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Abstract

Outlier detection is an inevitable step to most statistical data analyses. However,
the mere detection of an outlying case does not always answer all scientific questions
associated with that data point. Outlier detection techniques, classical and robust
alike, will typically flag the entire case as outlying, or attribute a specific case weight
to the entire case. In practice, particularly in high dimensional data, the outlier will
most likely not be outlying along all of its variables, but just along a subset of them.
If so, the scientific question why the case has been flagged as an outlier becomes of
interest. In this article, a fast and efficient method is proposed to detect variables
that contribute most to an outlier’s outlyingness. Thereby, it helps the analyst un-
derstand why an outlier lies out.
The approach pursued in this work is to estimate the univariate direction of maximal
outlyingness. It is shown that the problem of estimating that direction can be rewrit-
ten as the normed solution of a classical least squares regression problem. Identifying
the subset of variables contributing most to outlyingness, can thus be achieved by
estimating the associated least squares problem in a sparse manner. From a prac-
tical perspective, sparse partial least squares (SPLS) regression, preferably by the
fast sparse NIPALS (SNIPLS) algorithm, is suggested to tackle that problem. The
proposed methodology is illustrated to perform well both on simulated data and real
life examples.

Keywords: partial least squares, robust statistics, sparsity, variable selection

∗This work was supported by the BNP Paribas Fortis Chair in Fraud Analytics and Internal Funds KU
Leuven under Grant C16/15/068. We thank Dries Cornilly for his constructive comments.

1

http://arxiv.org/abs/1708.03761v1


1 Introduction

Statistical analysis usually encompasses a step in which outliers need to be processed.

What happens to them, depends on the application. Potentially, one is only interested in

fitting a model for the bulk of the data, in which case outlier removal fits the purpose,

given the outliers have correctly been detected. However, often one would like to know

more about these outliers: are they manual errors or measurement errors, or are they just

extreme values occurring naturally? Possibly even the outliers belong to separate clusters

in the data, previously unassumed? As data dimensions increase, it becomes more likely

that outliers of any of these natures will be predominantly outlying only with respect to a

subset of the variables they consist of. Ample methodology exists to detect outliers. In this

article, methodology will be developed to analyze why outliers lie out, given they have been

detected by an appropriate statistic. Consider detection of transfer fraud as an example

where the methodology proposed in this article, can have a great practical advantage. Fraud

detection is all about outlier detection: typically only few transactions out of a vast number

are fraudulent. Therefore, the outliers are the cases of highest interest. Once fraudulent

transactions have been detected, one wants to investigate in which way these transactions

are suspicious. A method that explains a fraudulent transaction’s outlyingness, can speed

up that analysis significantly, or even automate it.

The aim of nonrobust, or classical statistical methods, such as maximum likelihood or

least squares techniques, is to optimally fit an assumed model to all observations in the data.

However, real data often contain outliers, i.e. observations that deviate from the assumed

model. In their presence, classical methods may become unreliable. Therefore, robust high-

breakdown methods have been developed that are not heavily influenced by outliers. These

robust alternatives can still reliably estimate the parameters of the postulated model, while

a minority (i.e. less than 50%) of the data are allowed to deviate arbitrarily far from this

model. As an additional benefit, one can detect the outliers as the observations that deviate

substantially from the robust fit (Rousseeuw and Leroy, 1987). Note that the outliers are

often not detected using the classical fit, since this fit itself is also influenced by these

atypical observations, an effect known as masking. Moreover, the effect of the outliers on

a nonrobust fit can be so large that some regular observations may appear to be outlying,
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which is called swamping (Davies and Gather, 1993).

Nowadays, many robust statistical methods are available that are able to detect outliers

in multivariate data, both in high and low dimensions (Maronna et al., 2006). Popular

robust mean and covariance estimators are, for example, the MCD estimator (Rousseeuw,

1984; Rousseeuw and Van Driessen, 1999), S-estimators (Rousseeuw and Leroy, 1987) and

τ -estimators (Lopuhaä, 1991). When the dimension exceeds the sample size, one can use the

OGK estimator (Maronna and Zamar, 2002) or the MRCD estimator (Boudt et al., 2017).

Alternatively, a robust PCA method (e.g. Hubert et al. (2005); Croux and Ruiz-Gazen

(2005)) can be applied to detect outliers.

It is important to note that the detected outliers are not necessarily errors in the data.

The presence of outliers may reveal that the data is more heterogeneous than previously

assumed and also more heterogeneous than what could be handled by the original statis-

tical model. Outliers can be isolated or may come in clusters, indicating that there are

subgroups in the population that behave differently. Sometimes outliers can even be the

most interesting cases in the entire sample. Robust analysis can provide a better insight

in the structure of the data and reveal structures in the data that would remain hidden in

a classical analysis.

The robust estimation methods described above, as well as outlier detection techniques

based on classical statistics, typically flag entire cases as outliers. In reality, outliers may

only be outlying with respect to a small subset of the variables they consist of. A question

that, up to our knowledge, remains unanswered in the robust statistical literature, is the

following: once an outlier has been detected in a multivariate data set, how can the subset

of variables that contribute most to its outlyingness be identified? Some outliers may be

deviating along all of the variables, whereas other outliers may only deviate along just a few

of them. Robust statistics treat such outliers in exactly the same way: they down-weight

the entire observation. However, if an outlier is only deviating along some variables, it

might be more useful to only adjust the atypical values in these variables. In this way, the

non-contaminated and potentially valuable information in the other variables is retained.

This has become more important in recent years since technical advances have led to the

availability of (very) high-dimensional data sets. For instance in genetics, it is perfectly
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reasonable that an observation deviates from the majority of data points only for a few

genes, not for all of them. Obviously, finding this subset of genes would be of high practical

interest. Note that in practice, this would imply finding a subset of a few out of several

hundreds of thousands of genes. Similar examples can be found in climatology, geology,

neurology, process and analytical chemistry, economics and finance, among others. This

extra information may be very interesting and useful for gaining insight in the data. By

studying the selected variables, one can explain why a certain outlier is deviating from the

pattern of the majority of the observations.

In order to investigate an outlier’s outlyingness, consider the following problem: given a

multivariate data set X = (x1, . . . ,xn)
T and the fact that observation xi ∈ R

p is an outlier

with large outlyingness, find the subset of variables contributing most to the outlyingness

of xi. This problem is akin to variable selection, with the objective of determining those

variables contributing most to outlyingness instead of to predictive power. A simple idea to

find relevant variables is to check the univariate direction in which the observation is most

outlying. In Section 2, it is shown that the problem of estimating this direction of maximal

outlyingness can be rewritten as the normed solution of a classical least squares regression

problem. The proofs of the propositions found there, are given in Appendix A. Thanks

to this result, identifying the subset of variables that contribute most to outlyingness

becomes a variable selection problem: investigating the direction of maximal outlyingness

is equivalent to investigating the vector regression coefficients of the associated regression

problem. Therefore, any widely accepted method for variable selection can be applied to

this associated regression problem, ranging from visual inspection of normalized regression

coefficients to application of sparse estimation procedures. The latter may be preferable

in automated analyses, yet one should keep in mind that these methods still depend on

the selection of a sparsity parameter. Various methods exist that allow to estimate the

vector of regression coefficients in a sparse way: the lasso (Tibshirani, 1996) or the elastic

net (Zou and Hastie, 2005), for instance, would be suitable to accomplish this task. In

this article, however, it is suggested to apply sparse partial least squares (SPLS) regression

(Chun and Keleş, 2010) for these purposes. It has the advantage that a single model

component suffices to detect the relevant variables specifically for the outlyingness problem,
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which is illustrated in the simulation study reported in Section 5. Moreover, thanks to

the univariate nature of the regression problem, SPLS can be calculated by the sparse

NIPALS (SNIPLS) algorithm (as first described by Hoffmann et al. (2016)), which has

the advantage of using exact PLS solutions instead of the numerical optimization applied

in (Chun and Keleş, 2010). Both of these advantages make the SNIPLS algorithm up to

our knowledge the computationally most elegant and efficient way to search for variables

contributing to outlyingness in individual cases. Computational efficiency is an important

positive property, since this method will realistically be applied to every single outlying

case of the data.

