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Abstract In this paper, we propose irreversible ver-

sions of the Metropolis Hastings (MH) and Metropo-

lis adjusted Langevin algorithm (MALA) with a main

focus on the latter. For the former, we show how one

can simply switch between different proposal and ac-

ceptance distributions upon rejection to obtain an ir-

reversible jump sampler (I-Jump). The resulting algo-

rithm has a simple implementation akin to MH, but

with the demonstrated benefits of irreversibility. We then

show how the previously proposed MALA method can

also be extended to exploit irreversible stochastic dy-

namics as proposal distributions in the I-Jump sam-

pler. Our experiments explore how irreversibility can

increase the efficiency of the samplers in different situ-

ations.
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1 Introduction

Markov chain Monte Carlo (MCMC) methods are the

defacto tools for inference in Bayesian models [44, 62].

The Metropolis-Hastings (MH) algorithm is often used

as the default approach because of its ease of imple-

mentation. One designs a proposal distribution to gen-

erate samples and uses an accept-reject procedure to

ensure that the target distribution is maintained. A fo-

cus has been on developing clever proposals [66, 33,

44] to specify a Markov process with good mixing rates,

but traditional methods are often strongly coupled to a

specific challenge setting, like multimodal targets [66]

or heavy tailed distributions [33]. In practice, one of-

ten does not know the structure of the target distribu-

tion, which might additionally exhibit a combination

of these factors.

To address some of these limitations, the Metropo-

lis adjusted Langevin algorithm (MALA) [63, 74] and

Hamiltonian Monte Carlo (HMC) [21, 51] have been

proposed. These methods are constructed to use the lo-

cal gradient information of the target distribution in the

proposal. In these approaches, the task of construct-

ing good samplers is translated to finding continuous

http://arxiv.org/abs/1608.05973v5
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Markov dynamics, in the form of differential equations

(stochastic or deterministic), that can generate better

MH proposals for general target distributions. A lot of

recent attention has been on extensions to the Langevin

and Hamiltonian dynamics, such as through use of sec-

ond order information of the target distribution result-

ing in Riemann manifold variants [74, 25].

One restriction of all the above approaches is that

regardless of the properties of the underlying contin-

uous dynamics, direct use of the MH correction nec-

essarily results in the whole sampler being reversible

(the forward path is statistically indistinguishable from

the backward one). This represents a serous limitation

since irreversibility has been shown to increase the mix-

ing rate of samplers in general [50, 19, 14, 12].

Our goal is to address this issue by defining easy-to-

specify and computationally straightforward irreversible

samplers. In particular, we focus in on defining an ir-

reversible MALA algorithm (I-MALA); the construc-

tion of this algorithm consists of two parts. One part is

to construct irreversible continuous Markov dynamics

that leaves the target distribution invariant (see Sec. 2).

Then, to correct for the discretization error involved

in simulating the continuous Markov dynamics—while

avoiding use of the reversible MH procedure—we de-

velop an irreversible jump sampler (I-Jump). The I-

Jump algorithm has an implementation similar to the

simplicity of the MH algorithm, but allows for irre-

versibility (see Sec. 3).

We start in Sec. 2 by providing background on sam-

plers using continuous Markov processes and present

a general stochastic differential equation (SDE) based

framework; a preliminary version of this work appeared

in [46]. Within the framework, general irreversible con-

tinuous dynamics are defined through specifying two

matrices: a positive semidefinite matrix and a skew-

symmetric matrix. We prove that for any choice of these

matrices, the continuous dynamics leave the target dis-

tribution invariant. We likewise prove that any contin-

uous Markov process with the correct stationary distri-

bution has a representation in this framework.

We then turn our attention in Sec. 3 to introducing

the I-Jump sampler alternative to the MH algorithm.

We first reparameterize the jump process and arrive at

a straightforward set of constraints on the transition

probabilities that ensures that the target distribution is

the stationary distribution. We then revise the MH al-

gorithm to allow for irreversibility, while at the same

time satisfying the derived constraints for correctness.

The resulting sampler implementation has the ease and

efficiency of the standard MH method. Importantly, our

method outperforms existing approaches [48, 27] in terms

of mixing rate versus runtime in a range of settings,

from heavy-tailed to multimodal targets. We further demon-

strate these performance gains in a set of challenging

real world applications.

In Sec. 4, we then make use of the general irre-

versible stochastic dynamics framework to define bet-

ter proposal distributions in the I-Jump sampler, lead-

ing to our sought-after I-MALA algorithm. Similar to

the MALA or HMC algorithm, we use a discretiza-

tion of the continuous dynamics to propose a sample,

but then use our I-Jump sampler rather than the re-

versible MH correction. Importantly, local gradient in-

formation of the target distribution is taken into account

in the SDE for better efficiency than the I-Jump al-

gorithm with standard independent proposals. Further-

more, the simplicity of the MH algorithm is still in-

herited while the overall sampling process remains ir-

reversible. We can view the benefits of this approach

from two angles: (i) the SDE can provide an efficient

proposal distribution for our I-Jump sampler or (ii) the

accept-reject scheme allows us to correct for the bias

introduced by sampling the continuous dynamics via

a discretized SDE. This also opens up the possibility

to combine, for example, the fast mixing of Langevin

diffusion within local modes with the fast traversing

of Hamiltonian dynamics. We examine the increased

efficiency of our proposed I-MALA algorithm within

the context of a Bayesian logistic regression model and

stochastic volatility model.

2 Samplers Using Continuous Markov Processes

We start with the standard MCMC goal of drawing sam-

ples from an unnormalized target distribution π(θ). It is

often customary to include auxiliary variables r (e.g. in

the HMC algorithm) to facilitate the sampling process.

Hence we write z = (θ, r) to contain all variables being

sampled according to the joint distribution π(z). In this

section, we focus on continuous Markov processes and

discuss possible choices of continuous dynamics that
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leave π(z) invariant. If the stochastic process is fur-

ther ergodic, then simulating the stationary stochastic

dynamics equates with providing samples from π(z).
These processes will be deployed in the I-MALA algo-

rithm of Sec. 4.

A realization of a continuous Markov process can

be represented as the following stochastic differential

equation (SDE):

dz = f(z)dt+
√
2D(z)dW(t), (1)

where z: [0,+∞)×Ω → Rd is a real random vector de-

fined on a probability space (Ω,Σ, P ), parameterized

by time t; f : Rd → Rd is a real vector valued function;

D(z) is a d × d positive semidefinite diffusion matrix;

and W(t) is a d dimensional Wiener process. Follow-

ing Itô’s convention, (1) defines the following diffusion

process (with an abuse of notation, we also use z to

denote value of the random vector z):

∂

∂t
p(z; t) =

d∑

i,j=1

∂2

∂zi∂zj

[
Dij(z)p(z; t)

]

−
d∑

i=1

∂

∂zi

[
fi(z)p(z; t)

]
, (2)

where p(z; t) is the probability density function (as-

suming it exists for all t) of random vector z at time

t. The continuous Markov process, (1), can be used to

generate samples from π(z) if π(z) is a stationary so-

lution to (2).

Although (1) provides a way to simulate the con-

tinuous dynamics and obtain samples from the Markov

process, it is not clear which choices of f and D will

result in a stationary distribution of (2) equal to the tar-

get distribution π(z). For a given f and D, (2) allows

us to analyze this stationary distribution, but it is very

challenging to define the set of f and D that yield a

specified stationary distribution. Researchers have re-

sorted to special cases such as overdamped Langevin

[63, 72], underdamped Langevin [29, 13] and Nosé-

Hoover [20, 64] dynamics in the statistical physics lit-

erature for inspiration.

2.1 Complete Recipe with Continuous Markov

Dynamics

We propose using an alternative form for (1) specified

via two matrices D and Q, as well as the target distri-

bution π(z), as first considered in [46, 65]:

dz =
[
−
(
D(z) +Q(z)

)
∇H(z) + Γ (z)

]
dt

+
√
2D(z)dW(t),

Γi(z) =

d∑

j=1

∂

∂zj

(
Dij(z) +Qij(z)

)
(3)

Here,H(z) = − log(π(z)); D(z) is a positive semidef-

inite diffusion matrix and Q(z) a skew-symmetric ma-

trix. As discussed in Appendix A.2, (3) decomposes

into reversible and irreversible process. Matrix D(z)

corresponds to the reversible part while matrix Q(z)

determines the irreversible part. In the following, we

use the Fokker-Planck equation associated with (3) to

verify two properties of this representation: One is that

(3) has π(z) as its invariant distribution; the other is

that any continuous Markov process with π(z) as the

invariant distribution can be written in the form of (3)

(i.e., there exists a D(z) and Q(z) that place the pro-

cess in this representation). Together, these two prop-

erties (i) allow us to very straightforwardly explore a

set of valid samplers by specifying pairs (D(z),Q(z))
of positive semidefinite and skew-symmetric matrices,

respectively, and (ii) ensure that as we span the space

of all possible (D(z),Q(z)), we know we have cov-

ered all possible valid samplers. That is, our represen-

tation is complete. A preliminary version of this com-

plete framework appeared in [46].

The Fokker-Planck equation (following Itô’s con-

vention) associated with (3) is (see Appendix A.1):

∂

∂t
p(z; t) (4)

= ∇T ·
([

D(z) +Q(z)
]
[p(z; t)∇H(z) +∇p(z; t)]

)
,

where∇T · f(z) =∑d
i=1

∂fi(z)

∂zi
. It is straightforward

to verify that ps(z) ∝ π(z) = e−H(z) is a stationary

solution to (4). More significantly, Theorem 1 states

that any process (1) and (2) with stationary distribution

π(z) has a representation in our framework.
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Theorem 1 Suppose (2) has stationary probability

density function ps(z) ∝ π(z). Further assume that[
fi(z)π(z) −

∑d
j=1

∂

∂θj

(
Dij(z)π(z)

)]
is Lebesgue

integrable. Then, there exists a skew-symmetric matrix

Q(z) such that the right hand side of (2) is equivalent

to the right hand side of (4).

For the reader’s convenience, we include the construc-

tive proof of Theorem 1 in Appendix A.1. To the best of

our knowledge, the exact form of (3) was first presented

in the statistical mechanics literature [75, 65]; however,

the completeness of the representation of continuous

Markov processes was made only later in our prelimi-

nary paper [46]. The proof of Theorem 1 is comprised

of two sets of ideas stemming from different fields: In

the study of continuous Markov processes, earlier work

[59, 17, 58, 18, 70, 54] realized that diffusion processes

with stationary probability density function π(z) can

be decomposed into reversible and irreversible parts

preserving π(z) as the invariant measure. In stochastic

models of fluid dynamics and homogenization, earlier

work [36] found that divergenceless vector fields can

be represented as the divergence of an anti-symmetric

matrix valued potential. Combining both ideas leads to

the discovery of (4) that underlies the proof of The-

orem 1. Similar structures have also been examined

when one or both of D(z) and Q(z) are constant ma-

trices [30, 39].

