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Abstract

We study the problem of determining the optimal low dimensional projection for maximising the
separability of a binary partition of an unlabelled dataset, as measured by spectral graph theory. This
is achieved by finding projections which minimise the second eigenvalue of the graph Laplacian of the
projected data, which corresponds to a non-convex, non-smooth optimisation problem. We show that
the optimal univariate projection based on spectral connectivity converges to the vector normal to the
maximum margin hyperplane through the data, as the scaling parameter is reduced to zero. This estab-
lishes a connection between connectivity as measured by spectral graph theory and maximal Euclidean
separation. The computational cost associated with each eigen-problem is quadratic in the number of
data. To mitigate this issue, we propose an approximation method using microclusters with provable
approximation error bounds. Combining multiple binary partitions within a divisive hierarchical model
allows us to construct clustering solutions admitting clusters with varying scales and lying within differ-
ent subspaces. We evaluate the performance of the proposed method on a large collection of benchmark
datasets and find that it compares favourably with existing methods for projection pursuit and dimension
reduction for data clustering.

keywords: Spectral clustering dimension reduction projection pursuit maximum margin

1 Introduction

Identifying distinct groups, or clusters, in unlabelled data is a fundamental task in exploratory data analysis,
with applications in diverse disciplines ranging from computer science and biology to sociology and marketing.
Spectral clustering methods have gained considerable attention because of their simplicity, versatility and
strong performance in numerous applications (Shi and Malik, 2000; Weiss, 1999; Ning et al., 2010; Chi et al.,
2009). One of the appealing properties of spectral clustering is its ability to identify highly non-convex
clusters, which may lie on or close to highly non-linear manifolds. It is, however, sensitive to choices of
scaling and to irrelevant or noisy features which may be present in the data (Bach and Jordan, 2006; Niu
et al., 2011).

In spectral clustering, clusters are defined as strongly connected components of a graph whose vertices
correspond to data points, and edge weights represent pairwise similarities between them (von Luxburg,
2007). The minimum-cut problem seeks the partition of the graph that minimises the sum of edge weights
connecting different components of the partition. In other words, the partition which minimises the to-
tal similarity between data assigned to different clusters. Although intuitive this formulation frequently
produces partitions in which some components contain very few vertices (data), which may not constitute
complete clusters. To avoid this, normalisations of the minimum-cut problem that favour balanced parti-
tions are used. Normalisation, however, renders the problem NP-hard (Wagner and Wagner, 1993), and so
a continuous relaxation is solved instead. The solution of the relaxed problem is given by the eigenvectors
of the graph Laplacian matrix. This spectral decomposition of the graph Laplacian gives rise to the term
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spectral clustering.

The successful application of any clustering method critically depends on the extent to which the true
group structure in the data is captured by spatial similarities between points. However, the presence of
irrelevant and noisy features, which abound in modern applications, can distort this spatial structure. This
has been shown to have particularly adverse effects on the performance of spectral clustering, even in problems
of moderate dimensionality (Bach and Jordan, 2006; Niu et al., 2011). Dimension reduction techniques
attempt to mitigate the effects of noisy and irrelevant features by identifying low dimensional representations
of a dataset that preserve the maximum amount of relevant information. Commonly these low dimensional
representations are defined by the projection of the data into a linear subspace. Classical techniques, like
principal component analysis (PCA), although widely used in clustering, are not guaranteed to identify
subspaces that preserve cluster structure. More recently a number of dimension reduction methods that
explicitly aim to reveal cluster structure have been developed (Krause and Liebscher, 2005; Pavlidis et al.,
2016; Hofmeyr and Pavlidis, 2015; Peña and Prieto, 2001; Niu et al., 2011).

Peña and Prieto (2001) show that under certain conditions the one-dimensional projection of the data
with minimum kurtosis maximises bimodality. Such a projection can thus be used to separate high-density
clusters, defined as contiguous regions of high probability density around modes of the (assumed) underlying
probability density function. For the same purpose, Krause and Liebscher (2005) propose maximising the
dip statistic (Hartigan and Hartigan, 1985), a measure of departure from unimodality of a univariate dataset.
More recently Pavlidis et al. (2016) proposed an approach that aims to identify regions of low probability
density that separate high-density clusters. This is achieved by identifying the univariate subspace normal
to the hyperplane that has the minimum integrated density along it, called the minimum density hyperplane.
Hofmeyr and Pavlidis (2015) proposed a method to identify projections that maximise the variance-ratio
clusterability measure (Zhang, 2001). This measure is a normalisation of the K-means objective, which is
invariant to changes in scale and is thus less susceptible to projections which exhibit high variance but little
cluster structure. The problem of dimensionality reduction for spectral clustering was first considered by Niu
et al. (2011). A detailed description of this method and its relation to our work is provided in Section 2 after
the presentation of necessary background material.

The main problem we consider in this paper is the identification of the optimal projection to bi-partition
a dataset through spectral clustering. This is achieved by minimising the second smallest eigenvalue of
the graph Laplacian, which measures the spectral connectivity between the two clusters. We consider the
graph Laplacians arising from the two most widely used normalisations of the minimum-cut objective, namely
Ratio Cut (Hagen and Kahng, 1992) and Normalised Cut (Shi and Malik, 2000). Although both formulations
can lead to high quality clustering models, our experience suggests that for our purposes the Normalised
Cut formulation yields overall superior performance. Applying this bi-partitioning approach recursively
produces a divisive spectral clustering algorithm capable of identifying clusters with varying scales and
defined in different subspaces. The minimisation of the sum of the K smallest eigenvalues of the normalised
graph Laplacian with respect to a projection of the data was first proposed by Niu et al. (2011) to perform
dimension reduction for spectral clustering.

In this paper we develop an improved methodology for finding optimal projections based on the spectral
clustering objective, and provide new theoretical perspectives on the problem. We perform a rigorous inves-
tigation into the continuity and differentiability properties of eigenvalues of graph Laplacians as functions of
the projection, and find that they are Lipschitz continuous (and hence differentiable almost everywhere), and
everywhere directionally differentiable. We derive expressions for the derivative of an eigenvalue with respect
to the projection when the eigenvalue is simple, thereby allowing us to minimise the objective directly using
generalised gradient descent methods. This approach is guaranteed to converge to a local minimum, whereas
existing methodology for this problem does not directly minimise the overall objective and may fail to find
an optimal projection. In addition, we provide a formulation of the directional derivative which allows us to
easily derive optimality conditions for the proposed method. Although our focus is on minimising the second
smallest eigenvalue our analysis applies to an arbitrary eigenvalue of the Laplacian, and so the proposed
methodology can easily be extended to minimising sums of eigenvalues of graph Laplacians.

Each eigenvalue computation requires O(N2) operations, where N is the size of the dataset. This can
be prohibitive for large datasets. We show how preprocessing the dataset using microclusters provides
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an approximation of the optimisation surface which enables a speed-up of up to two orders of magnitude
without an appreciable degradation in empirical clustering accuracy. We also derive theoretical worst case
error bounds for this approximation.

We establish an asymptotic connection between optimal univariate projections for spectral bi-partitioning
and maximum margin hyperplanes. Formally, we show that as the scaling parameter defining pairwise sim-
ilarities is reduced to zero, the optimal one-dimensional projection for spectral bi-partitioning converges to
the vector normal to the largest margin hyperplane through the data. This establishes a theoretical connec-
tion between connectivity as measured by spectral graph theory and Euclidean separation, which underlies
maximum margin clustering (Xu et al., 2004; Zhang et al., 2009), an increasingly popular and effective ap-
proach to clustering.

The remainder of the paper is organised as follows. In Section 2 we provide a brief introduction to
spectral clustering, and existing dimension reduction based on the spectral clustering objective. Section 3
presents our methodology for finding optimal projections based on spectral connectivity. Section 4 describes
the theoretical connection between the optimal one-dimensional projection for spectral bi-partitioning and
maximum margin hyperplanes. In Section 5 we discuss an approximation technique which allows for a
substantial improvement in computation time of the method, and derive theoretical worst case error bounds.
Experimental results and sensitivity analyses are presented in Section 6.

2 Background

In this section we provide a brief introduction to spectral clustering, with particular attention to binary
partitioning, and discuss existing methodology for dimension reduction based on the spectral clustering
objective. Let X = {x1, . . . , xN} denote a dataset in Rd. Then define the graph G = (V, E), where vertices
correspond to elements in X , and the undirected edges assume weights equal to the pairwise similarities
between data. The information in G can be represented by the adjacency, or affinity matrix, A ∈ RN×N ,
with Aij = Eij := similarity(xi, xj). The degree of the i-th vertex is defined as di =

∑N
j=1Aij , and the

degree matrix is defined as D = diag(d1, . . . , dN ). For a subset C ⊂ X , the size of C can be measured either
by its cardinality, |C|, or by its volume, vol(C) :=

∑
i:xi∈C di.

Definition 1 The normalised minimum-cut of a graph is the solution to the optimisation problem

min
C⊂X

∑
i,j:xi∈C,xj∈X\C

Aij

(
1

size(C)
+

1

size(X \ C)

)
. (1)

When size(C) = |C| the above objective is referred to as Ratio Cut (Hagen and Kahng, 1992), whereas
when size(C) = vol(C) it is known as Normalised Cut (Shi and Malik, 2000). Hagen and Kahng (1992)
and Shi and Malik (2000) have shown that the normalised minimum-cut problems arising from these two
definitions of size can be formulated in terms of the graph Laplacian matrices,

(standard) L = D −A, (2)

(normalised) LN = D−1/2LD−1/2, (3)

as follows. For C ⊂ X define uC ∈ RN to be the vector with i-th entry,

uCi =

{ √
size (X \ C) /size(C), if xi ∈ C

−
√

size (C) /size(X \ C), if xi ∈ X \ C.
(4)

For size(C) = |C|, the optimisation problem in (1) can be written as,

min
C⊂X

(uC)>LuC s.t. uC ⊥ 1, ‖uC‖ =
√
N. (5)

If instead size(C) = vol(C) then (1) is equivalent to,

min
C⊂X

(uC)>LuC s.t. DuC ⊥ 1, (uC)>DuC = vol(X ). (6)
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Both problems in (5) and (6) are NP-hard (Wagner and Wagner, 1993). However continuous relaxations,
in which the discreteness condition on uC , Eq. (4), is removed, can be solved in quadratic time (Hagen and
Kahng, 1992; Shi and Malik, 2000). The solutions to the relaxed problems are given by the second eigenvec-
tor of L, and the second eigenvector of the generalised eigen-equation Lu = λDu respectively. The latter is
thus equivalently solved by D−1/2u, where u is the second eigenvector of LN. The above approach readily
extends to the problem of obtaining a K-partition of the dataset. In this case the solution is obtained from
the eigenvectors corresponding to the K smallest eigenvalues of L or LN (von Luxburg, 2007), respectively.