The article is organized as follows. In Section 2, the direction of maximal outlyingness is

defined, and its alternative formulation as a least squares regression problem, is introduced.

Section 3 outlines how to search for variables contributing to outlyingness by estimating the

regression coefficients of the corresponding regression problem through SNIPLS. Section 4

describes several graphical tools as well as an automatic approach for selecting the optimal

value for the sparsity parameter. In Section 5, the validity of the approach is illustrated in

an extensive simulation study. In Section 6, the method is applied to real life data. Finally,

Section 7 concludes.

2 Outlyingness as a regression problem

Let X = (x1, . . . ,xn)
T be an n × p data matrix with xi = (xi1, . . . , xip)

T and Xj =

(x1j , . . . , xnj)
T respectively the ith row and the jth column of X (note that both are

column vectors). Denote by µ̂r and Σ̂r robust estimates of location and scatter for X.

One can then compute the squared robust Mahalanobis distance for every point x ∈ R
p as

m(x; µ̂r, Σ̂r)
2 = (x− µ̂r)

T Σ̂−1
r (x− µ̂r) . (1)

These robust Mahalanobis distances measure the distance between point x and the robust

center taking into account the covariance structure of the data.

For fat data (i.e. p > n), the sample covariance matrix is not existing (since some of

its eigenvalues will be zero) and many robust alternatives (such as the MCD estimator)

can not be computed. Note that the OGK estimator (Maronna and Zamar, 2002), the
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MRCD estimator (Boudt et al., 2017) and the robust precision matrix (i.e. inverse of the

scatter matrix) of Öllerer and Croux (2015) can still be used. As an alternative, one can

also use a robust principal component analysis (PCA) method (e.g. Hubert et al. (2005);

Croux and Ruiz-Gazen (2005)), to obtain a spectral decomposition of the covariance matrix

as PLP T where P and L respectively contain the eigenvectors and eigenvalues of the

covariance matrix.

Based on these distances, a weight wi can then be assigned to each observation xi,

indicating whether the observation is outlying or not. Under the assumption of mul-

tivariate normal data, squared Mahalanobis distances are asymptotically χ2
p distributed

(Bibby et al., 1979). Therefore, weights for each observation are often obtained as follows:

wi =







1 if m(xi; µ̂r, Σ̂r)
2 ≤ χ2

p,0.975

0 otherwise
. (2)

Note that other weight functions can of course be used and let
∑n

i=1wi = nw. These

weights can then be used to compute a weighted mean and weighted covariance matrix:

µ̂w =
1

nw

n
∑

i=1

wixi, (3)

Σ̂w =
1

nw − 1

n
∑

i=1

wi(xi − µ̂w)(xi − µ̂w)
T . (4)

The outlyingness of a point x ∈ R
p is defined as the robust Mahalanobis distance using

the weighted mean and weighted covariance matrix:

o(x)2 = m
(

x; µ̂w, Σ̂w

)2

= (x− µ̂w)
T Σ̂−1

w (x− µ̂w) . (5)

The following proposition is well known in the unweighted case. In Appendix A.1, it is

proven that it also holds in the weighted case.

Proposition 2.1. The outlyingness of any point x ∈ R
p can be expressed as the solution

of a maximization problem as follows:

o(x) = max
a∈Rp,‖a‖=1

|xTa− µ̂T
wa|

√

aT Σ̂wa
. (6)

and the direction a that maximizes the right-hand side of the above equation, is equal to

a =
Σ̂−1

w (x− µ̂w)

‖Σ̂−1
w (x− µ̂w)‖

.
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This can be interpreted as searching for the direction a such that the distance between

the projected point xTa and the projected weighted mean µ̂T
wa, standardized by a measure

of spread of the projected observations, is maximal. The direction for which the maximum

in proposition 2.1 is attained, is the direction of maximal outlyingness for point x and

will be denoted by a(x). This direction of maximal outlyingness is potentially interesting,

because its coefficients reflect how individual variables contribute to the outlyingness of a

point.

The direction of maximal outlyingness can alternatively be expressed as a normalized

least squares problem.

Theorem 2.2. Let x be an arbitrary point in R
p and ε ∈ R with ε > 0. Denote yw,ε = en+1

with en+1 the (n + 1)th basis vector in R
n+1 containing 1 at component (n + 1) and 0

elsewhere. Let nw,ε = nw + ε and

µ̂w,ε =
1

nw,ε

(

n
∑

i=1

wixi + εx

)

.

Let Xw,ε = (
√
w1(x1− µ̂w,ε)

T , . . . ,
√
wn(xn− µ̂w,ε)

T ,
√
ε(x− µ̂w,ε)

T )T , the weighted data to

which the row
√
ε(x− µ̂w,ε)

T is added, centred around the robust location estimate. Then

a(x) = lim
ε→0

θε

‖θε‖
, with θε = argmin

β∈Rp

‖yw,ε −Xw,εβ‖2. (7)

For proof of Theorem 2.2, the reader is referred to Appendix A.2. Note that the

definition of a(x) as a limit for ε → 0 also holds when x ∈ {x1, . . . ,xn}, in which case

a(xi) =
θ

‖θ‖ , with θ = argmin
β∈Rp

‖yw −Xwβ‖2.

where yw is the ith basis vector in R
n and Xw = (

√
w1(x1 − µ̂w)

T , . . . ,
√
wn(xn − µ̂w)

T )T .

Many robust estimators will assign exact zero case weights to outliers far away from the

data centre. Note that if our case of interest is assigned a zero weight (wi = 0), then this

can be circumvented by replacing the zero weight by a very small weight (e.g. 0.0001).

This is equivalent with adding observation i to the data matrix X and assigning it a small

weight ε.

Owing to Theorem 2.2, outlyingness can be estimated by calculating the vector of

regression coefficients β in this problem. Different regression estimators can now be plugged
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in to estimate β, and as such, outlyingness. The most straightforward choice for a plug in

regression estimate is least squares regression. Interpreting which variables contribute most

to outlyingness, can then be done by examining the absolute magnitude of the standardized

least squares regression coefficients. In practice, however, this can be a tedious process and

is challenging to incorporate in an automated procedure.

Moreover, least squares regression has several important drawbacks. At first, when

the number of variables exceeds the sample size, the least squares fit is not well defined

and cannot be calculated. Another problem frequently encountered in practice is mul-

ticollinearity. Even when some regressors are nearly collinear, it is well known that the

results obtained from least squares become unstable. Moreover, least squares regression is

not sparse, which implies that it typically yields a set of regression coefficients with very few

non-zero elements, or none at all. As dimensions increase, this complicates interpretation

and is challenging to automate. How to go about these issues, will be discussed in the next

Section.

3 Sparse direction of maximal outlyingness

In order to obtain an estimate of the direction of maximal outlyingness that can (i) easily

be interpreted and (ii) from which automatically the non-zero elements can be selected, a

regression plug-in estimate should be applied to Equation (7), that has the capability to

produce a sparse vector of regression coefficients. Plenty sparse regression estimators have

been described in the literature. These estimators all have in common that they can yield

sparse regression coefficients by including a term in their respective objective functions that

puts a penalty on the norm of these regression coefficients. The idea of such a penalization

goes back to ridge regression (Hoerl and Kennard, 1970), where an L2-penalty term on

the Euclidean norm of the parameter vector is imposed. This effectively solves ill-posed

problems in least squares regression, such as the ones discussed at the end of the previous

Section.

