
Optimal allocation of Monte Carlo simulations to multiple

hypothesis tests

Georg Hahn

Abstract

Multiple hypothesis tests are often carried out in practice using p-value estimates ob-
tained with bootstrap or permutation tests since the analytical p-values underlying all hy-
potheses are usually unknown. This article considers the allocation of a pre-specified total
number of Monte Carlo simulations K ∈ N (i.e., permutations or draws from a bootstrap
distribution) to a given number of m ∈ N hypotheses in order to approximate their p-values
p ∈ [0, 1]m in an optimal way, in the sense that the allocation minimises the total expected
number of misclassified hypotheses. A misclassification occurs if a decision on a single hy-
pothesis, obtained with an approximated p-value, differs from the one obtained if its p-value
was known analytically. The contribution of this article is threefold: Under the assumption
that p is known and K ∈ R, and using a normal approximation of the Binomial distribu-
tion, the optimal real-valued allocation of K simulations to m hypotheses is derived when
correcting for multiplicity with the Bonferroni correction, both when computing the p-value
estimates with or without a pseudo-count. Computational subtleties arising in the former
case will be discussed. Second, with the help of an algorithm based on simulated annealing,
empirical evidence is given that the optimal integer allocation is likely of the same form as
the optimal real-valued allocation, and that both seem to coincide asympotically. Third, an
empirical study on simulated and real data demonstrates that a recently proposed sampling
algorithm based on Thompson sampling asympotically mimics the optimal (real-valued)
allocation when the p-values are unknown and thus estimated at runtime.

Keywords: Bonferroni correction; multiple testing; Monte Carlo simulation; optimal alloca-
tion; Thompson sampling; QuickMMCTest.

1 Introduction

Scientific studies are often evaluated by correcting for multiple comparisons using, for instance,
the Bonferroni correction (Bonferroni, 1936) or the procedures of Sidak (1967), Holm (1979),
Simes (1986), Hochberg (1988), or Benjamini and Hochberg (1995).

Although testing procedures such as the Bonferroni correction require exact knowledge of the
p-value underlying each statistical test, p-values are usually not available analytically in practice
and thus have to be approximated using Monte Carlo methods, for instance, bootstrap or
permutation tests (Gandy and Hahn, 2014, 2016, 2017; Silva and Assunção, 2018). In the context
of such Monte Carlo tests, the (analytical) p-value refers to the one obtained by integrating over
the theoretical bootstrap distribution (in case of bootstrap tests) or by exhaustively generating
all permutations (in case of permutation tests). This scenario is common in scientific studies
involving real data, see, for instance, Tang et al. (2017), Chen and Chen (2017), Wei et al. (2016),
or Shen et al. (2014) for recent testing applications involving Monte Carlo approximated p-values
and Mrkvic̆ka et al. (2017) or Pesarin et al. (2016) for Monte Carlo extensions of multiple testing.

When testing m ∈ N given hypotheses H01, . . . ,H0m in practice, a researcher is faced with
the task of allocating a number of Monte Carlo simulations K ∈ N (which in practice is always
finite) according to some criterion of choice in order to approximate the p-values of the m
hypotheses. It is assumed throughout the article that H01, . . . ,H0m are tested using independent

1

ar
X

iv
:1

50
2.

07
86

4v
5

 [
st

at
.C

O
]

 5
 O

ct
 2

01
9

test statistics. For simplicity, the classical Bonferroni correction is considered in the remainder
of this article to correct for multiplicity, though it will be discussed how the results of this article
extend to other multiple testing procedures. Recent examples for scientific works utilising the
Bonferroni correction include Gallagher et al. (2018), Zhang et al. (2017), or Mestres et al.
(2017).

This article considers the optimal allocation of K Monte Carlo simulations to m hypotheses,
in the sense that the allocation minimises the total expected number of misclassified hypotheses,
under the assumption of a testing scenario in which independent test statistics are available and
multiplicity is corrected with the Bonferroni correction.

