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Abstract

Recently, He and Owen (2016) proposed the use of Hilbert’s space filling curve
(HSFC) in numerical integration as a way of reducing the dimension from d > 1 to
d = 1. This paper studies the asymptotic normality of the HSFC-based estimate when
using scrambled van der Corput sequence as input. We show that the estimate has an
asymptotic normal distribution for functions in C1([0, 1]d), excluding the trivial case
of constant functions. The asymptotic normality also holds for discontinuous functions
under mild conditions. It was previously known only that scrambled (0,m, d)-net
quadratures enjoy the asymptotic normality for smooth enough functions, whose mixed
partial gradients satisfy a Hölder condition. As a by-product, we find lower bounds
for the variance of the HSFC-based estimate. Particularly, for nontrivial functions in
C1([0, 1]d), the low bound is of order n−1−2/d, which matches the rate of the upper
bound established in He and Owen (2016).

Keywords: asymptotic normality; Hilbert’s space filling curve; van der Corput se-
quence; randomized quasi-Monte Carlo; extensible grid sampling

1 Introduction

Quasi-Monte Carlo (QMC) sampling has gained increasing popularity in numerical integra-
tion over the unit cube [0, 1]d (see, e.g., L’Ecuyer (2009); Dick and Pillichshammer (2010);
Dick et al. (2013)). It is known that functions with finite variation in the sense of Hardy
and Krause can be integrated with an error of O(n−1(log n)d), compared to O(n−1/2) for
ordinary Monte Carlo sampling; see Niederreiter (1992) for details.

In this paper, we consider an alternative numerical integration based on Hilbert’s space
filling curve (HSFC) as introduced in He and Owen (2016). An HSFC is a continuous
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mapping H(x) from [0, 1] to [0, 1]d for d ≥ 1. We take the convention that H(x) = x for
d = 1. Formally, the Hilbert curve is defined through the limit of a series of recursive
curves. An illustration of the generative process of the HSFC with increasing recursion
order for d = 2 is presented in Figure 1. For detailed definitions and the properties of
the HSFC, we refer to He and Owen (2016). Let us consider the problem of estimating an
integral over the d-dimensional unit cube [0, 1]d:

µ =

∫

[0,1]d
f(X)dX. (1.1)

The HSFC-based estimate takes the form

µ̂n =
1

n

n∑

i=1

f(H(xi)), (1.2)

where xi are some well-chosen points in [0, 1]. In this paper, we focus on the case of using
van der Corput sequence (in base b ≥ 2) with the nested uniform scrambling of Owen
(1995) as the inputs xi, for which the estimate is extensible and unbiased. The nested
uniform scrambling method is a kind of randomization techniques used commonly in ran-
domized QMC; see Owen (1995) for details and L’Ecuyer and Lemieux (2002) for a survey
of various randomized QMC methods. Matoušek (1998) proposed a random linear scram-
bling method that does not require as much randomness and storage. He and Owen (2016)
found convergence rates of the extensible estimate for functions that are Lipschitz contin-
uous or piecewise Lipschitz continuous. More precisely, for Lipschitz continuous functions,
they derived a root mean-squared error (RMSE) of O(n−1/2−1/d). For the piecewise Lips-
chitz continuous functions, an RMSE of O(n−1/2−1/(2d)) is obtained. Schretter et al. (2016)
compared the star discrepancies and RMSEs of using the van der Corput and the golden
ratio generator sequences.

Actually, the upper bounds of the RMSE do not tell much about the error distribution.
It is often of interest to obtain asymptotically valid confidence interval type guarantees as
the usual Monte Carlo sampling. The central limit theorem (CLT) is invoked routinely to
compute a confidence interval on the estimate based on a normal approximation. Indeed,
Loh (2003) showed that the nested uniform scrambled (0,m, d)-net (in base b) estimate has
an asymptotic normal distribution for smooth enough functions. Recently, by developing on
the work by Loh (2003), Basu and Mukherjee (2016) showed that the scrambled geometric
net estimate has an asymptotic normal distribution for certain smooth functions defined on
products of suitable subsets of ℜd. However, in most cases, the randomly-shifted lattice rule
(another branch of randomized QMC techniques) estimates may be far from the normally
distributed ones; see L’Ecuyer et al. (2010) for discussions and examples.

