Xt(2) = Mt(z) (Xt(z)l, U) are also highly coupled.

In order to efficiently couple two particle filter trajectories, it is also crucial to be able to carry out a
coupled re-sampling step; the main purpose of this paper is to investigate efficient strategies to do so. Consider
two weighted N-particles systems (X, W1)) = {(XZ-(I), I/Vi(l))}ﬁ\]:1 and (X, W®) = {(Xi(Q), Wi@)) N in
(X, X); we implicitly assumed that W, W) ¢ 2y for j € {1,2}, where the probability simplex is defined
as

PN = {(wl,...,wN) € [0,1]N : w1+~-~+wN:1}.

For ease of notation, we identify a vector of &y with its associated probability distribution on [N]. A
re-sampling scheme is any function

Resampling : XV x Py x XN x Py x [0,1] — [N]N X [N}N

such that, if U ~ Uniform ([0, 1]) is a random variable, the two (random) uniformly weighted particles
systems

(X 1/N)Y, and {(XP,1/N)}Y, defined by first sampling the ancestors vectors aV),a® € [N]V,

(a(l), a(2)) = Resampling (X(l), W(l), X(2)7 I/V(Q)7 U),

and setting X i(j )= X ({3) are such that the following identity holds

[t gt

=1

for j € {1,2} for any function ¢ for which the expectation is finite. We will describe in the sequel several
choices of re-sampling schemes. With these notations introduced, a generic way of coupling two particle
filter trajectories is described in Algorithm 2.

The ancestry lineage vector bz(.ﬁ] = (bl(.f&[t], o ,bgt),[t]) € [N]t+! of particle Xi(i) is defined recursively as
bgjt) o 7 and b(Jk Ly = ;()(7)> for k=1,...,t. At stage 1 <t < T, two particles X (t and X t) are said to
Tkt]

be coupled if the two ancestry vectors bl(.l[ " and b( [)t] are identical. It is important to note that if Xi(’t) and



For t =0:

Sample (X,(jo))fil independently from p9) for j € {1,2}.
Define Wo(j) € PN by setting Wi%) x g(()j)(Xi(i))) and report Z\éj) = (1/N) Zf\il g(()j)(Xi(%)).

For 1 <t<T:

Sample U; ~ Uniform ([0,1]) and set the ancestor vectors as
@V, a?) = Resampling (Xt(i)l, wh x® W, Ut) .

Sample N i.i.d uniform random variables {U; ;}¥; and propagate the particles

al?) -1’

it

X9 = MY (X(j) Um> for j € {1,2}.

Define Wt(j) € Py by setting W-(i) o gt(j)(Xi(i)) and report

Z’

PN N (i . '
2 = Z2 x {(YN) =Ly 07 (X))} for j € {1,2}
. 7(9) N (4) _ :
Output: log Z;’ and ) ;= W;r 6,y for j € {1,2}.
’ i, T

Algorithm 2: Generic Coupled Particle Filter.

X ﬁ) are coupled, the two particles have been driven by the same noise from time 0 all the way to time ¢.
The number
C; = Card {z €[N] : bg,l[)t] = bﬁil}

of particles that are coupled at time t is a decreasing function of ¢ and Cy = N. A natural strategy to
efficiently couple two particle filters is to try to maximize the number of particles that stay coupled, that is,
make the function ¢ — C; decrease as slowly as possible. We nevertheless demonstrate that, under natural
continuity assumptions on the algorithmic representations M j(] ) of the Markov kernels mgj ), there are other
strategies that are much more efficient.

All the re-sampling schemes described in this text work by first creating a coupling matrix. Given 7(1) and
7 two discrete probability distributions on [N] represented by the vectors WO W e Py, a coupling
matrix IT € RV*Y is any matrix that represents a probability distribution 7 on [N] x [N] and that has W)
and W?) as marginal distributions; in other words, for any 1 < i < N we have

N N
Sl =W and Y . =w?. (5)

a=1 a=1

Given two weighted particles systems (X, W) and
(X@ W®) and a coupling matrix II of W) and W) it is straightforward to construct re-sampling
schemes. We describe two such possibilities.

1. Multinomial re-sampling. The matrix II represents a probability distribution 7 on [N] x [N]. If
{(a,&l),a,(f))}fgvzl are N independent and identically distributed samples from , since P(a,(f) =1) =

Wi(j) for 1 < j < 2, the resulting vectors a() = (agj)7 . ,a%)) do satisfy property (4).