2.2 Continuous Markov Process Sampling Algorithm

We can simulate from (3) by using the following ǫ-
discretization of the SDE:

zt+1 ←zt + ǫt
[
−
(
D(zt) +Q(zt)

)
∇H(zt) + Γ (zt)

]

+ ηt, ηt ∼ N (0, 2ǫtD(zt)). (5)

Although (5) is in the form of the Euler–Maruyama

method, higher order numerical schemes can be used

for better accuracy [11, 9, 40]. For example, in HMC,

since the diffusion matrix D is zero, a neutral integra-

tion scheme such as leap frog (a second order integra-

tion scheme) is often used for accuracy and stability of

integration [51]. Other higher order numerical methods

Algorithm 1: Continuous Markov Process Sam-

pling Algorithm

initialize z0
for t = 0, 1, 2 · · ·Niter do

for i = 1 · · ·n do

Γi(z) =
∑

j

∂

∂zj
(Dij(z) +Qij(z))

end

sample ηt ∼ N (0, 2ǫtD(zt))
zt+1 ← zt +
ǫt
[
−
(
D(zt) +Q(zt)

)
∇H(zt) + Γ (zt)

]
+ ηt

end

such as the splitting scheme [11, 9] and simple modi-

fications to the Euler–Maruyama method [40] can also

lead to higher order of accuracy in different scenarios.

The resulting algorithm according to (5) is outlined

in Algorithm 1. Note that relying on a sample path from

the discretized system of (3) typically leads to the in-

troduction of bias due to discretization error. In these

cases, the samples only provide unbiased estimates in

the limit as ǫt → 0 unless further corrections are intro-

duced. In Sec. 4, we use the dynamics of (5) as the pro-

posal distribution inside an irreversible jump process to

correct for any potential discretization error.

2.3 Previous Dynamics in MCMC Algorithms as

Special Cases

We explicitly state how some previous continuous-dynamic-

based MCMC methods fit within the proposed frame-

work based on specific choices ofD(z), Q(z) andH(z).

Hamiltonian Dynamics The key ingredient in HMC [21,

51] is Hamiltonian dynamics, which simulates the phys-

ical motion of an object with position θ, momentum r,

and mass M on an frictionless surface as follows:

{
dθ = M−1rdt
dr = −∇U(θ)dt.

(6)

It can be observed that (6) is a special case of the pro-

posed framework with z = (θ, r), H(θ, r) = U(θ) +

1
2r

TM−1r, Q(θ, r) =

(
0 −I
I 0

)
and D(θ, r) = 0. See

Sec. 4.1 for a more complete discussion.
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Langevin Dynamics The Langevin dynamics sampler

[63, 72] proposes to use the following first order (no

momentum) Langevin dynamics to generate samples

dθ = −D∇U(θ)dt+
√
2DdW(t). (7)

This algorithm corresponds to taking z = θ withH(θ) =

U(θ), D(θ) = D, and Q(θ) = 0.

Riemannian Langevin Dynamics The Langevin dynam-

ics sampler can be generalized to use an adaptive diffu-

sion matrix D(θ). Specifically, it is interesting to take

D(θ) = G−1(θ), whereG(θ) is the Fisher information

metric [74, 53]. The sampler iterates

dθ =[−G(θ)−1∇U(θ) + ΓD(θ)]dt

+
√
2G(θ)−1dW(t). (8)

We can cast this Riemannian Langevin dynamics sam-

pler [53] into our framework taking D(θ) = G(θ)−1,

and Q(θ) = 0. From our framework, we know that

here

ΓD
i (θ) =

∑

j

∂Dij(θ)

∂θj
. (9)

Interestingly, in earlier literature [25],ΓD
i (θ) was taken

to be 2 |G(θ)|−1/2
∑
j

∂

∂θj

(
G−1

ij (θ)|G(θ)|1/2
)
. More

recently, it was found that this correction term corre-

sponds to the distribution function with respect to a

non-Lebesgue measure [63]. For the Lebesgue mea-

sure, the revised ΓD
i (θ) was as determined by our frame-

work [63]. This is an example of how our framework

can provide guidance in devising correct samplers.

2.4 Irreversibility in continuous dynamics

In Appendix A.2, we show that the continuous stochas-

tic dynamics (3) decompose into (i) general Rieman-

nian Langevin dynamics and (ii) conserved, determin-

istic dynamics generalizing Hamiltonian dynamics. The

first component is reversible and is determined byD(z)
while the second part is irreversible and is determined

by Q(z). The irreversible dynamics generates a circu-

lar motion that traverses through the state space.

It has been proven that incorporating this irreversible

dynamics (parameterized by Q(z)) can only increase

the mixing of the Markov process [30, 31, 22, 61]. The

intuition can be drawn from analyzing the nonzero part

of the spectrum of the Fokker-Planck operator in (4). It

can be shown that the traversing motion brings differ-

ent eigenvalues closer to each other, making the overall

spectrum (except zero) narrower [34]. When the spec-

tral gap of the reversible dynamics is nonzero, intro-

ducing this narrowing effect only increases the spec-

tral gap. For a Gaussian target distribution and taking

D(θ) = I, the optimal choice of a constant Q to in-

crease the spectral gap has been studied [42, 73].

3 Irreversible Jump Sampler

Although irreversible continuous dynamics increase the

mixing of the overall stochastic dynamics, the discretized

algorithm of (5) typically leads to bias due to discretiza-

tion error as mentioned in Sec. 2.2. If we use Metropolis-

Hastings (MH) to correct for this error, the whole pro-

cess becomes reversible again. Instead, in this section

we propose an irreversible jump sampler (I-Jump) that

can be used in place of MH to correct for the discretiza-

tion error in (5) while maintaining irreversibility.

Although the focus of this paper is on using this I-

Jump algorithm with continuous dynamics proposals—

as explored in Sec. 4—the I-Jump algorithm can be

used with more traditional proposal distributions as a

generic replacement for MH. Hence, in this section we

turn our attention to the jump processes and consider an

equivalent representation that enables more ready anal-

ysis of the properties of the process, and the develop-

ment of an efficient irreversible jump process sampler.

3.1 Irreversible Jump Processes

A Markov jump process can be defined by the Kol-

mogorov forward equation

∂

∂t
p(z|y; t) (10)

=

∫

Rd

dx
[
W (z|x)p(x|y; t) −W (x|z)p(z|y; t)

]
,
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where, similar to (2), p(z|y; t) is the probability den-

sity function of random vector z (parameterized by t)

taking value z at time t conditional on it taking value

of y at time 0. For the process specified by a generic

bivariate integrable function W (x|z) : Rd × Rd → R,

it is challenging to determine which choice of W (x|z)
leads to a jump process with the correct stationary dis-

tribution. Even if one can construct such a W , it can

be challenging to use W to sample a realization of the

jump process. Instead, one often restricts attention to

reversible processes and uses MH.

We revisit Markov jump processes under an equiv-

alent but alternative representation defined in terms of

two bivariate functions S and A : Rd × Rd → R. A

simple set of constraints on S and A ensures that the

target distribution π(z) is the stationary distribution of

the jump process. In particular, we consider

∂

∂t
p(z|y; t) =

∫

Rd

(
S(x, z) +A(x, z)

)p(x|y; t)
π(x)

dx

−
∫

Rd

S(x, z)
p(z|y; t)
π(z)

dx, (11)

where S(x, z) = S(z,x) is symmetric representing the

reversible part of the process and A(x, z) = −A(z,x)
is anti-symmetric defining the irreversible part. Based

on the form of (11), as shown in Appendix B.1, we sim-

ply have to satisfy the following constraints in order to

ensure that π(z) is the stationary distribution:

1. S(x, z)π−1(x) andA(x, z)π−1(x) are bounded and

integrable

2. S(x, z) +A(x, z) > 0

3.
∫
Rd A(x, z)dx = 0.

Discretizing (11) with ∆t step size gives the fol-

lowing update rule:

p(z|y;∆t) =
∆t

π(y)

(
S(y, z) +A(y, z)

)
(12)

+

[
1− ∆t

π(y)

∫

Rd

S(y,x)dx

]
δ(z− y),

which defines a Markov transition kernel entirely by

functions S and A: P (y, dz) = p(z|y;∆t)dz. Since

the image of P is a probability, it follows from the

first constraint of S and A (under Eq. (11)) that ∆t ≤
1/max{||(S +A)/π||1, ||(S +A)/π||∞}.

Since the jump operator has π(z) as the station-

ary distribution assuming the constraints of S and A

are satisfied, the transition probability of (12) defines

a valid procedure for drawing samples from the target

π(z). In particular, over time ∆t, state y transitions to

state z with probability ∆t(S(y, z) + A(y, z))/π(y),

and state y remains unchanged with probability

[
1− ∆t

π(y)

∫

Rd

S(y,x)dx

]
. (13)

We can further derive from (12) that ∆t · A is the dif-

ference between the probability of a forward path and

the backward path in the update procedure:

A(x, z) =
1

2∆t

(
π(y)p(z|y;∆t) − π(z)p(y|z;∆t)

)
.

(14)

From this, we clearly see how A determines the irre-

versibility of the process. In Sec. 3.3, we examine a

practical algorithm for efficiently implementing such

a procedure based on an accept-reject scheme analo-

gous to the MH algorithm outlined in Algorithm 2. The

important challenge we conquer is handling the irre-

versibility of the process arising from A 6= 0.

3.2 Reversible Samplers as Special Cases (A = 0)

As with past continuous-dynamic-based samplers, we

now cast a set of past jump-process-based samplers into

our framework.

Direct resampling Methods that sample directly from

π(z) take S(y, z) =
1

∆t
π(y)π(z) and A(y, z) = 0.

We can verify this by substituting into (12).

Metropolis-Hastings The very popular MH algorithm

(Algorithm 2) falls into our framework taking

S(y, z) =
1

∆t
min

(
π(y)q(z|y), π(z)q(y|z)

)
, (15)

where q(z|y) is the conditional probability of transiting

from y to z and A(y, z) = 0.
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Algorithm 2: Metropolis-Hastings Algorithm

for t = 0, 1, 2 · · ·Niter do
sample u ∼ U[0,1]
propose z(∗) ∼ q(z(∗)|z(t))

α
(
z(t), z(∗)

)
= min

{
1,
π (z(∗)) q(z(t)|z(∗))

π (z(t)) q(z(∗)|z(t))

}

if u < α (z(t), z(∗)), z(t+ 1) = z(∗)
else z(t+ 1) = z(t)

end

Algorithmically, we can define

α(y, z) = ∆t · S(y, z)/(π(y)q(z|y))

= min

(
1,

π(z)q(y|z)
π(y)q(z|y)

)
, (16)

such that both q(z|y) and α(y, z) are less than or equal

to 1. Then the update rule can be expressed as [15]:

p(z, ∆t|y) =q(z|y)α(y, z) (17)

+

[
1−

∫

Rd

q(z|y)α(y, z)dx
]
δ(z− y).

When in state y at time t, we propose to jump to state

z at t + ∆t with conditional probability q(z|y), re-

alized via a random number generator that has a dis-

tribution according to q(z|y); we accept this proposal

with probability α(y, z) to ensure that the target distri-

bution will be preserved under this procedure. Hence,

the total probability of transiting from state y to z is

q(z|y)α(y, z). Otherwise, we stay in state y. We see

that MH restricts our attention to reversible cases as

A(y, z) is always set to be 0.

Summary of past samplers In the previously mentioned

algorithms, and a majority of those used in practice,

only reversible Markov jump processes (A(z,y) be-

ing 0) are considered. In Sec. 3.3, we explore the case

where the process is irreversible, i.e., A(z,y) 6= 0.