Applying ridge regression to estimate the vector of regression coefficients β in (7),

actually yields an entire path of regularized directions of maximal outlyingness as follows:
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Definition 3.1. A path of regularized directions of maximal outlyingness a(λ,xi) is defined

by

a(λ,xi) =
θ(λ)

‖θ(λ)‖ , with θ(λ) = argmin
β∈Rp

{

‖yw −Xwβ‖2 + λ

p
∑

j=1

β2
i

}

, (8)

Once the path a(λ,xi) is obtained, the objective is to select a subset of k variables

contributing most to the outlyingness.

Ridge regression, however, does not yield a set of regression coefficients with a subset of

elements exactly equal to zero. Since it cannot produce parsimonious models, alternative,

sparse plug-in regression estimators have to be considered. Tibshirani (1996) has proposed

the LASSO which uses L1-norm regularization to effectively shrink many parameter esti-

mates to zero and hence perform an intrinsic variable selection. Other penalty methods

that yield sparse models can be applied as well, e.g. the SCAD penalty (Fan and Li, 2001),

the minimax concave penalty (Zhang et al., 2010), the adaptive lasso (Zou, 2006) or the

Dantzig selector (Candes and Tao, 2007). The elastic net (Zou and Hastie, 2005) combines

the lasso and ridge penalties to obtain a method that can provide sparse model estimates

in the presence of multicollinearity. Among these methods, the LASSO is one of the most

frequently applied techniques.

Using the LASSO as a plug-in estimate into Equation (7), actually corresponds to a

path of sparse (and still regularized) directions of maximal outlyingness:

Definition 3.2. A path of sparse directions of maximal outlyingness a(λ,xi) is defined by

a(λ,xi) =
θ(λ)

‖θ(λ)‖ , with θ(λ) = argmin
β∈Rp

{

‖yw −Xwβ‖2 + λ

p
∑

j=1

|βi|
}

. (9)

This path of sparse directions of maximal outlyingness tackles the issue with inter-

pretability of the direction of maximal outlyingness. Yet from a computational perspective,

it can still be burthensome. Recall that the procedure should be applied to every single

outlying case in a data set. In order to have both the benefits of interpretability (many

non-zero elements) and computational elegance, the approach pursued in this work is to

combine dimension reduction and a penalty term. This is accomplished by applying sparse

partial least squares (SPLS) regression (Chun and Keleş, 2010) as the plug-in regression

estimate into Equation (7). Should one plug in SPLS with a maximal number of latent
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variables, then this approach becomes very similar to scanning a LASSO based path such

as defined in Equation (9). Yet the elegance SPLS offers over the other methods, is that it

can actually be applied with fewer, or just one, latent variable, without losing interpretative

power. Application of SPLS with few latent variables is computationally very efficient and

yields good and reliable results for high-dimensional data in practice.

The reason why SPLS performs well in this context, can be interpreted reflecting on

how PLS and its sparse counterpart have been conceived. Partial least squares regression

(PLS) is a regression method developed in the 1960s (Wold, 1966) that is particularly

suited to model data where the number of variables exceeds the number of cases, as well

as multicollinear data. PLS thanks these properties to its implicit dimension reduction

step, wherein it typically decomposes the original data X ∈ R
n×p onto a subset of h << p

latent variables T . The latent variables are defined according to a criterion that maximizes

covariance with the predictand, which ensures that the latent variables capture a maximal

amount of information in the data relevant for prediction.

The regression problem to estimate outlyingness is particular in the sense that the

dependent variable is the unit vector in the n dimensional space, which only has one

nonzero entry in the cell that corresponds to the outlying case. Therefore, one can assume

that few partial least squares components should be able to capture all variance in the data

relevant for predicting this atypical y vector. It is not unreasonable to expect that a single

PLS component will always capture a sufficient amount of information for the particular

task of outlyingness estimation. This assumption has in fact been corroborated in the

course of establishing the results presented in the simulation study (Section 5).

Partial least squares has the drawback, however, that it is non-sparse, which implies

that the vector of regression coefficients will only seldomly have nonzero entries. One

could put a threshold on the absolute magnitude of the individual coefficients to determine

which variables contribute most to outlyingness. However, sparse partial least squares

offers a more elegant alternative, yielding a model consistent estimate for the vector of

regression coefficients that is based on a PLS-alike dimensionality reduction on the one

hand, but also consistently has a subset of nonzero entries thanks to a sparsity penalty η

being imposed to the weighting vector (as long as η > 0). Here, η ∈ [0, 1) plays the role
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of the sparsity parameter and was introduced by Chun and Keleş (2010) to facilitate the

parameter selection since the range of η is known.

Sparse partial least squares regression has two drawbacks: on the one hand, its intrinsic

minimization may be time consuming, and secondly, it depends on two parameters to

be optimized: the sparsity parameter and the number of latent variables. Owing to the

univariate nature of the predictand, the former drawback can be avoided by applying the

sparse NIPALS (SNIPLS) algorithm instead of the algorithm described in the original

paper by Chun and Keleş (2010). For a univariate predictand, the SNIPLS algorithm is

equivalent to the SPLS algorithm, but it is significantly more efficient from a computational

perspective. The SNIPLS algorithm was published as an internal subroutine used in the

construction of the SPRM-DA classifier (Hoffmann et al., 2016), and is also used as an

internal step for computing SPRM regression (Hoffmann et al., 2015).

In what follows, it will be described how to select the optimal sparsity parameter.

4 Determining the optimal SPLS sparsity parameter

The optimal sparsity parameter η is the value for which the minimal number of variables

is selected, such that the reduced case (i.e. the observation after removing those selected

columns from the data set) is no longer outlying (in the lower dimensional feature space).

This optimal SPLS parameter combination has to be determined from the data. For η = 0

the model is estimated including all variables and for η close to 1, almost all variables are

equal to zero. Therefore, typically a grid of values for η ∈ [0, 1) is searched. In Subsection

4.1, an automatic approach to determine the optimal η is described, which leads up to the

SPADIMO algorithm (SPArse DIrections of Maximal Outlyingness). In Subsection 4.2, two

graphical tools are presented that give more insight about the selection of the parameter

η.

4.1 SPADIMO procedure

The approach followed by the authors is the following. From the perspective of the number

of variables retained, SPLS converges from none (or some) to all variables in two dimensions:
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when keeping η constant, increasing h will eventually yield a model with nonzero entries for

all variables. Likewise, a model with constant h will eventually use all predictors available

as η approaches zero. Based on the conjecture that an SPLS model with one latent variable

should be able to capture all variance in the data relevant to predict a unit vector, it is

plausible to fix the SPLS number of latent variables to one, and then screen η in a given

range from high to low. This order of proceeding will make sure that in the first iteration,

the most sparse estimate is constructed, based on none to just a few of the original set of

variables.

It then becomes a good question at which value of η to terminate the algorithm. For

that purpose, consider the following remark. If the case consisted entirely of cells that

fall within the bulk of the data, it would not be flagged as an outlier. Therefore, it

makes sense to proceed as follows: for each η, compute an SPLS regression estimate (with

h=1) determining a subset of variable(s) contributing to outlyingness. Then, replace the

cells in the outlier corresponding to those variables by missing values, and estimate the

case’s outlyingness. In order to be able to estimate the outlyingness, the missing values

need to be removed from the data. A viable way to do this is by omitting the entire

columns corresponding to those variables that have already been detected as contributors

to outlyingness. After applying a robust estimator for location and scale on this data (or

robust PCA) one calculates the weights as in formula (2) and then obtain a weighted mean

and weighted covariance matrix as in equations (3) and (4). The outlyingness can then be

calculated using formula (5).