2. Systematic re-sampling. Let U ~ Uniform ([0, 1]) be a draw from a uniform random variable on
[0,1] and consider an arbitrary ordering {(ay, Bk)}évjl of



{(1,1),(1,2),...,(N,N)}. For 1 <k < N, set
(k) = inf{1<i<N2 : ZHQ 8, > (U/N) + (k —1)/N}

and define (a,(c ),a,(c )) = (aa(k), Bok)). The proof that the standard systematic re-sampling [Kit96]
is correct is immediately adapted to this slightly generalized setting to show that the vectors al) =

() ey
( N)

ay’, .. do satisfy property (4).

2.2 Independent re-sampling

Independent re-sampling is the most straightforward, and, of those we will consider, the least efficient way
of carrying out a coupled re-sampling. It simply consists of choosing the trivial coupling matrix Il, 5z =

wil Wﬁ@). Indeed, the matrix IT describes the probability distribution W @ W®). Suppose that at time
t — 1 of Algorithm 2 all the NV particles are coupled. After an independent re- samphng step, the expected
number of paired particles at time ¢ equals Zile( S aﬁ)) N x ZJ Wi 1) W(Q). In the (very

favourable) case where Wt(l) and Wt(z) both represent the uniform distribution on [N ]7 the expected number

of paired particles at time ¢ only equals one. This is an indication that the independent re-sampling scheme
performs extremely badly. Even in the case where the two particle filters are identical (that is, same initial
distribution, Markov kernels and weight functions), a situation where it should be straightforward to keep all
the particles coupled at all time 0 < ¢ < T, using an independent re-sampling scheme leads to an algorithm
where all the particles are decoupled after just a few re-sampling steps.

2.3 Maximal coupling

Considering the undesirable behaviour of the independent re-sampling scheme, we now describe in this
section another re-sampling scheme that aims at keeping the number of paired particles as high as possible.
Constructing a coupling that maximizes the number of paired particles is equivalent to looking for a coupling
7 between the probability distributions (1) and 7(?) such that if (Y, Z) ~ 7, the quantity P(Y = Z) is
maximized; this is indeed equivalent to finding the coupling matrix IT whose trace is maximal. There always
exists such a coupling and, except in degenerate situations, this coupling is unique. Indeed, this coupling
is nothing else than the standard so-called mazimal coupling (e.g. [RP07], Chapter 2) whose probabilistic
description is as follows. For W) W) ¢ 2y set

p= f: min (wg), Wf)) =1—dpy (W(1)7 W<2>) € [0,1],

a=1
where dtv (W(l)7 W(z)) designates the total-variation distance between W) and W®). Let u, ™, u® €
Py be given by u(a) =p~! mln(W(l) Wéz)) and, for j € {1, 2},

p(a)=(1-p)~" (Wff) — min (Wff), Wff)))

If p = 0, the probability distribution p is not defined but, as will be clear in a moment, that is not a problem.
The maximal coupling between W) and W2 is the law of the random variable

(Y,Z)=B-(I,T)+ (1-B)- (T, T®), (6)

where I', '), T'®) are three independent random variables with respective laws p, 1V, 42 and B ~ Bernoulli (p)
is independent from any other sources of randomness. In other words, with probability p we have ¥ = Z
while with probability (1 — p) the random variables Y and Z are independent and, since pM and p® are
singular, distinct.



Contrary to the independent re-sampling scheme, if one uses the maximal coupling re-sampling for two
identical particle filters, all the particles stay coupled at all times whether we use multinomial or systematic
re-sampling. Maximal coupling was used in [JKLZ15, JKOZ16] for designing efficient multi-level particle
filtering algorithms and by [CST15] to construct a coupling between two particle Gibbs updates from different
starting points.

Indeed, by construction, the number C; of particles that stay coupled until time ¢ decreases to zero
at a much lower rate than when the independent re-sampling scheme is used; see Figure 1. The maximal
coupling construction outperforms the naive independent re-sampling by orders of magnitude in most realistic
scenarios and when the number of re-sampling events is small when compared to the number N of particles.
On the other hand, it is important to note that, even when the maximal coupling construction is used, in
general and as depicted in Figure 1, the number of coupled particles does decrease exponentially fast with
the number of re-sampling events.

One main drawback of the maximal coupling construction is that, as is clear from the probabilistic
description (6), conditionally on the event {Y # Z}, the random variables Y and Z are independent. This
means that, when used to couple two particle filter trajectories, when two particles Xi(}t) and Xi(i) are
decoupled at time t, these two particles are not close to each other in any reasonable metric. Effectively, this
means that once all the particles are decoupled, which does happen after a relatively small number (typically
logarithmic in N) of re-sampling events, there is little to no point in attempting to use the maximal coupling
constructions. Indeed, once all the particles are decoupled, that is, Cy = 0, then for a genericindex 1 <i < N
the particles Xi(}t) and Xi(?t) are “far away” from each other and attempting to drive them using the same
noise is not likely to bring any efficiency gain.