3.3 Construction of a Practical Irreversible Jump

Sampler

Analogous to the discussion of Sec. 2, there are two is-

sues with designing samplers using Markov jump pro-

cesses. One is the construction of transition probabili-

ties, a task that has been alleviated in part by the new

formulation of (12) in terms of S(y, z) and A(y, z)

with simple constraints, though we still have to con-

struct such probability density functions. Another is sim-

ulating the Markov process of (12). In all but the sim-

plest cases, we might not be able to sample from the

transition probability ∆t · (S(y, z) + A(y, z))/π(y).

These two issues are often intertwined posing challenges

to the design of samplers. As mentioned in Sec. 2, the

MH algorithm is often resorted to due to its ease of

implementation. It separates the process of proposing

a sample into two simple steps: (1) proposing a candi-

date according to a known conditional probability dis-

tribution q(z|y) and (2) accepting or rejecting the can-

didate according to a certain probability. An important

drawback of the vanilla MH sampler, however, is that

the reversibility of the jump process being designed can

greatly restrict possible ways to increase the mixing of

the Markov chain.

There have been previous efforts to break the re-

striction of reversibility in different cases. For example,

the non-reversible MH algorithm adds a vorticity func-

tion to the MH procedure [6] while the lifting method

makes two replica of the original state space with a

skew detailed balance condition to facilitate irreversibil-

ity [67, 71]. The authors have shown examples of sam-

pling special distributions, but it is unclear how to gen-

eralize these previous methods to handle a broad set

of target distributions. See Sec. 5 for a detailed dis-

cussion of these and other methods. Here, we show

how we can devise a practical and efficient irreversible

jump process algorithm analogous to MH that can be

applied to general targets; this procedure implicitly de-

fines valid functions S(y, z) and A(y, z). In particu-

lar, just as MH corresponds to restricting the class of

functions W (z|y), our algorithm also focuses in on

particular instances of A(y, z), but importantly allows

A(y, z) 6= 0 (i.e., irreversible processes). The value of

this in practice is demonstrated in the experiments of

Sec. 6.

A naı̈ve approach A straightforward approach to re-

vise the MH algorithm to make the antisymmetric func-

tion A(y, z) nonzero is to utilize different proposal dis-

tributions f(z|y) and g(z|y), instead of a single q(z|y).
That is, the transition function of the MH algorithm in
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(15) is changed to

F (y, z) = S(y, z) +A(y, z)

=
1

∆t
min

(
π(y)f(z|y), π(z)g(y|z)

)
. (18)

Here we are considering jump processes with A(y, z) =
1

2

(
F (y, z)−F (z,y)

)
6= 0, in contrast to what we saw

for MH. By adjusting f and g, faster mixing rates can

possibly be attained while maintaining a simple sam-

pling procedure akin to that of MH (see Algorithm 2,

but with f in place of q in the numerator and g in place

of q in the denominator of the α calculation). The more

f and g differ, the more irreversibility effect is incor-

porated in the design of the sampler. Functions f and g

can even be selected to have non-overlapping support

in the state space (as is chosen in our experiments), so

that new proposals are guided in certain directions un-

til being rejected, encouraging the algorithm to explore

farther states. The primary issue with this construction

is that
∫
Rd A(y, z)dy 6= 0 in general, rendering the

stationary distribution not the π(z) that we desire. The

question is how to design the anti-symmetric function

A(y, z), such that
∫
Rd A(y, z)dy = 0.

Lifting for sampling when d = 1 A simple modified

approach is to follow an adjoint Markov process after

being rejected by the original one. This is inspired by

the lifting idea in discrete spaces [67, 71]. Importantly,

this approach has π(z) as the stationary distribution

(marginalized over the auxiliary variable).

Algorithmically, this process introduces a one-

dimensional, uniformly distributed discrete auxiliary

variable yp ∈ {−1, 1}. We then define

f̃(z, zp|y,yp) =
(
1yp≥0f(z|y) + 1yp<0g(z|y)

)

g̃(z, zp|y,yp) =
(
1yp<0f(z|y) + 1yp≥0g(z|y)

)
,

(19)

where f(z|y) and g(z|y) are different conditional

probability distributions, and 1A is the indicator func-

tion for the set A.

We modify the MH algorithm as described in Al-

gorithm 3, where we update state y and the auxiliary

Algorithm 3: One-Directional I-Jump Sampler

randomly pick zp from {1,−1} with equal probability

for t = 0, 1, 2 · · ·Niter do
sample u ∼ U[0,1]
if zp > 0 then

sample z(∗) ∼ f (z(∗)|z(t))
α (z(t), z(∗)) =

min

{
1,
π (z(∗)) g (z(t)|z(∗))

π (z(t)) f (z(∗)|z(t))

}

end

else
sample z(∗) ∼ g (z(∗)|z(t))
α (z(t), z(∗)) =

min

{
1,
π (z(∗)) f (z(t)|z(∗))

π (z(t)) g (z(∗)|z(t))

}

end

if u < α (z(t), z(∗)),
z(t+ 1) = z(∗); zp(t+ 1) = zp(t)
else z(t+ 1) = z(t); zp(t+ 1) = −zp(t)

end

variable yp according to the following transition prob-

ability (as in our recipe of (12)):

p(z, zp|y,yp;∆t)

=
∆t

π(y)πp(yp)
F(y,yp, z, zp)δ(zp − yp) (20)

+

(
1− ∆t

π(y)πp(yp)

∫

Rd

F(y,yp,x,−zp)dx
)

· δ(zp + yp)δ(z − y),

in which F(y,yp, z, zp) is defined using f̃ and g̃:

F(y,yp,z, zp)

= min
(
π(y)πp(yp)f̃(z, zp|y,yp),

π(z)πp(zp)g̃(y,yp|z, zp)
)
.

This update rule can be understood as follows. With

probability F(y,yp, z, zp)/(π(y)πp(yp)), state y be-

comes state z while the auxiliary state yp remains the

same. Alternatively, with probability[
1− 1

π(y)πp(yp)

∫

Rd

F(y,yp,x,−zp)dx
]

, no new

state (x,yp) is accepted conditioning on currently be-

ing at state (y,yp). Instead, state (y,yp) is directly

changed to state (y,−yp), leading to a different jump

process in y. An illustration of the update rule is shown

in Fig. 1. It is worth noting that in the lifted space of
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Fig. 1: Update rule starting from state (y,yp). Left:

Several possible states (z∗, zp) that the algorithm could

visit in the next step. Without resampling the auxiliary

variables, zp can only be yp or −yp. Right: Assuming

the algorithm visits (z1,y
p) as the next state to (y,yp)

(indicated by the green arrow), a sample trajectory of

states generated.

(y,yp), there are other choices for the probability of

transition from (y,yp) to (y,−yp) (c.f. [71]). How-

ever, they all lead to a nonzero probability of staying in

(y,yp), which reduces irreversibility.

From (14), we see that this proposed algorithm

takes the anti-symmetric function A(y,yp, z, zp) to be

A(y,yp,z, zp)

=
1

2∆t

(
π(y)πp(yp)p(z, zp|y,yp;∆t)

− π(z)πp(zp)p(y,yp|z, zp;∆t)
)

(21)

with p(z, zp|y,yp;∆t) as in (20). To ensure correct-

ness of the sampler, A(y,yp, z, zp) must satisfy (con-

dition 3):

∫

Rd+1

A(y,yp, z, zp) dy dyp = 0. (22)

In Appendix B.2, we prove that this is indeed the case

for A(y,yp, z, zp) as in (21). The intuition is that the

jump in the auxiliary variable introduces a circulative

behavior to the whole process (see Fig. 1 for illus-

tration). This circulation of probability flux is exactly

balanced with the jumps in the original variable and

the auxiliary variable. We also see in Fig. 1 that ir-

reversibility introduces a directional effect (just like

HMC introduces a direction of rotation). This algo-

rithm is a generalization of the guided walk Metropolis

method [26] and works well in one dimension, as we

demonstrate in Sec. 6.2.1. In what follows, we general-

ize this idea to higher dimensions d > 1.

Moving to higher dimensions An irreversible sampler

in Rd can be constructed as follows. We expand the

state space by introducing a dp-dimensional auxiliary

variable yp ∈ Rdp

in the new state space (y,yp).

The total probability can be designated as: (y,yp) ∼
π(y)πp(yp). We further impose symmetry on the aux-

iliary variables such that πp(yp) = πp(−yp), and let

f̃(z, zp|y,yp) (23)

=

n∏

i=1

(
1y

p

i
≥0fi(z|y,yp) + 1y

p

i
<0gi(z|y,−yp)

)
;

g̃(z, zp|y,yp)

=

n∏

i=1

(
1y

p

i
<0fi(z|y,−yp) + 1y

p

i
≥0gi(z|y,yp)

)
,

where n can be chosen by the user; and fi(z|y,yp) and

gi(z|y,yp) are conditional probability distributions de-

fined by the value of yp. Fitting this definition into

the transition probability p(z, zp|y,yp;∆t) in (20), the

generalized update rule is defined and described in Al-

gorithm 4. It is worth noting that the accept-reject step

in the current setting is the same as in random-walk

MH.

This definition of f̃ and g̃ is a direct gener-

alization of the definition of (19) to the multi-

dimensional case. Again, we have the anti-

symmetric function A(y,yp, z, zp) as in (21). As
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we prove in Appendix B.2, this construction has∫
Rd+dp A(y,y

p, z, zp) dy dyp = 0 even with our

dp-dimensional continuous auxiliary variables.

In summary, we can use (20) to devise a practi-

cal algorithm for sampling (I-Jump sampler of Algo-

rithm 4). In particular, if we define fi(z|y,yp) and

gi(z|y,yp) that are easy to sample from, then we can

use the definitions of f̃ and g̃ in (23) to propose sam-

ples in the same way as the MH algorithm. Optionally,

we can periodically resample yp according to πp(yp).

One natural choice of f̃ and g̃ is to consider the

random walk MH algorithm in our framework and add

a nonzero A(y, z) to (15) while leaving S(y, z)—the

reversible part—unchanged. Then it can be proven that

the resulting process will only provide a faster-mixing

Markov chain [61, 34] (Note that this is in contrast to

the naı̈ve approach of (18) to modify MH). This can be

achieved by choosing n = 1; dp = d; πp(yp) equal to

a restricted uniform distribution on {yp | ||yp||2 = 1};
and f and g to be half-space Gaussian distributions. We

write f(z|y,yp) as:

z = y + η · sgn(< η,yp >), η ∼ N (0, σ2I),

g(z|y,yp) as:

z = y − η · sgn(< η,yp >), η ∼ N (0, σ2I),

where sgn(x) = 21x≥0 − 1. In other words,

f(z|y,yp) = 1<yp,z−y> ≥ 0
2

(2πσ)d/2
e−

1
2σ ||z−y||22,

g(z|y,yp) = 1<yp,z−y> < 0
2

(2πσ)d/2
e−

1
2σ ||z−y||22.

Intuitively, we are choosing a random direction yp so

that the proposal distribution is restricted in the half

space aligned with yp. Then, yp flips signs upon rejec-

tion. One can show that S(y,yp, z, zp) for the above

choice decomposed as S(y, z)S(yp, zp) and S(y, z)

is indeed
1

∆t
min(π(y)q(z|y), π(z)q(y|z)) for q(z|y)

a Gaussian distribution centered at y. That is, the re-

versible dynamic component determined by S(y, z)

is exactly that of the random walk MH (See (15)).

However, A(y,yp, z, zp) 6= 0 while satisfying (22).

This construction maximizes the irreversibility without

changing S(y, z). We test this setting in Sec. 6.3.