If it is still flagged as an outlier, proceed to the next value of η and re-estimate the SNI-

PLS model on the original data set, determine which variables contribute to outlyingness,

and check if the observation is still an outlier. Repeat this procedure until the case is no

longer outlying. The procedure, called SPADIMO, is outlined in Algorithm 1.
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Algorithm 1: SPADIMO (Sparse Direction of Maximal Outlyingness

Estimation)

Let X denote the data matrix (dimension n×p) and w be a vector of case weights

obtained from a given robust outlier detection procedure. Let L = [ℓ1, ℓ2] be a

grid of values within [0, 1].

From these data, first standardize X to Z by subtracting a robust estimate for

location (e.g. weighted mean or columnwise median) and dividing by robust scale

estimate (e.g. columnwise Qn scale estimator of Rousseeuw and Croux (1993)). If

the weight wi of the observation to which we want to apply our method, is equal to

zero, then replace that weight by a very small weight (e.g. 0.0001). Then construct

Zw = (
√
w1z

T
1 , . . . ,

√
wnz

T
n )

T and yw as outlined in Section 2. Set Z(η) = Zw to

start the algorithm. Decreasing from ℓ2 to ℓ1, for each η ∈ L:

• Obtain bη, the sparse PLS vector of regression coefficients regressing Z(η)

on yw at h = 1.

• Determine v = {j : bη,j 6= 0}, the subset of variable(s) contributing to

outlyingness.

• Update Z(η) = Z(η) \ {Zv}, with Zj denoting the jth column of Z.

• Compute o(z
(η)
i ), where z

(η)
i denotes the ith row of Z(η)

Stop the algorithm if o(z
(η)
i )2 < χ2

α,q, where α denotes the required χ2 significance

level and q denotes the number of remaining columns of Z(η).

The algorithm is sensitive to the initial choice of L. Reasonable values for L will be pro-

vided from the simulation study. It is strongly advised not to scan the entire range [.01,.99],

which may cause the algorithm to break off either too early or too fast. Besides, note that

the approach suggested in the SPADIMO algorithm could be applied similarly using an-

other sparse regression estimate such as the LASSO, at the cost of increased computational

complexity.
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4.2 Graphical tools

Since the SNIPLS algorithm is computationally very efficient, the sparse PLS vector of

regression coefficients can easily be obtained for a whole grid of values for η. The optimal

η can then be selected by analyzing figures which show the number of flagged variables for

each grid value, and studying how the sparsity of the direction of maximal outlyingness

changes depending on the sparsity parameter. A simple example is presented to illustrate

these graphical tools.

Figure 1 considers 50 points generated from a bivariate normal distribution with cor-

related standard normal components. One outlier (51) is put at position (10, 0). By

construction, the first variable contributes most to the large outlyingness of case 51. Next

28 independent standard normal noise variables are added to this data set. By construction

the first variable is still the only variable for which case 51 is outlying.

−2 0 2 4 6 8 10

−
6

−
4

−
2

0
2

4
6

X1

X
2

51

Figure 1: Data set with one outlier and 28 noise variables.

The MCD estimator is used to obtain weights for each observation and then SPADIMO

is applied on case 51 with η belonging to the grid {0.1, 0.15, . . . , 0.9}. For small values

of η the direction of maximal outlyingness becomes less sparse, whereas it contains more

zero components when η is close to 1. Figure 2 shows the number of variables that are

flagged as outlying by SPADIMO for different values of η and is akin to a screeplot. For

η ∈ {0.3, . . . , 0.9}, SPADIMO identifies one outlying variable while several variables are

14



flagged for η < 0.3. The screeplot can be used to select the number of variables that

contribute most to the outlyingness of the outlier. This can be achieved by identifying

an interval for η for which the number of flagged variables remains more or less constant.

Based on Figure 2, we would indeed select only one variable.
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Figure 2: Number of flagged variables versus sparsity parameter. The result of the auto-

matic approach to determine an optimal η, as described in Section 4.1, is indicated by the

red triangle (η = 0.15 and 8 variables are flagged).

Figure 3 shows how the sparse direction of maximal outlyingness changes depending

on η. The flagged variables correspond with the nonzero components of this direction.

Figure 3 is a heatmap wherein positive components (i.e. SPLS regression coefficients) are

coloured red and negative components are in blue. This reflects whether the variable is

respectively outlying upwards or downwards. The first variable is clearly identified as

causing the outlyingness of observation 51 since it is the only nonzero component for

η ∈ {0.3, . . . , 0.9}. For very small values of η, e.g. 0.15, we see that there are other

nonzero components, however they are very small (in absolute value) compared to the first

one and thus their contribution to the outlyingness is clearly negligible. Both the screeplot
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and the heatmap are graphical tools to enhance the interpretation when analyzing outliers.
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Figure 3: Estimated sparse direction of maximal outlyingness for different values of η.

5 Simulation Study

In this Section, the performance of SPADIMO using artificial data, is investigated. Since

the results of various settings considered led to similar results and conclusions, only a part

of our extensive simulation study is reported here.

Data generation setup. In the simulation experiment, 1000 data sets of size n were

generated from a p-variate gaussian distribution, with n × p taken as either 500 × 50,

200× 200, 50× 500 or 50× 5000.

The correlation matrices were generated randomly following Agostinelli et al. (2015),

henceforth ALYZ, to ensure that the performance is not tied to a particular choice of

correlation matrix. The ALYZ random correlation matrices yield relatively low correlations

between the variables and therefore Rousseeuw and Van den Bossche (2017) proposed the

A09 correlation matrices, given by ρjh = (−0.9)|h−j|. These matrices yield both high and
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low correlations.

To contaminate the data sets, one observation is consecutively replaced by an outlier.

In order to test the efficiency of the SPADIMO algorithm at detecting individual variables

that contribute to the outlier’s outlyingness, it is of course imperative that the outliers

generated are only outlying along a subset of the variables. In order to create outliers

along a few of their variables, the strategy from Rousseeuw and Van den Bossche (2017) is

adopted and we randomly replace ⌈εp⌉ of its variables by a value γ, which was varied to

study its effect. In this study, the fraction of ε is set to either 5%, 10% or 25%.

Evaluation setup. For each generated data set, SPADIMO was run on the contaminated

observation with η starting at 0.9 when n >> p and starting at 0.6 otherwise. These starting

values are derived from the extended simulation study. Using these values, the number of

variables that are flagged by SPADIMO were always very close to the real number of cells

that have been contaminated.

In a simulation study one needs performance measures in order to evaluate the per-

formance of the method. Therefore, the measures itemized below are calculated and the

average values over 1000 simulation runs are reported in Tables 1 and 2. Note that all

results reported correspond to SNIPLS estimates using a single component, since using

more components did not improve the results significantly (see the Appendix B for the

simulation results obtained using two components instead of a single one).

• # flagged: How many variables are flagged as outlying.

• detected: How many of the outlying variables are detected (in %; optimal value is

100).

• swamped: How many good variables are flagged as outlier (in %, optimal value is 0).

• η: optimal value of η that is used.

Discussion of results. It can be seen that the average detection rate is always very close

to 100%, which implies that SPADIMO is able to detect almost all contaminated variables.