It should be noted that, in some particular models, if two distinct particles are driven by the same noise
process, these two particles tend to coalesce; this means that, even if two particles are decoupled, it is still
worthwhile to drive them by the same noise process. In these settings, the use of the maximal coupling
approach may turn out to be useful, as argued in the recent arxival [JLS16]. This notion of stochastic
synchronization [TMHGPO01, ZK02] is extremely rare in physical systems, although it is argued in [JLS16]
that several widely used statistical models (e.g. autoregressive models) do enjoy this favourable contracting
behaviour. Without this notion of synchronization, the gains offered by the maximal coupling approach
are minor. In our numerical study, we have not observed very large gains by using the maximal coupling
approach; this is because the models we have considered are not contracting.

3 Optimal transportation re-sampling

In this section, we first introduce the necessary concepts related to optimal transport in Subsection 3.1.
Since traditional approaches for computing optimal transport typically scale worse than quadratically in the
number of particles, they are not exploitable in most modern situations where a large number of samples
is required. We thus develop fast approximate transport couplings that can be used to design efficient
re-sampling schemes. Particular care is devoted to designing algorithms that scale sub-quadratically with
respect to the total number of particles.

3.1 Optimal transport

In any non-trivial situations where one is attempting to couple two distinct particle filter trajectories, the
number C; of coupled particles will decrease exponentially fast to zero; the use of the maximal coupling
scheme only helps mitigate this effect. Nevertheless, one can still improve upon the maximal coupling
approach. We would like to emphasize at this point that, through the use of the optimal transportation
methodology, we are not aiming at slowing down the rate of decay of the number C; of coupled particles;
indeed, numerical simulations show that the optimal transport approach to be described below leads to
algorithms with a rate of decay of C} that is typically worse than what would be obtained by using the
maximal coupling approach. Nevertheless, the optimal transport approach can typically generate estimates
that have a much lower variance. As explained at the end of Section 2.3, the main drawback of the maximal



coupling scheme is that once a pair (Xt(l), Xt(z)) of particles is decoupled it is not very worthwhile to try to

drive Xt(l) and Xt(z) with the same noise. Indeed, this is because the maximal coupling does not take into
account the locations of the particles.

In order for a coupled re-sampling scheme to be efficient, one does not necessarily need that the number
Cy of coupled particles remain high. What really matters is that the particles Xi(’lt) and Xi(i) stay close
to each other so that driving them with the same noise remains worthwhile. Consider two weighted N-
particles systems (X, W®) = {(xM WINN | and (X@, W®) = {(XP WD)V || If one denotes by
(WM W) the (convex) set of coupling matrices IT that satisfy the constraint (5), the maximal coupling
can also be described as a solution to the optimization problem

N N
Minimize{H = > Tapx1la#p):Ie %(W(D’W(z))}.

a=1p=1

From this formulation, it is obvious that the locations of the particles are not taken into account. A better
strategy consists in considering coupling matrices that are solutions to optimization problems that do take
into account the locations of the particles; for a cost function C : X x X — [0, 00), we consider linear programs
of the type

N N
Minimize {H — Z Znaﬁ X C<Xé1),Xé2)) ‘e %(W(l), W(Z))}_
a=1p=1

The cost function C penalizes the coupling of particles that are distant from each other. This cost function
is typically of the form C(Xg})7 Xéz)) = dist(X,gl), Xg))p for some exponent p > 0. This is known as optimal
transport [Kan58] in the context of optimization theory. The optimal transport (OT) distance is

dc (W(U, W(2>) = min {<n, Q) : Megw, W<2>)} (7)

For notational convenience, and with a slight abuse of notation, we have defined the cost matrix by C € RV:-V
by Cop = C(Xc(yl),X/(f)) so that (IT,C) = Zivzl Z,]@V:1 Iy % C(X&”,Xé?)). There exist dedicated linear
solvers such as the transportation simplex [Dan98], combinatorial algorithms such as the Hungarian approach
[Kuhb55], and many variants thereof to solve this optimization problem. However, obtaining the exact optimal
transportation solution is a computationally expensive procedure and the most efficient approaches still
scale as O(N3log N) (e.g. [PW09]). Bringing down this cost is an active area of research and we refer to
[PW09, Cutl13, FPPA14, Sch15, TT15] for some recent work. While the exact optimal transportation solution
is expensive to obtain, it is important to note that, for the purpose of designing a coupled re-sampling scheme,
it is not actually needed; it is enough to be able to efficiently build a coupling matrix IT € %(W(l), W(2)) that
is a reasonable approximation to the solution of the optimal transport linear problem (7). In Section 3.2, we
describe efficient algorithms for building approximate optimal transport maps that can then be leveraged
for constructing coupled re-sampling schemes.

