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Abstract

In this paper we use an iterative algorithm for solving Fredholm equations of the first kind.
The basic algorithm is known and is based on an EM algorithm when involved functions are
non–negative and integrable. With this algorithm we demonstrate two examples involving the
estimation of a mixing density and a first passage time density function involving Brownian
motion. We also develop the basic algorithm to include functions which are not necessarily
non–negative and again present illustrations under this scenario. A self contained proof of
convergence of all the algorithms employed is presented.
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1 Introduction

An important problem in statistics and applied mathematics is the solution to a so-called Fredholm

equation of the first kind, i.e., given a probability density function f(x) on X ⊂ R and a non-

negative kernel k(x, θ) which is a probability density function in x for each θ, find the probability
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density function p(θ) such that

f(x) =

∫
Θ

k(x, θ) p(θ) dθ. (1)

Such equations have a wide range of applications across a variety of fields, including signal pro-

cessing, physics, and statistics. See Ramm (2005) for a general introduction, and Vangel (1992)

for statistical applications. We will also consider problems where the density and non-negativity

constraints are relaxed.

Given the importance of this problem, it should be no surprise that there is a substantial

literature on the theoretical and computational aspects of solving (1); see, for example, Cor-

duneanu (1994); Groetsch (2007); Hansen (1999); Morozov (1984); Wing (1990). Existence of a

unique solution to (1) is a relevant question, though we will not speak directly on this issue here.

One important case for which there is a well-developed existence theory is when the operator

p 7→
∫
k(·, θ) p(θ) dθ is compact, a consequence of square-integrability of k(x, θ) with respect to

dx×dθ. In this case, there exists a singular value system (σj, uj, vj) for which (uj(x)) and (vj(θ))

are orthogonal bases in L2(X) and L2(Θ), respectively, and∫
Θ

k(x, θ) vj(θ) dθ = σj uj(x).

Then f can be expressed as f(x) =
∑

j λjuj(x) for some (λj), and it follows that

p(θ) =
∑
j

(λj/σj) vj(θ),

which exists and is square-integrable if
∑

j(λj/σj)
2 < ∞. Of course, the above formula for p is

not of direct practical value since computing all the eigenvalues and eigenfunctions is not feasible.

Computationally efficient approximations are required.

The classic iterative algorithm for finding p is given by

pm(θ) = pm−1(θ) +

∫
X
k(x, θ)

(
f(x)− fm−1(x)

)
dx, (2)

where

fm(x) =

∫
Θ

k(x, θ) pm(θ) dθ.

Convergence properties of (2) are detailed in Landweber (1951). An issue here is that, under

the constraint that p and k(·, θ) are density functions, there is no guarantee that the sequence of

approximations (pm) coming from (2) are density functions.
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An alternative is to apply a discretization–based method. That is, specify grid points (θj, xi)

and approximate the original problem (1) via a discrete system

f(xj) =
∑
i

wi p(θi) k(xj, θi),

where the (wi) are weighting coefficients for a quadrature formula. One then solves the linear

system of equations to get an approximation for p. See for example, Phillips (1962). Of course,

there is no guarantee here either that the solution p will be a density.

As an alternative to the additive updates in (2), in this paper we focus on a multiplicative

version, described in Section 2, that can guarantee the sequence of approximations are density

functions. Moreover, the theoretical convergence analysis of this multiplicative algorithm turns

out to be rather straightforward for the case where there exists a unique solution to equation (1).

For the general case, where a solution may not exist, the asymptotic behavior of the algorithm

can still be determined, and, in Section 3, we provide a characterization of this algorithm as

an alternating minimization algorithm, and employ the powerful tools developed in Csiszzár and

Tusnády (1984) to study its convergence. The remainder of the paper focuses on three applications

of this algorithm. The first, in Section 4, is estimating a smooth mixing density based on samples

X1, . . . , Xn from the density f in (1). The second, in Section 5, is computing the density of the

first passage time for Brownian motion hitting an upper boundary, where the boundary need not

be concave. The third, in Section 6, is solving general Fredholm equations where the density

function constraints are relaxed. Finally, some concluding remarks are given in Section 7.