This does not come at the expense of wrongly flagging clean variables, since the swamping
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5% 10% 25%

γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5

500× 50, A09

# flagged 3.585 3.381 3.402 5.558 5.367 5.377 13.455 13.289 13.292

detected (%) 99.800 100.000 100.000 99.760 100.000 100.000 99.808 100.000 100.000

swamped (%) 1.257 0.811 0.855 1.267 0.816 0.838 1.297 0.781 0.789

η 0.872 0.863 0.855 0.864 0.856 0.850 0.842 0.839 0.835

200× 200, A09

# flagged 19.177 12.468 11.309 27.959 22.154 21.145 56.019 51.601 50.894

detected (%) 99.950 100.000 100.000 99.990 100.000 100.000 100.000 100.000 100.000

swamped (%) 4.833 1.299 0.689 4.423 1.197 0.636 4.013 1.067 0.596

η 0.599 0.592 0.582 0.599 0.591 0.581 0.598 0.590 0.581

50× 500, A09

# flagged 38.195 32.118 31.866 59.717 55.920 56.284 130.329 129.172 130.129

detected (%) 94.964 97.360 98.140 93.826 97.208 98.176 95.230 98.131 99.006

swamped (%) 3.043 1.637 1.543 2.845 1.626 1.599 3.011 1.735 1.699

η 0.584 0.552 0.521 0.574 0.538 0.506 0.543 0.506 0.477

50× 5000, A09

# flagged 265.507 254.148 254.747 503.546 504.376 504.480 1275.086 1258.361 1256.832

detected (%) 80.701 92.761 95.890 86.320 95.810 97.999 94.981 98.594 99.360

swamped (%) 1.342 0.468 0.316 1.599 0.563 0.322 5.019 1.406 0.640

η 0.576 0.544 0.516 0.544 0.508 0.482 0.488 0.462 0.438

Table 1: Results with A09 data.

rate remains low, illustrating the very good performance of the proposed methodology

and the automatic SPLS parameter selection. The results are slightly less overwhelming

when the number of variables far exceeds the number of cases (p >> n), but even for

data of dimension 50× 5000, still at least 80% of the outlying cells are detected, while the

swamping rate remains well below 5%. Note that there is of course a trade-off between

these performances and the value of η. Depending on the application, it might be more

important to detect at least all the variables contributing to the outlyingness (i.e. small

η), while accepting a few too many; or perhaps one only wants to flag the most important

variables and certainly not too much (i.e. large η). The graphical tools described in Section

4.2 may certainly be helpful to make a decision. This effect can also be tuned by using

different starting values for η. Deriving from the extended simulation study that led up to

the results reported here, we recommend to start at 0.9 when n >> p and at 0.6 otherwise.

Note that the optimal value of η is very close to the suggested starting value. Furthermore,

the performance is similar when using ALYZ or A09 for generating the correlations, which
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5% 10% 25%

γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5

500× 50, ALYZ

# flagged 3.389 3.238 3.250 5.296 5.194 5.215 13.023 13.067 13.135

detected (%) 97.400 99.567 99.967 97.240 99.400 99.920 97.685 99.385 99.908

swamped (%) 0.994 0.534 0.534 0.964 0.498 0.487 0.876 0.397 0.397

η 0.879 0.868 0.858 0.873 0.862 0.852 0.856 0.846 0.837

200× 200, ALYZ

# flagged 18.589 11.940 10.610 27.452 21.586 20.515 55.714 51.256 50.52

detected (%) 99.970 100.000 100.000 99.980 100.000 100.000 99.984 100.000 100.000

swamped (%) 4.522 1.021 0.321 4.142 0.881 0.286 3.815 0.837 0.347

η 0.600 0.598 0.589 0.600 0.598 0.588 0.600 0.595 0.584

50× 500, ALYZ

# flagged 34.858 27.442 26.260 55.970 51.432 51.051 126.920 126.042 125.941

detected (%) 93.880 97.668 98.756 92.794 97.316 98.534 94.658 98.523 99.328

swamped (%) 2.397 0.637 0.331 2.127 0.616 0.396 2.293 0.770 0.475

η 0.594 0.578 0.556 0.586 0.564 0.537 0.552 0.519 0.492

50× 5000, ALYZ

# flagged 256.918 248.166 247.305 503.867 501.135 498.420 1273.590 1256.568 1250.408

detected (%) 79.974 93.925 97.304 87.204 96.915 98.749 95.161 98.905 99.600

swamped (%) 1.200 0.281 0.085 1.508 0.368 0.104 2.242 0.540 0.144

η 0.575 0.549 0.524 0.541 0.511 0.489 0.486 0.463 0.446

Table 2: Results with ALYZ data.

indicates that the methodology works for both highly and moderately correlated data. For

a data set of dimension 50×5000, it takes less than 3 seconds to run SPADIMO for a single

case, while it takes around a second or even less for data sets with few dimensions. The

required resources were measured on an Intel Core i5 with 2.7 GHz and 8 GB RAM.

6 Examples

6.1 Top Gear Data

The data for the first example were taken from the website of the popular British television

show Top Gear by Alfons (2012). It consists of 297 cars quantified in 32 variables, but as in

Rousseeuw and Van den Bossche (2017), we will only focus on the 11 objectively measured

numerical variables. Five of these variables (such as top speed) were logarithmically trans-

formed first, since they were skewed. Moreover, 52 cars with missing values are omitted,
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resulting in a data set with 245 observations and 11 variables.
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138
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130
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29
28
27
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22
21
7
6
5
4
3

10.82 8 5.48 5.91 8.3 4.99 33 2315 5179 1903 1450
10.71 8.73 6.07 6 4.9 5.04 21 1831 4940 1900 1470
9.84 7.13 4.32 4.88 16.9 4.6 57 1360 4288 1812 1615

10.53 7.24 5.01 5.61 8.7 4.61 235 1732 4498 1787 1439
10.09 7.49 4.58 4.64 10.4 4.72 70 1370 4460 1745 1490
9.35 6.9 4.2 4.2 14.7 4.53 64 845 2985 1680 1500
9.8 7.6 5.04 5.58 0 4.65 38 2059 5125 1915 1845