Alternatively, we can use one-sided distributions

for proposals. For example, we can consider gamma

distributions by setting n = dp = d, and fi (z|y,yp)
as:

zi = yi + γ · yp
i , γ ∼ Γ (α, β);

and gi (z|y,yp) as:

zi = yi − γ · yp
i , γ ∼ Γ (α, β);

and let πp(zp) to be a restricted uniform distribution on

the set

{
yp

∣∣∣∣
1

N
||yp||1 = 1

}
. We will examine the ben-

efits of this setting in synthetic experiments of Sec. 6.2.

It can be seen that in both settings there is al-

ways a direction of exploration, yp, that enjoys most

of the benefits from irreversibility. In multiple dimen-

sions, a favorable direction of exploration is often not

clear. Hence, in experiments, we periodically resample

the auxiliary variable yp to explore all directions. Of

course, there are still potential issues when d is large

due to the fact that resampling of yp may be inefficient

for exploring the entire d dimensions. We leave this

as a direction for future research. In the next Sec. 4,

we focus on using the continuous Markov process to

provide a favorable direction of exploration and take

n = dp = 1. Then zp belongs to a binary set {−1, 1},
rendering Algorithm 4 the same as the simpler version,

Algorithm 3, which is the continuous state space gen-

eralization of the lifting method [67, 71].

4 Irreversible Metropolis Adjusted Langevin

Algorithm

In this section we discuss how to use the continuous

dynamics of Sec. 2 as a proposal distribution in our

I-Jump sampler of Sec. 3 (Algorithm 3), even when

the continuous dynamics are not reversible. This pro-

cedure corrects for the discretization error introduced

from simulating the continuous dynamics. Previously,

methods such as the Metropolis-adjusted Langevin dif-

fusion (MALA) and Riemannian Metropolis-adjusted

Langevin diffusion (RMALA) [63, 74, 25] have only

been proposed for reversible processes. These methods

use one step integration of reversible SDEs to propose

samples within an MH algorithm that accepts or rejects
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Algorithm 4: I-Jump Sampler

for t = 0, 1, 2 · · ·Niter do
optionally, periodically resample auxiliary variable zp as zp(t) ∼ πp(zp)
sample u ∼ U[0,1]

sample z(∗) ∼ f̃ (z(∗), zp(∗)|z(t), zp(t))

α (z(t), zp(t), z(∗), zp(∗)) = min

{
1,
π (z(∗)) πp (zp(∗)) g̃ (z(t), zp(t)|z(∗), zp(∗))

π (z(t))πp (zp(t)) f̃ (z(∗), zp(∗)|z(t), zp(t))

}

if u < α (z(t), zp(t), z(∗), zp(∗)), (z(t+ 1), zp(t+ 1)) = (z(∗), zp(t))
else (z(t+ 1), zp(t+ 1)) = (z(t),−zp(t))

end

the proposal. We extend these methods to include pro-

posals from any SDE in the form of (3) (any SDE with

a mild integrability condition), without the requirement

of reversibility. Furthermore, our I-Jump sampler al-

lows the resulting overall process to still be irreversible.

In Sec. 4.1, we review the (reversible) MALA al-

gorithm. We then delve into our proposed irreversible

MALA (I-MALA) algorithm in two stages. In Sec. 4.2,

we first discuss how one can use the continuous

Markov processes of (3) as a proposal distribution in

the I-Jump sampler of Sec. 3 and get an acceptance

rate equal to 1 when the continuous Markov process

is simulated exactly. In Sec. 4.3, we use a one-step dis-

cretized simulation of the continuous Markov process

as the proposal distribution and specify the details of

the resulting practical I-MALA algorithm. In the exper-

iments of Sec. 6, we show that I-MALA can generate

better results in terms of rapid and efficient exploration

of a distribution than MALA or HMC.

4.1 Metropolis Adjusted Langevin Algorithm

(MALA)

Since the MALA algorithm is a special case of the

RMALA algorithm (with D(z) taken to be constant),

we will simply introduce RMALA in this section.

The RMALA algorithm takes z = θ and constructs

the proposal distribution q(θ(∗)|θ(t)) in the MH algo-

rithm (Algorithm 2) to be the discretized Riemannian

Langevin dynamics:

θ(∗)←θ(t) + η(t)

+∆t · [−G(θ(t))−1∇U(θ(t)) + ΓD(θ(t))],

η(t) ∼N (0, 2∆tG(θ(t))−1). (24)

Here, the diffusion matrix D(θ(t)) = G(θ(t))−1 and

ΓD
i (θ) =

∑
j

∂Dij(θ)

∂θj
. In the original MALA algo-

rithm [63], G = I, whereas in the RMALA algo-

rithm [74, 25], G is taken to be the Fisher informa-

tion metric. Therefore, the resulting transition proba-

bility q(θ(∗)|θ(t)) in the MH Algorithm 2 is:

q(θ(∗)|θ(t)) = N
{
θ(∗)

∣∣µ(θ(t), ∆t), 2∆tG(θ(t))−1
}
,

(25)

where

µ(θ(t), ∆t)

= θ(t) +∆t · [−G(θ(t))−1∇U(θ(t)) + ΓD(θ(t))].

This algorithm provides a sampling procedure to ex-

actly simulate the reversible continuous Markov dy-

namics. And in doing so, gradient information is used

to help the sampler efficiently explore the target distri-

bution.

Use of the MH procedure inevitably restricts the

sampler to be reversible. From (25), we also observe

that only reversible Langevin dynamics are used in the

MALA algorithm. Although irreversible dynamics can

be used in (24), as will be discussed in the Sec. 4.2,

the acceptance rate would decrease with the increase

of irreversibility since irreversibility increases the dif-

ference between q(θ(∗)|θ(t)) and the reverse proposal

q(θ(t)|θ(∗)). We explore this further in Sec. 4.2 (see

(31)).

Comparison with HMC HMC expands the sampling

space to z = (θ, r) and simulates the Hamiltonian dy-

namics (6) discussed in Sec. 2.3 with a neutral integra-
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tion scheme. When the mass matrix M in (6) is con-

stant, a leap-frog step integration is often applied:




rt+1/2 ← rt − ǫt/2∇U(θt)
θt+1 ← θt + ǫtM

−1rt+1/2

rt+1 ← rt+1/2 − ǫt∇U(θt+1).

(26)

When M = M(θ) is adaptive, a more involved sym-

plectic integrator is often needed to preserve volume

in z. To obtain valid samples, the momentum vari-

able r is resampled (an example of a jump process

sampler described in “direct resampling” of Sec. 3.2)

for ergodicity. An MH accept-reject step is applied

with acceptance rate calculated using the volume pre-

serving property of the Hamiltonian dynamics. While

MALA quickly converges towards a mode and diffu-

sively explores around it, HMC excels at deterministi-

cally traversing along level sets of the Hamiltonian

H(θ, r) = U(θ) +
1

2
rTM−1r.

4.2 General SDE Proposals under Small Step Size

Limit

Our ultimate goal is to use the stochastic dynamics

of (3) to propose samples in the framework of Algo-

rithm 3. In practice, we need to simulate from the dis-

cretized SDE of (5). Before analyzing this case, we first

examine what would happen if we could exactly simu-

late the SDE of (3).

Here, we imagine using the transition probability

density P
(
z|y; t

)
of the continuous Markov process

to construct a particular case of Algorithm 3. We take

f(z|y,yp) in (23) to be equal to P
(
z|y; t

)
defined via

an exact solution to the SDE, starting at y:

dz =
[
−
(
D(z) +Q(z)

)
∇H(z) + Γ (z)

]
dt

+
√
2D(z)dW(t), (27)

where Γi(z) =
∑

j

∂

∂zj
(Dij(z) +Qij(z)).

For the reverse proposal g(z|y,yp) in (23), we

use the adjoint process P †
(
z|y; t

)
, inverting the irre-

versible dynamics via Q(z)→ −Q(z) [47]:

dz =
[
−
(
D(z) −Q(z)

)
∇H(z) + Γ̃ (z)

]
dt

+
√
2D(z)dW(t), (28)

where Γ̃i(z) =
∑

j

∂

∂zj
(Dij(z) −Qij(z)).

Theorem 2 For the Markov processes

P
(
z|y; t

)
and P †

(
z|y; t

)

defined by the SDEs of (27) and (28) through Itô inte-

gration, the following equality holds:

P (z|y; t)
P † (y|z; t) =

π (z)

π (y)
. (29)

The proof is in Appendix C. Using Theorem 2, we have

α (y, z) = min

{
1,

π (z)P † (y|z; t)
π (y)P (z|y; t)

}

= 1. (30)

Even though in Sec. 2.1 we saw that SDEs of the form

in (3) have π(z) as the invariant distribution, it is not

immediately obvious that using this SDE as a proposal

in Algorithm 3 would lead to an acceptance rate of 1.

In fact, it might be tempting to directly plug P (z|y; t)
into the MH Algorithm 2. However, that would result

in a MH acceptance rate:

αMH (y, z) = min

{
1,

π (z)P (y|z; t)
π (y)P (z|y; t)

}

6= 1. (31)

And the more irreversibility is introduced, the less the

acceptance rate αMH will be in the MH algorithm. This

gap between αMH and 1 was first discovered in the

statistical mechanics literature and relates to the “house

keeping heat” [16, 28, 47].

(30) also gives us insight into the fact that us-

ing more accurate numerical integrators could lead to

higher acceptance rates. In Sec. 4.3, we analyze the

accept-reject scheme for the simple first-order integra-

tion of (5) with finite step size ∆t.

4.3 I-MALA via I-Jump Correction

Since in practice we rely on finite step sizes ∆t > 0,

there will be numerical error resulting in
P (z(∗)|z(t);∆t)

P † (z(t)|z(∗);∆t)
differing from

π (z(∗))
π (z(t))

. We now
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propose an irreversible generalization of the MALA al-

gorithm to correct for these errors. We make use of

Algorithm 3 and take a general SDE and its adjoint

process defined in Sec. 4.2 to propose samples using a

one-step numerical integration (as in MALA). Because

we have the local gradient information in the SDEs to

guide us, the direction of the exploration is determined.

So, we simply use a 1-dimensional discrete auxiliary

variable yp, and thus rely on Algorithm 3 instead of

the more general Algorithm 4. We call the resulting al-

gorithm the I-MALA method.

Assuming a one-step numerical integration using a

∆t period of time, the discretization of the SDE of (27)

leads to

P (z|y;∆t) = N
{
z|µ(y, ∆t), 2∆t ·D(y)

}
, (32)

where

µ(y, ∆t) = y +
[
−
(
D(y) +Q(y)

)
∇H(y)

+ Γ (y)
]
∆t,

Γi(z) =
∑

j

∂

∂zj

(
Dij(z) +Qij(z)

)
. (33)

Importantly, this allows us to compute f (z(∗)|z(t)) =
P (z(∗)|z(t);∆t) in Algorithm 3. The corresponding

calculation for the adjoint process with the SDE in (28)

is:

P †(z|y;∆t) = N
{
z|µ†(y, ∆t), 2∆t ·D(y)

}
, (34)

where

µ†(y, ∆t) = y +
[
−
(
D(y) −Q(y)

)
∇H(y)

+ Γ̃ (y)
]
∆t,

Γ̃i(z) =
∑

j

∂

∂zj

(
Dij(z)−Qij(z)

)
. (35)

This allows us to compute

g (z(∗)|z(t)) = P †(z(∗)|z(t);∆t).