2 The algorithm

Following Vardi and Lee (1993), an alternative to the algorithms described above for iteratively

solving (1) is to fix an initial guess p0 and then repeat

pm(θ) = pm−1(θ)

∫
X

k(x, θ) f(x)

fm−1(x)
dx, m ≥ 1. (3)

This algorithm was also studied in Shyamalkumr (1996). First note that, if f0 is well-defined, then

it follows immediately from the multiplicative structure of the algorithm, and Fubini’s theorem,

that pm is also a density for m ≥ 1. This overcomes the difficulty faced with using (2). Second,
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for a comparison with (2), we see that (3) operates in roughly the same way, but on the log–scale:

log pm(θ) = log pm−1(θ) + log

∫
X

k(x, θ) f(x)

fm−1(x)
dx. (4)

This logarithmic version will be helpful when we discuss convergence in Section 3.

The sequence (3) also has a Bayesian interpretation. Indeed, if, at iteration m, we had seen

an observation X from the distribution with density f , then the Bayes update of “prior” pm−1(·)

to “posterior” pm(· | X) would be given by

pm(θ | X) = pm−1(θ)
k(X, θ)

fm−1(X)
.

But without such an X, yet knowing X comes from f , the natural choice now is to use the “average

update”

pm(θ) =

∫
X
pm(θ | x) f(x) dx,

which is exactly (3).

For a quick proof–of–concept, consider a Pareto density f(x) = a(x + 1)−(a+1), supported

on (0,∞), with a > 0. It is easy to check that f is a gamma mixture of exponentials, i.e.,

f(x) =
∫
k(x, θ)p(θ) dθ, where k(x, θ) = θ e−θx is an exponential density and p(θ) = Γ(a)−1θa−1e−θ

is a gamma density. We can apply algorithm (3) to solve the above equation for p. Figure 1 shows

a plot of the estimate from (3), with a = 5, based on 200 iterations and p0 a half-Cauchy starting

density, along with the true gamma density p(x). Clearly, the approximation is quite accurate

over most of the support.

Before formally addressing the convergence properties of (3), it will help to provide some

intuition as to why it should work. The argument presented in Vardi and Lee (1993) proceeds by

considering i.i.d. samples X1, . . . , Xn from the distribution with density f . Replacing the f(x) dx

in (3) with dF̂ (x), where F̂ is the empirical distribution based on X1, . . . , Xn, gives the algorithm

p̂m(θ) = p̂m−1(θ)

∫
X

k(x, θ)

fm−1(x)
dF̂ (x). (5)

It turns out that this is precisely an EM algorithm to compute the nonparametric maximum

likelihood estimator of p, see e.g., Laird (1978). This connection to likelihood–based estimation

gives the algorithm (5) some justification for a fixed sample X1, . . . , Xn. The dependence on a

particular sample can be removed by allowing n → ∞ and applying the law of large numbers to
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Figure 1: Plot of the mixing density p200 (black) from (3) and the true gamma density (gray).

get convergence of (5) to (3), hence motivation for the latter. However, despite the identification

of (5) as an EM algorithm, no formal convergence proof has been given that the iterates p̂m in (5)

converge to the nonparametric maximum likelihood estimator, but see Chae et al. (2017).

The above argument giving intuitive support for algorithm (3) is not fully satisfactory because

it does not give any indication that the algorithm will converge to a solution of (1). For a more

satisfactory argument, note that, if the algorithm converges to a limit p∞, then we must have∫
X

k(x, θ)

f∞(x)
f(x) dx = 1 ∀ θ ∈ supp(p∞),

where f∞(x) =
∫
k(x, θ) p∞(θ) dθ. According to Lemma 2.1 in Patilea (2001) or Lemma 2.3 in

Kleijn and van der Vaart (2006), the above condition implies that

D(f, f∞) = inf
P
D(f, fP ), (6)

where D(f, g) =
∫

log(f/g) f dx is the Kullback–Leibler divergence and the infimum is over all

densities of the form
∫
k(x, θ) dP (θ) for some probability measure P on Θ. So, if there exists a

solution to (1), then the limit p∞ would have to be one of them. Even if there is no solution to

(1), p∞ will be such that the corresponding f∞ is closest to f in the Kullback–Leibler sense. To

make this argument fully rigorous, we need to establish that algorithm (3) does indeed converge.
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3 Convergence properties

In Section 3.4 of Vardi and Lee (1993), the authors consider (1), but with some restrictions. The

first is that p is a finite measure, i.e., point masses on a finite number of atoms, and the second is

that the solution p is piecewise constant. Our arguments here do not require such restrictions.