In this paper we study the asymptotic normality of the HSFC-based estimate (1.2) with
sample sizes n = bm, m = 0, 1, 2, . . . . In practice, we often choose b = 2 because the base
b = 2 is the same as used to approximate (and define) the Hilbert curve; see Butz (1971)
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Figure 1: First five steps of the recursive construction of the HSFC for d = 2.

for the algorithm. The main contribution of our paper is two fold. First, for nontrivial
functions in C1([0, 1]d), we establish a lower bound on Var(µ̂n) which matches the upper
bound O(n−1−2/d) found in He and Owen (2016). A similar lower bound is established
for piecewise smooth functions. Second, we prove that the asymptotic normality of the
HSFC-based estimate µ̂n holds for three classes of functions. In other words, we show that

µ̂n − µ√
Var(µ̂n)

→ N(0, 1)

in distribution as n = bm → ∞. These results can be applied to stratified sampling on a
regular grid with sample sizes n = md, but the HSFC-based estimate we study, does not
require the highly composite sample sizes that the grid sampling requires, particularly for
large d. The main idea to prove the asymptotic normality is based on the Lyapunov CLT
(see, e.g., Chung (2001)), which is quite different from the techniques used in Loh (2003)
and Basu and Mukherjee (2016). Our proofs do not rely on the upper bounds established
in He and Owen (2016).

The rest of the paper is organized as follows. In Section 2, we study the asymptotic
normality of stratified sampling on a regular grid with n = md, which can be viewed as a
special case of the HSFC-based estimate (1.2) using scrambled van der Corput sequence.
In Section 3, we give lower bounds on Var(µ̂n) and establish asymptotic normality of the
estimate µ̂n for three cases of integrands. In Section 4, we give some empirical verifications
on asymptotic normality for the HSFC sampling and other competitive QMC methods.
Section 5 concludes this paper.
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2 Grid-based Stratified Sampling

In this section, we consider the regular grid sampling with sample sizes n = md. The d-
dimensional unit cube [0, 1]d can be split into md congruent subcubes with sides of length
1/m, say, Ei, i = 1, . . . , n. The grid-based stratified estimate of the integral (1.1) is given
by

µ̃n =
1

n

n∑

i=1

f(Ui), (2.1)

where Ui ∼ Unif(Ei) independently. Denote ∇f(X) = (∂f(X)
∂X1

, . . . , ∂f(X)
∂Xd

)⊤ as the gradient
vector of f(X), and let ‖ · ‖ be the usual Euclidean norm. The next lemma discusses the
variance of µ̃n, which was proved in Owen (2013). We prove it here also, because we make
extensive use of that result.

Lemma 1. Assume that f(X) ∈ C1([0, 1]d). Then

lim
n→∞

n1+ 2
dVar(µ̃n) =

1

12

∫

[0,1]d
‖∇f(X)‖2dX, (2.2)

where the limit is taken through values n = md as m → ∞.

Proof. Note that Ui is uniformly distributed within the cube Ei with sides of length 1/m.
Let ci be the center of Ei. Since f ∈ C1([0, 1]d), the first-order Taylor approximation gives

f(Ui) = Li +Ri, (2.3)

where Li = f(ci) +∇f(ci)
⊤(Ui − ci) and Ri = o(1/m). For the linear term Li, we have

Var(Li) =
1

12m2

d∑

i=1

(
∂

∂Xi
f(ci)

)2

=
1

12m2
‖∇f(ci)‖2,

since Ui−ci ∼ Unif[−1/(2m), 1/(2m)]d . For the error term Ri, we have Var(Ri) = o(1/m2).
Also, Cov(Li, Ri) = o(1/m2). As a result,

Var(µ̃n) =
1

n2

n∑

i=1

Var(f(Ui))

=
1

n2

n∑

i=1

Var(Li) + o

(
1

nm2

)

=
1

12n2m2

n∑

i=1

‖∇f(ci)‖2 + o

(
1

nm2

)
.

4



Since m = n1/d and

lim
n→∞

1

n

n∑

i=1

‖∇f(ci)‖2 =

∫

[0,1]d
‖∇f(X)‖2dX,

we conclude that (2.2) holds.

Theorem 2. If f(X) ∈ C1([0, 1]d) and σ2 = (1/12)
∫
[0,1]d ‖∇f(X)‖2dX > 0, then

µ̃n − µ

σn−1/2−1/d
→ N(0, 1), (2.4)

in distribution as n = md → ∞.

Proof. Since f ∈ C1([0, 1]d), f is Lipschitz continuous. Then, for any δ > 0,

E[|f(Ui)− E[f(Ui)]|2+δ ] ≤ Cd,δn
− 2+δ

d , (2.5)

where Cd,δ > 0 is some constant that only depends on d and δ, and we used the fact that
the diameter of Ei is

√
dn−1/d.

Let s2n =
∑n

i=1 σ
2
i , where σ2

i = Var(f(Ui)). From Lemma 1, we have

lim
n→∞

s2n

n1− 2
d

=
1

12

∫

[0,1]d
‖∇f(X)‖2dX > 0. (2.6)

Therefore, the Lyapunov condition

lim
n→∞

1

s2+δ
n

n∑

i=1

E[|f(Ui)− E[f(Ui)]|2+δ ] ≤ lim sup
n→∞

Cd,δ
n1− 2+δ

d

s2+δ
n

= lim sup
n→∞

Cd,δn
− δ

2

(
n1− 2

d

s2n

) 2+δ
2

= 0

is satisfied. Using the Lyapunov CLT, we get (2.4).