To this end, two approaches are explored. First, it is assumed that the number of simulations
to be allocated to each hypothesis is real-valued as opposed to integer-valued, and the Binomial
distribution arising in the expression for the expected number of misclassifications is replaced
by a normal approximation. This simplifies the problem and allows for the computation of
gradients, thus making it possible to solve for the optimal real-valued allocation using the
Karush-Kuhn-Tucker (KKT) formalism (Karush, 1939; Kuhn and Tucker, 1951). This is done
in two cases, precisely when p-value estimates are computed both with or without a pseudo-
count (Davison and Hinkley, 1997). In the former case, an optimal solution does not always exist
and further computational subtleties arise, which will be discussed. Second, the computation
of the optimal integer-valued allocation is attempted with the help of a scheme based on the
simulated annealing (SA) algorithm (Kirkpatrick et al., 1983) which, under conditions, allows
to find integer solutions which converge to an optimal solution (Henderson et al., 2003).

Several algorithms to compute significant and non-significant hypotheses via approximated
p-values are available in the literature. For instance, the method of Besag and Clifford (1991),
the approaches of Guo and Peddada (2008) and van Wieringen et al. (2008), the MCFDR algorithm
of Sandve et al. (2011), the method of Jiang and Salzman (2012) or the MMCTest algorithm of
Gandy and Hahn (2014). However, to the best of our knowledge, it is unclear how the allocation
of Monte Carlo simulations computed by such algorithms available in the literature compares
to the optimal allocation (in the above sense). Nevertheless, for the QuickMMCTest algorithm
of Gandy and Hahn (2017), a simulation study included in this article empirically demonstrates
that its allocation asympotically mimics the optimal allocation of Monte Carlo simulations (as K
and m go to infinity). This is of importance for practical applications: Generating simulations,
for instance via permutations, can be computationally very expensive. An optimal (or nearly
optimal) allocation of Monte Carlo simulations thus minimises computational resources while
maximising the accuracy of the multiple testing result or makes the evaluation of real data
possible in the first place.

For the special case of one hypothesis, a related field to the one of this article pertains to
the sequential design of Monte Carlo testing while minimising the total number of simulations
(Lan and Wittes, 1988; Besag and Clifford, 1991; Gandy, 2009; Fay et al., 2007; Silva et al.,
2009; Silva and Assunção, 2013).

The article is organised as follows. Section 2 introduces the mathematical formulation of
the problem under consideration (Section 2.1), simplifies it by allowing K to be real-valued and
by using a normal approximation of the Binomial distribution (Section 2.2), and solves for the
optimal allocation using the KKT conditions (Section 2.3). Computational issues arising when
solving the KKT conditions without (Section 2.3.1) and with a pseudo-count (Section 2.3.2) are
discussed. As in practice any allocation is discrete, the related discrete optimisation problem
is heuristically solved with the simulated annealing algorithm (Section 3). A simulation study
(Section 4) visualises how the optimal allocation of Monte Carlo simulations to m hypotheses
relates to their underlying p-value distribution (Section 4.1), and empirically demonstrates that
the real-valued KKT as well as the integer-valued SA solutions are qualitatively similar both
for a finite K and asympotically (Section 4.2). Moreover, in contrast to the aforementioned
algorithms published in the literature, it is shown empirically that the QuickMMCTest algorithm

2

(Gandy and Hahn, 2017) asympotically mimics the optimal (real-valued) allocation on simulated
(Section 4.3) and real data (Section 4.4). The article concludes with a discussion in Section 5.
Supplementary material containing R code (R Development Core Team, 2011) to reproduce all
figures is provided.

Throughout the article, let ‖·‖ denote the Euclidean norm of a vector. Let N0 = {0, 1, 2, . . .}
denote the natural numbers including zero and let R+ = {x ∈ R : x > 0} be the strictly positive
part of the real line.

2 The optimal allocation for the Bonferroni correction

This section states a mathematical formulation of the optimisation problem of minimising the ex-
pected number of misclassified hypotheses (Section 2.1) and derives a real-valued solution using
the KKT formalism (Section 2.2). Solving the KKT conditions (Section 2.3) is not straightfor-
ward if the p-value estimates for all hypotheses are computed with a pseudo-count (Davison and
Hinkley, 1997), and computational subtleties are discussed in Sections 2.3.1 and 2.3.2. Exten-
sions of all results to other multiple testing procedures (apart from the Bonferroni correction)
are discussed in Section 2.4.