To assess the properties of (2), let p be a solution to (1). Multiply (4) by p(θ) throughout,

and then integrate over θ to get∫
p(θ) log pm(θ) dθ =

∫
p(θ) log pm−1(θ) dθ +

∫
p(θ) log

∫
k(x, θ) f(x)

fm−1(x)
dx dθ.

By Jensen’s inequality, the last term is lower bounded by D(f, fm−1), the Kullback–Leibler diver-

gence of fm−1 from f . Since D is non–negative, we can deduce that

D(p, pm) ≤ D(p, pm−1)−D(f, fm−1).

This implies that D(p, pm) is a non–negative and non–increasing sequence, hence has a limit, say,

c ≥ 0, which, in turn, implies fm → f strongly in the D or L1 sense. Therefore, in agreement with

Landweber (1951) for the additive algorithm (2), we have that pm is converging to a set S where

D(p, p̃) = c for all p̃ ∈ S. Of course, if p is a unique solution to (1) then pm → p strongly. A similar

argument for convergence of (3) is presented in Shyamalkumr (1996), with some generalizations.

On the other hand, if (1) does not have a solution, then, as discussed above, we expect that

pm in algorithm (3) will converge to a density with limit p∞ such that the corresponding mixture

f∞ satisfies (6). This can be proved by considering (3) as an alternating minimization procedure;

see, for example, Csiszár (1975); Csiszzár and Tusnády (1984); Dykstra (1985).

In the following, define the joint densities on X×Θ,

qm(x, θ) = pm(θ)k(x, θ) and πm(x, θ) =
f(x)qm−1(x, θ)∫
qm−1(x, θ′)dθ′

. (7)

Theorem 3.1. For an initial solution p0 > 0, let (pm) be obtained via (3). Assume there exists a

sequence (p∗s)s≥1 of densities such that

D(f, f ∗s )→ inf
P
D(f, fP )

and D(π∗s , qm) <∞ for some m ≥ 0, where f ∗s (x) =
∫
k(x, θ)p∗s(θ)dθ and

π∗s(x, θ) =
f(x)p∗s(θ)k(x, θ)∫
p∗s(θ

′)k(x, θ′)dθ′
.

Then, D(f, fm) decreases to infP D(f, fP ).
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Proof. Let P be the set of all bivariate densities π on X × Θ with x-marginal f , i.e., such that∫
π(x, θ) dθ = f(x). Similarly, let Q be the set of all bivariate densities q on X × Θ such that

q(x, θ) = k(x, θ) p(θ) for some density p. Note that qm and πm in (7) satisfy qm ∈ Q and πm ∈ P .

We first claim that (qm) and (πm) are obtained by the alternating minimization procedure of

Csiszzár and Tusnády (1984) with the objective function D(π, q), where π and q ranges over P

and Q, respectively. To see this, note that D(πm, qm−1) = D(f, fm−1) ≤ D(π, qm−1) for every

π ∈ P ; the inequality holding since f and fm−1 are marginal densities of π and qm−1, respectively.

It follows that πm = argminπ∈P D(π, qm−1). Also, note that

D(πm, q) =

∫∫
πm(x, θ) log

πm(x, θ)

q(x, θ)
dθ dx

= C −
∫

log p(θ)

∫
πm(x, θ) dx dθ

= C −
∫

log p(θ)

∫
f(x)qm−1(x, θ)∫
qm−1(x, θ′)dθ′

dx dθ

= C −
∫

log p(θ)

∫
k(x, θ)pm−1(θ)∫
k(x, θ′)pm−1(θ′) dθ′

f(x) dx dθ

= C −
∫

log p(θ) dPm(θ),

where C does not depend on p. The last integral is maximized at pm, so qm = argminq∈QD(πm, q).