Dimension reduction based on the spectral clustering objective using the normalised graph Laplacian was
first considered by Niu et al. (2011). The objective considered by the authors is equivalent to the objective
we consider, and can be formulated as follows,

max
U,V

trace(U>D−1/2AD−1/2U) (7a)

s.t. U>U = I (7b)

Aij = k(‖V >xi − V >xj‖) (7c)

V >V = I. (7d)

Note that since LN = I−D−1/2AD−1/2, the trace maximisation in (7a) is equivalent to minU,V trace(U>LNU).
The elements of the affinity matrix, A, are determined by a function, k(·), of the pairwise distances of the
points projected into the subspace defined by the projection matrix V ; and D is the corresponding degree
matrix. It is clear that for a given V the matrix U that maximises the trace in (7a) has columns given by
the K eigenvectors associated with the K largest eigenvalues of D−1/2AD−1/2 (or equivalently the K small-
est eigenvalues of LN). To solve the problem in (7), Niu et al. (2011) propose an algorithm that alternates
between two stages: (i) for a fixed V a spectral decomposition of LN determines the optimal U ; and (ii)
fixing U and D a gradient ascent method is used to maximise trace(U>D−1/2AD−1/2U) with respect to V ,
where the dependence of this objective on the projection matrix V is through Eq. (7c). This process is then
iterated. However, this approach does not account for the fact that the degree matrix D is a function of A
and therefore it is itself a function of V . An ascent direction for the objective assuming a fixed D is thus
not necessarily an ascent direction for the overall objective. We have further observed that in practice this
algorithm is not guaranteed to lead to an increase in the overall objective across iterations and may thus
fail to converge. In the following section we derive expressions for the gradient of the overall objective as a
function of the projection, allowing us to optimise it directly.

3 Projection Pursuit for Spectral Connectivity

In this section we study the problem of minimising the second eigenvalue of the graph Laplacian of the
projected data. If the projected data are bi-partitioned through spectral clustering, then the projection that
minimises the second eigenvalue of the graph Laplacian minimises the connectivity between the two clusters,
as measured by spectral graph theory.

Let X = {x1, . . . xN} be a dataset in Rd. We define the projection matrix V as a d× l matrix, with l < d,
whose columns {v1, . . . , vl}, have unit norm. With this formulation it is convenient to express V in polar
coordinates. Let Θ = [0, π)(d−1)×l, then for θθθ ∈ Θ, the projection matrix V (θθθ) is given by,

V (θθθ)ij =

{
cos(θθθij)

∏i−1
k=1 sin(θθθkj), i = 1, ..., d− 1∏d−1

k=1 sin(θθθkj), i = d.
(8)

The l-dimensional projected data set is denoted by P(θθθ) = {p(θθθ)1, . . . , p(θθθ)N} = {V (θθθ)>x1, . . . , V (θθθ)>xN}.
We also define the data matrix, X ∈ Rd×N , and the projected data matrix P ∈ Rl×N , as matrices whose
columns contain the original and projected data, respectively.

We define L(θθθ) (resp. LN(θθθ)) as the Laplacian (resp. normalised Laplacian) of the graph constructed
from the projected data set P(θθθ). Throughout we use λi(·) to denote the i-th smallest eigenvalue of its
real symmetric matrix argument, and we assume that all eigenvectors are normalised. Edge weights in the
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graph of P(θθθ) are determined by a Lipschitz continuous and continuously differentiable similarity function
s : Rl×N × {1 . . . N}2 → R+, in that the affinity matrix is given by,

A(θθθ)ij := s(P (θθθ), i, j) = k (d(p(θθθ)i, p(θθθ)j)/σ) , (9)

where k : R+ → R+ is a smooth decreasing function, d(·, ·) is a metric and σ > 0 is the scaling parameter.
It is common to use the Euclidean metric, however our experience has shown that projection pursuit for
spectral clustering can be sensitive to outliers when this metric is used. This is especially the case when using
the standard Laplacian. To mitigate against this we define a metric which encourages cluster boundaries to
intersect a chosen convex set, ∆∆∆(θθθ), which depends on the projection θθθ. This is achieved by defining d(·, ·)
so that the resulting similarities between points outside ∆∆∆(θθθ), which may be outliers, and other points, are
increased. A detailed discussion is provided in Appendix A.

A common requirement in linear dimension reduction methods is that the projection matrix V is or-
thonormal, that is V >V = I. Niu et al. (2011) directly enforce this constraint by generating the columns
of V sequentially and optimising each column over the null space of previously determined columns. By
restricting the domain of the optimisation problem to the manifold of d × l orthonormal matrices, known
as the Stiefel manifold, it is possible to optimise over the entire matrix V (Edelman et al., 1998; Boumal
et al., 2014). However, optimisation algorithms operating over the Stiefel manifold have only been shown to
have guaranteed convergence when the objective function is everywhere continuously differentiable. As we
discuss in the next section this requirement is not necessarily met by the eigenvalues of graph Laplacians.
We instead introduce a penalty term into the objective function which leads to approximately orthogonal
projection matrices. Specifically, we consider the objective,

min
θθθ∈Θ

λ2(L(θθθ)) + ω
∑
i 6=j

(
V (θθθ)>i V (θθθ)j

)2
, (10)

or replacing λ2(L(θθθ)) with λ2(LN(θθθ)) in the normalised case. As in the case of optimising over the Stiefel
manifold, this formulation enables us to update the entire matrix V at each iteration. This is an important
advantage because the expensive computation of the eigenvalue of the graph Laplacian is performed once
rather than l times for each complete update of V .

3.1 Continuity and Differentiability

In this subsection we investigate the continuity and differentiability properties of λ2(L(θθθ)) and λ2(LN(θθθ)),
which are required to establish global convergence of the optimisation algorithm discussed in Section 3.2.

To begin with, simple applications of the inequalities of Weyl (1912) and Schur (1911) give us,

|λi(L(θθθ))− λi(L(θθθ′))| ≤ N
√

max
ij
|L(θθθ)− L(θθθ′)|ij .

By assumption the similarity function, s, is Lipschitz continuous in P ∈ Rl×N for fixed i, j. The elements
of L(θθθ) are therefore Lipschitz continuous as compositions of Lipschitz functions (V (θθθ) is Lipschitz in θθθ as
a collection of finite products of Lipschitz functions). Thus the objective λ2(L(θθθ)) is Lipschitz continuous
in θθθ. An analogous argument can be used to show that λ2(LN(θθθ)) is Lipschitz continuous. Rademacher’s
theorem therefore tells us that λ2(L(θθθ)) and λ2(LN(θθθ)) are almost everywhere differentiable (Polak, 1987).
Generalised gradient descent methods therefore provide a natural framework for finding locally optimal
projections for spectral bi-partitioning (Polak, 1987).

Eigenvalue optimisation is made challenging by the fact that eigenvalues are only guaranteed to be
differentiable when they are simple, i.e., are not repeated. However, minimising the smallest eigenvalue
tends to separate it from other eigenvalues, and therefore the issue of non-differentiability becomes less of a
concern (Lewis and Overton, 1996). A basic property of graph Laplacian matrices is that both λ1(L) and
λ1(LN) are always equal to zero (von Luxburg, 2007). If the similarity function, s, is strictly positive, then
λ2(L(θθθ)) and λ2(LN(θθθ)) are bounded away from zero. Therefore minimising λ2(·) tends to separate it from
other eigenvalues, guiding the search to regions of the domain where the objective function is differentiable.
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Nonetheless, we cannot guarantee that λ2(L(θθθ)) and λ2(LN(θθθ)) are simple throughout the optimisation
procedure. We next provide expressions for the derivatives of λ2(L(θθθ)) and λ2(LN(θθθ)) as functions of θθθ,
when they are simple. Using these we then establish that these eigenvalue objectives are in fact continuously
differentiable when they are simple.

A useful formulation of eigenvalue derivatives is found in (Magnus, 1985, Th. 1); if λ is a simple eigenvalue
of a real symmetric matrix M , then λ is infinitely differentiable on a neighbourhood of M , and the differential
at M is given by,

dλ = u>d(M)u, (11)

where u is the corresponding eigenvector. As previously mentioned s(P, i, j) is assumed to be continuously
differentiable in P ∈ Rl×N for fixed i, j ∈ {1 . . . N}. The derivative Dθθθλ2(·) is given by the (d−1)× l matrix
with i-th column Dθθθiλ2(·), which can be obtained through the chain rule decomposition,

Dθiθiθiλ2(·) = DPλ2DV P DθiθiθiV,

where D·· is the differential operator. Since only the i-th column of V depends on θθθi, and only the i-th row
of P depends on Vi, this product can be simplified as

Dθiθiθiλ2(·) = DPiλ2DViPiDθiθiθiVi,

where Pi is used to denote the i-th row of P , while Vi and θθθi are, as usual, the i-th columns of V and θθθ
respectively. By definition DViPi = X>, while DθθθiVi ∈ Rd×(d−1) is obtained by differentiating Eq. (8), and
is given by,

∂V (θθθ)ji
∂θθθki

=



0, j < k

− sin(θθθki)
k−1∏
m=1

sin(θθθmi), j = k < d

cos(θθθki) cos(θθθji)
∏

m<j,m 6=k
sin(θθθmi), k < j < d

cos(θθθki)
∏
m 6=k

sin(θθθmi), j = d.

(12)

Finally, in the case of the standard Laplacian, we find,

∂λ2(L)

∂Pij
=

1

2

∑
m,n

(um − un)2 ∂s(P,m, n)

∂Pij
, (13)

and for the normalised Laplacian we instead have,

∂λ2(LN)

∂Pij
=

1

2

∑
m,n

(
um√
dm
− un√

dn

)2
∂s(P,m, n)

∂Pij

− λ
∑
m,n

u2
m

dm

∂s(P,m, n)

∂Pij
. (14)

Complete derivations of Eqs. (13) and (14) can be found in Appendix B. The elements of the eigenvector,
u, are continuous since we have assumed the corresponding eigenvalue λ2(·) to be simple (Magnus, 1985).
In addition we have assumed that s is continuously differentiable. Therefore, the product DPλ2DV P DθiθiθiV
is continuous in θθθ, as desired.

If λ2(·) is not simple at θθθ the derivative Dθθθλ2(·) may not be defined. Gradient sampling (Burke et al.,
2006) can be applied to minimising objectives which are not differentiable everywhere. The method works
by sampling points within a shrinking radius, ε, of the current iterate. The convex hull of the gradients
at these sampled points acts as an approximation for the Clarke ε-subdifferential, and the minimum norm
element of this convex hull provides an approximate steepest descent direction. This approach is appealing
for its broad applicability and almost sure convergence to a local minimum on objectives which are locally
Lipschitz and almost everywhere continuously differentiable. However to obtain a search direction at each
iteration a quadratic program has to be solved, the formulation of which requiresO(d) gradient computations.
This makes the method computationally expensive for large problems. We consider a simple modification
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which exploits the properties of eigenvalues of graph Laplacians, and uses directional derivatives to derive
optimality conditions.

The eigenvalues of a real symmetric matrix can be expressed as the difference between two convex
matrix functions (Fan, 1949). Therefore λ2(L(θθθ)) and λ2(LN(θθθ)) are directionally differentiable everywhere.
Overton and Womersley (1993) provide an expression for the directional derivative of the sum of the K largest
eigenvalues of a matrix whose elements are continuous functions of a parameter, at a point of non-simplicity
of the K-th largest eigenvalue. We discuss the case of λ2(L(θθθ)), where λ2(LN(θθθ)) is analogous. Consider
the function FK : RN×N → R which takes as input a square matrix and returns the sum of its K largest
eigenvalues. Then,

λ2(L(θθθ)) = FN−1(L(θθθ))− FN−2(L(θθθ)).