To avoid the trivial case of constant functions (which yields an identically zero vari-
ance), Theorem 2 assumes that

∫
[0,1]d ‖∇f(x)‖2dx > 0. Theorem 2 admits the asymptotic

normality of µ̃n. The grid-based stratified estimate has variance O(n−1−2/d), compared
to Monte Carlo variance O(n−1). This actually holds for Lipschitz continuous functions
covering the class of functions C1([0, 1]d) in Theorem 2.
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3 HSFC-based Sampling

In this section, we study the HSFC-based estimate given by (1.2), where xi are the first
n = bm points of the scrambled van der Corput sequence in base b ≥ 2. Let ai be the
first n points of the van der Corput sequence in base b van der Corput (1935). The integer
i − 1 ≥ 0 is written in base b as i − 1 =

∑∞
j=1 aijb

j−1 for aij ∈ {0, . . . , b − 1}. Then ai is
then defined by

ai =
∞∑

j=1

aijb
−j .

The scrambled version of a1, . . . , an is x1, . . . , xn written as xi =
∑∞

j=1 xijb
−j, where xij

are defined through random permutations of the aij . These permutations depend on aik,
for k < j. More precisely, xi1 = π(ai1), xi2 = πai1(ai2) and generally for j ≥ 2

xij = πai1...aij−1
(aij).

Each random permutation is uniformly distributed over the b! permutations of {0, . . . , b−1},
and the permutations are mutually independent.

In this setting, thanks to the nice property of the nested uniform scrambling, the data
values in the scrambled sequence can be reordered such that xi ∼ Unif(Ii) independently
with Ii for i = 1, . . . , bm. Let Ei = H(Ii). As used in He and Owen (2016), the estimate
(1.2) can be rewritten as

µ̂n =
1

n

n∑

i=1

f(X(i)),

where X(i) = H(xi) ∼ Unif(Ei). This implies that the HSFC-based sampling is actually
a stratified sampling because {Ei}ni=1 is a split of [0, 1]d. Figure 2 illustrates such splits
of [0, 1]2 when b = 2. He and Owen (2016) proved the unbiasedness of µ̂n for any f ∈
L2([0, 1]d) and gave some upper bounds for Var(µ̂n) under certain assumptions on the
class of integrands f . Their proofs make use of the properties of the HSFC presented in
the next lemma, which are also important in studying the asymptotic normality of the
HSFC-based sampling. Denote λd(·) as the Lebesgue measure on ℜd.

Lemma 3. Let A = H([p, q]) for 0 ≤ p < q ≤ 1. Then λd(A) = λ1([p, q]) = q − p. If x ∼
Unif([p, q]), then H(x) ∼ Unif(A). Let r be the diameter of A. Then r ≤ 2

√
d+ 3(q−p)1/d.

3.1 Smooth Functions

Loh (2003) and Basu and Mukherjee (2016) focused on smooth functions whose mixed
partial gradient satisfies a Hölder condition, which was first studied in Owen (1997). Here
we work with a weaker smoothness condition, in the sense that f(X) ∈ C1([0, 1]d) as
required in Theorem 2.
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Theorem 4. Assume that f(X) ∈ C1([0, 1]d) and σ2 =
∫
[0,1]d ‖∇f(X)‖2dX > 0. Then

for all sufficiently large n, we have

Var(µ̂n) ≥
σ2

96
2−2/d−dn−1−2/d. (3.1)

Also,
µ̂n − µ√
Var(µ̂n)

→ N(0, 1), (3.2)

in distribution as n = bm → ∞.

Proof. Let m = ⌈ log2 n+1
d ⌉. Then there exists an interval Ji of the form [(k−1)/2dm, k/2dm]

such that Ji ⊂ Ii. This is because λ1(Ii) ≥ 2λ1(Ji). Let s2n =
∑n

i=1 σ
2
i , where σ2

i =
Var(f(X(i))). Let µi = E(f(X(i))), and let Ẽi = H(Ji). Note that Ẽi ⊂ Ei due to Ji ⊂ Ii.
Let µ′

i = Ẽ(f(X(i))), where the expectation is taken from X(i) ∼ Unif(Ẽi). Based on some
basic algebra, we find

σ2
i = Var(f(X(i))) =

1

λd(Ei)

∫

Ei

[f(X)− µi]
2dX

≥ 1

λd(Ei)

∫

Ẽi

[f(X)− µi]
2dX

=
1

λd(Ei)

∫

Ẽi

(
[f(X)− µ′

i]
2 + 2(f(X)− µ′

i)(µ
′
i − µi) + (µ′

i − µi)
2
)
dX

=
λd(Ẽi)

λd(Ei)

(
Ṽar(f(X(i))) + (µ′

i − µi)
2
)

≥ 2−(1+d)Ṽar(f(X(i))),

where Ṽar is taken over X(i) ∼ Unif(Ẽi), and we used two results by applying Lemma 3
that λd(Ei) = 1/n and