The resulting I-MALA algorithm is summarized in Al-

gorithm 5.

Algorithm 5: I-MALA

randomly pick zp from {1,−1} with equal probability

for t = 0, 1, 2 · · ·Niter do
sample u ∼ U[0,1]
if zp > 0 then

sample ηt ∼ N (0, 2ǫtD(zt))
z(∗)← zt −
ǫt
[(
D(zt) +Q(zt)

)
∇H(zt) + Γ (zt)

]
+ ηt

α (z(t), z(∗)) =

min

{
1,
π (z(∗))P †(z(t)|z(∗);∆t)

π (z(t))P (z(∗)|z(t);∆t)

}

end

else
sample ηt ∼ N (0, 2ǫtD(zt))
z(∗)← zt −

ǫt

[(
D(zt)−Q(zt)

)
∇H(zt) + Γ̃ (zt)

]
+ ηt

α (z(t), z(∗)) =

min

{
1,
π (z(∗))P (z(t)|z(∗);∆t)

π (z(t))P †(z(∗)|z(t);∆t)

}

end

if u < α (z(t), z(∗)),
z(t+ 1) = z(∗); zp(t+ 1) = zp(t)
else z(t+ 1) = z(t); zp(t+ 1) = −zp(t)

end

We know from Sec. 4.2 that in the small ∆t limit,

α (z(t), z(∗)) = min

{
1,

P † (z(t)|z(∗))
P (z(∗)|z(t)) ·

π (z(∗))
π (z(t))

}

→ 1. (36)

From this result, we see that there seems to be a step-

size/acceptance-rate tradeoff. As mentioned in Sec. 4.2,

a higher-order numerical scheme could potentially in-

crease the acceptance rate with the same step size

[11, 9, 40]. We leave this as a direction for future re-

search.

5 Related Work

There have been previous efforts to construct irre-

versible Markov processes for sampling. One exam-

ple is using continuous dynamics to achieve this goal,

which has been studied extensively. Theoretically, one

can make use of Hamiltonian or generalized Hamilto-

nian dynamics to introduce irreversibility into the sam-

pling procedure [30, 31, 60, 22]. There have been sam-

plers that utilize specific irreversible continuous dy-
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namics stemming from physical systems, such as un-

derdamped Langevin [13] and Nosé-Hoover [20, 64,

41] dynamics and their generalizations [45, 43], al-

though irreversibility was not the emphasis in these

works. As described in Sec. 2.1, any dynamic process

that has a nonzero Q matrix can be used to devise an

irreversible sampler within our framework. The prob-

lem, however, is that simulating the continuous Markov

processes using the discretized system typically leads

to the introduction of bias due to discretization error

(see Sec. 2.2). One option to correct for this bias is

to introduce a MH step, but of course this yields the

whole process reversible again. In all the previously

mentioned works, no MH correction is used and instead

a small, finite stepsize is used and some resulting bias

tolerated. Our I-MALA method provides a mechanism

for handling the discretization error while maintaining

an overall irreversible process.

One alternative way of introducing irreversibility

into samplers without causing additional bias is to com-

bine Hamiltonian dynamics with an ergodic stochastic

dynamics that can be exactly simulated. For Hamilto-

nian dynamics with quadratic kinetic energy, flipping

the sign of the momentum variable is equivalent to fol-

lowing the adjoint process (Q → −Q) in Algorithm 3

because of its special structure. This is a special case of

the I-Jump algorithm where the proposal is via simu-

lating Hamiltonian dynamics. Therefore, one can sim-

ulate the ergodic dynamics exactly, simulate the Hamil-

tonian dynamics, then change the sign of the momen-

tum variable after rejection (instead of resampling it) to

form an irreversible sampler. For example, in [29, 52],

Langevin dynamics over the momentum variable is in-

tegrated exactly and combined with the Hamiltonian

dynamics to form an irreversible sampler (SOL-HMC)

[52]. During the review of this paper, it came to our

attention that a recently released manuscript [56] pro-

poses two new irreversible algorithms. The first uses

a special case of I-MALA with discussions on novel

implicit integration schemes. The second one (Hybrid

MALA) uses MALA to simulate reversible dynamics

exactly and combine with Hamiltonian dynamics to

obtain an irreversible sampler. In this version of our

manuscript, we compare to both SOL-HMC and hybrid

MALA in the experiments of Sec. 6.3.

Only recently have researchers constructed irre-

versible jump processes that form valid sampling pro-

cedures. In the non-reversible MH algorithm [6], a vor-

ticity function (or matrix) is added to the MH pro-

cedure. Then, the difficulty of construction is trans-

lated to defining a valid vorticity function, similar to

the difficulty of defining the antisymmetric function

A(y, z). For the multivariate Gaussian distribution, the

author discretized an irreversible Ornstein-Uhlenbeck

process to obtain a suitable vorticity function. The lift-

ing method [67, 71] makes a replica of the original

state space (Rd × {−1, 1}) to facilitate irreversibility

in the sampling procedure. A skew detailed balance

condition is imposed to ensure a valid antisymmetric

function A(y, z) in the expanded state space. The au-

thors showed an example of applying the method to

spin models. For both the non-reversible MH and lift-

ing methods, it has not been clear how to come up

with practical, easy-to-construct algorithms to handle

a broad set of target distributions. Our I-Jump sam-

pler incorporates both ideas: lifting the state space (to

Rd×Rdp

) and using an irreversible accept-reject proce-

dure similar to the non-reversible MH algorithm. Com-

bination of the two ideas yields a simple MCMC pro-

cedure that generalizes to arbitrary target distributions.

The combined approach of using both continu-

ous dynamics and jump processes has recently been

proposed for constructing irreversible samplers. The

bouncy particle [10] and Zig-Zag [8, 7] samplers use

deterministic dynamics (irreversible in nature) com-

bined with a Poisson process to create valid MCMC

procedures. These two methods use continuous dynam-

ics to guide a Poisson jump process with an inhomo-

geneous rate (or intensity) to ensure the invariance of

the target distribution. In practice, a Poisson thinning

step is often required to generate Poisson processes

with inhomogeneous rates, hence posing further con-

straints on the target distribution (e.g., prior knowledge

of global lower bounds for the norm of the gradient or

Hessian of the negative log posterior). Our I-MALA al-

gorithm avoids the difficulty of sampling from a Pois-

son process. Additionally, we end up with an algorithm

that is a simple modification of vanilla MH, making it

straightforward to use and plug in to existing algorith-

mic frameworks.



Irreversible Samplers from Jump and Continuous Markov Processes 15

6 Experiments

In this section, we first examine the correctness and at-

tributes of our I-Jump sampler (Algorithm 4). We con-

sider various simulated scenarios, including the chal-

lenging cases of heavy tailed, multimodal, and corre-

lated distributions.

We then explore the I-MALA algorithm (Algorithm

5) and compare it against numerous baselines.

6.1 Visual Comparison of Samplers

We first perform a qualitative comparison between the

random walk MH algorithm, our I-Jump sampler, and

the I-MALA algorithm to provide insights into their

differences. It is demonstrated in Fig. 2 that the stan-

dard MH sampler jumps around randomly, but does

so within a local region of the previous sample and

irrespective of previous (directions of) jumps, lead-

ing to slow exploration of the distribution. In contrast,

our irreversible counterpart (here using gamma pro-

posals) more rapidly traverses the distribution by fol-

lowing the direction of the previous jump, until being

rejected. Finally, the I-MALA algorithm provides an

even smoother trajectory by using continuous dynam-

ics in place of independent gamma proposals.

Having visually examined the differences between

the samplers to gain intuition, in what follows we pro-

vide a more quantitative analysis of the proposed sam-

plers.

6.2 Synthetic Experiments for I-Jump Sampler

In the following experiments we examine the I-Jump

sampler on various challenging synthetic distributions.

For this section, we consider gamma proposal. That is,

as mentioned in Sec. 3.3, we take fi (z(∗)|z(t), zp(t))
according to zi(∗) = zi(t) + γzpi (t) with γ ∼ Γ (α, β)

and gi (z(∗)|z(t), zp(t)) according to zi(∗) = zi(t) −
γzpi (t). We set π(zp) to be a restricted uniform distri-

bution on the set

{
zp| 1

N
||zp||1 = 1

}
.

The hyperparameters α and β are chosen using a

generic procedure. We take the gamma shape param-

eter to be α = 1.1, and change the rate parameter β

approximately as β ∝
√
V with V is the volume of the

region we would like to explore. Further details are in

Appendix D.1.

6.2.1 1D Heavy-tailed Distribution

We start by considering the task of sampling from 1D

normal and log-normal distributions, the latter of which

is a heavy-tailed distribution. The motivation for con-

sidering the simple 1D normal distribution is to validate

the correctness of the sampler and to serve as a com-

parison relative to the heavy-tailed setting. We com-

pare performance to a Gaussian random walk MH algo-

rithm. The results are shown in Fig. 3. We also compare

against an MH algorithm using a symmetrized gamma

proposal distribution:

(z(∗)− z(t)) ∼ 1

2
(f (z(∗)|z(t)) + g (z(∗)|z(t)))

to more closely match the gamma proposal of the I-

Jump sampler.

We compute the decrease of total variation distance

and autocorrelation function to compare the perfor-

mance of the samplers in Fig. 3. The total variation dis-

tance is computed through discretizing the space and

comparing the histogram of the samples and the true

target distribution. We find the I-Jump sampler to have

the best performance even in the simple normal target

distribution case. In particular, I-Jump can decrease au-

tocorrelation without increasing the rejection rate (the

rejection rate of all three methods are similar). Intu-

itively, this result can be understood from Fig. 1: the ir-

reversible algorithm leads to further exploration in one

direction before circling back. (Also, see Fig. 2.)

For the heavy-tailed distribution, similar behavior

is observed: I-Jump converges to the desired distribu-

tion faster because its samples decorrelate more rapidly

as a function of runtime.

6.2.2 Multimodal Distributions

2D Bimodal distributions We use our I-Jump sampler

to sample increasingly challenging bimodal distribu-

tions in 2D, π(z1, z2) = 2(z21−τ)2−0.2z1−5z21+5z22
for τ = 0.5, 1.0, and 1.5, as displayed in Fig. 4. Based

on the results of Sec. 6.2.1, we simply compare against



16 Yi-An Ma, Emily B. Fox, Tianqi Chen, Lei Wu

5
0

S
te

p
s

1
0
0
0

S
te

p
s

MH I-Jump I-MALA

Fig. 2: Top row: Trajectory of first 50 steps of (left) MH algorithm using Gaussian random walk proposals, (middle)

I-Jump algorithm with gamma proposals and (right) I-MALA algorithm. Bottom row: Similarly for the first 1000

steps of the algorithms.

the Gaussian random walk MH sampler and drop the

symmetrized gamma proposal case. In Fig. 4 we see

that the I-Jump sampler significantly outperforms the

random walk MH algorithm. Intuitively, this is facil-

itated by the greater traversing ability of the I-Jump

sampler so that with the same acceptance rate, the I-

Jump sampler can explore more possible states than the

reversible sampler, and have greater chance of transit-

ing into another mode.

One way to quantify this effect is in terms of escape

time from local modes, which we summarize in Table

1. We see that the I-Jump jump sampler has escape

times orders of magnitude lower. Furthermore, these

escape times increase at a much smaller rate as the lo-

cal modes become more concentrated, indicating much

more rapid mixing between modes.