3.2 TIterative proportional fitting for approximate optimal transport

This section describes a strategy to efficiently build approximate optimal transport coupling matrices. The
resulting coupling is a valid coupling in the sense that it does satisfy constraint (5); it is approximate
since it is typically not optimal. It is worth emphasizing that the use of such an approximate optimal
coupling does lead to a valid algorithm: the two coupled particle filters are marginally correctly distributed.
Our methodology is inspired by the work of [Cut13]. The approach is based on an entropic regularization
of the linear programming problem (7). A regularization parameter A is first considered and a matrix
Kg% = exp(—A Cq,pg) is constructed; the matrix exponential is to be understood entry-wise. The regularized
problem is strictly convex and can efficiently be solved through matrix scaling algorithms to produce an



approximately optimal coupling IT*; in this text, we use the Sinkhorn-Knopp algorithm, a variant of the
iterative proportional fitting (IPF) algorithm [DS40]. Divisions of vectors in this section apply elementwise.
Iterative proportional fitting is an approach that dates back to research on traffic networks in the 1930s;
it was re-discovered several times in a wide variety of contexts and under several names (for example, as
Sheleikhovskii’s method, Kruithof’s algorithm, Furness method, Sinkhorn-Knopp algorithm). It is described
in Algorithm 3; the reader is referred to [Cut13] for a more complete description. The iterative steps ensure
that, at convergence, the marginals of II* are W) and W), while the outputted form of II* in terms of
KO ensures that large costs correspond to low probabilities. The convergence criterion in Algorithm 3 is
chosen to be such that if u’ is the updated value of u, the iterative steps stop when ||(v' — u)/ul < 1073,

Input: Cost matrix C, marginals W) and W2, regularization parameter \ > 0.
Construct the matrix K with Kg% =exp(—ACq ).

Initialize the positive vector u € Rf asu=1y/N.

‘While not converged:

w®
KO [W(2>/{(K</\>)Tu}} '

Update u by setting: U

Set v = W@ /{(KXM)Ty}.
Output: IT* = diag(u) K™ diag(v).

Algorithm 3: Approximate Optimal Transport Using Sinkhorn Distances.

The iterative proportional fitting algorithm is known to have a linear rate of convergence [Sou91, Kni08];
if one denotes by II} the approximation of II* after k > 1 iterations, we have that ||II} — II*|| < C (1 — r)*
for some r € (0,1) and absolute constant C' > 0. Indeed, we observe in practice that one needs very few
iterations of the iterative proportional fitting algorithm. This effectively means that the computation of an
approximate optimal transport re-sampling scheme scales as O(N?). In the next section, we describe how
to bring this cost further down.

3.3 Speeding up iterative proportional fitting

The iterative proportional fitting algorithm requires building the matrix K e RYN and carrying out
matrix-vector multiplications where the matrix K is involved; the approach thus has a memory requirement
of O(N?) and an algorithmic complexity that scales at least as O(N?). To reduce this complexity, which
may be undesirable when the number of particles is large, one can exploit the fact that the non-zero entries
of an optimal transport coupling matrix IT € ‘K(W(l), W(Q)) typically tend to be concentrated on pairs
of particles that are close neighbours; in other words, it is typically the case that II, 3 = 0 if the cost

Cap = dist(Xél),X[(f))p is large. To exploit this remark, one can concentrate on finding (approximate)

optimal coupling matrices IT with non-zero entries concentrated on pairs of particles (Xél), X éQ)) such that

) among all the particles {Xi@)}f\il, where R > 1 is a chosen

X g) is one of the R closest neighbours of X
threshold number of closest neighbours. For clarity, let us define the set Ir C [N]? as the set of pairs («, 3)
of indices such that X g) is one of the R closest neighbours of x among all the particles {X£2)}£V:1.

To find an approximate optimal transport coupling matrix II whose non-zero elements are in Ir, one can
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use a modified cost matrix C € Rf’N defined as

~ Ca”@ if (Oé,ﬁ) (S IR
+o00 if (Oé,ﬁ) ¢ IR.

To implement this idea in the iterative proportional fitting algorithm, by the very definition of the matrix
K™ = exp (—ACa,p), it suffices to use a modified matrix defined as K = exp (~AC, ) for (a,B) € Ir
and zero everywhere else. The matrix K™ is sparse and has only R x N non-zero elements; in practice,
we observe that values R = O(log N) are amply enough for obtaining good approximations. The use of
sparse-matrix linear algebra algorithms indeed provides huge computational savings.