Since P and Q are convex, we have

D(f, fm−1) = D(πm, qm−1)↘ inf
p∈P0, q∈Q

D(π, q),

by Theorem 3 in Csiszzár and Tusnády (1984), with P0 = {π ∈ P : D(π, qm) < ∞ for some m}.

We have D(π, q) = D(f, fp), and and the assumption D(π∗s , qm) < ∞ for some m implies

that infp∈P0 infq∈QD(π, q) ≤ infP D(f, fP ). Since D(f, fm) ≥ infP D(f, fP ), we conclude that

D(f, fm)↘ infP D(f, fP ).

Two remarks are in order. First, the integrability condition D(π∗s , qm) <∞ for some m ≥ 0 is

not especially strong. For example, assume there exists P ∗ which minimizes D(f, fP ) and has a

density p∗. Such a minimizer exists under a mild identifiability condition; see Lemma 3.1 of Kleijn

and van der Vaart (2006). Then D(π∗, qm) < ∞ for some m implies the required integrability

condition, where

π∗(x, θ) =
f(x)p∗(θ)k(x, θ)∫
p∗(θ′)k(x, θ′)dθ′

.
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Second, if Θ is compact and the minimizer P ∗ is unique, every subsequence of (pm) has a further

subsequence weakly converging to P ∗, so (pm) converges to P ∗.

It is also worth noting that the monotonicity property of Dm = D(f, fm) from the theorem

can be used to define a stopping rule. For example, one could terminate algorithm (3) when Dm

itself and/or the difference Dm −Dm−1 falls below a certain user–specified tolerance.

4 Smooth mixing density estimation

Suppose we observe X1, . . . , Xn as i.i.d. from a distribution with density f as in (1), and we wish

to estimate a smooth version of p. The nonparametric maximum likelihood estimator of p is known

to be discrete, so is not fully satisfactory for our purposes. One idea for a smooth estimate of p

is to maximize a penalized likelihood. The proposal in Liu et al. (2009) is to define a penalized

log–likelihood function

`(η) = n−1

n∑
i=1

log

∫
k(Xi, θ)e

η(θ) dθ − log

∫
eη(θ) dθ − λ

∫
[η′′(θ)]2 dθ,

where λ > 0 is a smoothing parameter, and η determines the mixing density

p(θ) =
eη(θ)∫
eη(θ) dθ

.

The right-most integral in the expression for `(η) measures the curvature of η, so maximizing `

will encourage solutions which are “less curved,” i.e., more smooth. An EM algorithm is available

to produce an estimate of η and, hence, of p. However, each iteration requires solving a non–trivial

functional differential equation.

Here we propose a more direct approach, namely, to use algorithm (3) with the true density f

replaced by, say, a kernel density estimate of f . For some h > 0, define the kernel estimate

fh(x) =
1

nh

n∑
i=1

φ

(
x−Xi

h

)
where φ(x) = exp(−1

2
x2)/
√

2π is the standard normal density function. The bandwidth h can be

selected in a variety of ways. One option is the traditional approach (Sheather and Jones (1991))

of minimizing asymptotic mean integrated square error, which gives h of order n−1/5. Another
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Figure 2: Mixing and mixture density estimates based on algorithm (3) with a kernel density plug-

in for the galaxy data. In Panel (b), solid line is the kernel estimate and dashed is the mixture

corresponding to the mixing density in Panel (b).

idea is to get the nonparametric maximum likelihood estimator P̂ of P , define the corresponding

mixture

f̂(x) =

∫
k(x, θ) dP̂ (θ)

and then choose the bandwidth ĥ = arg min d(fh, f̂), where d is, say, the L1 distance. Finally, our

proposal is to estimate p by running algorithm (3) with f replaced by f ĥ. Since f ĥ is smooth, so

too will be our estimate of p.

As a quick real–data illustration, consider the well–known galaxy data set, available in the

MASS package in R (R Core Team (2015)). We estimate the mixture density f with the Gaussian

kernel method described above, using the default settings in density. Then we estimate the

mixing density via the procedure just described above. In this case, we used 25 iterations of (3)

and the results are displayed in Figure 2. Panel (a) shows p25 from (3), and Panel (b) shows the

data histogram, the kernel density estimator (solid), and the mixture corresponding to p25. Both

densities in Panel (b) fit the data well, and the fact that the two are virtually indistinguishable

suggests that the density p in Panel (a) is indeed a solution to the mixture equation.