2.1 Formulation of the problem

A researcher is faced with testing m ∈ N hypotheses H01, . . . ,H0m for statistical significance
using some test statistics and the Bonferroni correction at a given testing threshold α ∈ (0, 1).
Throughout the article, it is assumed that the test statistics for testing H01, . . . ,H0m are
independent. Typically, α = t/m, where t is an uncorrected threshold such as t = 0.1.
Let I := {1, . . . ,m} and denote the unknown p-value underlying each hypothesis H0i as pi,
i ∈ I. The Bonferroni correction returning the indices of all rejected hypotheses is defined as
b(p, α) = {i : pi ≤ α}, where p = (p1, . . . , pm).

As the p-values are unknown, it is assumed that Monte Carlo methods are used to approx-
imate them as p̂i = (Si + c)/(ki + c), where ki is the total number of Monte Carlo simulations
generated for H0i and Si is the number of exceedances over the observed test statistic (computed
with some given data for each hypothesis) among those ki simulations, i ∈ I. The parameter
c ∈ {0, 1} determines if a pseudo-count (Davison and Hinkley, 1997) is used in the numera-
tor and denominator of p̂i which bounds the estimates away from zero. Such a pseudo-count
is recommended and commonplace in practice (Phipson and Smyth, 2010). Instead of gen-
erating Monte Carlo simulations, the number of significances can equivalently be modeled as
Si ∼ Binomial(ki, pi).

The hypothesis H0i is rejected if and only if p̂i ≤ α, where i ∈ I. All remaining hypotheses
are non-rejected. The aim of this article is to find the optimal allocation of Monte Carlo simu-
lations k∗ = (k∗1, . . . , k

∗
m) ∈ Nm0 to the hypotheses H01, . . . ,H0m which minimises the expected

number of misclassifications, defined below, subject to the constraint that
∑m

i=1 k
∗
i = K for a

given total number of simulations K ∈ N specified in advance.
Let Mi = {p̂i > α ∧ pi ≤ α} ∪ {p̂i ≤ α ∧ pi > α} be the event that hypothesis H0i is

misclassified, that is the event that the unknown p-value pi of H0i and its estimate p̂i lie on two
different sides of the testing threshold. Using the event Mi, the total number of misclassifications
can be expressed as M =

∑m
i=1 IMi , where I is the indicator function. When allocating ki

simulations to hypothesis H0i to estimate its p-value, the probability of a misclassification of
hypothesis H0i is

gi(ki) := P(Mi | ki) = P
(
Si + c

ki + c
> α

∣∣∣∣ pi) · I(pi ≤ α) + P
(
Si + c

ki + c
≤ α

∣∣∣∣ pi) · I(pi > α)

= P (Si > α(ki + c)− c | pi) · I(pi ≤ α) + P (Si ≤ α(ki + c)− c | pi) · I(pi > α), (1)

3

where the dependence of gi on pi, α and c is omitted for notational simplicity. The probability in
(1) is also called the resampling risk, a popular error measure which many algorithms published
in the literature on Monte Carlo hypothesis testing aim to control (Davidson and MacKinnon,
2000; Fay and Follmann, 2002; Fay et al., 2007; Gandy, 2009; Kim, 2010; Ding et al., 2018).
The total expected number of misclassifications which occur when allocating k = (k1, . . . , km)
simulations to H01, . . . ,H0m is thus

g(k) := E(M |k) =
m∑
i=1

P(Mi|ki) =
m∑
i=1

gi(ki), (2)

where the expectation is taken over the random Si ∼ Binomial(ki, pi), i ∈ I. The goal is
to minimise the total number of misclassifications g(k) for a suitable choice k∗ ∈ Nm0 with∑m

i=1 k
∗
i = K. The functions gi(ki) go to zero as ki →∞. This is to be expected as by the law

of large numbers, each estimate p̂i converges to the p-value pi as more Monte Carlo simulations
are generated. To summarise, the constrained optimisation problem under investigation can be
formalised as

min
k∈Nm

0

g(k) subject to
m∑
i=1

ki = K. (3)

2.2 The optimal allocation for a normal approximation

The constrained optimisation in (3) can be solved with the help of the KKT formalism. As
derivatives are needed for KKT, (1) is relaxed by allowing k ∈ Rm+ and by approximating
Si ∼ Binomial(ki, pi) in (1) with a normal distribution with mean kipi and variance kipi(1−pi).
This yields

hi(ki) :=

[
1− Φ

(
ki(α− pi) + c(α− 1)√

kipi(1− pi)

)]
· I(pi ≤ α) + Φ

(
ki(α− pi) + c(α− 1)√

kipi(1− pi)

)
· I(pi > α),

where Φ is the cumulative distribution function of the standard normal distribution and where
it was used that P(X ≤ x) = Φ((x− µ)/σ) for X ∼ N(µ, σ2).