12.72 8.82 6.12 6.27 5.8 5.04 19 2665 5612 1987 1598
12.77 8.82 6.12 6.27 5.8 5.01 19 2705 5612 1987 1566
12.35 8.79 6.33 6.35 4.8 5.04 20 2420 5569 1948 1556
9.05 7.38 4.71 4.69 11.5 4.77 42 1170 3905 1710 1420
9.23 7.38 4.7 4.69 12.6 4.77 39 1185 4310 1725 1435
11.48 8.24 5.99 5.78 4.7 5.21 28 1515 4491 1852 1294
10.2 7.6 5.3 5.4 8.5 4.77 80 1808 4365 1837 1639
9.14 6.91 4.22 4.25 14.2 4.61 65 210 3430 1630 1465
13.81 8.7 6.59 6.7 3.3 5.44 23 1350 4605 2036 1169
10.73 8.22 5.63 5.64 5.5 4.94 28 950 4010 1720 1220
11.51 8.48 5.91 5.91 4.5 5.14 26 1175 4147 1751 1248
12.08 8.73 6.35 6.17 3.8 5.28 21 1620 4638 1939 1262
11.33 8.45 6.08 6.25 4.6 5.04 30 1785 4617 1877 1315
11.62 8.61 6.29 6.38 4.3 5.04 28 1845 4617 1877 1315
11.33 8 5.35 5.99 9.1 4.68 25 2500 4662 1760 1951
11.21 8.61 6.32 6.27 4.2 5.04 28 1845 4879 1854 1474
11.66 8.61 6.3 6.38 4.6 5.04 26 2135 5095 1871 1419
10.94 8.73 6.12 6.09 4.5 5.04 23 1730 4591 1770 1447
12.08 8.24 6.44 6.09 3.1 5.33 24 1336 4509 1908 1199
10.79 8.15 5.69 5.45 7.8 4.82 44 2110 4770 1885 1755
10.69 7.82 5.39 5.09 9.2 4.78 57 1730 4850 1840 1455
10.17 7.49 4.91 4.64 10.3 4.71 68 1370 4320 1765 1430
11.08 8 5.68 6.09 6.8 4.87 37 2115 4850 2073 1780
11.35 8.38 5.83 6.25 6.5 4.91 32 2360 4999 2073 1835
10.38 7.69 5.01 5.74 11.7 4.72 47 1710 4500 2005 1740
10.25 7.7 4.8 5.58 14.7 4.5 25 2120 4785 1790 1790
12.49 8.78 6.55 6.23 2.9 5.38 17 1575 4780 2030 1136
10.17 7.93 5.28 5.83 12.9 4.67 34 2075 4223 1873 1840
11.09 8.52 6.23 6.13 4.9 5.04 25 1875 4961 1877 1460
9.96 7.82 5.12 5.67 14.5 4.72 33 2270 5125 1920 1925
9.78 7.22 5.08 5.13 7.4 4.88 43 1075 3660 1630 1490
12.33 8.74 6.49 6.22 3.7 5.34 18 1790 4905 1955 1380
12.2 8.41 6.33 5.99 3.4 5.29 21 1430 4527 1937 1211
11.13 8.73 6.08 6.05 4.3 5.23 21 1460 4435 1844 1246
10.23 7.6 5.3 5.4 8.3 4.88 80 1856 4530 1871 1539
9.74 7.38 4.74 5.18 7.3 4.89 47 1223 3948 1715 1483
10.32 7.93 5.18 5.58 12.8 4.74 35 2305 5218 1998 1818
10.47 7.24 4.45 5.61 9 4.6 235 1732 4498 1787 1439
10.6 8.73 6.07 6.04 5.6 5.04 20 1890 4836 1918 1376
13.95 8.99 6.89 6.83 2.5 5.53 10 1990 4462 1998 1204
10.43 6.47 5.14 5.21 7.9 4.53 470 1315 3999 1775 1578
12.33 8.82 6.24 6.62 5.1 5.21 16 2585 5562 1926 1526
11.8 8.7 6.32 6.17 4.9 5.27 17 2475 5290 1920 1475
11.82 8.29 6.21 6.19 4.7 5.23 25 2470 4806 1920 1403
11.83 8.7 6.35 6.25 4.4 5.29 17 2320 4806 1944 1404
11.71 8.56 6.26 5.97 3.1 5.27 19 1720 4440 1904 1244
11.42 8.33 6.06 5.76 4.6 5.24 19 1560 4440 1904 1252
11.45 8.46 6.04 5.85 4.7 5.19 20 1710 4385 1865 1270
11.35 8.46 6.04 5.85 4.7 5.19 20 1630 4385 1865 1260
12.15 8.69 6.35 6.12 4.1 5.21 19 1739 4720 1910 1294
12.89 8.69 6.23 6.04 4.2 5.25 17 1680 4385 1865 1250
10.34 7.19 4.58 4.52 11.8 4.66 56 988 3078 1680 1500

Figure 4: Heatmap of outliers (detected by MCD) in the Top Gear data set. The red and

blue boxes indicate the variables that are flagged as outlying variables by SPADIMO.

Since n > p, the MCD estimator is applied as a robust estimator for location and

scale and the case weights are calculated as in formula (2). As a result, 59 out of 245

observations are flagged as outliers and these will be studied using SPADIMO so as to

detect which variables contribute most to their outlyingness. The results are plotted as

a heatmap in Figure 4, where the 59 outliers are represented as rows. For every outlier

detected by MCD, the individual cells and corresponding values are shown. The individual

cells that contribute most to the outlyingness, according to the SPADIMO algorithm, are

shown as a colored box. The anomalous variables whose corresponding component in

the sparse direction of maximal outlyingness is positive are colored red and those with a

negative component are in blue. It can immediately be seen that some outliers are deviating

in a lot of cells, whereas others only have an atypical value for a few cells.

Let us focus on some examples (see Figure 5). From this analysis, it can be seen that
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10.82 8 5.48 5.91 8.3 4.99 33 2315 5179 1903 1450

10.71 8.73 6.07 6 4.9 5.04 21 1831 4940 1900 1470

9.84 7.13 4.32 4.88 16.9 4.6 57 1360 4288 1812 1615

9.8 7.6 5.04 5.58 0 4.65 38 2059 5125 1915 1845

12.35 8.79 6.33 6.35 4.8 5.04 20 2420 5569 1948 1556

9.14 6.91 4.22 4.25 14.2 4.61 65 210 3430 1630 1465

10.73 8.22 5.63 5.64 5.5 4.94 28 950 4010 1720 1220

11.33 8 5.35 5.99 9.1 4.68 25 2500 4662 1760 1951

12.08 8.24 6.44 6.09 3.1 5.33 24 1336 4509 1908 1199

10.17 7.49 4.91 4.64 10.3 4.71 68 1370 4320 1765 1430

10.25 7.7 4.8 5.58 14.7 4.5 25 2120 4785 1790 1790

10.23 7.6 5.3 5.4 8.3 4.88 80 1856 4530 1871 1539

10.32 7.93 5.18 5.58 12.8 4.74 35 2305 5218 1998 1818

13.95 8.99 6.89 6.83 2.5 5.53 10 1990 4462 1998 1204

10.43 6.47 5.14 5.21 7.9 4.53 470 1315 3999 1775 1578

12.89 8.69 6.23 6.04 4.2 5.25 17 1680 4385 1865 1250

Figure 5: Heatmap of some outliers (detected by MCD) in the Top Gear data set. The red

and blue boxes indicate the variables that are flagged as outlying variables by SPADIMO.

some outliers only have atypical values in a single column, such as the BMW i3 (MPG of

470), Citroën DS5 (MPG of 80), Lexus CT 200h (log torque of 4.64), Peugeot 107 (weight

of 210), Vauxhall Meriva (acceleration of 16.9), Vauxhall VXR8 (log displacement of 8.73)

and Volkswagen Phaeton (weight of 2315). The weight of the Peugeot 107 is clearly an

error, but not all of these atypical values are errors, since for example the BMWI i3 is an

electrical vehicle with a small additional gas engine which explains its very high MPG.

Moreover, a fair amount of cars are multivariate outliers. None of their properties

are unusual in the univariate sense, but in combination with other characteristics, the

corresponding cars are flagged as outliers. The SPADIMO analysis can definitely distin-

guish between both types of outliers; moreover the color of the anomalous variables reflects

whether the observed value is outlying upwards or downwards, which helps interpreting

this complexly structured data set.

Let us have a closer look at the Peugeot 107. Figure 6 shows the number of flagged
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Figure 6: Number of flagged variables versus sparsity parameter for the Peugeot 107.

variables for varying values of η. For η > 0.4, the number of identified variables ranges

from 1 to 4. The method itself, as described in Algorithm 1, selects a single variable at

η = 0.9. Figure 7 indicates that variable weight causes mostly the outlyingness of Peugeot

107 as it is the first variable to be flagged. Other variables that seem to contribute to

the oulyingness are length, width and log(torque). The Peugeot 107 is a small city car as

can be seen from the values listed in Figure 8. More variables are flagged when η < 0.4,

but their corresponding components remain rather small (in absolute value) so they clearly

contribute less to the outlyingness of this car.