To construct the sparse matrix KV, it is necessary to compute the R-nearest neighbours of each of
the N particles. A naive approach would require a computational time that scales as O(R N log N). This
is a well-studied problem in the computer science community; by exploiting the Euclidian structure of the
state-space, methods based on KD-trees, which scale as O(N log N) [WHO06], have been proposed. This
class of methods is able to exactly compute the R-nearest neighbours of each particle in the cloud; this
is the method that we have numerically investigated in the last part of this paper. We have used the
standard KD-tree implementation available in [PVG™'11]. It is possible to obtain further gains in efficiency
by only considering approximate R-neighbourhoods; we refer the reader to [NBN15] for approximate R-
neighbourhood benchmarks. In high dimensions, methods based on locality-sensitive hashing [SCO08] usually
enjoy better performances than the KD-trees approaches implemented in this article. A KD-tree recursively
partitions the particles into a multi-dimensional binary tree by cycling through the Cartesian axes, splitting
each of the current set of partitions in two according to the median (in each partition) along the currently
chosen axis. Finding the R nearest neighbours for each X((yl) scales, once the KD-tree is constructed, as
O(R N log N) [FBF77]. In our experiments, for the purpose of computing R-neighbourhoods, we have not
found the performance of the KD-tree approach to significantly depend on the correlation structures of the
cloud of particles.

4 Numerical investigations

4.1 Ricker model

We first consider a noisy non-linear ecological dynamic system. Such systems are almost invariably driven
by endogenous dynamic processes plus demographic and environmental process noise and observations are
corrupted by noise. Minute changes in the driving noise realization or in the system parameters can cause
drastic changes in the system trajectory. In this section, we consider a simple extension of the standard Ricker
model as described in [Woo10]. This is a d-dimensional non-linear state-space model; the d-dimensional latent
process {Xn}gzo is such that, for any coordinate 1 < ¢ < d, we have

Xnt1,i =7 X, exp(—Xn,i +eni), Xoi = Zos, (8)

where the noise process {(€n,1,- - -, €n,d)},>0 i an independent and identically distributed sequence of centred
Gaussian random variables with covariance o2 I and r > 0 is an intrinsic growth rate parameter controlling
the model dynamics. The d-dimension observation process {(Yn 1, -, Yn,d)}fzo is such that, conditionally
upon X, the random variables {Yy, 1,...,Y, 4} are independent and Y,,; | X,, ~ Pois (¢ X,,;) for a scale
parameter ¢ > 0.

In this highly non-linear setting, the maximal coupling re-sampling scheme does not perform well, even
for small values of the time horizon 7" and dimension d. In particular, we consider 7" = 50 observations and
d = 5 dimensional examples. In the experiments, we have chosen a number of particles N = 5 x 103.

For our experiments, we simulated an observation sequence (yo,...,yr) from the model itself with pa-
rameter 0, = (log s, 0c 4, 0x) = (2, 0.3, 5) and initial value z9; = 5 for i = 1,...,d. We coupled two particle
filters, one evolving for a value of the parameter § = (1 — v) 6, and the other for a value 6 = (1 + ) b,;
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Figure 1: Proportion of particles paired for independent and maximal re-sampling in the Ricker model.

there are three simulations, one for each value of v € {1073,1072,1071}. Figure 1 displays the proportion
of paired particles Cy/N for 0 < ¢t < T for the independent and maximal coupling approaches. Results
(not displayed) for the optimal transport, are slightly worse than the maximal coupling method in terms of
rate of decay of Cy. As already explained, this is not especially relevant: what really matters is the ability
of the methods to produce estimates with low variance, which is investigated in the next sections. In all
experiments, we have performed 200 independent runs and displayed the median as well as the 5% and 95%
percentiles. In the simulations, re-sampling events are triggered when the effective sample size [KLW94] on
either of the trajectories falls below N/2, where N is the total number of particles.

As expected, the independent re-sampling scheme performs badly in all cases; as v — 0, the maximal
coupling re-sampling scheme is able to mitigate the decrease of the proportion of paired particles. Nonetheless
even for v = 1072, the number of paired particles still falls to zero after only a very small number of re-
sampling events.

In a second set of experiments, we considered the average Euclidean distances between the two populations
of particles. For 0 < t < T, we monitored the quantity E, = Zfil HXz(lt) - X§72t)||2. For v = 1073,
which from Figure 1 is the situation in which the proportion of paired particles decreases most slowly
for the maximal re-sampling scheme among the considered values of 7y, we compared the independent,
maximal and and our proposed approximate, sub-quadratic, optimal transport based re-sampling schemes;
the regularization parameter A for our proposed scheme was fixed at A = 50. As displayed in Figure 2, even
for such a small value of «y, our proposed scheme indeed outperforms the two other re-sampling schemes
by orders of magnitude. It is interesting, and not too surprising in view of the discussion at the end of
Section 2.3, to note that the maximal coupling scheme does not yield very significant gains over the naive
independent re-sampling scheme.