λd(Ẽi) = λ1(Ji) =
1

2dm
≥ 1

21+dn
= 2−(1+d)λd(Ei). (3.3)

We thus have
s2n

n1− 2
d

≥ 1

21+dn1− 2
d

n∑

i=1

Ṽar(f(X(i))) =: K1(n). (3.4)

Notice that Ẽi is a cube with sides of length 2−m. Following the proof of Theorem 2,
we have

Ṽar(f(X(i))) =
1

12 · 22m ‖∇f(ci)‖2 + o(2−2m), (3.5)
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where ci is the center of Ẽi. Therefore,

lim inf
n→∞

K1(n) = lim inf
n→∞

1

21+dn1− 2
d

(
1

12 · 22m
n∑

i=1

‖∇f(ci)‖2 + o(2−2mn)

)

≥ lim inf
n→∞

1

21+dn1−2/d

1

12 · 22(1+d)/dn2/d

n∑

i=1

‖∇f(ci)‖2 (3.6)

=
1

96 · 22/d+d

∫

[0,1]d
‖∇f(X)‖2dX > 0. (3.7)

The inequality (3.6) is due to m ≤ (log2 n+ 1)/d + 1. The equality (3.7) is due to ci ∈ Ei

and {E1, . . . , En} is a split of [0, 1]d. As a result,

lim inf
n→∞

s2n

n1− 2
d

≥ lim inf
n→∞

K1(n) ≥
1

96 · 22/d+d

∫

[0,1]d
‖∇f(X)‖2dX > 0. (3.8)

Combing (3.8) with Var(µ̂n) = s2n/n
2 establishes the inequality (3.1).

Similar to (2.5), for any δ > 0, there exists a constant Cd,δ depending on d and δ such
that

E

[∣∣∣f(X(i))− E[f(X(i))]
∣∣∣
2+δ
]
≤ Cd,δn

− 2+δ
d , (3.9)

because the diameter of Ei is not larger than 2
√
d+ 3n−1/d by Lemma 3. Using (3.8) and

(3.9), the Lyapunov condition

lim
n→∞

1

s2+δ
n

n∑

i=1

E

[∣∣∣f(X(i))− E[f(X(i))]
∣∣∣
2+δ
]
≤ lim sup

n→∞

Cd,δn
1− 2+δ

d

s2+δ
n

= lim sup
n→∞

Cd,δn
−2/δ

(
n1−2/d

s2n

)(2+δ)/2

= 0

is satisfied. Finally, using the Lyapunov CLT, we obtain (3.2).

From the proof of Theorem 4 in He and Owen (2016), we find that

Var(µ̂n) ≤ 4M2(d+ 3)n−1−2/d (3.10)

for any Lipschitz function f with modulus M . Theorem 4 gives an asymptotic lower
bound of order n−1−2/d for Var(µ̂n). Therefore, the rate O(n−1−2/d) is tight for Var(µ̂n) if
f ∈ C1([0, 1]d) and

∫
[0,1]d ‖∇f(X)‖2dX > 0. To prove the asymptotic normality, we only

require the lower bound as shown in the proof of Theorem 4.
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3.2 Piecewise Smooth Functions

In this subsection, we focus on piecewise smooth functions of the form f(X) = g(X)1Ω(X),
where ∂Ω admits a (d − 1)-dimensional Minkowski content defined below. This kind of
functions was also studied in He and Owen (2016).

Definition 5. For a set Ω ⊂ [0, 1]d, define

M(∂Ω) = lim
ǫ↓0

λd((∂Ω)ǫ)

2ǫ
, (3.11)

where (A)ǫ := {x+y|x ∈ A, ‖y‖ ≤ ǫ}. If M(∂Ω) exists and finite, then ∂Ω is said to admit
a (d− 1)-dimensional Minkowski content.

In the terminology of geometry, M(∂Ω) is known as the surface area of the set Ω. The
Minkowski content has a clear intuitive basis, compared to the Hausdorff measure that
provides an alternative to quantify the surface area. We should note that the Minkowski
content coincides with the Hausdorff measure, up to a constant factor, in regular cases. It
is known that the boundary of any convex set in [0, 1]d has a (d−1)-dimensional Minkowski
content since the surface area of a convex set in [0, 1]d is bounded by the surface area of
the unit cube [0, 1]d, which is 2d. More generally, Ambrosio et al. (2008) found that ∂Ω
admits a (d− 1)-dimensional Minkowski content when Ω has a Lipschitz boundary.

Let

Tint = {1 ≤ i ≤ n|Ei ⊂ Ω},
Tbdy = {1 ≤ i ≤ n|Ei ∩ Ω 6= ∅}\Tint,

be the indices of collections of Ei that are interior to Ω and at the boundary of Ω, respec-
tively. Denote |A| as the cardinality of the set A.

Lemma 6. If ∂Ω admits a (d−1)-dimensional Minkowski content, then |Tbdy| = O(n1−1/d).

