
Nested Kriging predictions for datasets with large number of
observations

Didier Rullière∗, Nicolas Durrande†, François Bachoc‡ and Clément Chevalier§.

Wednesday 26th July, 2017

Abstract
This work falls within the context of predicting the value of a real function at some input loca-

tions given a limited number of observations of this function. The Kriging interpolation technique
(or Gaussian process regression) is often considered to tackle such a problem but the method suffers
from its computational burden when the number of observation points is large. We introduce in
this article nested Kriging predictors which are constructed by aggregating sub-models based on
subsets of observation points. This approach is proven to have better theoretical properties than
other aggregation methods that can be found in the literature. Contrarily to some other methods
it can be shown that the proposed aggregation method is consistent. Finally, the practical interest
of the proposed method is illustrated on simulated datasets and on an industrial test case with 104

observations in a 6-dimensional space.

Keywords: Gaussian process regression · big data · aggregation methods · best linear unbiased
predictor · spatial processes.

1 Introduction
Gaussian process regression models have proven to be of great interest in many fields when it comes

to predict the output of a function f : D → R, D ⊂ Rd, based on the knowledge of n input-output
tuples (xi, f(xi)) for 1 ≤ i ≤ n [Stein, 2012, Santner et al., 2013, Williams and Rasmussen, 2006].
One asset of this method is to provide not only a mean predictor but also a quantification of the
model uncertainty. The Gaussian process regression framework uses a (centered) real-valued Gaussian
process Y over D as a prior distribution for f and approximates it by the conditional distribution of Y
given the observations Y (xi) = f(xi) for 1 ≤ i ≤ n. In this framework, we denote by k : D ×D → R

the covariance function (or kernel) of Y : k(x, x′) = Cov [Y (x), Y (x′)], and by X ∈ Dn the vector of
observation points with entries xi for 1 ≤ i ≤ n.

In the following, we use classical vectorial notations: for any functions f : D → R, g : D ×D → R

and for any vectors A = (a1, . . . , an) ∈ Dn and B = (b1, . . . , bm) ∈ Dm, we denote by f(A) the
n × 1 real valued vector with components f(ai) and by g(A,B) the n × m real valued matrix with
components g(ai, bj), i = 1, . . . , n, j = 1, . . . ,m. With such notations, the conditional distribution of
Y given the n× 1 vector of observations Y (X) is Gaussian with mean, covariance and variance:

Mfull(x) = E [Y (x)|Y (X)] = k(x,X)k(X,X)−1Y (X) ,
cfull(x, x′) = Cov

[
Y (x), Y (x′)|Y (X)

]
= k(x, x′)− k(x,X)k(X,X)−1k(X,x′) ,

vfull(x) = cfull(x, x) .
(1)

∗Université de Lyon, Université Claude Bernard Lyon 1, ISFA, Laboratoire SAF, EA2429, 50 avenue Tony Garnier,
69366 Lyon, France, didier.rulliere@univ-lyon1.fr.
†Corresponding author, Mines Saint-Étienne, H. Fayol Institute, 158 cours Fauriel, Saint-Étienne, France and CNRS

LIMOS, UMR 5168, durrande@emse.fr.
‡Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France,

francois.bachoc@math.univ-toulouse.fr.
§Institute of Statistics, University of Neuchâtel, avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland,

clement.chevalier@unine.ch.

1

ar
X

iv
:1

60
7.

05
43

2v
3

 [
st

at
.M

L
]

 2
5

Ju
l 2

01
7

Since we do not specify yet the values taken by Y at X, the “mean predictor” Mfull(x) is random
so it is denoted by an upper-case letter M . The approximation of f(x) given the observations f(X)
is thus given by mfull(x) = E [Y (x)|Y (X) = f(X)] = k(x,X)k(X,X)−1f(X). This method is quite
general since an appropriate choice of the kernel allows to recover the models obtained from various
frameworks such as linear regression and splines models [Wahba, 1990].

One limitation of such models is the computational time required for building models based on
a large number of observations. Indeed, these models require computing and inverting the n × n
covariance matrix k(X,X) between the observed values Y (X), which leads to a O(n2) complexity in
space and O(n3) in time. In practice, this computational burden makes Gaussian process regression
difficult to use when the number of observation points is in the range [103, 104] or greater.

Many methods have been proposed in the literature to overcome this limit. Let us first mention
that, when the observations are recorded on a regular grid, choosing a separable covariance function
k enables to drastically simplify the inversion of the covariance matrix k(X,X), since the latter can
be written as a Kronecker product. In the same context of gridded data, alternative approaches such
as Gaussian Markov Random Fields are also available [Rue and Held, 2005].

For irregularly spaced data, a common approach in machine learning relies on inducing points.
It consists in introducing a set W of pseudo input points and in approximating the full conditional
distribution Y (x)|Y (X) by Y (x)|Y (W). The challenge here is to find the best locations for the inducing
inputs and to decide which values should be assigned to the outputs at W . Various methods are
suggested in the literature to answer these questions [Guhaniyogi et al., 2011, Hensman et al., 2013,
Katzfuss, 2013, Zhang et al., 2015]. One drawback of this kind of approximation is that the predictions
do not interpolate the observation points any more. Note that this method has recently been combined
with the Kronecker product method in [Nickson et al., 2015].

Other methods rely on low rank approximations or compactly supported covariance functions. Both
methods show limitations when the scale dependence is respectively short and large. For more details
and references, see [Stein, 2014, Maurya, 2016, Bachoc et al., 2017]. Another drawback – which to
the best of our knowledge is little discussed in the literature – is the difficulty to use these methods
when the dimension of the input space is large (say larger than 10, which is frequent in computer
experiments or machine learning).

Let us also mention that the computation of k(X,X)−1y, for an arbitrary vector y ∈ Rn can be per-
formed using iterative algorithms, like the preconditionned conjugate gradient algorithm
[Golub and Van Loan, 2012]. Unfortunately, the algorithms need to be run many times when a pos-
terior variance – involving the computation of k(X,X)−1k(X,xi) – needs to be computed for a large
set of prediction points.

The method proposed in this paper belongs to the so-called “mixture of experts” family. The
latter relies on the aggregation of sub-models based on subsets of the data which make them easy to
compute. This kind of methods offers a great flexibility since it can be applied with any covariance
function and in large dimension while retaining the interpolation property. Some existing “mixture of
experts” methods are product of experts [Hinton, 2002], and the (robust) Bayesian committee machine
[Tresp, 2000, Deisenroth and Ng, 2015]. All these methods are based on a similar approach: for a given
point x, each sub-model provides its own prediction (a mean and a variance) and these predictions are
then merged into one single mean and prediction variance. The differences between these methods lie
in how to aggregate the predictions made by each sub-model. It shall be noted that aggregating expert
opinions is the topic of consensus statistical methods (sometimes referred to as opinion synthesis or
averaging methods), where probability distributions representing expert opinions are joined together.
Early references are [Winkler, 1968, Winkler, 1981]. A detailed review and an annotated bibliography
is given in [Genest and Zidek, 1986] (see also [Satopää et al., 2016, Ranjan and Gneiting, 2010] for

2

recent related developments). From a probabilistic perspective, usual mixture of experts methods
assume that there is some (conditional) independence between the sub-models. Although this kind
of hypothesis leads to efficient computations, it is often violated in practice and may lead to poor
predictions as illustrated in [Samo and Roberts, 2016]. Furthermore, these methods only provide
pointwise confidence intervals instead of a full Gaussian process posterior distribution.

Since our method is part of the mixture of experts framework, it benefits from the properties of the
mixture of experts techniques: it does not require the data to be on a grid, the predictions can inter-
polate the observations and it can be applied to data with small or large scale dependencies regardless
of the input space dimension. Compared to other mixtures of experts, we relax the usually made
independence assumption so that the prediction takes into account all n2 pairwise cross-covariances
between observations. We show that this addresses two main pitfalls of usual mixture of experts. First,
the predictions are more accurate. Second, the theoretical consistency is ensured whereas it is not the
case for the product of experts and the Bayesian committee machine methods. The detailed proofs of
the later are out of the scope of this paper and we refer the interested reader to [Bachoc et al., 2017]
for further details. The proposed method remains computationally affordable: predictions are per-
formed in a few seconds for n = 104 and a few minutes for n = 105 using a standard laptop and the
proposed online implementation. Finally, the prediction method comes with a naturally associated
inference procedure, which is based on cross validation errors.

The proposed method is presented in Section 2. In Section 3, we introduce an iterative scheme for
nesting the predictors derived previously. A procedure for estimating the parameters of models is then
given in Section 4. Finally, Section 5 compares the method with state-of-the-art aggregation methods
on both a simulated dataset and an industrial case study.