As a last set of numerical experiments, we investigated the gains in speed brought by the nearest neigh-
bours strategy developed in Section 3.3. We compared the re-sampling schemes using the iterative propor-
tional fitting relaxation to optimal transport by both dense matrices implementations (that is, Section 3.2)
and sparse matrices implementations (that is, Section 3.3). Figure 3 displays the gains in computational
time, that is, the ratio of the time taken for usual dense matrices implementation by the time taken by the
sparse matrices implementation. The nearest neighbours strategy yields orders of magnitudes of gains in
computational time. The gain in speed increases as the number of particles increases; this is expected as the
matrices involved become sparser as their dimension increases.
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Figure 2: Average distance E; between pairs of particles for different re-sampling schemes for the Ricker
model.

—— 90% confidence band ® @® median

350 —— - - - - -
300 : : : : E 1
250+ : : i .
=] : :
8 : ;
S 200 : ; 1
%) : H
= §
§ o0 : : |
nqz N
100} ® 1
E1] - 1
¢
ol ; ; ; ; ;
250 500 750 1000 1250 1500

Number of particles

Figure 3: Ratio of the time taken for usual dense matrices implementation by the time taken for the
sparse matrices implementation. The median, 5% and 95% percentiles over 100 independent realizations are
displayed.
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Figure 4: Multi-level particle filtering: computational inefficiency of maximal coupling divided by compu-
tational inefficiency of our proposed algorithm for estimating F[o(Xks) | vo,---,Uks] and the delta log-
likelihood for the state-space model (9).

4.2 Multi-level particle filter

We first demonstrate the benefit of using approximate optimal transport re-sampling in the context of multi-
level particle filtering of [JKLZ15, JKOZ16]. Consider the two dimensional diffusion process {X;};>¢ with
multiplicative noise,

dXt = —aXt dt + F(O‘Xt) qu Xo = Xy, (9)
where {W;};>0 is a standard Brownian motion in R?; the volatility function I' : R? — R?? is given by
_ sinR —cosR
rx) = (cosR sin R >

with R = [ X2 = (X{ + X§)1/2 and o > 0 is a volatility scale parameter. Noisy observations of the first
coordinate are collected every § unit of time and distributed as

Yies | Xis ~N(Xps1,07)

for some variance parameter o. > (0. For the numerical experiments, we consider an Euler-Maruyama
discretization of equation (9)

Xirs, = Xo — aXydy + /0, D0 X)Wy, Xo = o, (10)

where Wy ~ N(0,1); we choose the discretization to be d; = §/100. We generated observations from the
model with (o, 04,064) = (0.5, 1, 0.5) and 2 = (0.2,0.2). In this context, we use multi-level particle
filtering to estimate the quantity E[o(Xks) | yo,- .-, Yks) for function o(z) = x1 + 22, where x = (z1, 22),
and the log-likelihood £(6 | yo,...,Yks), kK = 1,...,T, for some time horizon T, where £(0 | yo,...,Yrs)
denotes the log-likelihood of the first (k 4+ 1) observations.

To keep things simple and only concentrate on the effect brought by the different re-sampling schemes
(that is, avoid considering the influence of the number of particles per level), we only consider a multi-
level particle filter with two levels. The first level uses a standard Euler-Maruyama discretization (10) with
discretization §; and the second level uses the same scheme but with discretization d;/2. The reader is
referred to [JKLZ15, JKOZ16] for more details on multi-level particle filtering methods. In the simulations,
re-sampling events are triggered when the effective sample size on either of the levels falls below N/2, where
N is the total number of particles. We have used a time horizon of T' = 10? with § = 10~! and parameter
(av,0,0:) = (Qiy, 04, 0c x). The regularization parameter A in Algorithm 3 is fixed at A = 500.
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Figure 5: Delta loglikelhood: computational inefficiency of maximal coupling divided by computational
inefficiency of our proposed algorithm for estimating the delta log-likelihood for the state-space model (9).

The computational inefficiency of a method is defined as the running time multiplied by the estimated
variance; a lower computational inefficiency signifies better performance. We independently repeat each
experiment 50 times to get an estimate of the variance and we repeat this 25 times independently to get
a confidence interval for the estimated variance. The relative efficiency of our proposed algorithm over the
maximal coupling algorithm is presented; this is defined as the ratio of the inefficiency of the maximal coupling
over the inefficiency of our proposed algorithm. Figure 4 shows that our proposed algorithm performs up to
two orders of magnitude better than maximal coupling.