Now consider a θθθ such that,

λN (L(θθθ)) > · · · > λN−r+1(L(θθθ)) >

λN−r(L(θθθ)) = · · · = λN−K+1(L(θθθ)) =

· · · = λN−r−t+1(L(θθθ))

> λN−r−t(L(θθθ)) > · · · > λ1(L(θθθ)) = 0.

That is, the K-th largest eigenvalue has multiplicity t and K − r of the repeated eigenvalues are included in
the sum FK(L(θθθ)). Overton and Womersley (1993) have shown that the directional derivative of FK(L(θθθ))
in the direction ψψψ, dFK(L(θθθ);ψψψ), is equal to,

F r

d−1∑
i=1

l∑
j=1

ψψψijR
>LijR

+ FK−r

d−1∑
i=1

l∑
j=1

ψψψijQ
>LijQ

 ,

where Lij = ∂L(θθθ)/∂θθθij , the j-th column of the matrix R ∈ RN×r is equal to the eigenvector associated
with the j-th largest eigenvalue of L(θθθ), and the j-th column of the matrix Q ∈ RN×t is equal to the
eigenvector associated with the (r + j)-th largest eigenvalue of L(θθθ). The directional derivative of λ2(L(θθθ))
in the direction ψψψ is thus,

dλ2(L(θθθ);ψψψ) =dFN−1(L(θθθ);ψψψ)− dFN−2(L(θθθ);ψψψ)

=λ1

d−1∑
i=1

l∑
j=1

ψψψijQ
>LijQ

 , (15)

where the columns of Q are given by the complete set of eigenvectors for the eigenvalue λ = λ2(L(θθθ)).

3.2 Minimising λ2(L(θθθ)) and λ2(LN(θθθ)).

Applying standard gradient descent methods to functions which are almost everywhere differentiable can
result in convergence to sub-optimal points (Wolfe, 1972). This occurs when the method for determining
the gradient is applied at a point of non-differentiability and produces a non-descent direction. In this case
the algorithm cannot reduce the objective function value and terminates at a point that is not necessarily a
local minimum. The second eigenvalues of the graph Laplacian matrices, while not necessarily differentiable
everywhere, benefit from the fact that their minimisation tends to separate them from other eigenvalues.
Thus a standard gradient descent algorithm performs well on these objectives, very often converging to
locally optimal solutions. Our approach for minimising λ2(L(θθθ)) and λ2(LN(θθθ)), therefore assumes them to
be continuously differentiable until there is evidence that this assumption fails. Only then is it necessary to
use the computationally more expensive gradient sampling algorithm to identify a descent direction.

Our approach is summarised in Algorithm 1. Once again we discuss only λ2(L(θθθ)) explicitly, noting that
the methodology for minimising λ2(LN(θθθ)) is equivalent, with the only difference being in the computation
of the gradients and directional derivatives.

At each iteration a standard gradient-based algorithm with inexact line-search is used to minimise the
objective function using the formulation for the gradient presented in Section 3.1. When this algorithm
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terminates, say with solution θθθ?, either the magnitude of the computed gradient is below a threshold, or a
sufficient decrease in the objective function value was not feasible. We then need to verify whether θθθ? is
a local minimum. If λ2(L(θθθ?)) is simple then λ2(·) is continuously differentiable at θθθ?, and therefore θθθ? is
close to a local minimiser. In this case the algorithm terminates. On the other hand, if λ2(L(θθθ?)) is not
simple, then θθθ? may or may not be a local minimiser. The directional derivative formulation in Eq. (15)
provides a computationally efficient way to determine if a descent direction from θθθ? exists. In particular,
if at θθθ?, Q>LijQ ≈ 0 for all pairs, i, j, then the directional derivative dλ2(L(θθθ?);ψψψ) is approximately zero
for all directions ψψψ. In this case the algorithm terminates as θθθ? is sufficiently close to a local minimiser. If

this condition is not met a descent directions exists, that is ∃ψψψ ∈ Θ s.t. λ1

(∑d−1
i=1

∑l
j=1ψψψijQ

>LijQ
)
< 0.

At this point a single step of the gradient sampling algorithm is performed. As in the standard gradient
sampling algorithm (Burke et al., 2006) the magnitude of the sampling radius ε is progressively reduced
until a valid descent direction is identified, or the radius is reduced beyond a user-specified threshold εf . In
the latter case the current solution is considered sufficiently close to a local minimiser and the algorithm
terminates. In the former case, once a valid descent direction is identified θθθ? is updated using an inexact
line-search algorithm.

Termination under any of the above criteria indicates the identification of a local minimiser. Moreover,
the convergence of the method is guaranteed under the same analyses as for gradient descent on smooth
functions (Nocedal and Wright, 2006) and gradient sampling (Burke et al., 2006).

A brief derivation of the computational complexity of each iteration of the method is provided in
Appendix C. Each step in the standard gradient descent algorithm requires O(lN(N + d(d − 1))) op-
erations. The gradient sampling step requires O(d) gradient computations, therefore having complexity
O(dlN(N + d(d − 1))). The complexity of computing the optimality conditions using directional deriva-
tives is similar, requiring O(t2lN(n + d(d − 1))) operations, where t is the multiplicity of the eigenvalue
λ = λ2(L(θθθ)). Our experience with this method indicates that the algorithm almost always terminates with
λ2(·) being simple, without the need for any gradient sampling or directional derivative computations.

Figure 1 shows two dimensional plots of a subset of the datasets used in our experiments in Section 6.
The left plots show projections of the data onto the first two principal components. The right plots show the
optimal projections of the data obtained by minimising the objective in (10) by applying Algorithm 1, and
using the normalised Laplacian. Figures 1(a) and 1(b) show examples where the principal components do
not show a clear identification of any of the clusters, whereas the optimal projections for spectral clustering
clearly admit a strong separation of clusters. In Figure 1(c) the principal component projection does show
some separation of clusters. In this case optimisation of the spectral connectivity serves to enhance this
separation, and make the individual clusters more compact.

4 Connection to Maximum Margin Hyperplanes

Maximum margin hyperplanes have become a unifying principle in data classification tasks. Starting with
the fully supervised problem using support vector machines (Vapnik and Kotz, 1982), the methodology
has been extended to semi-supervised classification (Joachims, 1999), and more recently to the problem of
maximum margin clustering (Xu et al., 2004; Zhang et al., 2009).

In this section, we establish a connection between the optimal univariate projection for spectral clustering
and maximum margin hyperplanes for clustering. In particular, we show that under suitable conditions,
as the scaling parameter, σ, tends to zero, the optimal univariate projection for spectral bi-partitioning
converges to the vector normal to the largest margin hyperplane through the data. This establishes a
theoretical connection between separability measured by spectral graph theory, and standard notions of
separation in terms of the Euclidean metric. Connections between maximum margin hyperplanes and Bayes
optimal hyperplanes (Tong and Koller, 2000) as well as minimum density hyperplanes (Pavlidis et al., 2016)
have previously been established. The result we discuss herein therefore connects spectral connectivity to
these objectives as well.

In this section we use the notation v(θθθ) instead of V (θθθ) to stress that the we are concerned with univariate
projections. A hyperplane is a translated subspace of co-dimension 1, and can be parameterised by a vector
v ∈ Rd \ {0} and a scalar b as the set H(v, b) = {x ∈ Rd

∣∣v>x = b}. No generality is lost if v is assumed to
have unit norm, thus the same parameterisation by θθθ can be used. For a finite set of points X in Rd, the
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Algorithm 1: Minimising λ2(L(θθθ))

Input: Initial projection θθθ0, optimality tolerance τ ,
initial sampling radius for gradient sampling ε0,
minimum sampling radius εf , radius reduction
factor η, number of sampled gradients ng
Output: Optimal projection θθθ?

θθθ? ← θθθ0

ε← ε0
while ε > εf do

# apply standard gradient descent to convergence
θθθ? ← GradientDescentSolution(θθθ?)
# check for optimality of the solution
if λ2(L(θθθ?)) is simple or maxi,j |Q>LijQ| < τ then

return θθθ?

else
# obtain gradients at points sampled uniformly in a
# ball of radius ε around the current solution
for i = 1 . . . ng do
θθθi ∼ U(Bε(θθθ?))
ΓΓΓi ← Dθθθλ2(L(θθθ))|θθθ=θθθi

end for
# obtain the search direction
ΓΓΓs ← argminΓΓΓ∈conv({ΓΓΓ1,...,ΓΓΓng})‖ΓΓΓ‖F
# if the magnitude of the search direction is below
# the optimality threshold decrease sampling radius
if ‖ΓΓΓs‖F < τ then
ε← ηε

else
# update solution using inexact line-search
ν? ← ≈ argminν>0λ2(L(θθθ? − νΓΓΓs))
θθθ? ← θθθ? − ν?ΓΓΓs

end if
end if

end while
return θθθ?
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Figure 1: Two dimensional projections of publicly available datasets. PCA (left) and optimal projection for
spectral clustering (right).

(a) Yale Faces B (b) Isolet

(c) Multiple Feature Digits

margin of hyperplane H(v(θθθ), b) w.r.t. X is the minimal Euclidean distance between H(v(θθθ), b) and X ,

margin(v(θθθ), b) = min
x∈X
|v(θθθ)>x− b|. (16)

The set ∆∆∆(θθθ) again plays an important role as in many cases the largest margin hyperplane through a
set of data separates only a few points from the rest, making it meaningless for the purpose of clustering.
For the theory presented herein we consider an arbitrary convex and compact set ∆∆∆ ⊂ Rd and define ∆∆∆(θθθ)
to be the projection of ∆∆∆ onto v(θθθ). What we in fact show in this section is that there exists a set ∆∆∆′ ⊂ ∆∆∆
satisfying ∆∆∆′ ∩ X = ∆∆∆ ∩ X , such that, as the scaling parameter tends to zero, the optimal projections for
λ2(L(θθθ)) and λ2(LN(θθθ)) converge to the vector admitting the largest margin hyperplane that intersects ∆∆∆′.
The distinction between the largest margin hyperplane intersecting ∆∆∆′ and that intersecting ∆∆∆ is scarcely
of practical relevance, but plays an important role theoretically. It accounts for situations when the largest
margin hyperplane intersecting ∆∆∆ lies close to its boundary and the distance between the hyperplane and
the nearest point outside ∆∆∆ is larger than to the nearest point inside ∆∆∆. Aside from this very specific case,
the two solutions in fact coincide.

The following theorem is the main result of this section. The proof and supporting results are provided in
Appendix D. The result holds for all similarities in which the function k, in Eq. (9), satisfies the tail condition
limx→∞ k((1+ε)x)/k(x) = 0 for all ε > 0. This condition is satisfied by functions with exponentially decaying
tails, including the popular Gaussian and Laplace kernels, but not those with polynomially decaying tails.

The proof of the result relies on obtaining upper and lower bounds on the magnitude of λ2(L(θθθ)) and
λ2(LN(θθθ)) which depend essentially on k(M/σ), where M is the largest gap between consecutive points in
P(θθθ). Notice that M is equal to twice the maximum margin of all hyperplanes orthogonal to v(θθθ). These
bounds show immediately that as σ approaches zero, if λ2(L(θθθ1)) < λ2(L(θθθ2)) (or λ2(LN(θθθ1)) < λ2(LN(θθθ2)))
then the maximum margin of all hyperplanes orthogonal to v(θθθ1) is greater than the maximum margin of all
hyperplanes orthogonal to v(θθθ2). The convergence of the optimal projection itself to the vector normal to the
maximum margin hyperplane uses a property of the maximum margin hyperplane established by Pavlidis
et al. (2016).
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Figure 2: Large Euclidean separation of yeast cell cycle dataset by decreasing the scaling parameter during
one and two dimensional projection pursuit.