2 Pointwise aggregation of experts
Let us now address in more details the framework of this article. The method is based on the

aggregation of sub-models defined on smaller subsets of points. Let X1, . . . , Xp be subvectors of the
vector of observations input points X, it is thus possible to define p associated sub-models (or experts)
M1, . . . , Mp. For example, the sub-model Mi can be a Gaussian process regression model based on
a subset of the data

Mi(x) = E [Y (x)|Y (Xi)] = k(x,Xi)k(Xi, Xi)−1Y (Xi) , (2)

however, we make no Gaussian assumption in this section. For a given prediction point x ∈ D, the
p sub-models predictions are gathered into a p × 1 vector M(x) = (M1(x) . . . ,Mp(x))t. The random
column vector (M1(x), . . . ,Mp(x), Y (x))t is supposed to be centered with finite first two moments and
we consider that both the p× 1 covariance vector kM (x) = Cov [M(x), Y (x)] and the p× p covariance
matrix KM (x) = Cov [M(x),M(x)] are given. Sub-models aggregation (or mixture of experts) aims
at merging all the pointwise sub-models M1(x), . . . ,Mp(x) into one unique pointwise predictor MA(x)
of Y (x). We propose the following aggregation:

Definition 1 (Sub-models aggregation). For a given point x ∈ D, let Mi(x), i ∈ A = {1, . . . , p} be
sub-models with covariance matrix KM (x). Then, when KM (x) is invertible, we define the sub-model
aggregation as:

MA(x) = kM (x)tKM (x)−1M(x). (3)

In practice, the invertibility condition on KM (x) can be avoided by using matrices pseudo-inverses.
Given the vector of observations M(x) = m(x), the associated prediction is

mA(x) = kM (x)tKM (x)−1m(x). (4)

Notice that we are here aggregating random variables rather than their distributions. For dependent
non-elliptical random variables, expressing the probability density function of MA(x) as a function

3

of each expert density Mi(x) is not straightforward. This difference in the approaches implies that
the proposed method differs from usual consensus aggregations. For example, aggregating random
variables allows to specify the correlations between the aggregated prediction and the experts whereas
aggregating expert distributions into a univariate prediction distribution does not characterize uniquely
these correlations.

Proposition 1 (BLUP). MA(x) is the best linear unbiased predictor of Y (x) that writes
∑
i∈A αi(x)Mi(x).

The mean squared error vA(x) = E
[
(Y (x)−MA(x))2] writes

vA(x) = k(x, x)− kM (x)tKM (x)−1kM (x) . (5)

The coefficients {αi(x), i ∈ A} are given by the vector α = kM (x)tKM (x)−1.

Proof. The standard proof applies: The square error writes E
[
(Y (x)− αtM(x))2] = k(x, x)−2αtkM (x)+

αtKM (x)α. The value of α∗ minimising it can be found by differentiation: −2kM (x) + 2α∗KM (x) = 0
which leads to α∗ = KM (x)−1kM (x). Then, vA(x) = k(x, x) − 2α∗tkM (x) + α∗tKM (x)α∗ and the
result holds.

Proposition 2 (Basic properties). Let x be a given prediction point in D.

(i) Linear case: if M(x) is linear in Y (X), i.e. if there exists a p×n deterministic matrix Λ(x) such
that M(x) = Λ(x)Y (X) and if Λ(x)k(X,X)Λ(x)t is invertible, then MA(x) is linear in Y (X)
with {

MA(x) = λA(x)tY (X) ,
vA(x) = k(x, x)− λA(x)tk(X,x) .

(6)

where λA(x)t = k(x,X)Λ(x)t
(
Λ(x)k(X,X)Λ(x)t

)−1Λ(x).

(ii) Interpolation case: if M interpolates Y at X, i.e. if for any component xk of the vector X there
is at least one index ik ∈ A such that Mik(xk) = Y (xk), and if KM (xk) is invertible for any
component xk of X, then MA is also interpolating, i.e.{

MA(X) = Y (X) ,
vA(X) = 0n ,

(7)

where 0n is a n× 1 vector with entries 0. This property can be extended when some KM (xk) are
not invertible by using pseudo-inverse in place of matrix inverse in Definition 1.

(iii) Gaussian case: if the joint distribution (M(x), Y (x)) is multivariate normal, then the conditional
distribution of Y (x) given M(x) is normal with moments{

E [Y (x)|Mi(x), i ∈ A] = MA(x) ,
V [Y (x)|Mi(x), i ∈ A] = vA(x) .

(8)

Proof. Linearity directly derives from kM (x) = Λ(x)k(X,x) and KM (x) = Λ(x)K(X,X)Λ(x)t.
Interpolation: Let k ∈ {1, . . . , n}, and i ∈ A be an index such that Mi(xk) = Y (xk). As KM (xk) =
Cov [M(xk),M(xk)], the ith line of KM (xk) is equal to Cov [Mi(xk),M(xk)] = Cov [Y (xk),M(xk)] =
kM (xk)t. Setting ei the p dimensional vector having entries 0 except on its ith component, it
is thus clear that eitKM (xk) = kM (xk)t. As KM (xk) is assumed to be invertible, then ei

t =
kM (xk)tKM (xk)−1, so that MA(xk) = kM (xk)tKM (xk)−1M(xk) = ei

tM(xk) = Mi(xk) = Y (xk).
This result can be plugged into the definition of vA to obtain the second part of Eq. (7): vA(xk) =
E
[
(Y (xk)−MA(xk))2] = 0.

Finally the Gaussian case can be proved directly by applying the usual multivariate normal condition-
ing formula.

4

Let us assume here that conditions in items (i) and (ii) of Proposition 2 are satisfied, that is that
M(x) is linear in Y (X), and that MA(X) = Y (X). Then, the proposed aggregation method also
benefits from several other interesting properties:

• First, the aggregation can be seen as an exact conditional process for a slightly different prior
distribution on Y . One can indeed define a process YA as YA = MA + ε′A where ε′A is an
independent replicate of Y −MA and withMA as in (3). One can then show that YA(X) = Y (X)
and {

MA(x) = E [YA(x)|YA(X)] ,
vA(x) = V [YA(x)|YA(X)] .

Denoting kA the covariance function of YA, one can also show that kA(x, x) = k(x, x) for all
x ∈ D and kA(X,X) = k(X,X).

• Second, the error between the aggregated model and the full model of Equation (1) can be
bounded. For any norm ‖.‖, one can show that there exists some constants λ, µ ∈ R+ such that{

|MA(x)−Mfull(x)| ≤ λ‖k(X,x)‖‖Y (X)‖ ,
|vA(x)− vfull(x)| ≤ µ‖k(X,x)‖2 .

One can also show that the differences between the full and aggregated models write as norm
differences, where ‖u‖2K = utk(X,X)−1u:E

[
(MA(x)−Mfull(x))2

]
= ‖k(X,x)− kA(X,x)‖2K ,

vA(x)− vfull(x) = ‖k(X,x)‖2K − ‖kA(X,x)‖2K .

• Third, contrarily to several other aggregation methods, when sub-models are informative enough,
the difference between the aggregated model and the full model vanishes: when M(x) =
Λ(x)Y (X) where Λ(x) is a n×n matrix with full rank, then YA

law= Y and YA|YA(X) law= Y |Y (X).
Furthermore, in this full-information case,{

MA(x) = Mfull(x) ,
vA(x) = vfull(x) .

• Finally, in the Gaussian case and under some supplementary conditions, it can be proven that,
contrarily to several other aggregation methods, the proposed method is consistent when the
number of observation points tends toward infinity. Let (xni)1≤i≤n,n∈N be a triangular array of
observation points such that for all x ∈ D, limn→∞mini=1,...,n ||xni − x|| = 0. For n ∈ N, let
X = (xn1, ..., xnn)t, letM1(x), ...,Mpn(x) be any collection of pn simple Kriging predictors based
on respective design points X1, . . . , Xpn where ∪pni=1Xi = X (with a slight abuse of notation),
then

sup
x∈D

E
(
(Y (x)−MA(x))2

)
→n→∞ 0.

One can also exhibit non-consistency results for other aggregation methods of the literature that
do not use covariances between sub-models.

The full development of these properties is out of the scope of this paper and we dedicate a separate
article to detail them [Bachoc et al., 2017].

We now illustrate our aggregation method with two simple examples.

Example 1 (Gaussian process regression aggregation). In this example, we set D = R and we approxi-
mate the function f(x) = sin(2πx)+x based on a set of five observation points in D: {0.1, 0.3, 0.5, 0.7, 0.9}.
These observations are gathered in two column vectors X1 = (0.1, 0.3, 0.5) and X2 = (0.7, 0.9). We use

5

2

1

0

1

2

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

2

1

0

1

2

(a) sub-models to aggregate

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

2

1

0

1

2

(b) aggregated model (solid lines) and full model (dashed lines)

Figure 1: Example of aggregation of two Gaussian process regression models. For each model, we
represent the predicted mean and 95% confidence intervals.

as prior a centered Gaussian process Y with squared exponential covariance k(x, x′) = exp
(
−12.5(x− x′)2)

in order to build two Kriging sub-models, for i ∈ {1, 2}:{
Mi(x) = E [Y (x)|Y (Xi)] = k(x,Xi)k(Xi, Xi)−1Y (Xi) ,
mi(x) = E [Y (x)|Y (Xi) = f(Xi)] = k(x,Xi)k(Xi, Xi)−1f(Xi) .

(9)

The expressions required to compute MA as defined in Eq. (3) are for i, j ∈ {1, 2}:
(
kM (x)

)
i

= Cov [Mi(x), Y (x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, x) ,(
KM (x)

)
i,j

= Cov [Mi(x),Mj(x)] = k(x,Xi)k(Xi, Xi)−1k(Xi, Xj)k(Xj , Xj)−1k(Xj , x) .
(10)

Recall mfull(x) = E [Y (x)|Y (X) = f(X)] and vfull(x) = V [Y (x)|Y (X) = f(X)], as it can be seen in
Figure 1, the resulting model mA appears to be a very good approximation of mfull and there is only
a slight difference between prediction variances vA and vfull on this example.