6.2 Glass Data

The second example concerns a data set consisting of 180 electron probe X-ray microanaly-

sis (EPXMA) spectra of archæological glass vessels excavated in the Anwerp, Belgium area,

further referred to as the glass data. The data set has been described extensively before.

At first, detailed information on the analytical chemistry involved, as well as quantifica-

tion based on software involving manual peak selection and integration, can be found in

Janssens et al. (1998). Secondly, Lemberge et al. (2000) have illustrated that it is possible

to skip the tedious manual peak selection and quantification step by multivariate calibra-
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Figure 7: The estimated sparse direction of maximal outlyingness of the Peugeot 107 for

different values of η.
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Figure 8: The anomalous cells of the Peugeot 107 as flagged by SPADIMO for varying η.
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tion. They applied partial least squares regression with very promising results, regarding

each of the major chemical constituents targeted. However, in Serneels et al. (2005) it is

mentioned that the results in Lemberge et al. (2000) were only obtained after a set of out-

liers had been removed from the data, that correspond to samples measured with a different

detector efficiency. In Serneels et al. (2005), it is then shown that the analytical procedure

could have been sped up further by applying partial robust M-regression, a therein newly

proposed robust alternative to partial least squares regression, instead of the the manual

outlier removal process.

Details on each of these analytical steps can be retrieved in the corresponding papers.

However, in order to illustrate the effectiveness of the presently proposed method, there

are a few key facts to keep in mind about the glass data. The data consist of 180 EPXMA

spectra measured at 750 energy channels, out of which all cases beyond case 143 are outliers

measured with a different detector efficiency. On top of that, the data have been reported

to consist of four clusters corresponding to four glass types: sodic, potassic, calcic and

potasso–calcic glass (Janssens et al., 1998). The vast majority of the data correspond to

sodic glass vessels.

Outlier detection was carried out by means of ROBPCA (Hubert et al., 2005) which

detects 68 outliers. This set of outliers contains all 38 measurement outliers, but it also

contains the cases corresponding to the non-sodic glass vessels. In the top of Figure 9, a

heatmap is plotted showing the individual cells detected as contributing to outlyingness

by SPADIMO in the cases detected as outliers by ROBPCA. The parameters used in the

SPADIMO scan are: L = [.1, .6] and α = .99.

The cells that correspond to variables that contribute most to outlyingness, are plotted

in black. In fact, the result from SPADIMO is interpretable, knowing the nature in which

the outliers deviate. At first, Figure 9 shows a clear difference between the top group of

outliers, that have outlying cells more or less across the entire range of energies, whereas the

bottom group of outliers contain outlying cells only in very specific areas. By analyzing

the case numbers, it is clear that the former correspond to the non-sodic glass vessels,

whereas the latter ones correspond to the measurement outliers. The non-sodic glass vessels

have a different chemical composition, not only characterized by the main characteristic
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Figure 9: Top: Heatmap of outlying cells in outliers in the glass data set. The black boxes

indicate the variables that are flagged as outlying variables by SPADIMO (single latent

variable). Bottom: For illustrative purposes, EPXMA spectrum corresponding to outlier

145.

constituents such as sodium and calcium, but also by having a different matrix, containing

different trace elements. Hence it is very plausible that deviations may be present across

the entire spectrum when compared to sodic glass. Moreover, it is even possible to detect

the individual types of glass the outliers correspond to based on the SPADIMO analysis.
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When looking at the cells that correspond to variables roughly in the range 300 through

375, one can see that the non-measurement outliers (case number < 143) can be subdivided

into three groups: for some cases, only roughly variables 300 through 330 are outlying (left

hand black block), whereas for another group only roughly variables 330 through 375 are

outlying (right hand black block). For some cases, the entire range 300–375 is detected

as outlying. This phenomenon has a straightforward interpretation: the variable range

300–330 corresponds to the K Kα peak, whereas the range 330-375 corresponds to the Ca

Kα and Kβ peaks. Cases where the 300–330 range is outlying, correspond to the potassic

samples. Cases where the 330–375 range is outlying, correspond to the calcic samples.

Cases where both are outlying, correspond to the potasso–calcic samples. Note that a

similar discrepancy can be observed in variable range 540–620. This range corresponds to

iron and manganese peaks, elements of which the different glass types typically also contain

different amounts.

Finally, the measurement outliers can also clearly be distinguished from the composi-

tional outliers. Detector efficiency is related to how X-rays are absorbed by the detector.

The more energetic X-rays are, the more likely they will penetrate an inefficient detector.

Therefore, a slight decrease in detector efficiency like the one witnessed in this data set,

has no effect on high energy X-rays. As energy increases toward the right hand side of the

plot, it is logical that all outlying cells are being detected at the left hand side. For all mea-

surement outliers, the detector efficiency issue has generated an artifact at the beginning

of the spectrum (very low energetic X-rays). This artifact is being detected by SPADIMO.

Further down the spectrum, the fact that the effect can be detected or not, doesn’t just

depend on the detector efficiency, but also on the individual element concentrations. A

glass vessel that already contains a naturally low end concentration of sodium, will end

up being outlying in the corresponding range with an inefficient detector. However, a high

sodium vessel might end up in the majority of the data with lower detector efficiency. For

these reasons, one can see from Figure 9, that only for selected samples, outlying cells

aren’t just detected in the artifact range at the extreme left end of the spectrum, but also

in a few of the peaks corresponding to low elements with low characteristic energies such

as sodium and silicon.
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7 Further applications and conclusions

In this paper, it has been proven that calculation of the direction of maximal outlying-

ness can be rewritten as a regression problem. It has been shown that applying variable

selection methodology to this regression problem leads to detection of individual variables

that contribute to a case’s outlyingness. Therefore, it eventually helps understanding why

an outlier lies out. An algorithm, called SPADIMO, has been proposed to accomplish this

topic in practice. We also present two graphical tools that are helpful to gain insight in

the studied observation. SPADIMO is based on the estimation of the regression problem

associated with outlyingness by sparse NIPALS regression. The latter is a multivariate

regression technique for integrated variable selection and regression, that is both suitable

for low and high dimensional data. By consequence, the proposed SPADIMO algorithm

can be applied with equal convenience to both data configurations. An implementation of

SPADIMO will be made publicly available as an R package.

In an extensive simulation study, the method has been proven to by and large detect

exactly those outlying cells that had been set to outlying in simulated data. Even for

very high dimensional data, SPADIMO does detect over 80% of cells truly contributing to

simulated cellwise outliers, whereas it only yields less than 5% false positives.

SPADIMO can turn out to be of great practical importance for various fields of science.

One can think of the detection of transfer fraud, where fraudulent transactions are both

outliers and the most interesting cases at the same time, and where it is of utmost impor-

tance to be able to analyze in which way the transaction is fraudulent. In bioinformatics,

one often wants to distinguish cancer cells from regular ones. The cancer cells will have

different expressions in just a subset of the genes. Therefore, they will be outlying with

respect to the bulk of the data, and it is even more interesting to know which are the

outlying genes. In process chemistry, a plant often produces out-of-specification product

without an obvious established cause according to experienced operators. In that case, the

off-spec production steak will be outlying in a multivariate way, and SPADIMO can help

select which combination of variables to tune. Even though the aforementioned examples

are all very realistic, the examples shown in this article are yet of another nature. It was

shown that SPADIMO allows to distinguish univariate from multivariate oultiers in the
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Top Gear data set, which helps to analyze the different types of cars in it more efficiently.

In a second data set, SPADIMO allows to detect outlying cells in a data set of archæo-

logical glass vessels. There, the outcome from SPADIMO can perfectly be traced back

to the nature of the individual outliers: some outliers belong to a deviating glass type,

whereas others can be traced back to measurement error. In these two examples of differ-

ent natures, it has been illustrated that SPADIMO yields highly interpretable information

regarding individual outliers.