(a) One dimensional projection pursuit (b) Two dimensional projection pursuit

Theorem 2 Let X = {x1, ..., xN} be a finite set of points in Rd and suppose that there is a unique hyperplane,
which can be parameterised by (v(θθθ?), b?), intersecting ∆∆∆′ and attaining maximal margin on X . Let k : R+ →
R+ be decreasing, positive and satisfy limx→∞ k((1 + ε)x)/k(x) = 0 for all ε > 0. For σ > 0 define

θθθσ := argminθθθ∈Θλ2(L(θθθ, σ)),

θθθNσ := argminθθθ∈Θλ2(LN(θθθ, σ)),

where there is now an explicit dependence on the scaling parameter, σ. Then,

lim
σ→0+

v(θθθσ) = lim
σ→0+

v(θθθNσ ) = v(θθθ?).

We note that the same result holds when using the Euclidean metric. In this case the optimal projection
based on spectral connectivity converges to the vector normal to the maximum margin hyperplane through
the data. The importance of constraining the maximum margin hyperplane to avoid separating only outliers
was also observed by Xu et al. (2004) and Zhang et al. (2009).

While the above result is only established for univariate projections, we have observed empirically that
if a decreasing sequence of scaling parameters is employed for a multivariate projection, then the projected
data, P(θθθ), tend to exhibit large Euclidean separation. This is illustrated in Figure 2 which shows two
dimensional plots of the 72 dimensional yeast cell cycle analysis dataset (Bache and Lichman, 2013). The
left plots show the true clusters, while the right plots show the cluster assignments made by the algorithm.
In Figure 2(a) the horizontal axis corresponds to the optimal projection obtained by minimising λ2(LN(θθθ))
for a decreasing sequence of scaling parameters, while the vertical axis is the direction of maximum variance
orthogonal to this vector. Figure 2(b) instead shows the result of two dimensional projection pursuit for a
decreasing sequence of scaling parameters.

5 Speeding up Computation

Each step in the projection pursuit algorithm involves the solution of an eigen problem which requires O(N2)
operations. In this section we discuss how preprocessing a dataset using microclusters (Zhang et al., 1996)
can reduce this cost significantly, and derive theoretical bounds on the approximation error. Microclusters
are small clusters of data which can in turn be clustered to obtain a complete clustering of a data set. A mi-
crocluster based approach to reduce the computational cost of the standard spectral clustering algorithm has
been previously proposed by Yan et al. (2009). In this work we use microclusters to obtain an approximation
of the optimisation surface for projection pursuit which is significantly less expensive to explore.

In the microcluster approach, the data set X = {x1, . . . , xN} is replaced by m points {c1, . . . , cm} which
represent the centres of a m-way clustering of X . By projecting these microcluster centres during projection
pursuit rather than the data the computational cost associated with each eigen problem is reduced to O(m2).

11



If we define the radius, ρ, of a cluster C to be the largest distance between any one of its members and its
centre,

ρ(C) = max
x∈C

∥∥∥∥∥x− 1

|C|
∑
x∈C

x

∥∥∥∥∥ , (17)

then we expect the approximation error to be small whenever the microcluster radii are small. This rela-
tionship is shown in the following lemma. The proof of the lemma, which is given in Appendix D, relies on
a result from matrix perturbation theory for diagonally dominant matrices (Ye, 2009, Th. 3.3)

Lemma 3 Let C = C1, . . . , Cm be a m-way clustering of X with centres c1, . . . , cm, radii ρ1, ..., ρm and
counts n1, ..., nm. For θθθ ∈ Θ define N(θθθ), B(θθθ) ∈ Rm×m where N(θθθ) is the diagonal matrix with,

N(θθθ)i,i =

m∑
j=1

njs(P
c(θθθ), i, j),

and
B(θθθ)i,j =

√
ninjs(P

c(θθθ), i, j),

where P c(θθθ) = {V (θθθ)>c1, ..., V (θθθ)>cm} are the projected microcluster centres and the similarities are given
by s(P c(θθθ), i, j) = k(d(V (θθθ)>ci, V (θθθ)>cj)/σ), and k(x) is positive and non-increasing for x ≥ 0. Then,

|λ2(L(θθθ))− λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

6 max
i 6=j

max

{
1− k(Dij/σ)

k((Dij − ρi − ρj)+/σ)
,

k(Dij/σ)

k((Dij + ρi + ρj)/σ)
− 1

}
,

where Dij = d(V (θθθ)>ci, V (θθθ)>cj) and (x)+ = max{0, x}.

The bound in the above lemma depends on θθθ via the quantity Dij . Uniform bounds can be derived for
specific functions, k. For example, if using the Gaussian kernel, k = exp(−x2/2), then we can show that

|λ2(L(θθθ))− λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

6 max
i6=j

exp

(
(ρi + ρj)

2 + 2(ρi + ρj)Diam(X )

2σ2

)
− 1.

If k is the Laplace kernel, k(x) = exp(−|x|), then we instead have

|λ2(L(θθθ))− λ2(N(θθθ)−B(θθθ))|
λ2(L(θθθ))

6 max
i 6=j

exp

(
ρi + ρj
σ

)
− 1.

Clearly if the radii of the microclusters are small relative to the scale parameter, σ, then these bounds
are close to zero. However the uniform bounds are pessimistic, and to obtain a reasonable bound on the
approximation surface, as many as m ≈ 0.6N might be needed, leading to only a threefold speed up. We
have observed empirically, however, that even for m = 0.1N (and sometimes lower) one still obtains a close
approximation of the optimisation surface. This renders the projection pursuit of the order of 100 times
faster.

While bounds of the above type are not verifiable for LN(θθθ) since this matrix is not diagonally dominant,
a similar degree of agreement between the true and approximate eigenvalues has been observed.
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Once an optimal projection has been determined, the corresponding bi-partition needs to be established.
We again use the microclusters to determine this partition. Let P(θθθ)′ = {V (θθθ)>c1, V (θθθ)>c1, . . . , V (θθθ)>cm, V (θθθ)>cm},
where each V (θθθ)>ci is repeated ni times. P(θθθ)′ therefore represents an approximation of the projected data
set, where each datum is replaced by its assigned microcluster. It is straightforward to verify that if uC is
the second eigenvector of N(θθθ) − B(θθθ), then the vector u ∈ RN , with ui = uCj /

√
nj for all i s.t. xi is in

microcluster j, is the second eigenvector of the Laplacian of P(θθθ)′. The vector u therefore represents an
approximation of the second eigenvector of L(θθθ). In case of the normalised Laplacian the m ×m matrix is
given by the normalised Laplacian of the graph of Pc(θθθ) with similarities given by ninjs(P

c(θθθ), i, j). This
matrix has the same structure as the original normalised Laplacian, the only difference being the introduction
of the factors ni, nj . The approximation of the second eigenvector of LN(θθθ) is again given by ui = uj/

√
nj

whenever xi is in microcluster j. This approximate eigenvector is then used to determined the partition of
the data.

6 Practical Implementation and Experimental Results

We have found that projection pursuit based on both λ2(L(θθθ)) and λ2(LN(θθθ)) leads to high quality clus-
tering results. However, we have observed empirically that the minimisation of λ2(LN(θθθ)) is more robust
to varying parameter settings, and we recommend using this objective. Our complete clustering algorithm,
which we will refer to as Spectral Clustering Projection Pursuit (SCPP), is summarised in Algorithm 21.
Starting with all the data in a single cluster, we recursively bi-partition the data until we have the de-
sired number of clusters. At each iteration we simply split the largest cluster in the current partition.
To split a cluster, we first obtain m microclusters from it, for which we use the K-means algorithm. We
then apply Algorithm 1 to obtain the optimal projection, θθθ?, based on Eq. (10). Recall that the nor-
malised Laplacian based on (weighted) projected microcluster centers Pc(θθθ) = {V (θθθ)>c1, ..., V (θθθ)>cm} is
given by LN(θθθ) = D(θθθ)−1/2L(θθθ)D(θθθ)−1/2 = I − D(θθθ)−1/2A(θθθ)D(θθθ)−1/2, where A(θθθ)ij = ninjs(P

C(θθθ), i, j)
and Dii =

∑m
j=1A(θθθ)ij . To obtain a bi-partition of the cluster we use the method recommended by Ng et al.

(2002). For this we obtain the first two eigenvectors of LN(θθθ?) as the matrix U c ∈ Rm×2. From these we
obtain the approximate eigenvectors of the Laplacian of the complete set of projected points as the matrix
U ∈ RN×2, with i-th row equal to the j-th row of U c divided by

√
nj for each xi in microcluster j. We then

normalise the rows of U and apply K-means for K = 2. For the sake of easier interpretability we make our
algorithm completely deterministic by initialising all implementations of K-means as follows. We select the
first center to be the point furthest from the mean of the data. We then iteratively add to the set of initial
centroids the furthest point from the current set.

The clustering model obtained by the SCPP algorithm has a binary tree structure, as illustrated in Fig-
ure 3. The figure shows a divisive hierarchical clustering of the 256 dimensional phoneme dataset (Hastie
et al., 2009). Each scatter plot shows the data assigned to the corresponding node in the model projected
into the optimal subspace based on the minimisation of the second eigenvalue of the Laplacian matrix. In
Figure 3(a) the colours indicate the binary partitions made by the SCPP algorithm, while in Figure 3(b) the
colours show the true cluster labels of the data. The model has accurately partitioned the clusters; indicated
by the fact that the leaf nodes each contain primarily data of a single cluster, and aside from the two clusters
arising in the bottom most level in the hierarchy no cluster is split among multiple leaves.