4.3 Delta log-likelihood

In this section, we continue considering the state-space model (9) and its Euler-Maruyama discretization
(10). We denote by ¢(a,0,0.) =logP (y |, 0,0.) the log-likelihood of the parameter («, o, 0.); recall that
the observations y = (yx 5)520 are generated from (10). We estimated the delta log-likelihood

D(v) =l(ax, [1 +9] 0w, 1 +9]0cx) — L, [L =] 0%, [1 =] 0c4)

for v € {1072, 5 % 10*2} by simply running a pair of coupled (bootstrap) particle filters for the maximal
coupling and for our proposed algorithm. In the simulations, re-sampling events are triggered when the
effective sample size on either of the trajectories falls below N/2, where N is the total number of particles.
Figure 5 shows that our proposed algorithm performs an order of magnitude better than maximal coupling.

4.4 Markov chain Monte Carlo

In this section, we again consider the state-space model (9) and its Euler-Maruyama discretized version (10).
Fixing o, at its true value, we consider estimating parameters a and o. Since the parameters o and o are
positive, we consider independent random walk proposals for log o and log o, each with standard deviation
0.5. Log-normal priors were chosen for o and o, with the prior for o having mean —1 and standard deviation
0.75, and the prior for o having mean 0 and standard deviation 0.75.

We estimate the delta log-likelihood A ¢(6,60') in the acceptance probability (2) by running a coupled
particle filter at the pair (6,6’) using our proposed coupled re-sampling scheme; in the simulations, re-
sampling events are triggered when the effective sample size on either of the trajectories falls below N/2,
where N is the total number of particles. This leads to a so-called “noisy” version of a Markov chain Monte
Carlo (MCMC) algorithm as the log-likelihood of the current state 6 is re-estimated at each iteration and
its previous estimate discarded; see [FK15, MALR15, AFEB16] for some recent literature on noisy MCMC
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algorithms. It is important to emphasize that, in general, the invariant distribution of the noisy MCMC
algorithm is only an approximation of the true posterior distribution of interest. Under mild assumptions,
though, this discrepancy vanishes as the stochasticity of the estimates to the delta log-likelihood goes to zero.
In our experiment, we have chosen a number of particles large enough such that this difference is negligible;
see Figure 6.

We compare our proposed noisy MCMC algorithm to the correlated pseudo-marginal algorithm of
[DDPK15]; this is an algorithm that targets the true posterior distribution of 6 and correlates the aux-
iliary random variables used in the estimation of the log-likelihoods at each iteration of the Markov chain.
The mixing parameter p for the auxiliary random variables in the correlated pseudo-marginal algorithm was
chosen to be p = 0.9, see point 2 of the Correlated Pseudo-Marginal Algorithm (page 3) of [DDPK15]. In
general, even if we were using a conditional version of our coupled resampling scheme to imitate a genuine
(correlated) pseudo-marginal MCMC scheme, the resulting algorithm would still not be exact. This is the
main motivation for only considering noisy MCMC algorithms in this paper. We refer the reader to [JLS16]
for discussions and partial remedies in some particular cases.

To compare different algorithms, we consider the computational inefficiency defined as the product of
the integrated auto-correlation time (IACT) with the computational time Tgep, necessary to carry out one
MCMC step

(computational inefficiency) = (IACT) X Tygep.

Comparing computational inefficiency is equivalent to comparing the MCMC variances for a fixed compu-
tational budget; this is also equivalent to the notion of effective sample size (ESS) per unit of time. To
estimate the IACT, we used the method of [Gey92]. The MCMC algorithms were run for 10* iterations and
the first 103 iterations were discarded.

In order to check for the accuracy of our proposed noisy MCMC algorithm, we also plot kernel density
estimates for the values obtained from the correlated pseudo-marginal algorithm and the values obtained
from our proposed noisy MCMC algorithm. We present this for the case when the time series is of length 10
and using 2 x 102 particles for the correlated pseudo-marginal method and 2 x 10! particles for our proposed
noisy MCMC algorithm; similar results were obtained for longer time series.

The results are displayed in Figure 6. The left panel displays the computational inefficiency of the
correlated pseudo-marginal method divided by the computational inefficiency of our proposed noisy MCMC
algorithm; our proposed algorithm performs an order of magnitude better than the correlated pseudo-
marginal method. The centre and right panels display the accuracy of our proposed noisy MCMC algorithm
compared to the correlated pseudo-marginal method; the invariant distribution of our proposed noisy MCMC
algorithm using approximate optimal transport re-sampling is very close to the correct posterior distribution
obtained through a run of the correlated pseudo-marginal method.