Proof. The proof is given in the proof of Theorem 4 in He and Owen (2016). We provide
here for completeness.

From Lemma 3, the diameter of Ei, denoted by ri, satisfies ri ≤ 2
√
d+ 3n−1/d. Let

ǫ = 2
√
d+ 3n−1/d. From (3.11), for any fixed δ > 2M(∂Ω), there exists ǫ0 > 0 such that

λd((∂Ω)ǫ) < δǫ whenever ǫ < ǫ0. Assume that n > (2
√
d+ 3/ǫ0)

d. Thus ri ≤ ǫ < ǫ0. Note
that ∪i∈TbdyEi ⊂ (∂Ω)ǫ. This leads to

|Tbdy| ≤
λd((∂Ω)ǫ)

λd(Ei)
≤ δǫ

n−1
= 2

√
d+ 3δn1−1/d,

which completes the proof.
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Theorem 7. Let f(X) = g(X)1Ω(X), where g(X) ∈ C1([0, 1]d), Ω ⊂ [0, 1]d and ∂Ω admits
a (d− 1)-dimensional Minkowski content. Suppose that σ2

Ω =
∫
Ω ‖∇g(X)‖2dX > 0. Then

for all sufficiently large n,

Var(µ̂n) ≥
σ2
Ω

96
2−2/d−dn−1−2/d, (3.12)

If d > 2,
µ̂n − µ√
Var(µ̂n)

→ N(0, 1), (3.13)

in distribution as n = bm → ∞.

Proof. Following the notations in the proof of Theorem 4, we have

s2n =

n∑

i=1

σ2
i =

∑

i∈Tint

Var(g(X(i))) +
∑

i∈Tbdy

Var(g(X(i))1Ω(X
(i))). (3.14)

Similar to the proof of Theorem 4 for g ∈ C1([0, 1]d), we have

Var(g(X(i))) =
1

12 · 22m ‖∇g(ci)‖2 + o(2−2m),

where ci ∈ Ei as defined there for i ∈ Tint. From (3.14), we find that

s2n ≥
∑

i∈Tint

Var(g(X(i))) =
1

12 · 22m
∑

i∈Tint

‖∇g(ci)‖2 + o(2−2m|Tint|). (3.15)

Note that

∫

Ω
‖∇g(X)‖2dX = lim

n→∞

1

n

n∑

i=1

‖∇g(ci)‖21Ω(ci)

= lim
n→∞

1

n


∑

i∈Tint

‖∇g(ci)‖2 +
∑

i∈Tbdy

‖∇g(ci)‖21Ω(ci)


 (3.16)

= lim
n→∞

1

n

∑

i∈Tint

‖∇g(ci)‖2,

where we picked ci ∈ Ei\Ω 6= ∅ for i ∈ Tbdy so that the last term of (3.16) is actually zero.
Therefore, similar to (3.8), we have

lim inf
n→∞

s2n

n1− 2
d

≥ 1

96 · 22/d+d

∫

Ω
‖∇g(X)‖2dX > 0, (3.17)

that establishes (3.12).
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On the other hand,

n∑

i=1

E

[∣∣∣f(X(i))− E[f(X(i))]
∣∣∣
2+δ
]

=
∑

i∈Tint

E

[∣∣∣g(X(i))− E[g(X(i))]
∣∣∣
2+δ
]
+
∑

i∈Tbdy

E

[∣∣∣g(X(i))1Ω(X
(i))− E[g(X(i))1Ω(X

(i))]
∣∣∣
2+δ
]
.

Again, for any δ > 0,

E[|g(X(i))− E[g(X(i))]|2+δ ] ≤ Cd,δn
− 2+δ

d ,

where Cd,δ > 0 is some constant that only depends on d and δ. This leads to

∑

i∈Tint

E[|g(X(i))− E[g(X(i))]|2+δ ] ≤ Cd,δn
1− 2+δ

d . (3.18)

It follows from (3.17) that

lim sup
n→∞

1

s2+δ
n

∑

i∈Tint

E

[
|g(Ui)− E[g(Ui)]|2+δ

]
≤ lim sup

n→∞

Cd,δn
1− 2+δ

d

s2+δ
n

= 0. (3.19)

By the continuity of g, there is a constant D with |g(X)| ≤ D for all X ∈ [0, 1]d. Therefore,

∑

i∈Tbdy

E

[∣∣∣g(X(i))1Ω(X
(i))− E[g(X(i))1Ω(X

(i))]
∣∣∣
2+δ
]
≤ (2D)2+δ |Tbdy|. (3.20)

By Lemma 6, we have |Tbdy| = O(n1−1/d). As a result,

lim sup
n→∞

1

s2+δ
n

∑

i∈Tbdy

E

[∣∣∣g(X(i))1Ω(X
(i))− E[g(X(i))1Ω(X

(i))]
∣∣∣
2+δ
]

(3.21)