Example 2 (Linear regression aggregation). In this distribution-free example, we set D = R and
we consider the process Y (x) = ε1 + ε2x where ε1 and ε2 are independent centered random variables
with unit variance. Y is thus centered with covariance k(x, x′) = 1 + xx′. Furthermore, we consider
that Y is corrupted by some observation noise Yobs(x) = Y (x) + ε3(x) where ε3(x) is an independent
white noise process with covariance k3(x, x′) = 1{x=x′}. Note that we only make assumptions on
the first two moments of ε1, ε2 or ε3(x) but not on their laws. We introduce five observation points
gathered in two column vectors: X1 = (0.1, 0.3, 0.5)t and X2 = (0.7, 0.9)t and their associated outputs
y1 = (2.05, 0.93, 0.31)t and y2 = (−0.47, 0.12)t. The linear regression sub-models, obtained by square
error minimization, are Mi(x) = k(x,Xi)(k(Xi, Xi) + Id)−1Yobs(Xi), i ∈ {1, 2}, where Id stands for
the identity matrix. Resulting covariances Cov [Mi(x), Y (x)], Cov [Mi(x),Mj(x)] and aggregated model
MA(x), vA(x) of Eq. (8) are then easily obtained. The resulting model is illustrated in Figure 2.

3 Iterative scheme
In the previous sections, we have seen how to aggregate sub-modelsM1, . . . ,Mp into one unique aggre-
gated valueMA. Now, starting from the same sub-models, one can imagine creating several aggregated
values, MA1 , . . . ,MAs , each of them based on a subset of {M1, . . . ,Mp}. One can show that these
aggregated values can themselves be aggregated. This makes possible the construction of an iterative
algorithm that merges sub-models at successive steps, according to a tree structure. Such tree-based
schemes are sometimes used to reduce the complexity of models, see e.g. [Tzeng et al., 2005], or to
allow parallel computing [Wei et al., 2015].

6

10

5

0

5

10

1.0 0.5 0.0 0.5 1.0 1.5 2.0
10

5

0

5

10

(a) sub-models to aggregate

1.0 0.5 0.0 0.5 1.0 1.5 2.0
10

5

0

5

10

(b) aggregated model (solid lines) and full model (dashed lines)

Figure 2: Example of aggregation of two linear regression sub-models. Exhibited confidence bands
correspond to a difference to mean value of two standard deviations.

1
Aν1 = {1, 2}

1
Aν1 = {1, 2, 3}

1 2 3

2
Aν2 = {4, 5}

4 5
ν = 0, nν = 5

ν = 1, nν = 2

ν = 2, nν = 1

Figure 3: One aggregation tree with height ν̄ = 2, n0 = 5 initial leave nodes (observation points) and
n1 = 2 sub-models.

The aim of this section is to give a generic algorithm for aggregating sub-models according to a tree
structure and to show that the choice of the tree structure helps partially reducing the complexity of
the algorithm. It also aims at giving perspectives for further large reduction of the global complexity.

Let us introduce some notations. The total height (i.e number of layers) of the tree is denoted ν̄ and
the number of node of a layer ν ∈ {1, . . . , ν̄} is nν . We associate to each node (say node i in layer ν) a
sub-model Mν

i corresponding to the aggregation of its child node sub-models. In other words, Mν
i is

the aggregation of {Mν−1
k , k ∈ Aνi } where Aνi is the set of children of node i in layer ν. These notations

are summarized in Figure 3 which details the tree associated with Example 1. In practice, there will
be one root node (nν̄ = 1) and each node will have at least one parent: ∪i=1,...,nνAνi = {1, . . . , nν−1}.
Typically, the sets Aνi , i = 1, . . . , nν , are a partition of {1, . . . , nν−1} but this assumption is not
required and a child node may have several parents (which can generate a lattice rather than a tree).

3.1 Two-Layer aggregation

We discuss in this section the tree structure associated with the case ν̄ = 2 as per the previous exam-
ples. With such settings, the first step consists in calculating the initial sub-modelsM1

1 , . . . ,M
1
p of the

layer ν = 1 and the second one is to aggregate all sub-models of layer ν = 1 into one unique predictor
M2

1 (see for example Figure 3). This aggregation is obtained by direct application of Definition 1.
In practice the sub-models can be any covariates, like gradients, non-Gaussian underlying factors

or even black-box responses, as soon as cross-covariances and covariances with Y (x) are known. When

7

sub-models are calculated from direct observations Y (x1), . . . , Y (xn), the number of leave nodes at
layer ν = 0 is n0 = n. In further numerical illustrations of Section 5, the sub-models M1

i are simple
Kriging predictors of Y (x), with for i = 1, . . . , p,

M1
i (x) = k(x,Xi)k(Xi, Xi)−1Y (Xi) ,

Cov
[
M1
i (x), Y (x)

]
= k(x,Xi)k(Xi, Xi)−1k(Xi, x) ,

Cov
[
M1
i (x),M1

j (x)
]

= k(x,Xi)k(Xi, Xi)−1k(Xi, Xj)k(Xj , Xj)−1k(Xj , x) .
(11)

With these particular simple Kriging initial sub-models, the layer ν = 1 corresponds to the aggregation
of covariates M0

i (x) = Y (xi) at the previous layer ν = 0, i = 1, . . . , n.

3.2 Multiple Layer aggregation

In order to extend the two-layer settings, one needs to compute covariances among aggregated sub-
models. The following proposition gives covariances between aggregated models of a given layer.

Proposition 3 (aggregated models covariances). Let us consider a layer ν ≥ 1 and given aggregated
models Mν

1 (x), . . . ,Mν
nν (x). Assume that the following covariances (kν(x))i = Cov [Mν

i (x), Y (x)] and
(Kν(x))ij = Cov

[
Mν
i (x),Mν

j (x)
]
are given, i, j ∈ {1, . . . , nν}. Let nν+1 ≥ 1 be a number of new

aggregated values. Consider subsets Aν+1
i of {1, . . . , nν}, i = 1, . . . , nν+1, and assume that Mν+1

i (x)
is the aggregation of Mν

k (x), k ∈ Aν+1
i . Then

(Mν+1(x))i = αν+1
i (x)t

(
Mν(x)[Aν+1

i]

)
,

Cov
[
Mν+1
i (x), Y (x)

]
= αν+1

i (x)t
(
kν(x)[Aν+1

i]

)
,

Cov
[
Mν+1
i (x),Mν+1

j (x)
]

= αν+1
i (x)t

(
Kν(x)[Aν+1

i ,Aν+1
j]

)
αν+1
j (x) ,

(12)

where the vectors of optimal weights are αν+1
i (x) =

(
Kν

[Aν+1
i ,Aν+1

i]

)−1 (
kν(x)[Aν+1

i]

)
and where kν(x)[Aν+1

i]

corresponds to the sub-vector of kν(x) of indices in Aν+1
i and similarly for Mν(x)[Aν+1

i] and the sub-
matrix Kν(x)[Aν+1

i ,Aν+1
i], which is assumed to be invertible.

Furthermore, Cov
[
Mν+1
i (x), Y (x)

]
= Cov

[
Mν+1
i (x),Mν+1

i (x)
]
.

Proof. This follows immediately from Definition 1: as the aggregated values are linear expressions, the
calculation of their covariances is straightforward. The last equality is simply obtained by inserting
the value of αν+1

i (x) into the expression of Cov
[
Mν+1
i (x),Mν+1

i (x)
]
.

The following algorithm, which is a generic algorithm for aggregating sub-models according to
a tree structure, is based on an iterative use of the previous proposition. It is given for one pre-
diction point x ∈ D and it assumes that the sub-models are already calculated, starting directly
from layer 1. This allows a large variety of sub-models, and avoids the storage of the possibly large
covariance matrix K0(x). Its outputs are the final scalar aggregated model, Mν̄(x), and the scalar
covariance Kν̄(x) from which one deduces the prediction error E

[
(Y (x)−Mν̄(x))2] = k(x, x)−Kν̄(x).

In order to give dimensions in the algorithm and to ease the calculation of complexities, we define
cνi as the number of children of the sub-model Mν

i , cνi = cardAνi . We also denote cmax = max
ν,i

cνi the
maximal number of children.

8

Algorithm 1: Nested Kriging algorithm

inputs : M1, vector of length n1 (sub-models evaluated at x)
k1, vector of length n1 (covariance between Y (x) and sub-models at x)
K1, matrix of size n1 × n1 (covariance between sub-models at x)
A, a list describing the tree structure

outputs: Mν̄ , Kν̄

Create vectors M , k of size cmax and matrix K of size cmax × cmax
for ν = 2, . . . , ν̄ do

Create vectors Mν of size nν and matrix Kν of size nν × nν
for i = 1, . . . , nν do

Create vector αi of size cνi
M ← subvector of Mν−1 on Aνi
K ← submatrix of Kν−1 on Aνi
if ν = 2 then k ← k1 else k ← Diag(K)
αi ← K−1k

Mν [i]← (αi)tM
Kν [i, i]← (αi)tk
for j = 1, . . . , i− 1 do

K ← submatrix of Kν−1 on Aνi ×Aνj
Kν [i, j]← (αi)tKαj
Kν [j, i]← Kν [i, j]

Mν−1, Kν−1 and all αi can be deleted

Notice that Algorithm 1 uses the result (Kν+1(x))ii = (kν+1(x))i from Prop. 3: when we consider ag-
gregated models (ν ≥ 2), we do not need to store and compute the vector kν(x) any more. When ν = 1,
depending on the initial covariates, Cov

[
M1
i (x), Y (x)

]
is not necessarily equal to Cov

[
M1
i (x),M1

i (x)
]

(this is however the case when M1
i (x) are simple Kriging predictors).

For the sake of clarity, some improvements have been omitted in the algorithm above. For instance,
covariances can be stored in triangular matrices, one can store two couples (Mν ,Kν) instead of ν̄
couples by using objects M(ν mod 2) and K(ν mod 2). Furthermore, it is quite natural to adapt this
algorithm to parallel computing, but this is out of the scope of this article.