SPADIMO can be a great tool to enhance interpretation when analyzing outliers. It

can even have more potential than being a standalone tool used in one-off analyses. It

can, for instance, become integrated in software packages, showing variables contributing

to outlyingness on a one click basis. It can become an ancillary part of cellwise robust

estimation procedures, which is a path of research yet to be explored.

A Appendix: Proofs

A.1 Proof of Proposition 2.1

Proof. Note that our weighted covariance matrix Σ̂w, like all covariance matrices, is a

positive-semidefinite matrix. Since we also assume it is not singular and Σ̂−1
w exists, we

know that Σ̂w is positive-definite. We now apply the Cauchy-Bunyakovskiy-Schwarz in-

equality to x = Σ̂
−1/2
w x1 and y = Σ̂

1/2
w y1, for arbitrary x1,y1 ∈ R

p. This results in the

following inequality

(xT
1 y1)

2 ≤ xT
1 Σ̂

−1
w x1y

T
1 Σ̂wy1

We have equality if y = cx with c ∈ R, which means Σ̂
1/2
w y1 = cΣ̂

−1/2
w x1 or y1 = cΣ̂−1

w x1.

So summarized, for any x,y ∈ R
p we have the inequality

(xTy)2 ≤ xT Σ̂−1
w xyT Σ̂wy,

where there is equality if and only if y = cΣ̂−1
w x.

We now look at
(xTa− µ̂T

wa)
2

aT Σ̂wa
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and apply this inequality:

((x− µ̂w)
Ta)2

aT Σ̂wa
≤ (x− µ̂w)

T Σ̂−1
w (x− µ̂w)a

T Σ̂wa

aT Σ̂wa
= (x− µ̂w)

T Σ̂−1
w (x− µ̂w).

We have equality in the above inequality if a = cΣ̂−1
w (x− µ̂w). So

a =
Σ̂−1

w (x− µ̂w)

‖Σ̂−1
w (x− µ̂w)‖

is the direction a that maximizes
|xTa− µ̂T

wa|
√

aT Σ̂wa

and for this a we have
(

|xTa− µ̂T
wa|

√

aT Σ̂wa

)2

= (x− µ̂w)
T Σ̂−1

w (x− µ̂w) = o(x)2.

A.2 Proof of Theorem 2.2

Proof. We know that, by the theory of ordinary least squares regression,

θε = (XT
w,εXw,ε)

−1XT
w,εyw,ε

and by the definition of our weighted covariance matrix, Σ̂w,ε = 1
nw,ε−1

XT
w,εXw,ε, we can

write

θε = ((nw,ε − 1)Σ̂w,ε)
−1XT

w,εyw,ε.

We know that ((nw,ε − 1)Σ̂w,ε)
−1 = 1

nw,ε−1
Σ̂−1

w,ε and it is easy to see that XT
w,εyw,ε =

√
ε(x− µ̂w,ε), if we look at the definitions of Xw,ε and yw,ε. Thus we have that

θε =

√
ε

nw,ε − 1
Σ̂−1

w,ε(x− µ̂w,ε).

Since ε is strictly larger than zero, we have that

θε

‖θε‖
=

Σ̂−1
w,ε(x− µ̂w,ε)

‖Σ̂−1
w,ε(x− µ̂w,ε)‖

.

Then we get that

lim
ε→0

θε

‖θε‖
=

Σ̂−1
w (x− µ̂w)

‖Σ̂−1
w (x− µ̂w)‖

= a(x)

since limε→0 nw,ε = nw, limε→0 µ̂w,ε = µ̂w and limε→0 Σ̂
−1
w,ε = Σ̂−1

w .
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B Appendix: Simulation results from two component

SNIPLS models

Simulation results for h = 2: Simulation results are provided for SPADIMO based on

SNIPLS models with two latent variables. It can be seen that increasing the number of

latent variables, does not ameliorate the results.

B.1 Results with A09 data

5% 10% 25%

γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5

500× 50, A09

# flagged 6.027 6.303 6.445 7.986 8.163 8.344 15.915 15.898 16.038

detected (%) 99.800 100.000 100.000 99.800 100.000 100.000 99.862 100.000 100.000

swamped (%) 6.453 7.028 7.330 6.658 7.029 7.431 7.927 7.832 8.211

η 0.885 0.884 0.882 0.878 0.879 0.878 0.853 0.856 0.856

200× 200, A09

# flagged 39.654 38.000 38.380 48.773 47.758 48.579 76.840 75.937 76.656

detected (%) 99.990 100.000 100.000 99.985 100.000 100.000 99.994 100.000 100.000

swamped (%) 15.608 14.737 14.937 15.987 15.421 15.877 17.895 17.291 17.771

η 0.600 0.594 0.588 0.599 0.594 0.587 0.598 0.592 0.585

50× 500, A09

# flagged 70.558 77.704 89.005 94.273 108.220 121.557 170.887 183.875 193.760

detected (%) 95.228 97.656 98.368 94.020 97.330 98.258 95.810 98.351 99.036

swamped (%) 9.842 11.219 13.561 10.503 13.234 16.095 13.633 16.250 18.657

η 0.587 0.559 0.535 0.577 0.543 0.516 0.542 0.509 0.486

50× 5000, A09

# flagged 431.331 499.536 581.579 729.868 814.465 908.111 1575.825 1601.788 1662.530

detected (%) 81.394 92.835 95.907 86.834 96.105 98.124 95.437 98.737 99.427

swamped (%) 4.797 5.631 7.196 6.571 7.421 9.278 10.210 9.802 11.192

η .576 0.545 0.518 0.544 0.508 0.480 0.487 0.460 0.436

Table 3: Results with A09 data from two component SNIPLS models.
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B.2 Results with ALYZ data

5% 10% 25%

γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5 γ = 3 γ = 4 γ = 5

500× 50, A09

# flagged 4.784 4.508 4.391 6.502 6.291 6.235 14.032 14.027 14.094

detected (%) 99.267 99.900 100.000 98.360 99.640 99.980 97.554 99.354 99.908

swamped (%) 3.843 3.215 2.960 3.520 2.909 2.747 3.649 3.003 2.989

η 0.892 0.890 0.887 0.888 0.886 0.883 0.869 0.865 0.860

200× 200, A09

# flagged 35.274 28.644 27.056 42.819 37.441 36.486 68.341 64.320 64.155

detected (%) 99.980 100.000 100.000 99.995 100.000 100.000 99.980 100.000 100.000

swamped (%) 13.303 9.813 8.977 12.678 9.689 9.159 12.234 9.547 9.437

η 0.600 0.600 0.599 0.600 0.600 0.597 0.600 0.598 0.592

50× 500, A09

# flagged 63.118 59.951 64.868 84.389 87.361 93.564 159.789 167.546 175.643

detected (%) 94.224 97.676 98.616 92.808 97.642 98.544 95.086 98.623 99.362

swamped (%) 8.329 7.480 8.466 8.441 8.564 9.843 10.915 11.805 13.718

η 0.597 0.584 0.567 0.589 0.564 0.546 0.552 0.519 0.493

50× 5000, A09

# flagged 413.949 451.988 505.737 717.890 767.524 817.685 1548.338 1566.894 1595.568

detected (%) 80.282 94.140 97.431 87.740 97.073 98.834 95.461 99.020 99.628

swamped (%) 4.489 4.561 5.519 6.204 6.270 7.189 9.469 8.777 9.339

η 0.576 0.549 0.524 0.541 0.511 0.488 0.486 0.462 0.445

Table 4: Results with ALYZ data from two component SNIPLS models.
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