≤ lim sup
n→∞

(2D)2+δ |Tbdy|
s2+δ
n

= lim sup
n→∞

(2D)2+δn
1+δ
d

− δ
2

(
n1− 2

d

s2n

)2+δ
2 |Tbdy|

n1−1/d
= 0, (3.22)

provided that d > 2 and δ > 1. Together with (3.19) and (3.22), the Lyapunov condition
is thus verified. So the asymptotic normality is satisfied by applying the Lyapunov CLT
again.
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He and Owen (2016) gave an upper bound ofO(n−1−1/d) for Var(µ̂n) if f(X) = g(X)1Ω(X),
where g is Lipschitz continuous. Theorem 7 provides a lower bound of order n−1−2/d. For
discontinuous integrands, we cannot get asymptotically matching lower bound to the upper
bound because when we take Ω = [0, 1]d, the lower bound (3.12) is in line with the smooth
case. To establish the asymptotic normality, Theorem 7 requires d > 2. It is not clear in
general whether the asymptotic normality holds for d = 1, 2. If the last term of (3.14) has
a lower bound of O(n1−1/d), one would have the asymptotic normality for d = 2. For d = 1,
let’s consider the function f(X) = g(X)1{X>θ}(X) for some θ ∈ [0, 1]. If θ is a multiple of
b−m0 for some m0 > 0, then the error over the set Tbdy vanishes whenever m ≥ m0. The
Lyapunov condition is thus verified by (3.19). As a result, the asymptotic normality holds
for this case. If θ does not have a terminating b-adic representation, we may require some
additional conditions to ensure the asymptotic normality. Theorem 7 also requires that∫
Ω ‖∇g(X)‖2dX > 0. That condition actually rules out the case in which f is an indicator
function. The analysis of indicator functions is presented in the next subsection.

3.3 Indicator Functions

We now consider indicator functions of the form f(X) = 1Ω(X). Recall that Tbdy denotes
the index of the collections of Ei that touch the boundary of Ω. In this case, the variance
of the estimate reduces to

Var(µ̂n) =
1

n2

∑

i∈Tbdy

Var(1Ω(X
(i))), (3.23)

where Var(1Ω(X
(i))) = nλd(Ei∩Ω)(1−nλd(Ei∩Ω)). Motivated by the proof of Theorem 7,

one needs to derive a suitable lower bound for s2n = n2Var(µ̂n) to apply the Lyapunov CLT.
Note that s2n ≤ |Tbdy|/4. Assume that ∂Ω admits a (d−1)-dimensional Minkowski content;
s2n then has an upper bound of O(n1−1/d) since |Tbdy| = O(n1−1/d) by Lemma 6. It is easy
to see that if s2n ≥ cn1−1/d for some constant c > 0, the Lyapunov condition is satisfied
for any d > 1. However, it is possible that Tbdy = ∅ for strictly increasing sample sizes nk,
k = 1, . . . ,∞, if Ω is a cube. This leads to an identically zero variance and hence s2nk

= 0.
Therefore, to study the asymptotic normality for indicator functions, we need the following
assumption on Ω, instead of the Minkowski content condition.

Assumption 8. For Ω ⊂ [0, 1]d, there exist a constant c > 0 and an N0 ≥ 1 such that for
any n ≥ N0,

inf
i∈Tbdy

Var(1Ω(X
(i))) ≥ c. (3.24)

Moreover,
lim
n→∞

|Tbdy| = ∞. (3.25)
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Theorem 9. Let f(X) = 1Ω(X), where Ω satisfies Assumption 8. Then

µ̂n − µ√
Var(µ̂n)

→ N(0, 1), (3.26)

in distribution as n = bm → ∞.

Proof. By (3.23) and (3.24), we have s2n ≥ c|Tbdy|. The Lyapunov condition

lim
n→∞

1

s2+δ
n

n∑

i=1

E[|f(X(i))− E[f(X(i))]|2+δ ] ≤ lim sup
n→∞

22+δ |Tbdy|
(c|Tbdy|)(2+δ)/2

= lim sup
n→∞

(
2√
c

)2+δ

|Tbdy|−δ/2 = 0

is satisfied for any δ > 0, where we used the condition (3.25) and c > 0. Applying the
Lyapunov CLT, we obtain (3.26).

Note that for d = 1, the condition (3.25) does not hold if Ω is a union of k disjoint
intervals in [0,1], where k is a given positive integer. This is because |Tbdy| ≤ 2k for all
possible n. Actually, for such cases, the CLT does not hold since the integration error is
distributed over (at most) k + 1 possible values for any n = bm; see also L’Ecuyer et al.
(2010) for discussions on randomly-shifted lattice rules.

Define An(c) = {i ∈ Tbdy|Var(1Ω(X(i))) ≥ c}. Assumption 8 can be weakened slightly
to that there exist c > 0 and δ > 0 such that

lim sup
n→∞

|Tbdy|
|An(c)|1+δ

= 0.