3.3 Complexity

We study here the complexity of Algorithm 1 in space (storage footprint) and in time (execution time).
For the sake of clarity we consider in this paragraph a simplified tree where nν is decreasing in ν and
each child has only one parent. This corresponds to the most common structure of trees, without
overlapping. Furthermore, at any given level ν, we consider that each node has the same number of
children: cνi = cν for all i = 1, . . . , nν . Such a tree will be called regular. In this setting, one easily sees
that nν = nν−1

cν
= n

c1...cν
, ν ∈ {1, . . . , ν̄}. Complexities obviously depend on the choice of sub-models,

we give here complexities for Kriging sub-models as in Eq. (11), but this can be adapted to other
kinds of sub-models.

For one prediction point x ∈ D, we denote by S the storage footprint of Algorithm 1, and by C its
complexity in time, including sub-models calculation. One can show that in a particular two-layers
setting with

√
n sub-models (ν̄ = 2 and c1 = c2 =

√
n), a reachable global complexity for q prediction

points is (see assumptions below and expression details in the proof of Proposition 4)

S = O(n) and qC = O(n2q) . (13)

9

This is to be compared with O(n3)+O(n2q) for the same prediction with the full model. The aggrega-
tion of sub-models can be useful when the number of prediction points is smaller than the number of
observations. Notice that the storage needed for q prediction points is the same as for one prediction
point, but in some cases (as for leave-one-out errors calculation), it is worth using a O(nq) storage to
avoid recalculations of some quantities.

We now detail chosen assumptions on the calculation of S and C, and study the impact of the tree
structure on these quantities. For one prediction point x ∈ D, including sub-models calculation, the
complexity in time can be decomposed into C = Ccov + Cα + Cβ, where

- Ccov is the complexity for computing all cross covariances among initial design points, which
does not depend on the tree structure (neither on the number of prediction points).

- Cα is the complexity for building all aggregation predictors, i.e. the sum over ν, i of all operations
in the i-loop in Algorithm 1 (excluding operations in the j-loop).

- Cβ is the complexity for building the covariance matrices among these predictors, i.e. the sum
over ν, i, j of all operations in the j-loop in Algorithm 1.

We assume here that there exists two constants α > 0 and β > 0 such that the complexity of
operations inside the i-loop (excluding those of the j-loop) is αc3

ν , and the complexity of operations
inside the j-loop is βc2

ν . Despite perfectible, this assumption follows from the fact that one usually
considers that the complexity of cν × cν matrix inversion is O(c3

ν) and the complexity of matrix-vector
multiplication is O(c2

ν). We also assume that the tree height ν̄ is finite, and that all numbers of children
cν tend to +∞ as n tends to +∞. This excludes for example binary trees, but makes assumptions on
complexities more reliable. Under these assumptions, the following proposition details how the tree
structure affects the complexities.

Proposition 4 (Complexities). The following storage footprint S and complexities Cα, Cβ hold for
the respective tree structures, when the number of observations n tends to ∞.

(i) The two-layer equilibrated
√
n-tree, where p = c1 = c2 =

√
n, ν̄ = 2, is the optimal storage

footprint tree, and
S = O(n) , Cα ∼ αn2 , Cβ ∼

β

2n
2 . (14)

(ii) The ν̄-layer equilibrated ν̄
√
n-tree, where c1 = · · · = cν̄ = ν̄

√
n, ν̄ ≥ 2, is such that

S = O(n2−2/ν̄) , Cα ∼ αn1+ 2
ν̄ , Cβ ∼

β

2n
2 . (15)

(iii) The optimal complexity tree is defined as the regular tree structure that minimizes Cα, as it is
not possible to reduce Cβ to orders lower than O(n2). This tree is such that

S = O

(
n

2− 1
δν̄−1

)
, Cα ∼ γαn

1+ 1
δν̄−1 , Cβ ∼

β

2n
2 , (16)

with δ = 3
2 and γ = 27

4 δ
− ν̄
δν̄−1

(
1− δ−ν̄

)
. This tree is obtained for cν = δ

(
δ−ν̄n

) δ(ν−1)
2(δν̄−1) , ν =

1, . . . , ν̄. In a particular two-layers setting one gets c1 =
(

3
2

)1/5
n2/5 and c2 =

(
3
2

)−1/5
n3/5,

which leads to Cα = γαn9/5 and Cβ = β
2n

2 − β
2

(
3
2

) 1
5 n

7
5 , where γ = (2

3)−2/5 + (2
3)3/5 ' 1.96.

Proof. The details of the proof are given in Appendix A.

We have seen that for q prediction points and n observations, a reachable complexity of the
algorithm is O(n2q), which is less than O(n3) + O(n2q) for the same prediction with the full model,
when q < n.

10

More precisely, we have shown that the choice of the tree structure helps partially reducing the
complexity of the algorithm. Indeed, a large tree height ν̄ largely reduces the complexity Cα of matrix
inversions in the algorithm. However, Cβ cannot be reduced and one can expect a maximal complexity
reduction factor of β

2α+β when using an optimal tree, compared to the equilibrated two-layers
√
n-tree.

One shall however keep in mind that a lower complexity can lead to larger prediction errors or larger
storage footprint.

As a perspective, approximating cross-covariances between aggregated models would allow to re-
duce Cβ to the same order as Cα, which approaches O(n) when ν̄ is large. This thus gives perspectives
for further large reduction of the global complexity, which are let to future work.

At last, several parts of the algorithm can be computed in parallel execution threads. This is an
interesting feature since sub-models computation at any layer can also be distributed.

4 Parameter estimation
Consider a set of covariance functions {σ2kθ, σ

2 ≥ 0, θ ∈ Θ} where kθ is a correlation function
from D × D into [−1, 1] depending on some parameters θ such as length-scales. In this section, we
address the problem of selecting the value of σ2 and θ from the input observation points in X and
the observation vector f(X). The mean predictor mA depends only on θ so it will be written mA,θ.
The prediction variance is a function of both θ and σ2. Since it is linear in the latter, the prediction
variance is written σ2vA,θ.

For 1 ≤ i ≤ n, let the leave-one-out mean mA,θ,−i(xi) be computed as mA,θ(xi), but with X, f(X)
replaced by X−i, f(X−i), where X−i is obtained by removing the ith line of X. Note that the input
division X1, ..., Xp is left unchanged, apart from removing xi when it appears in X1, ..., Xp. Similarly,
the tree structure {Aνi } is left unchanged. We define σ2vA,θ,−i(xi) similarly to σ2vA,θ(xi).

We estimate σ2 and θ with a two-step leave-one-out procedure similar to that of [Bachoc, 2013].
We first select θ as minimizing the leave-one-out mean square error:

θ̂ ∈ argmin
θ∈Θ

1
n

n∑
i=1

(f(xi)−mA,θ,−i(xi))2 . (17)

Second, we set σ2 so that the leave-one-out errors have variance one:

σ̂2 = 1
n

n∑
i=1

(
f(xi)−mA,θ̂,−i(xi)

)2

vA,θ̂,−i(xi).
(18)

We implemented an algorithm that computes, for a given covariance parameter θ, the quantities
mA,θ,−i(xi) and vA,θ,−i(xi) for q different points xi. If the proper storage and precomputations are
made, the computational cost is of O(qn2), which is similar to the cost for predicting at q new locations
using the model aggregation procedure presented in this paper. However using precomputations, the
algorithm also has a storage cost of O(nq) which excludes using q = n in the case where n is large and
prevents computing the right-hand side of Equation (17) exactly. Finally, one may notice that when q
points are chosen uniformly, without replacement, in the set of all n points, averaging q leave-one-out
mean square error yields an unbiased estimate of the leave-one-out mean square error, and can be seen
as an approximation of the latter. We thus propose to solve the optimization problem (17) with a
stochastic gradient descent algorithm described in Chapter 5 of [Bhatnagar et al., 2013]. At each step
of the gradient descent, the projection of the gradient of (17) on a random direction is approximated
by a finite difference. The algorithm is as follows.

11

Algorithm 2: Stochastic gradient descent

inputs : θ0, initial value of θ
(ai)i∈N, sequence of increment terms for the gradient descent
(δi)i∈N, sequence of step sizes for the finite differences
q, number of leave-one-out predictions
niter, maximal number of iterations

outputs: θ̂

for i = 1, ..., niter do
Sample a subset Ii of {1, ..., n}, uniformly over all the subsets of {1, ..., n} with cardinality
q.
Sample a m-dimensional vector hi from a m-dimensional random vector with independent
components, each of them taking the values 1 and −1 with probabilities 1/2.
Let

∆i = 1
2δi

1
q

∑
j∈Ii

(
f(xj)−mA,−j,θi−1+δihi(xj)

)2 − 1
q

∑
j∈Ii

(
f(xj)−mA,−j,θi−1−δihi(xj)

)2 .
Let θi = θi−1 − ai∆ihi.

Let θ̂ = θniter .

An implementation in R and C++ of both algorithms 1 and 2 is publicly available on the web-
site http://www.clementchevalier.com/index.php/r-packages. In practice, the computation cost
of q leave-one-out predictions is the sum of a fixed cost – involving in particular the computation of
the n2 covariances kθ(xi, xj) – and a marginal cost which is proportional to q. When n = 10, 000,
these two summands take comparable values for q = 100, which is the setting we use in practice.
Following the recommendations in [Bhatnagar et al., 2013], we set δi = c/(i + 1)γ , with γ = 0.101.
We set ai = a/(A+ i+ 1)α, with α = 0.602 (as suggested in [Bhatnagar et al., 2013]), or α = 0.2, or a
combination of these two values. Typically we run a first gradient descent with α = 0.2, which termi-
nation point serves as starting point for a second gradient descent with α = 0.602. Good values of a,
c and A depend of the application case. In practice, satisfactory results are obtained for n = 10, 000,
d = 10 and p = 100, with niter = 500, in which case the computation time would be around a few
hours on a personal computer with a mono-threaded implementation.