2D Multimodal distributions We also tested our

method against a recently considered multimodal set-

ting [66]. In the first setting considered, the target dis-

tribution is highly multimodal in 2D with unevenly

distributed modes. Furthermore, the high mass modes

have smaller radii of variation. In the second setting

considered, these modes are highly concentrated and

well separated, which is an extremely challenging set-

ting for most samplers. See Figs. 5 and 6. In [66],

a repulsing-attracting Metropolis (RAM) sampler was

proposed with a structure specifically designed to effi-

ciently handle these types of multimodal distributions.

We use this as a gold-standard comparison, since this

method was already shown to outperform parallel tem-

pering and alternatives [38] in this setting.

We focus our performance analysis on the decay

speed of the autocorrelation function (ACF). This can

be understood by taking the Gaussian random walk

MH algorithm as an example: Although the Gaussian

random walk MH algorithm seems to perform well in

terms of convergence of total variation distance, this

effect is based on exploring one mode really well in

a short period of time, instead of making more distant

moves to explore other modes. In contrast, the ACF bet-

ter characterizes the exploration of the samples through

the whole space.

Our results are summarized in Figs. 5 and 6 for

each of the two simulated multimodal scenarios. In the

first scenario, our sampler outperforms both MH and
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Fig. 3: Top row: (Left) Normal and log-normal target distributions, and (right) zoom in of the tails. Middle row:

Results for normal target in terms of log total variation distance (T-V distance) vs. log runtime (left) and ACF vs. lag

in runtime (right). Bottom row: Analogous plots for log normal target. Comparisons are made among the I-Jump

sampler with gamma proposals (Gamma I-Jump), random walk MH algorithm with Gaussian proposals (Gauss

RW MH), and random walk MH algorithm with symmetrized gamma proposals (Gamma RW MH). Runtime is

measured in seconds.

RAM. In the second scenario, where we have highly

concentrated and separated modes, the RAM method

tailored to this scenario slightly outperforms our ap-

proach. Overall, however, the I-Jump sampler provides

surprisingly good performance despite not having been

designed specifically for this setting.

6.2.3 Correlated Distribution

We now test the correctness and attributes of our algo-

rithm on a highly correlated (moon-shaped) target dis-

tribution, where π(z1, z2) = z41/10 + (4(z2 + 1.2) −
z21)

2/2. In terms of number of iterations, the I-Jump

sampler decorrelates and converges to the target distri-

bution faster. However, in terms of runtime, the I-Jump

sampler does not perform as well as random walk MH,
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Fig. 4: Top row: (Left) Bimodal targets, π(z1, z2) = 2(z21 − τ)2− 0.2z1− 5z21 +5z22 , for various values of τ . Here

we demonstrate a 1D cross section of the 2D distribution. (Middle) Sample state trajectories for Gauss RW MH

and (right) Gamma I-Jump for τ = 1. Bottom rows: Total variational distance vs. log runtime (left) and ACF vs.

lag in runtime (right), with each row corrresponding to a specific choice of τ .
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τ Avg. Escape Time for I-Jump Sampler Avg. Escape Time for MH Sampler

0.5 1.94× 102 1.06 × 103

1 4.64× 102 2.47 × 104

1.5 9.06× 102 7.89 × 105

2 2.41× 103 N/A

Table 1: Comparison of average escape time from one local mode to another between Gamma I-Jump and Gauss

RW MH. The distribution in 2D becomes more challenging with larger values of τ (plotted in Fig. 4). “N/A” in the

last entry means that the escape time is so long that an accurate estimate is not available.
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Fig. 5: Top row: (Left) Contour plot of a challenging multimodal probability density function; (middle) T-V dis-

tance and ACF comparisons among Gauss RW MH, Gamma I-Jump, and the recently proposed repulsing-attracting

Metropolis (RAM) sampler [66]. Bottom row: A sample run of all three samplers, respectively.

as explored in Fig. 7. The reason is that the correlated

distribution has a complex geometry. Faster exploration

in random directions, as provided by our I-Jump sam-

pler with independent proposals, only marginally in-

creases the mixing effect in each step relative to the re-

versible independent proposals of MH. Since the calcu-

lation of the distribution is not demanding in this case,

the small overhead of the irreversible sampler (generat-

ing gamma proposals and periodically resampling the

direction of exploration) actually makes a difference

and results in slightly worse performance in terms of

runtime.

To improve the performance of our I-Jump sampler

further in this correlated target case, it would be appeal-

ing to take the geometric information about the level

sets—including the higher mass regions—into account.

Indeed, we are able to do this by replacing the indepen-

dent gamma proposals with proposals from our contin-

uous dynamics sampler—our I-MALA algorithm (Al-

gorithm 5)—as described in Sec. 4. To demonstrate the

effect of irreversibility, we choose D(z) =

(
1 0

0 1

)
and

Q(z) =

(
0 −1
1 0

)
in Eqs. (27), (28), (32), and (34). In

this case, I-MALA significantly outperforms random

walk MH. Because the target distribution has complex

geometry, the continuous dynamics can provide guid-

ance on locating the higher mass regions and explor-

ing the contours rapidly with the gradient information.

HMC and MALA also exploit this effect, so we pro-

vide comparisons to these methods as well. From these
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Fig. 6: Plots as in Fig. 5, but for an even more challenging multimodal case where the modes are very concentrated

and well separated.
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Fig. 7: Top row: Correlated distribution with complex geometry in 2D, π(z1, z2) = z41/10+(4(z2+1.2)− z21)
2/2

(left), ACF vs. lag in steps (middle), and T-V distance vs. log steps of Gamma I-Jump against Gauss RW MH

(right). Bottom row: ACF vs. lag in runtime of Gamma I-Jump against Gauss RW MH (left), T-V distance vs. log

runtime between Gauss RW MH and Gamma I-Jump (middle) and Gauss RW MH, I-MALA, HMC, and MALA

(right).

comparisons, we see the benefits of the irreversibility

itself of the I-MALA algorithm.

This experiment demonstrates the gains that are

possible by combining our continuous dynamics and

jump process frameworks, beyond what either can pro-
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vide individually. We explore this I-MALA algorithm

more extensively on a set of real-world scenarios in the

following section.

6.3 Experiments for I-MALA

We test our I-MALA algorithm in sampling both

Bayesian logistic regression and stochastic volatility

models. In these experiments, we compare to numer-

ous baselines. The comparison with I-Jump allow us

to disentangle the importance of our SDE proposal in

place of independent proposals. We used half-space

Gaussian proposals since it is guaranteed to only in-

crease the mixing of random walk MH. The compari-

son with MALA provides insights into the importance

of an irreversible accept-reject correction to underly-

ing irreversible SDE proposals. The vanilla random

walk MH and HMC algorithms provide other popu-

lar choices to serve as baselines. We also provide com-

parison with some of the recently proposed irreversible

samplers like Zig-Zag, SOL-HMC, and hybrid MALA

algorithms.

6.3.1 Bayesian Logistic Regression

In this section, we demonstrate results from sampling a

Bayesian logistic regression model. Similar to the set-

ting in [25], we consider an N × D design matrix X

comprised of N samples each with D covariates and

a binary response variable y ∈ {0, 1}N . If we denote

the logistic link function by s(·), a Bayesian logistic

regression model of the binary response is obtained

by introducing regression coefficients β ∈ RD with

an appropriate prior [23, 44]; for illustration we take

β ∼ N (0, αI), where α = 100 in the experiments,

employing a wide Gaussian prior.

We make use of three datasets

available at the STATLOG project:

https://archive.ics.uci.edu/ml/machine-learning-

databases/statlog/. The first two datasets describe the

connections between credit card approval and various

attributes of the applicants in Australia and Germany.

The third dataset is about the connection between

the absence or presence of heart disease and various

patient-specific covariates.

Performance metric We measure performance in

terms of the per second effective sample size

(ESS/runtime), where ESS is calculated as the num-

ber of steps N divided by the integrated autocorre-

lation time τint: ESS =
N

τint
[44, 62, 1, 49]. In

[25], τint is estimated through the initial positive se-

quence estimator: τint = 1 + 2
∑

k γ(k), where γ(k)
is the k-lagged autocorrelations and the sum is over the

K monotone sample autocorrelations [24]. The initial

positive sequence estimator assumes the Markov chain

is reversible. Hence to include irreversible chains, we

use the Bartlett window estimator for the integrated au-

tocorrelation time τint [57, 24, 5] so that:

ÊSS
BW

=
N

1 + 2
∑M

k=1

(
1− k

M

)
γ(k)

, (37)

where M is a large number (taken to be 3000 in the

experiments). We also use a more robust estimator, the

multivariate batch mean estimator [69, 68], to estimate

the effective sample size:

ÊSS
MBM

= K

(
|Λ̂|
|Σ̂|

)D

, (38)

where K =
√
N is the number of batches, Σ̂ is the

estimated covariance of generated samples, Λ̂ is the es-

timated covariance of sample batch means, and | · | de-

notes determinant of the covariance matrices. (When

the dimension D is very large, e.g., D = 2000 in the

stochastic volatility model, we calculate ÊSS
MBM

as

the median of the batch mean estimator over each di-

mension to circumvent the rank deficiency issue in Λ̂).

Optimal hyperparameters We select hyperparameters

for each method via a grid search. For MH, we cor-

roborate that the selected hyperparameters are indeed

those obtained by tuning the acceptance rate between

20% and 40% at stationary. We also compare to the

Zig-Zag sampler (without subsampling). One option

is to use a lower bound on the Hessian of the nega-

tive log posterior (see Section 5), which in this case is
1

4
XXT + α−1I. However, as discussed in the exper-

imental results below, we found this bound to be too

loose to be of use. Instead, we combine the bound on
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Sampler \ Dataset Australian Credit (D = 15) German Credit (D = 25) Heart (D = 14)

MH 4.30, 4.29 2.82, 2.51 22.92, 10.76
I-Jump 4.93, 5.29 2.94, 2.93 24.32, 12.35
Zig-Zag 5.24, 5.65 3.09, 3.07 25.82, 11.68
MALA 9.05, 5.17 3.67, 3.65 29.26, 13.29
HMC 10.96, 4.36 3.73, 2.89 30.83, 18.04

SOL-HMC 13.29, 8.40 3.75, 2.92 32.71, 25.83
Hybrid MALA 11.01, 5.24 4.08, 3.63 39.54, 26.69

I-MALA 15.95, 8.86 4.47, 4.03 41.23, 27.27

Table 2: Comparison of ÊSS per second of runtime (Left: using ÊSS
BW

of (37) and Right: using ÊSS
MBM

of

(38)) for various samplers on three datasets described in Sec. 6.3.1.

the gradient of the log likelihood (a constant term) with

the Poisson rate for the Gaussian prior, which results

in a tighter bound on the Poisson rate of the overall

posterior. To derive the Poisson rate function bound,

we used the recently proposed idea of superposition of

Poisson rates for decomposable posteriors [10]. For the

I-Jump sampler, we find that taking the same param-

eters as in MH already generates better performance

than MH. Taking a slightly smaller variance in the half-

space Gaussian proposal leads to even higher ÊSS per

second with an acceptance rate between 30% and 50%.