Next, for further investigation into the performance of the proposed mixing density estimation

procedure, we present some examples with simulated data. We start by considering a deconvolution

problem, where k(·, θ) is the normal density with mean θ and standard deviation σ = 0.05. Two
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mixing densities on the unit interval [0,1] are illustrated;

p1(θ) ∝ θ4(1− θ)4

p2(θ) ∝ φ

(
θ − 0.3

0.1

)
+ 2φ

(
θ − 0.7

0.1

)
.

With a sample of size n = 300, we first obtained a kernel density estimator fh, using the Gaussian

kernel, with bandwidth as in Sheather and Jones (1991), and then ran (3). As suggested above,

monotonicity of Dm = D(fh, fm) suggests a stopping rule, and we terminated the algorithm when

Dm − Dm−1 < 10−5. The number of iterations used were m = 8 for p1 and m = 14 for p2. The

estimates of the mixing and corresponding mixture densities are depicted in Figure 3. As can be

seen in the right figures, the fm and f̂ are indistinguishable; that is, Dm are effectively zero after

a few iterations.

Next, we consider scale mixtures of normal distributions where k(·, θ) is the centered normal

density with variance θ. For the mixing density, two well–known distributions on the positive real

line, the inverse-gamma and gamma densities, are considered, i.e.,

p1(θ) ∝ θ−3e−1/θ and p2(θ) ∝ e−5θ.

With a sample of size n = 300, the estimator of the mixing density is obtained as previously.

The number of iterations are m = 57 for p1 and m = 78 for p2, and the estimates of p and f are

illustrated in Figure 4. Although the density estimates, fh and fm, are close to the true f , there

are deviations between p and pm, in particular for the inverse–gamma case. This is mainly due to

the ill–posedness of the problem.

5 First passage time for Brownian motion

The second example is computing the stopping time density for Brownian motion hitting a bound-

ary function. For example, since Breiman (1966) there has been substantial interest in the first

passage time distribution of Brownian motion passing a square root boundary. To set the scene,

denote (B(t))t≥0 as standard Brownian motion started at 0, let h(t) : (0,∞)→ R be a continuous

function with h(0) > 0, the boundary function, and define

τ = inf{t > 0 : B(t) ≥ h(t)}.
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Then Peskir et al. (2002) provides an equation satisfied by the density p of τ , in particular,

1− Φ

(
h(t)√
t

)
= F (t)−

∫ t

0

Φ

(
h(t)− h(s)√

t− s

)
dP (s),

where Φ and P are the probability measures/cumulative distribution functions corresponding to

φ and p, respectively. This leads to a Volterra equation and Peskir et al. (2002) demonstrates

solutions when h is constant and linear. When h is increasing and concave and h(t) ≤ h(0) + b
√
t

then Peskir et al. (2002) proves that

P (t) = m(t) +

∫ t

0

R(t, s)m(s) ds

where

m(t) = 2− 2Φ

(
h(t)√
t

)
and R(t, s) =

∞∑
m=1

Km(t, s),

with

Km(t, s) =

∫ t

s

K1(t, r)Km−1(r, s) dr,

and

K1(t, s) =
1√
t− s

φ

(
h(t)− h(s)√

t− s

) (
2h′(s)− h(t)− h(s)

t− s

)
.

Clearly h(t) = a+ b
√
t meets the requirements for this result.

On the other hand, we can solve using (3) after setting up a suitable Fredholm equation for

h(t) increasing and bounded by a + b
√
t, but not necessarily concave. Define, for any x > 0, the

martingale

Xt = exp
{
xB(t)− 1

2
x2t
}
.

With θ = Ta,b = inf{t > 0 : B(t) ≥ a+ b h(t)} with a, b > 0, h(0) = 0 and h(t) ≤
√
t, we have that

Xt∧Ta,b is a martingale and, from the optional stopping theorem, that E(Xt∧Ta,b) = E(X0) = 1.

Now it is easy to show that Xt∧Ta,b ≤ exp{xa+ 1
2
b2h2(t)/t}, which is bounded and, hence, from

the dominated convergence theorem,

E(XTa,b) = lim
t→∞

E(Xt∧Ta,b) = E(X0) = 1.