5 Numerical applications

5.1 Comparison with other aggregation methods

We now compare the predictions obtained with various methods when aggregating 15 Kriging sub-
models based on two observations each. The test functions are samples of a centered Gaussian process
over [0, 1]. The compared models are the nested Kriging model introduced in this article, the full
model and other methods developed in the literature:
Product of expert (PoE) [Hinton, 2002] is based on the assumption that for a given x, the predic-
tions of each sub-model correspond to independent random variables. As a consequence, the aggregated
predicted density for Y (x) is equal to the product of the sub-models densities : fpoe(y) ∝

∏p
i=1 fi(y)

where fi is the predicted density of Y (x) according to the ith sub-model. The PoE corresponds
to the normal model developed in [Winkler, 1981], in the case of independent experts, when the
considered covariance matrix is diagonal (see e.g. section 3.2 in the previously cited article and
[van Stein et al., 2015]). Some extensions of this method to consensus Monte-Carlo sampling can
be found in [Scott et al., 2016].
Generalized product of expert (GPoE). As discussed in [Deisenroth and Ng, 2015], a major draw-
back of Kriging based PoE is that the prediction variance of the aggregated model decreases when
the number of sub-models increases even in regions with no observation points. [Cao and Fleet, 2014]

12

http://www.clementchevalier.com/index.php/r-packages

introduced a variant called generalized product of expert where a weighting term is added to overcome
this issue. The prediction is then given by

fgpoe(y) ∝
p∏
i=1

(fi(y))βi . (19)

For this benchmark, the parameters βi will be set to 1/p as recommended in [Deisenroth and Ng, 2015].
Notice that GPoE corresponds exactly to what consensus literature refers to logarithmic opinion pool,
see e.g. Eq.(3.11) in [Genest and Zidek, 1986].
Bayesian Committee Machine (BCM) has been introduced in [Tresp, 2000] to aggregate Kriging
sub-models. It is based on the assumption of conditional independence of the sub-models given the
process values at prediction points. The predicted aggregated density is given by

fbcm(y) ∝
∏p
i=1 fi(y)
fY (y)p−1 . (20)

Robust Bayesian committee machine (RBCM) has been introduced in [Deisenroth and Ng, 2015]
to correct some supposed flaws from BCM aggregations in the case where there are only few observa-
tions in each sub-model. The predicted aggregated density is given by

frbcm(y) ∝
∏p
i=1(fi(y))βi

(fY (y))−1+
∑

i
βi
, (21)

where βi = 1
2 [log(V [Y (x)])− log(vi(x))] with vi(x) the predicted variance of the ith sub-model at x.

One advantage of these aggregation methods is their very low complexity. However, GPoE, BCM
and RBCM can be proven to be inconsistent [Bachoc et al., 2017]. For the sake of comparison, we
add two other methods to the benchmark:
Smallest prediction variance (SPV). For a given prediction point x, the aggregation returns the
prediction of the sub-model with the lowest prediction variance:

fspv(y) = fk(y) with k = argmin
i∈{1,...,p}

vi(x). (22)

Nearest Neighbors (NN). This is not strictly speaking an aggregation method: For a given pre-
diction point x, it consists in a kriging predictor based only on the k observations points that are the
closest to x.

These last two methods do not suffer from the inconsistency discussed for the above methods, but
they provide discontinuous predictions. This can be an issue for example if the (aggregated) model is
used to perform some optimization tasks.

The test functions are given by samples over [0, 1] of a centered Gaussian process Y with a Matérn
kernel of smoothness 5/2. The variance and length-scale parameters of the latter are fixed to σ2 = 1
and θ = 0.05. The vector of observation points X consists of 30 random points uniformly distributed
on [0, 1] and we consider in this example the aggregation of 15 sub-models based on two points each.
Assuming that the observations points are ordered (x1 ≤ ... ≤ xn), each sub-model is trained with
two consecutive observations points : A1 = {1, 2}, . . . , A15 = {29, 30}. The variance and length-scale
parameters of the sub-models are equal to the values used to generate the process samples.

First of all, we will focus on the aggregated models obtained with the different methods for a
given sample path and design of experiments X before looking at the distribution of various criteria
when replicating the experiment. Figure 4 shows the aggregated models for the aggregation methods
described above. On this example, PoE and GPoE appear respectively to be over- and under-confident
in their predictions and show a mean prediction that tends too quickly to zero as the prediction point
moves away from the observation points. On the other hand, the predictions from other methods seem
more reliable and the best approximation is obtained with the proposed nested estimation approach.

13

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(a) PoE

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(b) GPoE

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(c) BCM

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(d) RBCM

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(e) SPV

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(f) NN

0.0 0.2 0.4 0.6 0.8 1.0
3

2

1

0

1

2

3

(g) nested GPR

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

3

(h) full

Figure 4: Comparison of various aggregation methods. The solid lines correspond to aggregated
models (mean and 95% prediction intervals) and the dashed lines indicate the full model predictions
(mean and 95% prediction intervals).

14

This can be confirmed by replicating 50 times the experiment by sampling independently the ob-
servation points and the test function. We consider three criteria to quantify the distance between
the aggregated model and the full model: the mean square error (MSE) to assess the accuracy of
the aggregated mean, the mean variance error MVE for the accuracy of the predicted variance and
the mean negative log probability (MNLP) [Williams and Rasmussen, 2006] to quantify the overall
distribution fit. Let m, v (resp. mfull, vfull) denote the mean and variance of the model to be tested
(resp. the full model) and let Xt be the vector of test points. These criteria are defined as:

MSE(m,mfull, Xt) = 1
nt

nt∑
i=1

(m(xt,i)−mfull(xt,i))2 ,

MVE(v, vfull, Xt) = 1
nt

nt∑
i=1

(v(xt,i)− vfull(xt,i)) ,

MNLP (m, v, f,Xt) = 1
nt

nt∑
i=1

(
1
2 log(2πv(xt,i)) + (m(xt,i)− f(xt,i))2

2v(xt,i)

)
.

(23)

Figure 5 shows the boxplots of these criteria for 50 replications of the experiments. It appears that
the proposed approach gives the best approximation of the full model for the three considered criteria.

full nested NN BCM SPV RBCMGPoE PoE
2

1

0

1

2

3

4

5

(a) MNLP

nested NN BCM SPV RBCM GPoE PoE
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

(b) MSE

nested NN BCM SPV RBCM GPoE PoE
0.2

0.1

0.0

0.1

0.2

0.3

0.4

(c) MVE

Figure 5: Quality assessment of the aggregated models for 50 test functions. Each test function is
a sample from a Gaussian process and in each case 30 observation points are sampled uniformly on
[0, 1]. The test points vector Xt consists of 101 points regularly spaced from xt,1 = 0 to xt,101 = 1.

5.2 Application to a high dimensional input space

We replicate in this section the same experiment as in the previous one but for test functions
defined over the unit cube in 100 dimensions. We set the number of training points to 10, 000 and
we generate 100 sub-models based on a k-means clustering of the input points. This implies that the
average number of points per cluster is 100 so we use the 100 closest observation points in the nearest
neighbors method. As previously the test functions are random samples of a centered Gaussian process
with squared exponential covariance and we consider two length-scale values to study this parameter
influence on the methods to compare: a “short” length-scale θ = 2 for which the full model captures
about 50% of the prior variance and a “large” length-scale θ = 5 for which the full model can explain
99% of the prior variance.

The results of the experiment are displayed in Figures 6 and 7. The first striking observation is
that BCM, RBCM and PoE underestimate the variance (since MVEs are negative) and lead to highly
overconfident models. Regarding the other approaches, NN, SPV and GPoE seem to provide similar
global accuracy although it can be noted that the Nearest Neighbor method mean predictions are
inaccurate for large length-scales. This can be explained by the set of influential neighbors being
larger than 100 for such values of the length-scales. Finally, it can be seen that the proposed nested

15

method is the one providing the best approximation of the full model. Compared to the other methods
its mean is more accurate and it provides prediction intervals that are smaller than NN, SPV and
GPoE while being realistic as shown by the MNLP. This is especially true for large length-scales for
which the proposed approach is even more competitive.

full nested NN BCM SPV RBCMGPoE PoE

100

101

102

(a) MNLP (log scale)

nested NN BCM SPV RBCM GPoE PoE

10-1

100

101

(b) MSE (log scale)

nested NN BCM SPV RBCM GPoE PoE
0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

(c) MVE

Figure 6: Quality assessment of various aggregation methods. The test functions are given by 50
samples from a centered Gaussian process over [0, 1]100 with squared exponential kernel, unit variance
and length-scale θ = 2. The models are built using 10, 000 observations points drawn uniformly in
the input space. These input points are gathered into 100 groups using k-means in order to build
the sub-models. The test point locations are obtained by sampling uniformly 100 points in the input
space.

full nested NN BCM SPV RBCMGPoE PoE

0

5

10

15

20

25

30

35

40

(a) MNLP

nested NN BCM SPV RBCM GPoE PoE
0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b) MSE

nested NN BCM SPV RBCM GPoE PoE
0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

(c) MVE

Figure 7: Same settings as in Figure 6, but the length-scale of the test functions is 5.