For HMC, we find that using 10 leapfrog steps to

generate a sample is most efficient in terms of ÊSS

per second (as opposed to the commonly used 50 to 100

steps). The acceptance rate is around 90%. For MALA,

an acceptance rate between 40% and 60% generates

the best ÊSS per second. For SOL-HMC and hybrid

MALA, we use the optimal hyperparameters found for

HMC and MALA to center our grid search. It seems

that the hybrid MALA is more sensitive to the hyper-

parameters when numerical stability is concerned, pos-

sibly because of the combination of simulating Lagen-

vin and Hamiltonian dynamics. For the I-MALA algo-

rithm, we take D = I, and Q(z) =

(
0 −Id×d

Id×d 0

)

where d = ⌊(D + 1)/2⌋, just as in Sec. 6.2.3 to com-

bine benefits of Langevin diffusion and Hamiltonian

dynamics. The acceptance rates are between 40% and

60%.

Experimental results Our results are summarized in

Table 2. We see that I-Jump provides a gain over ran-

dom walk MH in all datasets. The Zig-Zag sampler out-

performs both MH and I-Jump. However, it is impor-

tant to note that having a tight bound for the transition

rate function—as we were able to derive in this case—

is critical to this observed performance. When using a

looser bound (in this case, the bound on the Hessian of

the negative log posterior), multiple steps are taken be-

fore a change of direction of exploration can happen. In

practice, we found this lead to performance below that

of MH and I-Jump.

HMC provides even better performance, improv-

ing over MALA and the I-Jump sampler on these ex-

amples. The irreversible variants, SOL-HMC and hy-

brid MALA, further improve upon HMC, achieving the

highest ÊSS per sample generated. However, the al-

gorithms are slower per iteration than our proposed I-

MALA. As a result, as seen in Table 2, I-MALA has

by far the best performance across all datasets. The

I-MALA algorithm combines the benefits of HMC’s

traversing and MALA’s diffusion, plus our previously

demonstrated benefits of irreversibility.

6.3.2 Stochastic Volatility Model

In this section, we follow [25, 44, 35] to study a

stochastic volatility model. The daily returns yt are

modeled as yt = ǫtβ exp(xt/2), where ǫt ∼ N (0, 1)
and the latent volatilities xt follow an order-1 autore-

gressive process xt+1 = φxt + ηt+1 with x1 ∼
N (0, σ2/(1− φ2)). The joint probability is given by

p(y,x, β, φ, σ) =
T∏

t=1

p(yt|xt, β)p(x1)π(β)

T∏

t=2

p(xt|xt−1, φ, σ)π(φ)π(σ),
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with priors on the parameters chosen to be π(β) ∝
1/β, σ2 ∼ Inv-χ2(10, 0.05), and (φ + 1)/2 ∼
Beta(20, 1.5). We transform the constrained param-

eters φ and σ to the real line as σ = exp(γ) and

φ = tanh(α), taking into account the Jacobian of

the transformation. We iteratively sample over latent

volatilities x and parameters (β, φ, σ) within a Gibbs

sampling procedure (see [25] for further details).

Hyperparameters For MH, I-Jump and MALA, the

stationary acceptance rates are similar to ones veri-

fied in Sec. 6.3.1 (between 20% and 40%, 30% and

50%, and 40% and 60%, respectively). For HMC, the

leapfrog steps decorrelate quickly when sampling the

latent variables, but are heavily correlated when sam-

pling the model parameters. Hence we take 6 leapfrog

steps for the former and 10 steps for the latter (more

leapfrog steps can help HMC decorrelate, but increases

runtime). Step sizes are then tuned to have acceptance

rates for HMC between 80% and 90%.

For I-MALA, we expand the space as in the HMC

algorithm and take D(z) =

(
a−1Id×d 0

0 aId×d

)
and

Q(z) = a

(
0 −Id×d

Id×d 0

)
, where d = 2000 for the

latent variables and 3 for model parameters. The mo-

tivation for this choice is as follows. When a is larger,

the dynamics of I-MALA are similar to HMC; when a
is smaller, I-MALA becomes closer to MALA. Thus,

the form of D(z), Q(z) specified above allows us

to combine the benefits of HMC and MALA. Here,

we leverage intuition from statistical mechanics: high-

dimensional variables that are only pairwise correlated

move approximately according to Newtonian mechan-

ics perfectly described by the Hamiltonian dynamics

while the low-dimensional parameters are similar to the

summary quantities (or collective variables) and intrin-

sically follow stochastic Langevin dynamics. As such,

we choose a to give HMC-like behavior for the latent

state sequence sampling and MALA-like behavior for

the parameter sampling by setting a = 20 for latent

variables and a = 5 for model parameters.

Experimental results The results are summarized in

Table 3. Again the I-Jump sampler improves upon

MH. Furthermore, in this model, MALA provides the

best baseline in terms of sampling the parameter space

while HMC excels at sampling the latent variables.

This behavior, further explored in Fig. 8, follows the

pattern previously described by the statistical mechan-

ics intuition. Hence, HMC provides faster traversing

in the easy-to-explore high-dimensional latent variable

space while MALA helps to diffuse faster in the lower-

dimensional parameter space that exhibits complex de-

pendencies.

SOL-HMC seems to be able to mitigate the slow

mixing in model parameters. Likewise, hybrid MALA

seems to be able to combine some of the benefits from

HMC and MALA. Again, however, the I-MALA algo-

rithm combines the benefits of HMC and MALA and

exceeds them to provide the best overall performance.

It appears from the experiments that in high dimen-

sions, the vanilla I-Jump sampler with half-space Gaus-

sian proposal has less improvements over MH than in

low dimensional cases. We further verify this observa-

tion by the experimental results in Appendix D.2 on

a standard normal distribution with doubling dimen-

sions. However, the benefits of I-MALA over reversible

MALA does not seem to have strong correlation with

the dimension of the space, thus corroborating with our

intuition that a direction of efficient exploration is im-

portant for the irreversible samplers. This is demon-

strated in Table 3, where we notice that the improve-

ments of I-MALA over MALA are still pronounced

when going from d = 3 to d = 2000.

7 Conclusion

In this paper, we primarily focused on developing an ir-

reversible MALA (I-MALA) algorithm (Algorithm 5).

The construction of the I-MALA algorithm is com-

prised of two components: irreversible continuous dy-

namics as the proposal distribution, and an irreversible

jump sampler (I-Jump) to correct for any numerical er-

ror in simulating the continuous dynamics.

Building on our preliminary work [46], we first pro-

vided a framework for specifying irreversible continu-

ous dynamics defined via a positive semidefinite matrix

D and a skew-symmetric matrix Q. We prove that any

choice of these two matrices leaves the target distribu-

tion invariant, and any continuous Markov process with
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Sampler \ Variables Latent Variables (d = 2000) Parameters (d = 3)

MH 1.33, 3.24 3.86, 5.17
I-Jump 1.51, 3.38 4.15, 6.12
MALA 2.41, 3.67 11.72, 9.00
HMC 7.59, 6.21 0.96, 1.18

SOL-HMC 6.80, 6.92 2.06, 2.71
Hybrid MALA 5.65, 5.99 7.40, 9.83

I-MALA 7.71, 7.64 18.27, 13.58

Table 3: Comparison of ÊSS per second of runtime (Left: using ÊSS
BW

of (37) and Right: using ÊSS
MBM

of

(38)) for various algorithms sampling latent variables and parameters of a stochastic volatility model described in

Sec. 6.3.2.
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Fig. 8: 2, 000 samples of MALA, HMC, and I-MALA for parameters and latent volatilities.

the correct stationary distribution has a representation

in our formulation with a certain D and Q.

We then designed the I-Jump sampler, which in

itself serves as a general purpose MCMC algorithm

and excels at various sampling tasks over the MH

algorithm. We achieved this irreversibility by simply

switching between different proposal and acceptance

distributions upon rejection. The algorithm is nearly

identical structurally and computationally to MH, and

thus serves as a simple replacement.

Using these irreversible continuous dynamics as a

proposal distribution and the I-Jump sampler to ac-

cept or reject the proposal, we arrive at our I-MALA

algorithm. We demonstrated the benefits of I-MALA

in sampling Bayesian logistic regression and stochastic

volatility models on various real-world and synthetic

datasets.

When computing target distributions that represent

the posterior distribution of large datasets, scalabil-

ity of the sampling algorithms becomes important. To

cope with this scenario, stochastic gradient (SG) coun-

terparts to the continuous dynamical samplers have

been proposed (see [46] for more discussion). How-

ever, these SG-MCMC methods rely on the stepsize to

asymptotically approach zero to converge to the correct

target distribution. Otherwise a bias is introduced. One

could use our proposed I-Jump sampler to correct this

bias, but as with standard MH, the accept/reject cal-
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culations involve touching the whole dataset, exactly

what the SG methods seek to avoid. Instead, we could

imagine extending the MH data-subsampling ideas of

[37, 2, 3] to our I-Jump sampler to decrease the com-

putational burden of the accept-reject step.

Another direction for future work is to examine the

effect of incorporating second order information about

the target distribution (similar to RMALA) into our I-

MALA. It is well-studied that incorporating the Fisher

information metric in D and M can speed up mixing

rates in MALA and HMC [74, 25, 4]; the benefits can

be explained by the fact that using an approximation of

the Hessian of the target distribution to precondition the

gradient makes the space locally “flat”. However, in our

case there are many ways in which such second order

information can be incorporated in D andQ. Exploring

these options and the interplay between D and Q is a

direction of future work.
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A Samplers from Continuous Markov Processes

A.1 Proof of Theorem 1 (existence of Q(z) in (4))

Proof of Theorem 1 is comprised of two sets of ideas appearing in

different fields. Here, we write the proof in two steps accordingly.

1. Plug the stationary solution π(z) into (2) and observe that

∑

i

∂

∂zi




∑

j

∂

∂zj

(
Dij(z)π(z)

)
− fiπ(z)



 = 0.

2. Constructively prove that if entries of




∑

j

∂

∂zj

(
Dij(z)π(z)

)
− fiπ(z)





belong to L1(Rd), then there exists a matrix Q(z) with

entries in W 1,1(π), such that
∑

j

∂

∂zj

(
Qij(z)π(z)

)
=

fiπ(z)−
∑

j

∂

∂zj

(
Dij(z)π(z)

)
.

Here we denote L1(Rd) as the space of Lebesgue integrable

functions on Rd, and W 1,1(π) as the Sobolev space of func-

tions with weak derivatives and function values integrable with

respect to the density π times the Lebesgue measure. Step 1

can be found in literatures of continuous Markov processes

[59, 17, 58, 18, 70, 54]. Step 2 has been found in earlier works on

stochastic models in fluid dynamics and homogenization [36].

Step 1 is accomplished by noting that the un-normalized

density function π(z) ∝ ps(z) is also a stationary solution of

(2). Hence,

∑

i

∂

∂zi




∑

j

∂

∂zj

(
Dij(z)π(z)

)
− fiπ(z)



 = 0. (39)

Step 2 provides a possible form of Q in terms of D, f , and

π. First, compare the right hand sides of (2) and (4) and observe

that they are equivalent if and only if there exists Q(z) such that:

∑

j

∂

∂zj
Qij(z)π(z) = fiπ(z)−

∑

j

∂

∂zj

(
Dij(z)π(z)

)
.

(40)

Since entries of

{∑
j

∂

∂zj

(
Dij(z)π(z)

)
− fiπ(z)

}
belong to

L1(Rd), Fourier transform of it exists:

F̂i(k) =

∫

Rd

dz


fi(z)π(z) −

∑

j

∂

∂zj

(
Dij(z)π(z)

)



e−2πi kT z.