6.1 Parameter Settings for SCPP

For the experiments herein, we use the following settings. In all cases the data dependent settings are
determined for each partition using the subset of the data being split. We set l, the dimension of the
projection to 2 as this is the lowest number of dimensions which admits non-linear separation of clusters.
We initialise the projection pursuit using the first two principal components. We have found that this often
leads to higher quality solutions compared to random initialisations. Experiments with higher dimensional
projections have not shown substantially improved performance. Similarities between projected points are
determined using the Gaussian kernel. The scale parameter, σ, is set as follows. We approximate d∗, the

1An R implementation of the SCPP algorithm is available at https://github.com/DavidHofmeyr/SCPP
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Algorithm 2: SCPP

Input: Dataset X , number of clusters K
Output: Partition Π of X into K clusters
# Initialise Π as the set containing X
Π← {X}
while |Π| < K do

# Select the next cluster to split, C′
C′ ← argmaxC∈Π |C|
# Obtain centers and counts from microclustering of C′
[{c1...cm}, {n1...nm}]←Microcluster(C′)
# Optimise projection for spectral clustering of Pc(θθθ)
θθθ? ← argminθθθλ2(LN(θθθ)) + ω

∑
i 6=j(V (θθθ)>i V (θθθ)j)

2

# Find the first two eigenvectors of LN(θθθ?)
U c ← argminU trace(U>LN(θθθ?)U) s.t. U>U = I
# Get approximate eigenvectors of Laplacian of V (θθθ?)>C′
U ← Ui = U cj /

√
nj ⇐⇒ xi ∈ microcluster j

# Normalise the rows of U
Ui ← Ui/‖Ui‖, ∀ i = 1, . . . , N
# Bi-partition rows of U using k-means
[U1,U2]← K−means(U, 2)
# Obtain corresponding split of C′
C1 ← ∪i:Ui∈U1

{xi}, C2 ← ∪i:Ui∈U2
{xi}

# Update overall partition Π
Π← (Π \ {C′}) ∪ {C1, C2}

end while
return Π

intrinsic dimensionality of the data, using Kaiser’s criterion (Kaiser, 1960). We then set σ =
√
λ̄
(

4
3N

) 1
4+d∗ ,

where λ̄ is the average of the first d∗ eigenvalues of the covariance matrix of the data. The factor
√
λ̄ captures

the scale of the data, while
(

4
3N

) 1
4+d∗ is borrowed from kernel density bandwidth estimation, and we have

found it to work well for our problem as well.
Recall that we use ∆∆∆(θθθ) to mitigate the influence of outliers. We define ∆∆∆(θθθ) = ∆1 × · · · × ∆l, where

∆i = [µi − βσi, µi + βσi]; µi and σi are the mean and standard deviation of the i-th component of the
projected data respectively; and β > 0 controls the size of ∆∆∆(θθθ). Rather than attempting to define a single
value of β which is appropriate for all datasets, we initialise β to a large value, β = 5, and decrease β until the
induced bi-partition is sufficiently balanced. For this we define a minimum cluster size, the average cluster
size in the complete clustering solution divided by 5. That is, we decrease β until the smaller of the two
clusters contains at least N

5K points, where N is the number of data in the complete dataset being clustered.
Note that in general we do not have to execute the optimisation of θθθ to convergence for each value of β,
since a few iterations generally suffice to determine if the optimisation is focusing on outliers. We therefore
terminate the optimisation as soon as the induced partition does not meet the desired balance, reduce β,
and reinitialise.

The setting of the parameter ω, which controls the penalisation of non-orthogonal projections, does not
affect the result substantially provided it is relatively larger than the eigenvalues being optimised. Since
λ2(LN(θθθ)) is bounded above by 1, we set ω = 1.

Finally, for our experiments we use a small number of microclusters, m = 200. A sensitivity study
presented in Section 6.4 using simulated data shows that even for data sets of up to 10 000 points and in 50
dimensions, 200 microclusters are sufficient to obtain high quality clustering results.
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Figure 3: Hierarchical clustering model obtained by SCPP on phoneme dataset
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(b) With true cluster labels

6.2 Competing Approaches

We compare our approach against existing dimension reduction methods for clustering, where the final clus-
tering result is determined using spectral clustering. We use SC to refer to spectral clustering applied to the
original data, and SCPC and SCIC to refer to spectral clustering applied to Principal and Independent Com-
ponent projections of the data respectively. DRSC refers to dimensionality reduction for spectral clustering,
proposed by Niu et al. (2011). For SCPC, SCIC and DRSC we consider K − 1 dimensional projections, as
suggested by Niu et al. (2011). These approaches all directly seek a K way partition of the data.

For these competing approaches we compute clustering results for all values of σ in {0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50,
100, 200}, and select the solution which gives the lowest cluster distortion measure. This selection criterion
is recommended by Ng et al. (2002) and Niu et al. (2011). We also compute the clustering result for the local
scaling approach of Zelnik-Manor and Perona (2004). We report the highest performance of these two in
each case. We also provide DRSC with a warm start via PCA as this improved performance over a random
initialisation, and provides a fair comparison.

The connection between optimal projections for spectral clustering and maximum margin clustering,
established in Section 4, also leads us to compare our method with the iterative support vector regression
approach of Zhang et al. (2009), a state-of-the-art maximum margin clustering algorithm. We use iSVRG

to refer to this method, where the subscript G indicates that we use the Gaussian kernel. We set the
balancing parameter equal to 0.3 as suggested by Zhang et al. (2009) when the cluster sizes are not balanced.
The unbalanced setting led to superior performance compared with the balanced setting in the examples
considered. The iSVR approach generates only a bi-partition, and to generate multiple clusters we apply
the same divisive approach as in our method.

6.3 Clustering Results

We compare the different methods based on two popular evaluation metrics for clustering, namely Pu-
rity (Zhao and Karypis, 2004), and Normalised Mutual Information (NMI) (Strehl and Ghosh, 2002). These
metrics compare the cluster assignments with the true labels of the data. Both take values in [0, 1], with
larger values indicating better performance.

The following benchmark datasets were used for comparison. Optical recognition of handwritten digits
(Opt. Digits)2, Pen based recognition of handwritten digits (Pen Digits)1, Multiple feature digits (M.F.

2https://archive.ics.uci.edu/ml/datasets.html
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Digits)1, Satellite1, Statlog image segmentation (Image Seg.)1, Breast cancer Wisconsin (Br. Cancer)1,
Synthetic control chart (Chart)1, Isolet1, Dermatology1, Yeast cell cycle analysis (Yeast)3, Smartphone based
activity recognition (Smartphone)1, Yale faces dataset B 30 × 40 (Faces)4, Phoneme5. Before applying the
clustering algorithms, data were rescaled so that every feature had unit variance.

Clustering results for all methods considered are given in Table 1. SCPP achieves the highest performance
in more than half the cases considered, and very importantly is competitive with the best performing method
in every case. All other methods achieve substantially lower performance than SCPP in multiple examples.

The vastly different natures of the datasets considered means that the associated clustering tasks differ
in difficulty. This is evidenced by the range of performance values achieved by the clustering algorithms
on different datasets. To combine the results from the different datasets we standardise them as follows.
For each dataset X we compute for each method the relative deviation from the average performance of all
methods when applied to X . That is, for each method, Mi, we compute the relative purity,

Purity(Mi,X )− 1
#Methods

∑#Methods
j=1 Purity(Mj ,X )

1
#Methods

∑#Methods
j=1 Purity(Mj ,X )

, (18)

and similarly for NMI. We can then compare the distributions of the relative performance measures from
all datasets and for all methods. It is clear from Table 1 that the DRSC method is not competitive with
other methods in the examples considered, due to its substantially inferior performance on multiple datasets.
Moreover, the performance of DRSC is sufficiently low to obscure the comparisons between other methods.
We therefore remove DRSC from this comparison and in computing the relative performance measures.
Figure 4 shows boxplots of the relative performance measures. These plots show clearly that SCPP achieves
substantially higher performance overall than all other methods considered.

Among the competing methods, it is evident that spectral clustering tends to outperform maximum
margin clustering in general. Among competing spectral clustering variants, we see that both principal and
independent component projections are capable of improving the performance of spectral clustering, but
across multiple datasets the overall performance is not appreciably higher.

Overall the proposed approach for projection pursuit based on spectral connectivity is highly competitive
with existing dimension reduction methods. Furthermore, a simple data driven heuristic can be used to select
the important scaling parameter without tuning it for each dataset.

6.4 The Effect of Microclusters on Performance

To investigate the effect of microclusters on clustering accuracy we simulated datasets from Gaussian mixtures
containing 5 components (clusters) in 50 dimensions. This allows us to generate datasets of any desired size.
For these experiments 30 sets of parameters for the Gaussian mixtures were generated randomly. In the
first case a single dataset of size 1000 was simulated from each set of parameters, and clustering solutions
obtained for a number of microclusters, m, ranging from 100 to 1000, the final value therefore applying no
approximation. Figure 6(a) shows the median and interquartile range of both performance measures for 10
values of m. It is evident that aside from m = 100, performance is similar for all other values, and so using a
small value, say m = 200, should be sufficient to obtain a good approximation of the underlying optimisation
surface.

In the second case, we fix the number of microclusters, m = 200, and for each set of parameters simulate
datasets with between 1000 and 10 000 observations. In the most extreme case, therefore, the number of
microclusters is only 2% of the total number of data. Figure 6(b) shows the corresponding performance
plots, again containing the medians and interquartile ranges. Even for datasets of size 10 000, the coarse
approximation of the dataset through 200 microclusters is sufficient to obtain a high quality projection using
the proposed approach.

3http://genome-www.stanford.edu/cellcycle/
4https://cervisia.org/machine learning data.php/
5http://statweb.stanford.edu/∼tibs/ElemStatLearn/
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Table 1: Clustering performance. Highest performance in each case is highlighted in bold. Details of datasets
in terms of number of data (N), number of dimensions (d), and number of clusters (K) are provided.

SCPP DRSC SCPC SCIC SC iSVRG

Opt. Digits Purity 0.89 0.10 0.66 0.69 0.66 0.73
(N = 5620, d = 64, K = 10) NMI 0.83 0.03 0.63 0.67 0.63 0.65
Pen Digits Purity 0.81 0.44 0.77 0.77 0.87 0.74
(N = 10992, d = 16, K = 10) NMI 0.79 0.41 0.76 0.75 0.82 0.68
M.F. Digits Purity 0.76 0.66 0.75 0.72 0.77 0.78
(N = 2000, d = 216, K = 10) NMI 0.73 0.67 0.70 0.68 0.72 0.65
Satellite Purity 0.80 0.53 0.73 0.74 0.76 0.61
(N = 6435, d = 36, K = 6) NMI 0.67 0.22 0.61 0.62 0.62 0.48
Image Seg. Purity 0.56 0.38 0.56 0.76 0.50 0.64
(N = 2310, d = 19, K = 7) NMI 0.56 0.40 0.55 0.69 0.48 0.59
Br. Cancer Purity 0.97 0.89 0.97 0.97 0.96 0.95
(N = 699, d = 9, K = 2) NMI 0.78 0.51 0.81 0.82 0.76 0.72
Chart Purity 0.89 0.24 0.67 0.73 0.67 0.80
(N = 600, d = 60, K = 6) NMI 0.87 0.01 0.81 0.76 0.74 0.72
Isolet Purity 0.58 - 0.59 0.60 0.60 0.50
(N = 6238, d = 617, K = 26) NMI 0.72 - 0.69 0.67 0.69 0.61
Dermatology Purity 0.87 0.59 0.92 0.91 0.95 0.82
(N = 366, d = 34, K = 6) NMI 0.90 0.40 0.87 0.83 0.91 0.78
Yeast Purity 0.73 0.42 0.68 0.60 0.78 0.76
(N = 698, d = 72, K = 5) NMI 0.53 0.05 0.51 0.34 0.57 0.57
Smartphone Purity 0.70 - 0.61 0.70 0.67 0.65
(N = 10929, d = 561, K = 12) NMI 0.61 - 0.52 0.58 0.55 0.52
Faces Purity 0.71 - 0.68 0.69 0.73 0.63
(N = 5850, d = 1200, K = 10) NMI 0.76 - 0.77 0.82 0.76 0.64
Phoneme Purity 0.85 0.56 0.83 0.84 0.80 0.82
(N = 4509, d = 256, K = 5) NMI 0.82 0.45 0.84 0.76 0.71 0.70

‘-’ indicates that a clustering solution could not be obtained in a reasonable amount of time.