5.3 Application to a large dataset

In this section, we analyze the performance of the proposed method on a test function with one million
observations.

We use two different test functions. The first one is the Hartman6 test function in dimension
d = 6 (available for example in the DiceKriging R package [Roustant et al., 2012]). The second one
in the dimension d = 18 is called here Hartman18 test function: it is simply the sum of three Hart-
man6 test functions, each acting on 6 separated parameters: Hartman18(x1:18) = Hartman6(x1:6) +
Hartman6(x7:12) + Hartman6(x13:18).

For the Hartman6 test function, the covariance parameters of a squared exponential kernel have
been estimated once on a subset of points. We give here the obtained length-scales, so that the results
can be easily reproduced: (0.262, 0.435, 0.423, 0.348, 0.314, 0.299). For the Hartman18 test function,
we use two different sets of covariance parameters: the first one is slightly misspecified since it is

16

given by the one estimated for Hartman6 repeated three times, the second one is estimated with usual
MLE on a subset of 2000 points. Although the model could be improved with a refined estimation of
the length-scales, this is sufficient to compare the different methods. The variance parameter has no
influence on this comparison since we only consider here the performance of the mean predictors.

We consider in this example n = 1, 000, 000 design points and q = 100 predictions points. Several
methods are considered:

• the Kriging predictor refers to a simple Kriging predictor based on a random sample (without
replacement) of 1000 points taken among the initial points. It is mainly computed in order to
give an order of the reachable error magnitude for a reasonable learning of the test function, and
to see if refined methods really improve the performance of the prediction.

• The Neighbor predictor refers to a simple kriging predictor which gives, for each prediction
point, the prediction based on its nearest neighbors in the design matrix X. Near100 refers to a
predictor based on 100 nearest neighbors, Near1000 refers to a predictor based on 1000 nearest
neighbors.

• The Nested method refers to the proposed method in this paper. For one million points, we have
chosen a tree structure corresponding to N = 1000 groups of points, each group being obtained
using kmeans clustering algorithm. Two variants are considered: Nested refers to a clustering
that is built directly without considering the locations of the prediction points. Nested+ refers
to a clustering that is built using these locations (i.e. first q = 100 clusters are built around each
prediction points, without overlapping, and N − q = 900 clusters are built on residual design
points). In all cases, depending on the location of design points, each cluster size typically vary
between 800 and 1200.

For each run, we draw uniformly a new design matrix X, a new vector of predictions points x, and
we analyze the performance of the predictors. To this aim, the predictions are compared to the true
chosen test function, and we collect for each run one mean of errors over all prediction points. We
reproduce the whole experiment on 10 runs. The results are gathered in the boxplots of Figure 8 and
Figure 9.

As announced, the Kriging predictor based on a random sample of 1000 points is mainly given
to get an order of the errors magnitude with a reasonable learning of the function, but clearly its
complexity is lower, and it does not reach the precision level of other competitors: other methods
outperform results based on a random sample of experiments.
The nearest neighbor is a clear improvement over the randomly selected training points and the
computation scheme is relatively simple. However it generates non-continuous mean and variance
predictions, so the practical interest of such a model (e.g. to perform optimization) may be limited.
While it performs very well in small dimension, one can see on Figure 9 that it becomes less attractive
in higher dimension since it would require to further increase the number of neighbors to provide com-
petitive predictions. One can also see that nearest neighbors are also quite sensitive to the estimation
of the parameters.
The nested procedure has a greater complexity: each run takes around 50 minutes on a modern com-
puter with 16 threads (1, 000, 000 observations, 100 prediction points, Hartman18 test function, 1000
groups and possible multithreading scalability improvements). The execution time for 100, 000 obser-
vations and unchanged other settings is around 30 seconds. Our procedure remains here accurate with
concatenated parameters, contrarily to other methods. It leads to a very good accuracy and some
theoretical advantages previously presented. In relatively small dimension, as in Figure 8, depending
on the length-scales of the underlying process, the closest neighbors may be sufficient to explain the
local shape of the response. In this case, a judicious choice of the tree structure may improve the
accuracy of the nested method, which is comparable to the one of the 1000 closest neighbors. In
larger dimension, when local information is not sufficient, the choice of the tree structure has a lower
impact, and the refinements of the nested method make sense, as they lead to a better accuracy than

17

●

●

N
es

te
d+

N
es

te
d

N
ea

r 1
00

0

N
ea

r 1
00

K
rig

in
g 1

00
0

1e−08

1e−06

1e−04

1e−02
Mean square errors (log scale)

(a) Hartman 6

Figure 8: Boxplot of the mean square errors (in log scale), for the Nested procedure and its variant,
the nearest neighbors procedure based on 1000 neighbors or 100 neighbors, and for the Kriging method
based on a random sample of 1000 points. We used one million input points, one hundred prediction
points and Hartman6 test function.

●

●
●

N
es

te
d+

N
es

te
d

N
ea

r 1
00

0

N
ea

r 1
00

K
rig

in
g 1

00
0

0.05

0.10

0.20

0.50

1.00

Mean square errors (log scale)

(a) Hartman 18, concatenated parameters

●

N
es

te
d+

N
es

te
d

N
ea

r 1
00

0

N
ea

r 1
00

K
rig

in
g 1

00
0

0.05

0.10

0.15

0.20

0.25
Mean square errors (log scale)

(b) Hartman 18, estimated parameters

Figure 9: Boxplots of mean square errors (in log scale), for the Nested procedure and its variant, the
nearest neighbors procedure based on 1000 neighbors or 100 neighbors, and for the Kriging method
based on a random sample of 1000 points. We used one million input points, one hundred prediction
points, Hartman18 test function and either concatenated parameters from Hartman6 (left panel) or
estimated parameters (right panel).

18

considered local neighbors methods.

Finally, despite greater complexity, the proposed method is still tractable with one million of
observations. It leads to a better accuracy, especially in high dimension. In small dimension and when
possible, it can be useful to build the tree structure by using the location of the prediction points,
to take the best of both closest neighbors and nested methods. At last, the proposed nested method
makes an intensive use of cross-covariances between groups and can surely be improved by using a
better estimation of these parameters, or by a transformation of the inputs or the outputs that would
make the assumptions more reliable.

5.4 Application to an industrial case study

We consider in this section experimental data on the behavior of a steel test piece subject to cycles
of tension-compression. During these cycles, the evolution of the tensile strain in the test piece is
monitored over time using two methods: by performing the actual physical experiment and by a
numerical simulator based on a Chaboche constitutive equation [Lemaitre and Chaboche, 1994]. The
quantity of interest is the misfit between these two experiments. A test piece is described by 6 scalar
variables (E,C1, C2, γ

0
1 , γ

0
2 , r), where E is a logarithm transform of the Young’s modulus, C1, C2, γ0

1
and γ0

2 are parameters related to the kinematic hardening and r is the radius of the plastic surface at
the stabilized state. The set of admissible inputs is denoted by D ⊂ R6.

Hereafter, we focus on modeling the function f : D → R that returns the logarithm of the L2

norm of the difference between the curve from the actual experiment and the one from the simulator.

In total, we have at our disposal a set of 10, 000 observations [X, f(X)], from which we randomly
extract a learning set [Xl, f(Xl)] of n = 9000 observations and assign the nt = 1000 remaining
observations to a test set [Xt, f(Xt)].

We compare the predictions of f(Xt) obtained from the SPV, PoE, GPoE1, GPoE2, BCM and
RBCM aggregation procedures described in Section 5.1 with our nested aggregation procedure. GPoE1
corresponds to (19) with βi = 1

2 [log(V [Y (x)]) − log(vi(x))] [Cao and Fleet, 2014] and GPoE2 corre-
sponds to (19) with βi = 1/p [Deisenroth and Ng, 2015]. For all these methods, we consider an
aggregation tree of height ν̄ = 2 (once sub-models have been evaluated at layer 1, they are all directly
aggregated into one value at layer 2), so that p Gaussian process models are directly aggregated. The
p subsamples form a partition of [Xl, f(Xl)], which is obtained using the k-means clustering algorithm.

Three covariance functions have been considered for the sub-models: (tensorized) exponential,
Matérn 3/2 and Matérn 5/2 (see [Williams and Rasmussen, 2006, Roustant et al., 2012] for the defi-
nition of these functions). For all studied methods, the Matérn 5/2 covariance seemed to be the most
appropriate to the problem at hand since we obtained overall more accurate results. The results pre-
sented hereafter thus focus on this Matérn 5/2 covariance family. Its parameters are estimated with
two different techniques depending on the aggregation method: for the methods from the literature
and SPV, we follow the recommended procedure which consists in maximizing the sum of the log like-
lihoods over the p subsamples of [Xl, f(Xl)] (see [Deisenroth and Ng, 2015]). For the proposed nested
aggregation, we carry out the stochastic-gradient based estimation method described in Section 4,
with starting points set to the maximizer of the sum of the log likelihoods.

To assess the quality of a model with predicted mean m and variance v, we compute three quality
criteria using the test set: MSE and MNLP as per Eq. 23 which are small for a good model, and the
mean normalized square error (MNSE)

MNSE(m, v, f,Xt) = 1
nt

nt∑
i=1

(m(xt,i)− f(xt,i))2

v(xt,i)
,

which should be close to 1.