Therefore, we can take Q(z) such that

Qij(z)π(z) =

∫

Rd

kjF̂i(k)− kiF̂j(k)

(2πi) ·
∑
l

k2
l

e
2πi

∑

l

klxl

dk, (41)

where entries of Q(z) belong to W 1,1(π).

Remark 1 It is worth noting that the condition of




∑

j

∂

∂zj

(
Dij(z)π(z)

)
− fiπ(z)



 ∈ L

1(Rd)

can be rewritten for the vector field related to the SDE as:{
f(z) +D(z)∇H(z) − ΓD(z)

}
∈ L1(π), where ΓD

i (z) =
∑d

j=1

∂

∂zj
Dij(z). We see that the condition is relatively mild

for the purpose of constructing samplers.

A.2 Reversible and Irreversible Continuous Dynamics

for Sampling

As has been previously noted [59, 17, 58, 18, 70, 54], the stochas-

tic dynamics of Eqs. (4) and the corresponding (3) can be decom-

posed into a reversible Markov process, and an irreversible pro-

cess. Formally, this can be elucidated by the infinitesimal gen-

erator G[·] of the stochastic process (3) (see [54, 36] for more

background). For ease of derivation, we work with the Hilbert

space L2(π) of square integrable functions with respect to π(z),
equipped with inner product < φ,ϕ >π=

∫
Rd φ̄(z)ϕ(z)π(z)dz.

For φ(z) ∈ W 2,2(π) (i.e., φ and its second order weak deriva-

tives belong to L2(π)),

G[φ(z)] =∇T
((

D(z)−Q(z)
)
∇φ(z)

)

−∇H(z)T
(
D(z) −Q(z)

)
∇φ(z). (42)

Then adjoint of G in L2(π) is:

G∗[φ(z)] =∇T
((

D(z) +Q(z)
)
∇φ(z)

)

−∇H(z)T
(
D(z) +Q(z)

)
∇φ(z). (43)

Therefore, G decomposes into a self-adjoint part

GS [φ(z)] = ∇T
(
D(z)∇φ(z)

)
− ∇H(z)TD(z)∇φ(z)

and an anti-self-adjoint part GA[φ(z)] = ∇T
(
Q(z)∇φ(z)

)
−

∇H(z)TQ(z)∇φ(z). The self-adjoint operator GS corresponds

to the reversible Markov process while the anti-self-adjoint

operator GA corresponds to the irreversible process.

It can be seen that the reversible process is determined solely

by the diffusion matrix D, where evolution of its probability den-
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sity function is:

∂

∂t
p(z; t) =∇T ·

(
D(z) [p(z; t)∇H(z) +∇p(z; t)]

)

=
d∑

i,j=1

∂2

∂zi∂zj

(
Dij(z)p(z; t)

)
(44)

+
d∑

i=1

∂

∂zi





∑

j

Dij(z)
∂H(z)

∂zj
− ΓD

i (z)


 p(z; t)


 .

Here, ΓD
i (z) =

∑d
j=1

∂

∂zj
Dij(z). According to Itô’s conven-

tion, (44) corresponds to reversible Brownian motion in a poten-

tial force field on a Riemannian manifold specified by the dif-

fusion matrix D(z): dz =
[
− D(z)∇H(z) + ΓD(z)

]
dt +√

2D(z)dW(t). This is referred to as Riemannian Langevin dy-

namics [25, 74]. When D(z) is positive definite, the reversible

Markov dynamics have nice statistical regularity and will drive

the system to converge to the stationary distribution.

The irreversible process is determined solely by Q, with its

probability density function evolving according to:

∂

∂t
p(z; t) =∇T ·

(
Q(z) [p(z; t)∇H(z) +∇p(z; t)]

)

=∇T ·

([
Q(z)∇H(z)− ΓQ(z)

]
p(z; t)

)
. (45)

Here, ΓQ
i (z) =

∑d
j=1

∂

∂zj
Qij(z). The last line of (45) is

a Liouville equation, which describes the density evolution of

p(z; t) according to conserved, deterministic dynamics: dz/dt =
−Q(z)∇H(z) + ΓQ(z), with π(z) its invariant measure.

Combining the dynamics of (44) and (45) leads to a gen-

eral SDE, (3), with stationary distribution π(z). Previous meth-

ods [63, 74, 72, 53, 51] have primarily focused on solely re-

versible or irreversible processes, respectively, as we make ex-

plicit in Sec. 2.3.

B Irreversible Jump Processes for MCMC

B.1 Equivalence of (10) and (11)

We introduce a symmetric bivariate function S(x, z) =

S(z,x) =
1

2

(
W (z|x)π(x) + W (x|z)π(z)

)
, and an anti-

symmetric bivariate function A(x, z) = −A(z,x) =
1

2

(
W (z|x)π(x) −W (x|z)π(z)

)
for (10). A different form of

the jump process (10) can be written according to S(x, z) and

A(x, z) as

∂p(z|y; t)

∂t
=

∫

Rd

dx

[
S(x, z)

p(x|y; t)

π(x)
− S(x, z)

p(z|y; t)

π(z)

+A(x, z)
p(x|y; t)

π(x)

]
.

Plugging p(z|y; t) = π(z) into the above equation, we find

that as long as
∫
Rd A(x, z)dx = 0, π(z) is a stationary solu-

tion to the equation. Since
S(x, z) +A(x, z)

π(x)
denotes a transi-

tion probability density, S(x, z) +A(x, z) > 0 for any x and

z. The restriction that S(x, z)π−1(x) and A(x, z)π−1(x) are

bounded is imposed for the practical purpose of proposing sam-

ples in (12). We thereby notice that the requirement that π(z)
is a stationary distribution of the jump process is translated into

simpler constraints.

B.2 Verifying condition 3 on A(y,yp, z, zp) in

Section 3.3

The anti-symmetric function A(y,yp, z, zp) (expressed in (21))

of (20) can be written as:

A(y,yp, z, zp)

=
1

2∆t

(
π(y)π(yp)p(z, zp|y,yp;∆t)

− π(z)π(zp)p(y,yp|z, zp;∆t)
)

=
1

2
δ(zp − yp)

(
F(y,yp, z, zp)− F(z, zp,y,yp)

)

−
1

2
δ(zp + yp)δ(z− y)

·

∫

Rd

(
F(y,yp,x,−zp)− F(z, zp,x,−yp)

)
dx.

Below we prove that, as required,
∫

Rd+dp
A(y,yp, z, zp) dy dyp = 0.

Proof
∫

Rd+dp
A(x,xp, z, zp) dx dxp

=
1

2

∫

Rd

(
F(y, zp, z, zp)− F(z, zp,y, zp)

)
dy

−
1

2

∫

Rd

(
F(z,−zp,x,−zp)− F(z, zp,x, zp)

)
dx.

One can check that in (23) and (19),

f̃(z, · |y,−yp) = g̃(z, · |y,yp).

Hence,

F(y,−yp, z,−zp) = F(z, zp,y,yp).

Therefore
∫

Rd+dp
A(x,xp, z, zp) dx dxp (46)

=
1

2

∫

Rd

(
F(z,−zp,y,−zp)− F(z, zp,y, zp)

)
dy

−
1

2

∫

Rd

(
F(z,−zp,x,−zp)− F(z, zp,x, zp)

)
dx = 0.



28 Yi-An Ma, Emily B. Fox, Tianqi Chen, Lei Wu

C Proof of Theorem 2 (relation between forward

process and adjoint process)

We first prove that for the infinitesimal generators, the back-

ward transition probability density following the adjoint pro-

cess and the forward transition probability density are related as:

π(y)P
(
z|y; dt

)
= π(z)P †

(
y|z; dt

)
. Taking path integrals with

respect to the infinitesimal generators leads to the conclusion.

As is standard, we use two arbitrary smooth test func-

tions ψ(y) and φ(z). Then we use the definition of the in-

finitesimal generator of the process P and P †: G[φ(y)]dt =∫
P
(
z|y; dt

)
φ(z)dz− φ(y) and obtain

∫ ∫
dydz P

(
z|y; dt

)
π(y) ψ(y)φ(z)

= < ψ, (I + dt G)[φ] >π,

and

∫ ∫
dydz P †

(
y|z; dt

)
π(z) ψ(y)φ(z)

= < (I + dt G∗)[ψ], φ >π .

Since G and G∗ are adjoint in L2(π): < ψ,G[φ] >π=<
G∗[ψ], φ >π ,

π(y)P
(
z|y; dt

)
= π(z)P †

(
y|z; dt

)
.

Then we take path integrals over the forward path and the

backward one. Using the Markov properties,

P (zN , tN |z0, t0)

=

∫
· · ·

∫ N−1∏

i=1

dzi

N−1∏

i=0

P (zi+1, ti+1|zi, ti);

and

P †(z0, tN |zN , t0)

=

∫
· · ·

∫ N−1∏

i=1

dzi

N−1∏

i=0

P †(zi, ti+1|zi+1, ti)

=

∫
· · ·

∫ N−1∏

i=1

dzi

N−1∏

i=0

π(zi)

π(zi+1)
P (zi+1, ti+1|zi, ti)

=

∫
· · ·

∫ N−1∏

i=1

dzi

N−1∏

i=0

π(zi)

π(zi+1)
P (zi+1, ti+1|zi, ti)

=
π(z0)

π(zN )
P (zN , tN |z0, t0).

Taking the time interval between ti and ti+1 to be infinitesi-

mal, we obtain that
P (z(T), T |z(t), t)

P †(z(t), T |z(T), t)
=
π(z(T))

π(z(t))
. The same

conclusion can be reached by proving that the semigroups etG

and etG
∗

generated by G and G∗ are also adjoint with each other

[32, 55, 56].

Dimensions MH I-Jump I-Jump:MH

10 16683.95 20717.96 1.24
20 7101.00 9648.46 1.36
40 3464.73 3772.41 1.09
80 1555.40 1787.41 1.15

160 537.87 561.94 1.04
320 72.46 76.97 1.06
640 28.18 28.99 1.03

Table 4: Comparison of ÊSS per second of runtime for

I-Jump versus MH with different dimensions of Gaus-

sian target distributions.

D Experiments

D.1 Parameter settings for the irreversible jump

sampler

In the 1D experiments, we use β = 1.2 for the normal distri-

bution case (where the length of the region of definition is 10)

and β = 0.8 for the log-normal distribution (where the length of

the region of definition is 5). The acceptance rate is around 50%
in these cases. Due to the irreversibility of the sampler, a high

acceptance rate can be maintained while reducing the autocorre-

lation time.

In the visual comparison of samplers of Fig. 2, we use

β = 0.15 (where the lengths of the region of definition is 2×2).

In the 2D bimodal experiments, we use β = 0.4 (where the

lengths of the region of definition is 6×3). In the 2D multimodal

experiments, we take β = 1.5 (where the lengths of the region

of definition is 14 × 14). For the 2D correlated distribution, we

take β = 0.25 (where the lengths of the region of definition is

5× 2).

D.2 Effect of Dimensionality on I-Jump versus MH

In this appendix, we explore how the relative improvement of

I-Jump over MH scales with dimensionality. We consider a stan-

dard normal distribution and double the dimension from one

comparison to the next. For the I-Jump sampler, we use the

vanilla half-space Gaussian proposal. It can be observed from

Table 4 that the potential benefits of irreversibility in the I-Jump

sampler slowly diminish with increasing dimensionality.
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