If ∂Ω admits a (d− 1)-dimensional Minkowski content additionally, it suffices to verify

lim sup
n→∞

n1−1/d|An(c)|−1−δ = 0,

or equivalently, |An(c)|−1 = o(n(1/d−1)/(1+δ)). This is because |Tbdy| = O(n1−1/d).
However, it may be hard to verify Assumption 8 for general Ω. As an illustrative

example, we next show that the assumption holds for the case Ω = {X = (X1,X2) ∈
[0, 1]2|X1 + X2 ≥ 1}. We restrict our attention to the van der Corput sequence in base
b = 2 so that n = 2m. In this case, Ei is a square with sides of length 1/

√
n when m is

even; when m is odd, Ei is a rectangle with width
√

2/n and height 1/
√
2n; see Figure 2

for illustrations. We thus have

|Tbdy| =
{√

n, m is even,√
2n, m is odd.

13



Moreover, for all i ∈ Tbdy, we find that

Var(1Ω(X
(i))) =

{
1/4, m is even,

3/16, m is odd.

Therefore, Assumption 8 is satisfied with c = 3/16 and N0 = 1 so that the CLT holds for
this example. Similarly, it is easy to see that the CLT still holds for the set Ω = {X =
(X1, . . . ,Xd) ∈ [0, 1]d|∑d

i=1 Xi ≥ d/2} in d dimensions.

m = 1 m = 2 m = 3 m = 4 m = 5

Figure 2: Five splits of [0, 1]2 for HSFC stratification, and the dot line is X1 +X2 = 1.

4 Numerical Results

In this section, we present some numerical studies to assess the normality of the stan-
dardized errors. We also examine the lower bound established in Theorem 4 for smooth
functions. We consider the integrals of the following functions:

• a smooth function, f1(X) = 12d/2
∏d

i=1(Xi − 1
2),

• a piecewise smooth function, f2(X) = (X1 −X2)1{
∑d

i=1 Xi≥d/2}(X), and

• an indicator function, f3(X) = 1{
∑d

i=1 Xi≥d/2}(X).

Note that for any d ≥ 1, the exact values of these integrals are µ = 0, µ = 0, and
µ = 1/2, respectively. The smooth function was studied in Owen (1997), which satisfies
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the smooth condition required in Loh (2003). The scrambled (t,m, d)-net integration of
this smooth function has a variance of O(n−3(log n)d−1) Owen (1997), and it enjoys the
asymptotic normality when t = 0, as confirmed by Loh (2003). However, for the last two
discontinuous functions, there is no theoretical guarantee in supporting the asymptotic
normality for scrambled net quadratures, since the functions do not fit into the class of
smooth functions required in Loh (2003).

We make comparisons with randomized Sobol’ points, which use the nested uniform
scrambling of Owen (1995) or the linear scrambling of Matoušek (1998). We use the C++ li-
brary of T. Kollig and A. Keller (http://www.uni-kl.de/AG-Heinrich/SamplePack.html)
to generate the nested uniform scrambled Sobol’ (NUS–Sobol’) points. To generate the
linear scrambled Sobol’ (LS–Sobol’) points, we make use of the generator scramble in
MATLAB. To calculate Hilbert’s mapping function H(x), we use the C++ source code in
Lawder (2000) which is based on the algorithm in Butz (1971). To estimate the variances of

these estimators, we use R independent replications µ̂
(1)
n , . . . , µ̂

(R)
n of the sampling schemes.

We then estimate the variances by the corresponding empirical variances

σ̂2
n =

1

R− 1

R∑

i=1

(µ̂(i)
n − µ̄)2,

where µ̄ = (1/R)
∑R

i=1 µ̂
(i)
n . To see asymptotic normality, we plot the kernel smoothed

density of the standardized errors

Zi =
µ̂
(i)
n − µ

σ̂n
, i = 1, . . . , R,

using the function ksdensity in MATLAB. In our experiments, we take R = 1000 and
n = 214 = 16384, in order to get good accuracy in the estimation of the target density.

Now consider the smooth function f1(X). We find that f1 ∈ C1([0, 1]d), and
∫

[0,1]d
‖∇f1(X)‖2dX = d

∫

[0,1]d

(
∂f(X)

∂X1

)2

dX

= 12dd

∫

[0,1]d−1

d∏

i=2

(
Xi −

1

2

)2

dX

= 12d > 0.

Therefore, by Theorem 4, the HSFC-based estimate follows the CLT for f1. The lower
bound in (3.1) becomes

Var(µ̂n) ≥ 2−3−d−2/ddn−1−2/d.

Note that f1(X) is a Lipschitz function whose modulus M satisfies

M ≤
d∑

i=1

sup
X∈[0,1]d

∣∣∣∣
∂f1(X)

∂Xi

∣∣∣∣ = 12d/221−dd.
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Together with (3.10), we obtain an upper bound

Var(µ̂n) ≤ 16(d+ 3)3dd2n−1−2/d.