Figure 4: Box plots of relative performance measures with additional red dots to indicate means.
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Figure 5: Effect of microclusters on performance. Plots show median and interquartile ranges of performance
measures from 30 datasets simulated from 50 dimensional Gaussian mixtures with 5 clusters.
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7 Conclusions

We proposed an approach to identify optimal projections to bi-partition a dataset through spectral clustering,
based on the minimisation of the second smallest eigenvalue of the graph Laplacian (which measures the
connectivity of the two clusters) with respect to the projection. We provided a rigorous analysis of this
optimisation problem and proposed a globally convergent algorithm, which directly minimises the overall
objective. Using this approach to perform binary partitioning recursively gives rise to a divisive clustering
algorithm capable of identifying clusters defined in different subspaces.

The computational cost of the proposed projection pursuit method per iteration is O(N2), where N is
the number of observations, which can become prohibitive for large datasets. To mitigate this an approx-
imation method using microclusters, with provable error bounds is proposed. This reduces the complexity
to O(m2), where m is the number of microclusters. We found that in practice using even a small number of
microclusters, m = 200, our method is capable of generating high quality clustering models. This results in
a speed up of up to two orders of magnitude for the examples considered in this paper.

Finally, we established an asymptotic connection between optimal univariate projections for spectral bi-
partitioning and maximum margin hyperplanes. In particular we showed that as the scaling parameter of
the similarity function is reduced towards zero, the optimal vector to bi-partition the data using spectral
clustering also achieves the maximum Euclidean distance between the two clusters. In other words, the
optimal projection vector for spectral bi-partitioning converges to the normal vector to the maximum margin
separating hyperplane.

Experimental results on a large collection of datasets indicate that the proposed approach is highly com-
petitive with spectral clustering applied on the full dimensional data, and with existing dimension reduction
methods for spectral clustering.

It is interesting to note that while we discuss only the linear projection of Euclidean embedded data, the
methodology we present can be generalised to apply to any differentiable transformation of a collection of
data objects admitting a similarity measure. Extensions to structured data such as time series, graphical
and image data represent interesting future directions for this work.

A Avoiding Outliers

It has been documented that spectral clustering can be sensitive to outliers (Rahimi and Recht, 2004). Our
experience has shown that this problem becomes more pronounced when performing dimension reduction
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based on the spectral clustering objective, especially in high dimensional applications. Consider the extreme
case where d > N : since the linear system V >X = P is underdetermined, for any P there exists θθθ ∈ Θ, c ∈
R \ {0} s.t. V (θθθ)>X = cP . The projected data can therefore be made to have any distribution (up to a
scaling constant). In other words there will always be projections that contain outliers. We have found that
even in problems of moderate dimensionality, there often exist projections which induce large separation of
a small group of points from the remainder of the data. These projections frequently achieve the minimum
spectral connectivity for both Ratio Cut and Normalised Cut.

We have found that by defining a metric which encourages the induced cluster boundaries to intersect a
compact set, ∆∆∆(θθθ), around the mean of the projected data, the problem of outliers can be mitigated. This
is achieved by reducing the distance, relative to the usual Euclidean metric, to points lying outside ∆∆∆(θθθ).
Points lying outside ∆∆∆(θθθ), which may be outliers, therefore have increased similarity to all others. We define
∆∆∆(θθθ) = ∆1× . . .×∆l, where ∆i = [µi−βσi, µi +βσi]; µi and σi are the mean and standard deviation of the
i-th component of the projected data; and β > 0 controls the size of ∆∆∆(θθθ). The modified distance metric,
d(·, ·), is defined with respect to a continuously differentiable transformation, T∆, of the projected data,

d(pi, pj)=‖T∆(pi)−T∆(pj)‖2, (19)

T∆(y)=(t∆1
(y1), . . . , t∆l

(yl)) , (20)

t∆i
(z):=

 c2−βσi−δ (c1−βσi−z)1−δ
, z<−βσi

z, z∈∆i

βσi+δ (z−βσi+c1)
1−δ−c2, z>βσi,

(21)

where δ∈(0, 0.5] is the distance reducing parameter, and c1 and c2 are equalt to (δ (1−δ))1/δ
and δc1−δ1

respectively. By construction ‖T∆(pi)−T∆(pj)‖2≤‖pi−pj‖2 for any pi, pj∈Rl, with strict inequality when
either or both pi, pj /∈∆∆∆(θθθ).

Figure 6 illustrates the impact of T∆ on pairwise distances in the univariate case. As shown, distance
increases linearly in the interval ∆, but outside ∆ it increases much more slowly, with the rate being
determined by δ. In the limit as δ approaches zero, all points outside ∆ are mapped to the boundary of ∆.
As a result distances between points outside ∆ and all other points are much smaller after being transformed
through T∆, and points which can be characterised as outliers in terms of the original projections, P, do not
appear as such in terms of T∆(P).

Figure 6: Pairwise distances of points outside ∆ are decreased through the transformation T∆
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An illustration of the usefulness of this modified metric is provided in Figure 7. The figure shows two
dimensional projections of the 64 dimensional optical recognition of handwritten digits dataset (Bache and
Lichman, 2013). The left plots show the true clusters while the right plots show the clustering assignments
based on spectral clustering using the normalised Laplacian (Shi and Malik, 2000). Figure 8(a) shows the
projection onto the first two principal components, which are also used as initialisation for our method. There
are clearly a few points outlying from the remainder of the data, which are separated by the spectral clustering
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Figure 7: Two dimensional projections of optical recognition of handwritten digits dataset. The left plots
show the true clusters while the right plots show the partitions made by spectral clustering.

(a) PCA projection used for initialisation (b) Optimal projection from minimising λ2(LN(θθθ)) with the
Euclidean metric

(c) Optimal projection from minimising λ2(LN(θθθ)) with the
modified metric (β=3)

algorithm. Figure 8(b) shows the optimal projection from minimising λ2(LN(θθθ)) using the Euclidean metric.
The result is that the outlying points have been further separated from the remainder of the data, thereby
exacerbating the outlier problem. Finally, Figure 8(c) shows the same result but using the modified metric
discussed above, and with β=3. In this case the projection pursuit is able to find a projection which separates
two of the true clusters clearly from the remainder.

B Derivatives

B.1 Evaluating DPi
λ2(·)

We first consider the standard Laplacian L, and use λ and u to denote the second eigenvalue and corre-
sponding eigenvector. By Eq. (11) we have dλ=u>d(L)u=u>d(D)u−u>d(A)u. Now,

∂Dii

∂Pmn
=

N∑
j=1

∂Aij
∂Pmn

=

N∑
j=1

∂s(P, i, j)

∂Pmn
,

∂Aij
∂Pmn

=
∂s(P, i, j)

∂Pmn
,

and so,
∂λ

∂Pmn
=u>

∂L

∂Pmn
u=

1

2

∑
i,j

(ui−uj)2 ∂s(P, i, j)

∂Pmn
.
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For the normalised Laplacian, LN, consider first

d(LN)=d(D−1/2LD−1/2)

=d(D−1/2)LD−1/2 +D−1/2d(D)D−1/2

−D−1/2d(A)D−1/2 +D−1/2Ld(D−1/2).

We again use λ and u to denote the second eigenvalue and corresponding eigenvector. Using LD−1/2u=
λD1/2u,

dλ=u>d(D−1/2)LD−1/2u+u>D−1/2d(D)D−1/2u

−u>D−1/2d(A)D−1/2u+u>D−1/2Ld(D−1/2)u

=λu>d(D−1/2)D1/2u+u>D−1/2d(D)D−1/2u

−u>D−1/2d(A)D−1/2u+λu>D1/2d(D−1/2)u

=(1−λ)u>D−1/2d(D)D−1/2u−u>D−1/2d(A)D−1/2u.

=u>D−1/2d(L)D−1/2u−λu>D−1/2d(D)D−1/2u.

Where in the third step we made use of the fact that
d(D−1/2)DD−1/2 +D−1/2d(D)D−1/2 +D−1/2Dd(D−1/2)=d(D−1/2DD−1/2)=d(I)=0. Therefore,

∂λ

∂Pmn
=

1

2

∑
i,j

(
ui√
di
− uj√

dj

)2
∂s(P, i, j)

∂Pmn
−λ

∑
i,j

u2
i

di

∂s(P, i, j)

∂Pmn
.

B.2 Derivatives of the Approximate Eigenvalue Functions based on Microclus-
ters

In the general case we may consider a set of m microclusters with centers c1, . . . , cm and counts n1, . . . , nm.
The derivations we provide are valid for ni=1 ∀i∈{1, . . . ,m}, and so apply to the exact formulation of the
problem as well. Let θθθ∈Θ. We find it practically convenient to associate the transformation in Eq. (20),
which incorporates the set ∆∆∆(θθθ), with the projection of the microclusters rather than with the computation
of similarities. Specifically, we now let T be the transformed projected microcluster centers, i.e.,

T ={t1, t1, . . . , tm, tm}
={T∆∆∆(θθθ)(V (θθθ)>c1), T∆∆∆(θθθ)(V (θθθ)>c1),

. . . , T∆∆∆(θθθ)(V (θθθ)>cm), T∆∆∆(θθθ)(V (θθθ)>cm)},

where each ti is repeated ni times. The reason for this is that with this formulation the majority of terms
in the above sums corresponding to ∂λ (which are now partial derivatives w.r.t. the elements of T , and not
P as before) are zero. Specifically, with this expression for T , and letting T be the matrix with columns
corresponding to elements in T , we have

∂λ

∂Tmn
=

1

2

∑
i,j

(ui−uj)2 ∂k(‖ti−tj‖/σ)

∂Tmn

=
∑
i6=n

(ui−un)2 ∂k(‖ti−tn‖/σ)

∂Tmn
, (22)

and similarly for the normalised Laplacian.
In Section 3 we expressed Dθθθλ via the chain rule decomposition DPλDvPDθθθv, which we can now simply

restructure as DTλDvTDθθθv. The compression of T to the size m non-repeated set, T C={t1, . . . , tm},
requires a slight restructuring, as described in Section 5. We begin with the standard Laplacian, letting TC

be the matrix corresponding to T C , and define N(θθθ) and B(θθθ) as in Lemma 3. That is, N(θθθ) is the diagonal
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matrix with i-th diagonal element equal to
∑m
j=1 njk(‖ti−tj‖/σ) and B(θθθ)i,j=

√
ninjk(‖ti−tj‖/σ). The

derivative of the second eigenvalue of the Laplacian relies on the corresponding eigenvector, u. However,
this vector is not explicitly available as we only solve the m×m eigen-problem of N(θθθ)−B(θθθ). Let uC be
the second eigenvector of N(θθθ)−B(θθθ). As in the proof of Lemma 3 if i, j are such that the i-th element of
T corresponds to the j-th microcluster, then uCj =

√
njui. The derivative of λ2(N(θθθ)−B(θθθ)) with respect to

the i-th column of θθθ, and thus equivalently of the second eigenvalue of the Laplacian is therefore given by(∑
j 6=1

(
uCj√
nj
− uC1√

n1

)2

njn1

∂k
(
‖tj−ti‖

σ

)
∂TCj1

. . .