4.5 Prokaryotic-auto regulation

Finally, in order to illustrate the performance of our method on a realistic scenario where the posterior
distribution exhibits an intricate correlation structure, we consider a complex stochastic chemical kinetics
model; this consists of a system of molecules of different chemical ‘species’ reacting among themselves. In
particular, we consider the prokaryotic-auto regulation model of Section 5.2 of [GW11]. In this model, there

are four chemical species and eight reactions, with each reaction having a rate ¢;, ¢ = 1,...,8. This is
approximated by a diffusion process
dXt :a(Xt,c) dt+\/ ﬁ(Xt,C) th, XO = 2o, (].1)

where a(X;,¢) = Sh(X;,¢) and B(Xi,c) = Sdiag{h(X;,c)}ST, the four chemical species being X =
(DNA,P,,RNA,P). Here ¢ = (c1,...,cs) are the rates of the eight reactions, h is known as the haz-
ard function which is a measure of the propensity of the reactions to occur and is given by h(Xy,c) =
(c1 Xeq X2, co(K — X 1), e3Xp 1, caXe3, 5 Xp4(Xea—1)/2, c6 Xy 2, c7 Xt 3,
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Figure 6: Comparison of our proposed noisy MCMC algorithm and the correlated pseudo-marginal method
of [DDPK15] for the state-space model (9); the left panel displays the computational inefficiency of the
correlated pseudo-marginal algorithm divided by the computational inefficiency of our proposed noisy MCMC
algorithm, while the middle and the right panels display kernel density estimates for the values obtained
from our proposed noisy MCMC algorithm and from the correlated pseudo-marginal method.

csX;4), K is a constant which comes from a conservation law in the model, and S is known as the stoi-
chiometry matrix and is given by

0010 0 0 -1 0
g_|0o o001 22 0o 1
“[-1 100 1 -1 0 o0

1100 0 0 0 0

Observations are available at every unit of time and are distributed as Y; = (0,1,2,0)X; + &;, where &; ~
N (0, O’?), t=1,...,T. We consider an Euler-Maruyama discretization of the process (11),

Xivs, = Xo + (X, ¢) 0p + Wy, Xo = 0,

where W; ~ N (04,d; 5(Xt,¢)) is a four-dimensional Gaussian random variable with mean 04 and and
covariance matrix &, 8(Xy,¢). We refer the reader to [Gil07, EL14] for a more complete description of
stochastic chemical kinetic models.

The initial value of the process is chosen to be z¢p = (8,8,8,5), the true reaction rates to be ¢, = (0.1,
0.7, 0.35, 0.35 0.2, 0.1, 0.9, 0.3, 0.1), the Euler-Maruyama discretization to be §; = 1/10, the time horizon
to be T = 100 and the variance of the noise term to be o2 = 10. For our experiments, we fix cs,...,cg at
their true values and consider the delta log-likelihood

D('Y) = E([l + 'Y]Cl,*» [1 + 7]02,*7 C3 5y e »08,*) - E([l - 'V]Cl,*» [1 - 7]02,*7 C3hy e 708,*)

for v € (1072,5 x 1072). In the simulations, re-sampling events are triggered when the effective sample size
on either of the trajectories falls below N/2, where N is the total number of particles. We again compare
the relative efficiencies of the maximal coupling and our proposed algorithm with regularization parameter
A fixed at A = 50. Figure 7 shows that our proposed algorithm performs up to three orders of magnitude
better than maximal coupling.

5 Conclusion

The standard approach to couple two particle filters is to drive the particles with the same noise process; in
practice, this is done by setting the so-called “random seed” to the same value before running each one of
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Figure 7: Computational inefficiency of maximal coupling divided by computational inefficiency of our
proposed algorithm for estimating the delta log-likelihood for the prokaryotic auto-regulation model (11).

the particle filters. We demonstrate in this text that a careful coupled re-sampling step is crucial, when cou-
pling two particle filter trajectories, to obtain good performances. While algorithms based on the maximal
coupling approach can sometimes enjoy improved performances, we argue in this text that more advanced
coupling methods based on ideas extracted from the optimal transportation literature can yield algorithms
that are orders of magnitude more efficient. Importantly, we have described how to reduce the cost of
standard optimal transportation algorithms by leveraging fast algorithms for finding nearest neighbours in
populations of particles. As a final note, we mention that, while it was not something we observed in our
experiments, if the two set of particles have vastly different ranges, then directly using a KD-tree to find
nearest neighbours may not work well. In this case, the creation of an alternative metric and using it to
pre-process the particles could be beneficial. For instance, the Mahalanobis distance [Mah36] could be used,
which can be obtained in O(Nd?), where N is the number of particles used and d is the dimension of the
state-space. Since we do not consider high-dimensional examples, this will not prove to be a computational
bottleneck.
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