Figure 3 shows the natural logarithm of the empirical variances of the HSFC-based esti-
mator for n = 2m, m = 0, . . . , 18. The true variance of Monte Carlo sampling is 1/n for
all d ≥ 1. The lower bound and the upper bound above are also presented. We observe
that the empirical variances decay at the rate n−2 for d = 2, and at the rate n−5/4 for
d = 8. This supports that the rate n−1−2/d for the HSFC sampling is tight for smooth
functions. Figure 4 displays smoothed density estimations of the standardized errors for
plain Monte Carlo, LS–Sobol’, NUS–Sobol’, and HSFC. As expected, a nearly normal dis-
tribution appears for both the Monte Carlo and HSFC schemes. For the nested uniform
scrambling scheme, a nearly normal distribution is also observed for d = 2. This is because
Sobol’ sequence is a (t, d)-sequence in base b = 2 with t = 0 for d = 2 and t > 0 for d = 8
Dick and Niederreiter (2008). Therefore, the CLT holds for d = 2, as confirmed by Loh
(2003). For d = 8, on the other hand, the density of the standardized errors does not look
like a normal distribution. Even worse, for the linear scrambling scheme, the distribution
of the standardized errors is very different from the normal distribution. It looks rather
spiky for d = 2.
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Figure 3: Decay of empirical variance of HSFC sampling as a function of sample size in a log-
log scale for d = 2, 8. The lower bound and the upper bound for the variance are included.
The true variance of Monte Carlo (MC) sampling is also presented for comparison.

For the two discontinuous functions f2(X) and f3(X), the CLT holds for the HSFC
sampling (see Sections 3.2 and 3.3 for details). Figures 5 and 6 show smoothed density
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Figure 4: Empirical verification of asymptotic normality for the integrations of the smooth
function f1(X) with plain Monte Carlo (MC), LS–Sobol’, NUS–Sobol’, and HSFC, the dot
curve is the true density of the standard normal N(0, 1).

estimations of the standardized errors for the two functions, respectively. As expected,
a nearly normal distribution appears for both the Monte Carlo and HSFC schemes with
d = 2, 8. More interestingly, a nearly normal distribution is also observed for the nested
uniform scrambling scheme in all cases, although it is not clear whether the CLT holds for
scrambled net integrations of discontinuous functions. Similar to the case of the smooth
function, the integration error distribution for the linear scrambling scheme is far from the
normal distribution, particularly for d = 2. Comparing to the nested uniform scrambling,
the linear scrambling requires less randomness, and therefore its samples may be strongly
dependent. That might explain why the CLT does not hold in most cases for randomized
QMC with the linear scrambling.

5 Concluding Remarks

Loh (2003) showed that the scrambled net estimate has an asymptotic normal distribution
for certain smooth functions. In a very recent work, Basu and Mukherjee (2016) found that
the scrambled geometric net estimate has an asymptotic normal distribution for certain
smooth functions defined on products of suitable subsets of ℜd. The smoothness conditions
required in the two papers are more restrictive than the smooth condition required in
Section 3.1. The proofs in both Loh (2003) and Basu and Mukherjee (2016) relied on
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Figure 5: Empirical verification of asymptotic normality for the integrations of the piece-
wise smooth function f2(X) with plain Monte Carlo (MC), LS–Sobol’, NUS–Sobol’, and
HSFC, the dot curve is the true density of the standard normal N(0, 1).

ensuring a suitable lower bound on the variance of the estimate matching up to constants
to the upper bound. The proofs in this paper relies on establishing a suitable lower bound,
and then make use of the Lyapunov CLT.

We also proved the asymptotic normality of the HSFC-based stratified estimate for cer-
tain discontinuous functions. To our best knowledge, it is not clear whether the asymptotic
normality of the scrambled net estimate holds for discontinuous functions. He and Wang
(2015) provided some upper bounds of scrambled net variances for piecewise smooth func-
tions of the same form f(X) = g(X)1Ω(X) studied in Section 3.2, but g is of bounded
variation in the sense of Hardy and Krause instead. For future research, following the pro-
cedures in Loh (2003), it is desirable to establish a matching lower bound for the variance
of scrambled net integration of discontinuous functions.

He and Owen (2016) used randomized van der Corput sequence in base b as the input
of the HSFC sampling. This makes the sampling scheme extensible. As in Loh (2003) and
Basu and Mukherjee (2016), the analysis in this paper is based on the sample size with
the pattern n = bm, not with arbitrary n. This scheme turns out to be a kind of stratified
samplings. In contrast to the usual grid sampling, it is extensible and does not require so
highly composite sample sizes, particularly for large d. The results on the HSFC sampling
can also be applied to the usual grid sampling.
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Figure 6: Empirical verification of asymptotic normality for the integrations of the indicator
function f3(X) with plain Monte Carlo (MC), LS–Sobol’, NUS–Sobol’, and HSFC, the dot
curve is the true density of the standard normal N(0, 1).
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