∑
j 6=m

(
uCj√
nj
− uCm√

nm

)2

njnm
∂k
(
‖tj−tm‖

σ

)
∂TCjm

)
DViT

C
i DθθθiVi, (23)

where DθθθiVi is given in Eq. (12) and DViT
C
i is expressed below. We provide expressions for the case where

∆(θθθ)=
∏l
i=1[−βσθθθi , βσθθθi ], as in our implementation, where we have again assumed that the data have been

centered, i.e., have zero mean. Then DViT
C
i is the m×d matrix with j-th row equal to,

δ(1−δ)
(−βσθθθi−V >i cj+(δ(1−δ))1/δ)δ

(
β

σθθθi
ΣVi+cj

)
,

if V >i cj<−βσθθθi ,
cj ,

if −βσθθθi≤V >i cj≤βσθθθi , and

δ(1−δ)
(V >i cj−βσθθθi+(δ(1−δ))1/δ)δ

(
cj−

β

σθθθi
ΣVi

)
+2

β

σθθθi
ΣVi,

if V >i cj>βσθθθi . Here Σ is the covariance matrix of the data.
For the normalised Laplacian, the reduced m×m eigenproblem has precisely the same form as the

original N×N problem, with the only difference being the introduction of the factors njnk. Specifically,
with the derivation in Section 3 we can see that the corresponding derivative is as for the standard Laplacian
above, except that the coefficients (uCj /

√
nj−uCk /

√
nk)2njnk in Eq. (23) are replaced with (uCj /

√
dj−

uCk /
√
dk)2−λ((uCj )2/dj+(uCk )2/dk), where λ is the second eigenvalue of the normalised Laplacian, uC is the

corresponding eigenvector and dj is the degree of the j-th element of T C .

C Computational Complexity

Here we give a very brief discussion of the computational complexity of the proposed method. At each
iteration in the gradient descent, computing the projected data matrix, P (θθθ), requires O(Nld) operations.
Computing all pairwise similarities from elements of the l-dimensional P(θθθ) has computational complexity
O(lN2), and determining both Laplacian matrices, and their associated eigenvalue/vector pairs adds a further
computational cost O(N2). Each evaluation of the objectives λ2(L(θθθ)) or λ2(LN(θθθ)) therefore requires
O(lN(N+d)) operations. In order to compute the gradients of these objectives, the partial derivatives with
respect to each element of the projected data matrix need to be calculated. As we discussed in relation to the
derivatives above, the majority of the terms in the sums in Eqs. (13) and (14) are zero, and in fact each partial
derivative can be computed inO(N) time, and so all such partial derivatives can be computed inO(lN2) time.
The matrix derivatives DθθθiVi, i=1, ..., l, in (12) can each be computed with O(d(d−1)) operations. Finally,
determining the gradients with respect to each column of θθθ involves computing the matrix product Dθθθiλ=
DPiλDViPiDθθθiVi, where DPiλ∈R1×N , DViPi∈RN×d and DθθθiVi∈Rd×(d−1). This has complexity O(Nd(d−
1)). The complete gradient calculation therefore requires O(lN(N+d(d−1))) operations. We have found
that the optimality conditions based on directional derivatives and gradient sampling steps are seldom, if
ever required, and moreover that these do not constitute the bottleneck in the running time of the method
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in practice. The complexity of the optimality condition check may be computed along similar lines, and be
found to be O(t2lN(N+d(d−1))), where t is the multiplicity of the eigenvalue λ=λ2(L(θθθ)). The gradient
sampling is simply O(d) times the cost of computing a single gradient. The total complexity of the projection
pursuit optimisation depends on the number of iterations in the gradient descent method, where in general
this number is bounded for a given accuracy level. For our experiments we use the BFGS (Broyden-Fletcher-
Goldfarb-Shanno) algorithm as this has been found to perform well on non-smooth functions (Lewis and
Overton, 2013).

D Proofs

D.1 Proof of Theorem 2

Before proving Theorem 2, we require some supporting theory which we present below. We will use the
notation v>X={v>x1, ..., v

>xN}, and for a set P⊂R and y∈R we write, for example, P>y for P∩(y,∞).
Recall that for scaling parameter σ>0 we define θθθσ :=argminθθθ∈Θλ2(L(θθθ, σ)), where L(θθθ, σ) is as L(θθθ) from
before, but with an explicit dependence on the scaling parameter. That is, θθθσ defines the projection generat-
ing the minimal spectral connectivity of X for a given value of σ. We define θθθNσ similarly for the normalised
Laplacian.

Recall that we are interested in those hyperplanes which intersect an arbitrary convex set ∆∆∆. This is
because very often the maximum marging hyperplane will separate only a few points from the remainder,
as data tend to be more sparse in the tails of the underlying distribution. To account for the potential for
hyperplanes with very large margins lying in the tails of the distribution, we make the additional assumption
that the distance reducing parameter, δ, tends to zero along with σ.

Lemmas 4 and 5 provide lower bounds on the second eigenvalue of the graph Laplacians of a one dimen-
sional data set in terms of the largest Euclidean separation of adjacent points which lie within the interval
∆, used to represent ∆∆∆(θθθ) in the context of a projection of X . These lemmas also show how we construct
the set ∆∆∆′. Lemmas 6 and 7 use these results to show that a projection angle θθθ∈Θ leads to lower spectral
connectivity than all projections admitting smaller maximal margin hyperplanes intersecting ∆∆∆′ for all pairs
σ, δ sufficiently close to zero.

Lemma 4 Let k :R+→R+ be a non-increasing, positive function and let σ>0, δ∈(0, 0.5]. Let P={p1, ..., pN}
be a univariate data set and let ∆=[a, b] for a<b∈R. Suppose that |P∩∆|≥2 and a≥min{P}, b≤max{P}.
Define ∆′=[a′, b′], where a′=(a+min{P∩∆})/2, and b′=(b+max{P∩∆})/2. Let M=maxx∈∆′{mini=1...N |x−
pi|}. Define L(P) to be the Laplacian of the graph with vertices P and similarities according to s(P, i, j)=
k(|T∆(pi)−T∆(pj)|/σ), where P ∈R1×N is the matrix with i-th column equal to pi. Then λ2(L(P))≥

1
|P|3 k((2M+δC)/σ), where C=max{D,D1−δ}, D=max{a−min{P},max{P}−b}.

Proof: We can assume that P is sorted in increasing order, i.e. pi≤pi+1, since this does not affect the
eigenvalues of L(P). We first show that s(P, i, i+1)≥k((2M+δC)/σ) for all i=1, ..., N−1. To this end

observe that δ
(
x+
(
δ (1−δ)

1
δ

))1−δ
−δ (δ (1−δ))

1−δ
δ ≤δmax{x, x1−δ} for x≥0.

• If pi, pi+1≤a then s(P, i, i+1)=k((T∆(pi+1)−T∆(pi))/σ)≥k((T∆(a)−T∆(pi))/σ) ≥k((2M+δC)/σ)
by the definition of C and using the above inequality, since k is non-increasing. The case pi, pi+1≥b is
similar.

• If pi, pi+1∈∆ then pi, pi+1∈∆′⇒|pi−pi+1|≤2M⇒s(P, i, i+1)≥k(2M/σ)≥k((2M+δC)/σ) since M
is the largest margin in ∆′.

• If none the above hold, then we lose no generality in assuming pi<a, a<pi+1<b since the case a<pi<b,
pi+1>b is analogous. We must have pi+1 =min{P∩∆} and so a′=(a+pi+1)/2. If pi+1−a>2M then
minj=1...N |a′−pj |>M , a contradiction since a′∈∆′ and M is the largest margin in ∆′. Therefore
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pi+1−a≤2M . In all

T∆(pi+1)−T∆(pi)=(pi+1−a)+δ(a−pi+(δ(1−δ)) 1
δ )1−δ

−δ(δ(1−δ))
1−δ
δ

≤2M+δC

⇒s(P, i, i+1)≥k((2M+δC)/σ).

Now, let u be the second eigenvector of L(P). Then ‖u‖=1 and u⊥1 and therefore ∃i, j s.t. ui−uj≥ 1√
N

. We

thus know that there exists m s.t. |um−um+1|≥ 1
N3/2 . By (von Luxburg, 2007, Proposition 1), we know that

u>L(P)u= 1
2

∑
i,j s(P, i, j)(ui−uj)2≥s(P,m,m+1)(um−um+1)2≥ 1

N3 k((2M+δC)/σ) since all consecutive

pairs pm, pm+1 have similarity at least k((2M+δC)/σ), by above. Therefore λ2(L(P))≥ 1
N3 k((2M+δC)/σ)

as required. �

Lemma 5 Let the conditions of Lemma 4 hold and let LN(P) be the normalised Laplacian of the graph with
vertices P and similarities s(P, i, j)=k(|T∆(pi)−T∆(pj)|/σ). Then

λ2(LN(P))≥ 1

|P|4
k((2M+δC)/σ).

Proof: The proof is similar to that of Lemma 4, but requires a few simple modifications. Let u be the
second eigenvector of LN(P). Since ‖u‖=1,∃i∈{1, ..., N} s.t. |ui|≥ 1√

N
. Suppose w/o loss of generality

that ui≤− 1√
N

. Now consider that for all j, k∈{1, ..., N} we have 0<s(P, j, k)≤1 and s(P, j, j)=1 and

so 1<
√
dj≤
√
N for all j∈{1, ..., N}. Therefore we have ui/

√
di≤− 1

N . Furthermore, since uD1/2⊥1 we

have uj>0 for some j∈{1, ..., N}⇒uj/
√
dj>0. Therefore, uj/

√
dj−ui/

√
di>

1
N . We thus know that ∃m∈

{1, ..., N} s.t.
∣∣um/√dm−um+1/

√
dm+1

∣∣> 1
N2 . By (von Luxburg, 2007, Proposition 3), we know that

u>LN(P)u=
1

2

∑
i 6=j

s(P, i, j)(ui/
√
di−uj/

√
dj)

2

≥S(P,m,m+1)(um/
√
dm−um+1/

√
dm+1)2

>
1

N4
k((2M+δC)/σ),

where the bound on s(P,m,m+1) is taken from the proof of Lemma 5. Therefore λ2(LN(P))≥ 1
N4 k((2M+

δC)/σ) as required. �

In the above we have assumed that ∆ is contained within the convex hull of the points P, however the
results of this section can easily be modified to allow for cases where this does not hold. In particular, if an
unconstrained large margin hyperplane is sought, then setting ∆∆∆ to be arbitrarily large allows for this. We
have merely stated the results in the most convenient context for our practical implementation.

The set ∆′ in the above is defined in terms of the one dimensional interval [a, b]. We define the full
dimensional set ∆∆∆′ along the same lines by,

∆∆∆′={x∈Rd|v(θθθ)>x∈∆(θθθ)′ ∀θθθ∈Θ},

∆(θθθ)′ :=

[
min ∆(θθθ)+min{v(θθθ)>X ∩∆(θθθ)}

2
, (24)

max ∆(θθθ)+max{v(θθθ)>X ∩∆(θθθ)}
2

]
. (25)

Here we assume that ∆∆∆ is contained within the convex hull of the d-dimensional data set X. Notice that
since ∆∆∆ is convex, we have v(θθθ)>∆∆∆′=∆(θθθ)′. In what follows we show that as σ is reduced to zero the optimal

24



projection for spectral partitioning converges to the projection admitting the largest margin hyperplane
intersecting ∆∆∆′. If it is the case that the largest margin hyperplane intersecting ∆∆∆ also intersects ∆∆∆′, as is
often the case, although this fact will not be known, then it is actually not necessary that δ tend towards
zero. In such cases it only needs to satisfy δ≤2M/C for the corresponding values of M and C over all
possible projections. In particular, choosing max{Diam(X ),Diam(X )1−δ} instead of C is appropriate for all
projections.