Effectively, we are also using the result that Ta,b <∞ almost surely. Hence,∫
exp

{
xa+ xbh(θ)− 1

2
x2θ
}
p(θ) dθ = 1

13



which after some algebra yields the Fredholm equation∫ ∞
0

k(x, θ) p̃(θ) dθ = a e−xa = f(x), (8)

where k(x, θ) is the normal density with mean b h(θ)/θ and variance 1/θ, constrained on R+, and

a
√

2π e
1
2
b2h2(θ)/θ Ψ(−bh(θ)/

√
θ) p(θ) =

√
θ p̃(θ)

and Ψ(·) = 1− Φ(·). Now (8) can be readily solved by algorithm (3).

The approach here is closely related to work appearing in Valov (2009). This considers first

passage times which are almost surely finite and of the type τ = inf{t > 0 : B(t) ≤ bα(t) =

b(t) + α t}, where bα(t) > −c for some c > 0. While Valov (2009) constructs a Fredholm equation

using Girsanov’s theorem, as we do, this is quite different and each equation depends on the type

of boundary, whereas ours is always based on the half–normal and exponential distributions.

Here we demonstrate the algorithm for solving the Fredholm equation for the hitting time

density with a square root boundary; specifically a + b
√
t with a = 1 and b = 0.1. We start

with a grid of points θj = hj, where h = 0.05 and j = 1, . . . , 1000. The starting density is

p0(θ) = 0.01 e−0.01θ and at each iteration we evaluate pm(θj). Due to the ease of sampling from an

exponential density, we evaluate ∫ ∞
0

k(x, θj) f(x)

fm(x)
dx

using Monte Carlo methods, i.e.,

N−1

N∑
i=1

k(Xi, θj)

fm(Xi)

where the (Xi) are iid from the exponential distribution with mean 1/a, and we take N = 5000.

The fm(Xi) is evaluated using the trapezoidal rule using the p̃m(θj) values, so

fm(Xi) ≈
h

2

M∑
j=1

[k(Xi, θj−1) p̃m(θj−1) + k(Xi, θj) p̃m(θj)] ,

where θ0 = 0. Consequently, we have numerically,

p̃m+1(θj) = N−1

N∑
i=1

2 k(Xi, θj) p̃m(θj)

h
∑M

j=1 [k(Xi, θj−1) p̃m(θj−1) + k(Xi, θj) p̃m(θj)]
.

The estimated p(θ), obtained by transforming p̃(θ), is given in Figure 5, based on 200 iterations

of algorithm (3).
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Figure 5: Estimate of hitting time density for square root boundary

6 General Fredholm equation

Algorithm (3) can be applied to solve general Fredholm equations of the first kind, where f, p and

k(·, θ) are not necessarily probability density functions. Assume first that f, p and k(·, θ) in (1)

are non-negative functions, but not necessarily probability densities. Then equation (1) can be

rewritten as

f(x) =

∫
Θ

k̃(x, θ) q(θ) dθ,

where k̃(x, θ) = k(x, θ)/
∫
k(x, θ)dx and q(θ) = p(θ)

∫
k(x, θ)dx. Thus, the update (3) can be

replaced with

pm(θ) =
pm−1(θ)∫

X k(x, θ) dx

∫
X

k(x, θ) f(x)

fm−1(x)
dx, (9)

which was also considered in Vardi and Lee (1993). Here it is assumed that supx
∫
k(x, θ)dθ and

supθ
∫
k(x, θ) dx are both finite.

Next, assume that the solution p and f may not be necessarily non-negative functions. In this

case, instead of the original equation (1), we solve an equivalent non-negative equation

f̃(x) =

∫
Θ

k(x, θ) p̃(θ) dθ, (10)

where p̃(θ) = p(θ) + t, f̃(x) = f(x) + t
∫

Θ
k(x, θ) dθ, and t > 0 is a constant to be specified. Since
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k is non-negative, so are both f̃ and p̃ for a sufficiently large t. As illustrated below, the value of t

rarely affects the convergence rate in practice. Therefore, t can be chosen as a very large number.