19

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.00416 0.0662 0.0033 0.0662 0.604 0.0625 0.00321
MNSE 1.27 20.00 4.55 1.00 219 60.8 0.846
MNLP −1.86 7.25 −0.949 −0.765 107 27.2 −1.97

Table 1: Prediction performances of the aggregation of p = 20 sub-models for the steel piece constraints
cycles data set. The investigated prediction performance criteria are the mean square error (MSE)
which should be minimal, mean normalized square error (MNSE) which should be close to 1 and
mean negative log probability (MNLP) which should be small. Bold figures indicate each line’s best
performing aggregation method.

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.00556 0.811 0.0244 0.811 1.84 0.121 0.00418
MNSE 1.20 465 34.2 5.16 980 148 0.84700
MNLP −1.55 230 14.1 2.13 487 71 −1.7

Table 2: Prediction performances of the aggregation of p = 90 sub-models for the steel piece constraints
cycles data set. All other settings are the same as in Table 1.

The prediction results for a given learning and training test set are given in Table 1 for the aggre-
gation of p = 20 sub-models and in Table 2 for p = 90. It can be seen that in both cases the proposed
method outperforms the other aggregation methods for the MSE and MNLP quality criteria. The
MSE has the same order of magnitude for the SPV and our aggregation method, where the prediction
errors are small compared to the empirical variance of the test outputs f(xt,i), i = 1, ..., nt, which
is approximately equal to 0.81. In contrast, the MSE can be significantly larger for all the other
aggregation procedures. For the PoE, GPoE1, BCM and RBCM aggregation techniques, the values of
MNSE are orders of magnitude greater than the target value one, which indicates that the aggregated
models are highly overconfident. The GPoE2 aggregation technique is also overconfident when p = 90,
where its MNSE is equal to 5.16. The SPV and our aggregation methods provide appropriate predic-
tive variances, and our method provides the best combination of predictions and predictive variances,
according to the MNLP criterion.

Tables 1 and 2 also show that aggregating p = 20 sub-models gives more accurate models than
aggregating p = 90 sub-models. This suggests that it is a good practice to aggregate few sub-models
based on many points instead of aggregating many sub-models based on few points. Although this
would require further testing to be confirmed, it is not surprising since aggregation methods rely on
some independence assumptions that are not often met in practice.

Tables 3 and 4 show the values of the quality criteria when the subsamples used for the p = 20
or p = 90 sub-models are randomly generated into the learning set. They can thus be compared
to Tables 1 and 2 to study the influence of the choice of the support points of the sub-models: the
criteria values are overall better in Tables 1 and 2 so using k-means is beneficial for the aggregation
procedures. In addition, our proposed aggregation technique becomes better in comparison to the
other methods, and specifically to SPV, when the subsamples are randomly generated.

All previous results have been obtained for a given random choice of the learning and test sets.
We now replicate the procedure 20 times, with the same settings as in Tables 1 (p = 20; subsamples
obtained from the k-means algorithm; Matérn 5/2 covariance function) and 4 (p = 90; subsamples
randomly selected; Matérn 5/2 covariance function), but with different learning and test sets for each
replication. The covariance parameters are reestimated for each learning set, by minimizing the sum of
log likelihoods for the SPV, PoE, GPoE1, GPoE2, BCM and RBCM aggregation techniques, and with
the proposed leave-one-out estimation procedure for our nested aggregation method. The boxplots of

20

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.0086 0.00763 0.00704 0.00763 0.338 0.274 0.00539
MNSE 1.21 9.38 16.6 0.469 178 268 0.864
MNLP −1.25 1.75 5.03 −1.21 86.2 130 −1.5

Table 3: Same settings as in Table 1 but when the subsamples are randomly selected.

SPV PoE GPoE1 GPoE2 BCM RBCM Nested
MSE 0.0182 0.0293 0.0246 0.0293 0.977 0.686 0.00575
MNSE 1.29 42.5 57.2 0.473 852 988 0.867
MNLP −0.804 18.3 25.3 −0.517 423 491 −1.37

Table 4: Same settings as in Table 1 but with p = 90 sub-models and where the subsamples are
randomly selected.

the corresponding 20 mean square errors and mean negative log probability are reported in Figures 10
and 11. These replications confirm the results obtained previously on single instances of the learning
and test set: the proposed nested aggregation and covariance parameter estimation jointly give better
prediction both for the predicted mean and variance than current existing aggregation techniques.

●

ne
st

ed

S
P

V

G
P

oE
1

G
P

oE
2

R
B

C
M

P
oE

B
C

M

0.005

0.010

0.020

0.050

0.100

0.200

0.500

MSE (log scale)

●
●●●

●

●●

●

ne
st

ed

S
P

V

G
P

oE
1

G
P

oE
2

R
B

C
M

P
oE

B
C

M

0

20

40

60

80

100

120

140

MNLP

●

●

●●

ne
st

ed

S
P

V

G
P

oE
1

G
P

oE
2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

MNLP (detail)

Figure 10: Boxplots of 20 values of the mean square error (MSE) prediction criterion and of the
logarithm of the mean negative log probability (MNLP) prediction criterion where the learning and
test sets are randomly generated. The settings are as in Table 1 (p = 20 subsamples obtained from
the k-means algorithm; Matérn 5/2 covariance function). The covariance parameters are estimated by
minimizing the sum of log likelihoods for the SPV, PoE, GPoE1, GPoE2, BCM and RBCM aggregation
techniques, and with our proposed leave-one-out estimation procedure for the nested aggregation
procedure.

Of course, the improvement brought by our proposed aggregation scheme comes with a higher
computational cost: the proposed estimation procedure takes a few hours on a personal computer,
against a few tens of minutes for the minimization of the sum of the log likelihoods. Similarly,
performing 1000 predictions takes around 30 seconds with our proposed optimal aggregation, against
around 1 second for the other simpler aggregation procedures. Nevertheless, we believe that the
increased accuracy and robustness of the method we propose is worth the additional computational
burden in many situations.

21

●●

●

●●

●
●

●●

●
●

●●

ne
st

ed

S
P

V

G
P

oE
1

G
P

oE
2

R
B

C
M

P
oE

B
C

M

0.005

0.010

0.020

0.050

0.100

0.200

0.500

1.000

MSE (log scale)

●
●

ne
st

ed

S
P

V

G
P

oE
1

G
P

oE
2

R
B

C
M

P
oE

B
C

M

0

100

200

300

400

500

MNLP

ne
st

ed

S
P

V

G
P

oE
1

G
P

oE
2

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

MNLP (detail)

Figure 11: Same settings as in Figure 10 but with p = 90 and where the subsamples are randomly
selected.

6 Conclusion
We have proposed a new method for aggregating sub-models based on subsets of observation points,

with a particular emphasis on Kriging sub-models. Our method can be seen as an optimal linear
weighting of sub-models, where the obtained weights are taking into account all pairwise covariances
between the sub-models, thus avoiding some usual independence assumptions.

Compared to current existing aggregation techniques, we find several benefits to our our aggregation
procedure. First, it has some good theoretical properties, like consistency or optimality based on a
slightly different process which can be simulated. We refer again to [Bachoc et al., 2017] for details.
Second, a dedicated covariance parameter estimation procedure is provided, based on a gradient
descent minimization of leave-one-out cross validation errors, where the predictions are performed
using the proposed nested aggregation. Some user-friendly code for computing both prediction and
covariance parameter estimation is publicly available.

At last, numerical results are encouraging. In both simulated data and industrial application, our
method is shown to outperform state-of-the-art aggregation techniques. This improvement comes
with an increased computational cost compared to more basic aggregation methods, but the proposed
nested aggregation remains applicable up to n = 106 observation points, while exact Kriging inference
becomes intractable around n = 10 000.

We would like to mention two avenues for future research. First, we show that the aggregation
method we propose can be applied recursively, yielding a nested aggregation technique with smaller
computational cost. It would be interesting to quantify the practical gain one could obtain on real
data sets from this recursive aggregation. Second, we find that the stochastic gradient algorithm
we propose could be further investigated. In particular, theoretical properties could be derived, the
practical implementation could be improved, and the principle could be extended to other criteria for
covariance parameter estimation.

Acknowledgements
Part of this research was conducted within the frame of the Chair in Applied Mathematics OQUAIDO,
gathering partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran, Storengy) and
academia (Ecole Centrale de Lyon, Mines Saint-Etienne, University of Grenoble, University of Nice,
University of Toulouse and CNRS) around advanced methods for Computer Experiments. The authors
would like to warmly thank Dr. Géraud Blatman and EDF R&D for providing us the industrial test
case. They also thank both editor and reviewers for very precise and constructive comments on this
paper. This paper has been finished during a stay of D. Rullière at Vietnam Institute for Advanced

22

Study in Mathematics, the latter author thanks the VIASM institute and DAMI research chair (Data
Analytics & Models for Insurance) for their support.

References
[Bachoc, 2013] Bachoc, F. (2013). Cross validation and maximum likelihood estimations of hyper-

parameters of Gaussian processes with model mispecification. Computational Statistics and Data
Analysis, 66:55–69.

[Bachoc et al., 2017] Bachoc, F., Durrande, N., Rullière, D., and Chevalier, C. (2017). Some properties
of nested kriging predictors. Technical report hal-01561747.

[Bhatnagar et al., 2013] Bhatnagar, S., Prasad, H., and Prashanth, L. (2013). Stochastic recursive
algorithms for optimization, volume 434. New York: Springer.

[Cao and Fleet, 2014] Cao, Y. and Fleet, D. J. (2014). Generalized Product of Experts for Automatic
and Principled Fusion of Gaussian Process Predictions. arXiv preprint arXiv:1410.7827v2, CoRR,
abs/1410.7827:1–5. Modern Nonparametrics 3: Automating the Learning Pipeline workshop at
NIPS, Montreal.