Lemma 6 Let θθθ∈Θ and let k :R+→R+ be non-increasing, positive, and satisfy

lim
x→∞

k(x(1+ε))/k(x)=0

for all ε>0. Then for any 0<m< max
b∈∆(θθθ)′

margin(v(θθθ), b) there exists σ′>0 s.t. if 0<σ<σ′ and

max
c∈∆(θθθ′)′

margin(v(θθθ′), c)< max
b∈∆(θθθ)′

margin(v(θθθ), b)−m

then λ2(L(θθθ, σ))<λ2(L(θθθ′, σ)).

Proof: Let B=argmaxb∈∆(θθθ)′margin(v(θθθ), b) and M=margin(v(θθθ), B). We assume that M 6=0, since other-
wise there is nothing to show. Now, since spectral clustering solves a relaxation of the minimum normalised
cut problem we have,

λ2(L(θθθ, σ))≤ 1

|X |
min
C⊂X

∑
i,j:xi∈C
xj 6∈C

s(P (θθθ), i, j)

(
1

|C|
+

1

|X \C|

)

≤ 1

|X |
∑

i,j:v(θθθ)>xi<B

v(θθθ)>xj>B

s(P (θθθ), i, j)

(
1

|(v(θθθ)>X )<B |

+
1

|(v(θθθ)>X )>B |

)

=
1

|X |
∑

i,j:v(θθθ)>xi<B

v(θθθ)>xj>B

k

(
T∆(θθθ)(v(θθθ)>xj)−T∆(θθθ)(v(θθθ)>xi)

σ

)

×
(

|X |
|(v(θθθ)>X )<B ||(v(θθθ)>X )>B |

)
≤
∣∣(v(θθθ)>X )<B

∣∣∣∣(v(θθθ)>X )>B
∣∣k(2M

σ

)
×
(

1

|(v(θθθ)>X )<B ||(v(θθθ)>X )>B |

)
=k(2M/σ).

The final inequality holds since for any i, j s.t. v(θθθ)>xi<B and v(θθθ)>xj>B we must have T∆(θθθ)(v(θθθ)>xj)−
T∆(θθθ)(v(θθθ)>xi)≥2M . Now, for any θθθ′∈Θ, let Mθθθ′=maxc∈∆(θθθ′)′ margin(v(θθθ′), c). By Lemma 4 we know that

λ2(L(θθθ′, σ))≥ 1
|X |3 k((2Mθθθ′+δC/σ), where C=max{Diam(X), Diam(X)1−δ}. Therefore,

lim
σ→0+

λ2(L(θθθ, σ))

infθθθ′∈Θ{λ2(L(θθθ′, σ))
∣∣Mθθθ′<M−m}

≤ lim
σ→0+

|X |3k(2M/σ)

k((2(M−m)+δC)/σ)

=0.

Since δ→0 as σ→0, this gives the result. �
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Lemma 7 Let the conditions of Lemma 6 hold. For any 0<m<maxb∈∆(θθθ)′ margin(v(θθθ), b) there exists σ′>0
s.t. if 0<σ<σ′ and

max
c∈∆(θθθ′)′

margin(v(θθθ′), c)< max
b∈∆(θθθ)′

margin(v(θθθ), b)−m

then λ2(LN(θθθ, σ))<λ2(LN(θθθ′, σ)).

Proof: Using a similar approach to that in the proof of Lemma 6, we can arrive at the following.

λ2(LN(θθθ, σ))≤

∑
i,j:v(θθθ)>xi<B

v(θθθ)>xj>B

k
(
T∆(θθθ)(v(θθθ)>xj)−T∆(θθθ)(v(θθθ)>xi)

σ

)
vol((v(θθθ)>X )<B)vol((v(θθθ)>X )>B)

≤k
(

2M

σ

) ∣∣(v(θθθ)>X )<B
∣∣∣∣(v(θθθ)>X )>B

∣∣
vol((v(θθθ)>X )<B)vol((v(θθθ)>X )>B)

≤k(2M/σ)

where the final inequality comes from the fact that 1<di for all i∈{1, ..., N}, and hence vol((v(θθθ)>X )>B)≥
|(v(θθθ)>X )>B |, and similarly for (v(θθθ)>X )<B . The final step in the proof is equivalent to that of Lemma 6,
except that |X |3 is replaced with |X |4. �

Lemmas 6 and 7 show almost immediately that the margin admitted by the optimal projection for spec-
tral bi-partitioning converges to the largest margin through ∆∆∆′ as σ goes to zero. Theorem 2, which we
are now in a position to prove, shows the stronger result that the optimal projection itself converges to the
projection admitting the largest margin.

Proof of Theorem 2: Take any ε>0. Pavlidis et al. (2016) have shown that ∃mε>0 s.t. for w∈Rd, c∈
R, ‖(w, c)/‖w‖−(v(θθθ?), b?)‖>ε⇒margin(w/‖w‖, c/‖w‖)< margin(v(θθθ?), b?)−mε. By Lemma 6 we know
∃σ′>0, δ′>0 s.t. if 0<σ<σ′ then ∃c∈∆(θθθ) s.t. margin(v(θθθσ), c) ≥ margin(v(θθθ?), b?)−mε, since θθθσ is op-
timal for σ. Thus, by above, ‖(v(θθθσ), c)−(v(θθθ?), b?)‖≤ε. But ‖(v(θθθσ), c)−(v(θθθ?), b?)‖≥‖v(θθθσ)−v(θθθ?)‖ for
any c∈R. Since ε>0 was arbitrary, we therefore have v(θθθσ)→v(θθθ?) as σ→0+. The proof for θθθNσ is analogous.
���

D.2 Proof of Lemma 3

The proof of Lemma 3 uses the following result from matrix perturbation theory.

Theorem 8 (Ye (2009)) Let A=[aij ] and Ã=[ãij ] be two symmetric positive semidefinite diagonally dom-

inant matrices, and let λ1≤λ2≤...≤λn and λ̃1≤λ̃2≤...≤λ̃n be their respective eigenvalues. If, for some
0≤ε<1, |aij− ãij |≤ε|aij | ∀i 6=j, and |vi− ṽi|≤εvi ∀i, where vi=aii−

∑
j 6=i |aij |, and similarly for ṽi, then

|λi−λ̃i|≤ελi ∀i.

An inspection of the proof of Theorem 8 reveals that ε<1 is necessary only to ensure that the signs of aij
are the same as those of ãij . In the case of Laplacian matrices this equivalence of signs holds by design, and
so in this context the requirement that ε<1 can be relaxed.

Now, for brevity we drop the notational dependence on θθθ. Let Pc′={V >c1, V >c1, ..., V >cm, V >cm},
where each V >ci is repeated ni times, and let P c′ be the corresponding matrix of repeated projected centroids.
Let Lc′ be the Laplacian of the graph with vertices Pc′ and edges given by s(P c′, i, j). We begin by showing
that λ2(Lc′)=λ2(N−B). Take v∈Rm, then,

v>(N−B)v=
∑
i,j

s(P c, i, j)(v2
i nj−vivj

√
ninj)

=
1

2

∑
i,j

s(P c, i, j)(v2
i nj+v2

jni−2vivj
√
ninj)

≥0,
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and soN−B is positive semi-definite. In addition, it is straightforward to verify that (N−B)(
√
n1 . . .

√
nK)=

0, and hence 0 is the smallest eigenvalue of N−B with eigenvector (
√
n1 . . .

√
nm). Now, let u be the second

eigenvector of Lc′. Then uj=uk for pairs of indices j, k aligned with the same V >ci in P c′. Define uc∈Rm
s.t. uci =

√
niuj where index j is aligned with V >ci in P c′j . Then (uc)>(

√
n1 . . .

√
nm)=

∑m
i=1 u

c
i

√
ni=∑m

i=1 niuji where index ji is aligned with V >ci in P c′ji for each i. Therefore niuji=
∑
j:P c′=V >ci

uj and

hence (uc)>(
√
n1 . . .

√
nm)=

∑m
i=1

∑
j:P c′j =V >ci

uj=
∑N
i=1 ui=0 since 1 is the smallest eigenvector of Lc′

and so u⊥1. Similarly ‖uc‖2 =
∑m
i=1 niu

2
ji

=
∑N
i=1 u

2
i =1. Thus uc⊥(

√
n1 . . .

√
nm) and ‖uc‖=1 and

so is a candidate for the second eigenvector of N−B. In addition it is straightforward to show that
(uc)>(N−B)uc=u·Lc′u. Now, suppose by way of contradiction that ∃w⊥(

√
n1 . . .

√
nm) with ‖w‖=1

s.t. w>(N−B)w<(uc)>(N−B)uc. Then let w′=(w1/
√
n1 w1/

√
n1 . . . wm/

√
nm) where each wi/

√
ni is

repeated ni times. Then ‖w′‖=1, (w′)>1=w>(
√
n1 . . .

√
nm)=0 and w>Lc′w<u>Lc′u, a contradiction

since u is the second eigenvector of Lc′.
Now, let i, j, q, r be such that xq∈Ci and xr∈Cj . We temporarily drop the notational dependence on ∆.

Then,

‖T (V >xq)−T (V >xr)‖=‖T (V >xq)−T (V >ci)+T (V >ci)

−T (V >cj)+T (V >cj)−T (V >xr)‖
≤‖T (V >xq)−T (V >ci)‖

+‖T (V >ci)−T (V >cj)‖
+‖T (V >cj)−T (V >xr)‖
≤ρi+ρj+Dij ,

since T contracts distances and ρi and ρj are the radii of Ci and Cj . Since k is non-increasing we therefore
have,

k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
≤ k(Dij/σ)

k(‖T (V >xq)−T (V >xr)‖/σ)

≤ k(Dij/σ)

k((Dij+ρi+ρj)/σ)

⇒1− k(Dij/σ)

k(‖T (V >xq)−T (V >xr)‖/σ)
≤1− k(Dij/σ)

k((Dij−ρi−ρj)+/σ)

and

k(Dij/σ)

k(‖T (V >xq)−T (V >xr)‖/σ)
−1≤ k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1.

Therefore ∣∣∣∣ k(Dij/σ)

k(‖T (V >xq)−T (V >xr)‖/σ)
−1

∣∣∣∣≤
max

{
1− k(Dij/σ)

k((Dij−ρi−ρj)+/σ)
,

k(Dij/σ)

k((Dij+ρi+ρj)/σ)
−1

}
.

Now, we lose no generality by assume that X is ordered such that for each i the elements of cluster Ci are
aligned with V >ci in P c′, since this does not affect the eigenvalues of the Laplacian of V >X , L. By the
design of the Laplacian matrix the “vi” of Theorem 8 are exactly zero. For off diagonal terms q, r with
corresponding i, j as above, consider

|Lqr−Lc′qr|
|Lqr|

=
|k(Dij/σ)−k(‖T (V >xq)−T (V >xr)‖/σ)|

k(‖T (V >xq)−T (V >xr)‖/σ)

=

∣∣∣∣ k(Dij/σ)

k(‖T (V >xq)−T (V >xr)‖/σ)
−1

∣∣∣∣ .
Theorem 8 thus gives the result. ���
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