Finally, assume that k is not necessarily non-negative, and write k = k+−k−, where k+, k− ≥ 0.

This case can also be solved by transforming the original equation to a non-negative one. For

convenience, assume that Θ = [0, 1], then the original equation (1) can be written as

f(x) =

∫ 1

0

k+(x, θ)p(θ)dθ −
∫ 1

0

k−(x, θ)p(θ)dθ.

Note that ∫ 1

0

k−(x, θ)p(θ)dθ −
∫ 2

1

k−(x, θ − 1)p(θ − 1)dθ = 0, (11)

and therefore, by adding the last two display equations, we have

f(x) =

∫ 1

0

k+(x, θ)p(θ)dθ +

∫ 2

1

k−(x, θ − 1){−p(θ − 1)} dθ.

Let

k̃(x, θ) =

 k+(x, θ) if θ ∈ [0, 1]

k−(x, θ − 1) if θ ∈ (1, 2]

and

p̃(θ) =

 p(θ) if θ ∈ [0, 1]

−p(θ − 1) if θ ∈ (1, 2],

then we have the Fredholm equation

f(x) =

∫ 2

0

k̃(x, θ)p̃(θ)dθ (12)

with a non-negative kernel, which can be solved as previously described.

Note that k̃ and p̃ may have discontinuities; but this does not cause any problem once (12)

has the unique solution. If there is another solution to (12), say p, and (11) is not satisfied, the

restriction of p on [0,1] may not be a solution of the original equation. In this case we may apply

another decomposition of k. In many examples, however, the simple approach (12) works well.

For illustration, consider the equation (1), where k(·, θ) is the normal density with mean θ and

standard deviation σ = 0.05, and p has both positive and negative components. In particular, we

consider two examples

p1(θ) = b2,5(θ)− b4,1(θ)

p2(θ) = b10,1(θ)− b1,10(θ),

16



where ba,b(·) is the density of Beta(a, b) distribution. In both cases, a transformed equation (10)

is solved with t = 50 and the results are illustrated in Figure 6. It can be easily seen that the

true solution and pm are nearly the same. Different values of t (5 × 10k with k ≤ 4) have been

tried, and in any case, the algorithm has been stopped in 10 iterations yielding nearly the same

solution.
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Figure 6: Illustration with a positive kernel k(x, θ) = φσ(x − θ) and general solutions p1(·) (top)

and p2(·) (bottom).
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Figure 7: Illustration with a general kernel k(x, θ) = φσ(x−θ)−φσ(x+θ) for p1(·) (top) and p2(·)

(bottom).
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Next, we consider a general kernel k(x, θ) = φσ(x− θ)− φσ(x+ θ) with σ = 0.05 and

p1(θ) = b2,3(θ)− b3,2(θ)

p2(θ) = b2,7(θ) + b3,4(θ)− 1,

where φσ(x) = φ(x/σ)/σ. The equations are solved by setting k+(x, θ) = φσ(x − θ), k−(x, θ) =

φσ(x + θ) and t = 50. For both examples, the algorithm stopped in 5 iterations. Results are

illustrated in Figure 7.

7 Conclusion

In this paper, we focused on an algorithm for solving Fredholm integral equations of the first kind,

its properties, and some applications. For the mixing density estimation application described in

Section 4, we did not address the question of whether the estimate based on plugging in a kernel

density estimator for f in (3) would be consistent in the statistical estimation sense. The predictive

recursion method of Newton (2002) can also quickly produce a smooth estimator of the mixing

density, and it was shown in Tokdar et al. (2009) and Martin et al. (2009) that the estimator is

consistent, but non-standard arguments are needed because of its dependence on the data order.

We are optimistic that the estimator described in Section 4, through the simple formula (3) for

the updates, and the well-known behavior of the kernel density estimator, can have even stronger

convergence properties than those demonstrated for predictive recursion.

In Section 5 we were able to extend the class of boundary function for which the hitting time

density can be solved using a novel Fredholm equation. Future work would consider upper and

lower boundaries. Section 6 we were able to extend the basic algorithm, which was set up for

density functions, to non–negative functions.

SUPPLEMENTAL MATERIALS

Rcpp code: It contains code to perform the iterative algorithm proposed in this paper and

numerical experiments.
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