[Deisenroth and Ng, 2015] Deisenroth, M. P. and Ng, J. W. (2015). Distributed Gaussian processes.
Proceedings of the 32nd International Conference on Machine Learning, Lille, France. JMLR:
W&CP volume 37.

[Genest and Zidek, 1986] Genest, C. and Zidek, J. V. (1986). Combining probability distributions: A
critique and an annotated bibliography. Statistical Science, 1(1):114–135.

[Golub and Van Loan, 2012] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, vol-
ume 3. JHU Press.

[Guhaniyogi et al., 2011] Guhaniyogi, R., Finley, A. O., Banerjee, S., and Gelfand, A. E. (2011).
Adaptive gaussian predictive process models for large spatial datasets. Environmetrics, 22(8):997–
1007.

[Hensman et al., 2013] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian Processes for
Big Data. Uncertainty in Artificial Intelligence conference. paper Id 244.

[Hinton, 2002] Hinton, G. E. (2002). Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14(8):1771–1800.

[Katzfuss, 2013] Katzfuss, M. (2013). Bayesian nonstationary spatial modeling for very large datasets.
Environmetrics, 24(3):189–200.

[Lemaitre and Chaboche, 1994] Lemaitre, J. and Chaboche, J.-L. (1994). Mechanics of solid materi-
als. Cambridge university press.

[Maurya, 2016] Maurya, A. (2016). A well-conditioned and sparse estimation of covariance and inverse
covariance matrices using a joint penalty. The Journal of Machine Learning Research, 17(1):4457–
4484.

[Nickson et al., 2015] Nickson, T., Gunter, T., Lloyd, C., Osborne, M. A., and Roberts, S.
(2015). Blitzkriging: Kronecker-structured stochastic Gaussian processes. arXiv preprint
arXiv:1510.07965v2, pages 1–13.

[Ranjan and Gneiting, 2010] Ranjan, R. and Gneiting, T. (2010). Combining probability forecasts.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(1):71–91.

23

[Roustant et al., 2012] Roustant, O., Ginsbourger, D., and Deville, Y. (2012). DiceKriging, DiceOp-
tim: Two R packages for the analysis of computer experiments by Kriging-based metamodeling and
optimization. Journal of Statistical Software, 51(1).

[Rue and Held, 2005] Rue, H. and Held, L. (2005). Gaussian Markov random fields, Theory and
applications. Chapman & Hall.

[Samo and Roberts, 2016] Samo, Y.-L. K. and Roberts, S. J. (2016). String and membrane gaussian
processes. Journal of Machine Learning Research, 17(131):1–87.

[Santner et al., 2013] Santner, T. J., Williams, B. J., and Notz, W. I. (2013). The design and analysis
of computer experiments. Springer Science & Business Media.

[Satopää et al., 2016] Satopää, V. A., Pemantle, R., and Ungar, L. H. (2016). Modeling probability
forecasts via information diversity. Journal of the American Statistical Association, 111(516):1623–
1633.

[Scott et al., 2016] Scott, S. L., Blocker, A. W., Bonassi, F. V., Chipman, H. A., George, E. I., and
McCulloch, R. E. (2016). Bayes and big data: The consensus monte carlo algorithm. International
Journal of Management Science and Engineering Management, 11(2):78–88.

[Stein, 2012] Stein, M. L. (2012). Interpolation of spatial data: some theory for kriging. Springer
Science & Business Media.

[Stein, 2014] Stein, M. L. (2014). Limitations on low rank approximations for covariance matrices of
spatial data. Spatial Statistics, 8:1–19.

[Tresp, 2000] Tresp, V. (2000). A bayesian committee machine. Neural Computation, 12(11):2719–
2741.

[Tzeng et al., 2005] Tzeng, S., Huang, H.-C., and Cressie, N. (2005). A fast, optimal spatial-prediction
method for massive datasets. Journal of the American Statistical Association, 100(472):1343–1357.

[van Stein et al., 2015] van Stein, B., Wang, H., Kowalczyk, W., Bäck, T., and Emmerich, M. (2015).
Optimally weighted cluster kriging for big data regression. In International Symposium on Intelligent
Data Analysis, pages 310–321. Springer.

[Wahba, 1990] Wahba, G. (1990). Spline models for observational data, volume 59. SIAM.

[Wei et al., 2015] Wei, H., Du, Y., Liang, F., Zhou, C., Liu, Z., Yi, J., Xu, K., and Wu, D. (2015).
A k-d tree-based algorithm to parallelize kriging interpolation of big spatial data. GIScience &
Remote Sensing, 52(1):40–57.

[Williams and Rasmussen, 2006] Williams, C. K. and Rasmussen, C. E. (2006). Gaussian Processes
for Machine Learning. MIT Press.

[Winkler, 1968] Winkler, R. L. (1968). The consensus of subjective probability distributions. Man-
agement Science, 15(2):B–61.

[Winkler, 1981] Winkler, R. L. (1981). Combining probability distributions from dependent informa-
tion sources. Management Science, 27(4):479–488.

[Zhang et al., 2015] Zhang, B., Sang, H., and Huang, J. Z. (2015). Full-scale approximations of spatio-
temporal covariance models for large datasets. Statistica Sinica, pages 99–114.

24

A Proof of Proposition 4
Complexities: under chosen assumption on α and β coefficients, for a regular tree and in the case
of simple Kriging sub-models, Cα =

∑ν̄
ν=1

∑nν
i=1 αc

3
ν = α

∑ν̄
ν=1 c

3
νnν and Cβ =

∑ν̄
ν=1

∑nν
i=2

∑i−1
j=1 βc

2
ν =

β
2
∑ν̄
ν=1 nν(nν−1)c2

ν . Notice that the sum starts from ν = 1 in order to include sub-models calculation.
Equilibrated trees complexities: In a constant child number setting, when cν = c for all ν, the tree
structure ensures that nν = n/cν , thus as c = n1/ν̄ , we get when n → +∞, Cα ∼ αn1+ 2

ν̄ and
Cβ ∼ β

2n
2. The result for equilibrated two-layer tree where ν̄ = 2 directly derives from this one,

and in this case Cα ∼ αn2 and Cβ ∼ β
2n

2 (it derives also from the expressions of Cα, Cβ, when
c1 = c2 =

√
n, n1 =

√
n, n2 = 1). Optimal tree complexities: One easily shows that under the chosen

assumptions Cβ ∼ β
2n

2. Thus, it is indeed not possible to reduce the whole complexity to orders
lower than O(n2). However, one can choose the tree structure in order to reduce the complexity Cα.
For a regular tree, nν = n/(c1 · · · cν) such that ∂

∂ck
nν = −1{ν≥k}nν/ck. Using a Lagrange multiplier

`, one defines ξ(k) = ck
∂
∂ck

(Cα − `(c1 · · · cν̄ − n)) = 3αc3
knk − α

∑ν̄
ν=k c

3
νnν − `c1 · · · cν̄ . The tree

structure that minimizes Cα is such that for all k < ν̄, ξ(k) = ξ(k + 1) = 0. Using ck+1nk+1 = nk,

one gets 3c2
k+1 = 2c3

k for all k < ν̄, and setting c1 · · · cν̄ = n, cν = δ
(
δ−ν̄n

) δν−1
2(δν̄−1) , ν = 1, . . . , ν̄,

with δ = 3
2 . Setting γ = 27

4 δ
− ν̄
δν̄−1

(
1− δ−ν̄

)
. After some direct calculations this tree structure

corresponds to complexities, Cα = γαn
1+ 1

δν̄−1 and Cβ ∼ β
2n

2. In a two-layers setting one gets c1 =(
3
2

)1/5
n2/5 and c2 =

(
3
2

)−1/5
n3/5, which leads to Cα = γαn9/5 and Cβ = β

2n
2 − β

2

(
3
2

) 1
5 n

7
5 , where

γ = (2
3)−2/5 + (2

3)3/5 ' 1.96 (eventually notice that even for values of n of order 105, terms of order
like n9/5 are not necessarily negligible compared to those of order n2, and that Cβ is slightly affected
by the choice of the tree structure, but the global complexity benefits from the optimization of Cα).
Storage footprint: First, covariances can be stored in triangular matrices. So temporary objects M ,
k and K in Algorithm 1 require the storage of cmax(cmax + 5)/2 real values. For a given step ν,
ν ≥ 2, building all vectors αi requires the storage of

∑nν
i=1 c

ν
i = nν−1 values. At last, for a given

step ν, we simultaneously need objectsMν−1,Kν−1,Mν ,Kν , which require the storage of nν−1(nν−1 +
3)/2 + nν(nν + 3)/2 real values. In a regular tree, as nν is decreasing in ν, the storage footprint
is S = (cmax(cmax + 5) + n1(n1 + 5) + n2(n2 + 3))/2. Hence the equivalents for S for the different
tree structures, S ∼ n for the two-layer equilibrated tree, S ∼ 1

2n
2−2/ν̄ for the ν̄-layer, ν̄ > 2, and

the indicated result for the optimal tree. Simple orders are given in the proposition, which avoids
separating the case ν̄ = 2 and a cumbersome constant for the optimal tree.

25

	1 Introduction
	2 Pointwise aggregation of experts
	3 Iterative scheme
	3.1 Two-Layer aggregation
	3.2 Multiple Layer aggregation
	3.3 Complexity

	4 Parameter estimation
	5 Numerical applications
	5.1 Comparison with other aggregation methods
	5.2 Application to a high dimensional input space
	5.3 Application to a large dataset
	5.4 Application to an industrial case study

	6 Conclusion
	A Proof of Proposition 4