Now, gi(ki) ≈ hi(ki) for all i ∈ I and consequently, (2) can be approximated as g(k) ≈
h(k) :=

∑m
i=1 hi(ki). By the de Moivre–Laplace theorem, the ratio of gi(ki) to hi(ki) tends to

one as ki →∞ for each i ∈ I. Thus as K →∞, given each hypothesis receives an amount of ki
of those K simulations with ki →∞, the approximation h will be very accurate. For small K,
however, h might be a poor approximation of g and (3) should be solved directly for an integer
solution as attempted in Section 3 (this is easier for small K than for large ones).

The derivative of each hi (which is a function of ki only), i ∈ I, is given by

∂hi
∂ki

=− ki(α− pi)− c(α− 1)

2ki
√
kipi(1− pi)

· φ

(
ki(α− pi) + c(α− 1)√

kipi(1− pi)

)
· I(pi ≤ α)

+
ki(α− pi)− c(α− 1)

2ki
√
kipi(1− pi)

· φ

(
ki(α− pi) + c(α− 1)√

kipi(1− pi)

)
· I(pi > α), (4)

where φ is the density function of the standard normal distribution. The partial derivative
∂h/∂ki depends on ki only, thus allowing to essentially separate the optimisation problem into
m problems, each finding an optimal number of k∗i simulations for hypothesis H0i.

The function h needs to be optimised under the constraints ki > 0 for i ∈ I and
∑m

i=1 ki = K,
meaning that each hypothesis receives a positive number of simulations and that the total

4

1e−31 1e−22 1e−13 1e−04 1e+05

−
5e

+
13

−
4e

+
13

−
3e

+
13

−
2e

+
13

−
1e

+
13

0e
+

00

number of Monte Carlo simulations

de
riv

at
iv

e
of

 h

Figure 1: Qualitative behaviour of ∂h/∂ki as a function of ki for p-value estimates without a
pseudo-count (c = 0 in (4)). The behaviour is identical for p-values both below and above the
testing threshold α.

number of simulations allocated equals K. The optimal solution k∗ minimising h satisfies the
Lagrangian associated with the constrained optimisation problem, given by

∇h(k∗) =
m∑
i=1

νi∇ui(k∗) + λ∗∇v(k∗), (5)

where ui(k) = −ki and v(k) = K −
∑m

i=1 ki, k = (k1, . . . , km). The functions ui encode the
constraint ki > 0 (primal feasibility) with νi ≥ 0 (dual feasibility) and satisfy νiui(k

∗) = 0
(complementary slackness), where i ∈ I.

Complementary slackness and the condition ki > 0 imply that νi = 0 for all i ∈ I. As each
partial derivative ∂h/∂ki only depends on ki, (5) simplifies to

∂h

∂ki
(k∗i) = −λ∗ (6)

for i ∈ I and an optimal value λ∗ > 0 ensuring
∑m

i=1 k
∗
i = K.

2.3 Computational considerations when solving the KKT conditions

Finding the optimal value λ∗ in (6) and the corresponding k∗ which satisfies
∑m

i=1 k
∗
i = K is

straightforward if no pseudo-count is used when computing p-value estimates (c = 0 in (4))
and more challenging with a pseudo-count (c = 1 in (4)). In particular, the optimal solution
allocating K Monte Carlo simulations to m hypotheses might not always exist in the latter case.
The following two Sections 2.3.1 and 2.3.2 provide computational details.

2.3.1 P-value estimates without a pseudo-count

If no pseudo-count is used (c = 0 in (4)), the qualitative behaviour of ∂h/∂ki is as depicted in
Figure 1. The derivative is negative (given pi 6= α) and strictly increases to zero as ki → ∞.
This is proven in Lemma 1 in Section A.

5

1e−05 1e−02 1e+01 1e+04 1e+07

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0.
00

number of Monte Carlo simulations

de
riv

at
iv

e
of

 h

1e−05 1e−02 1e+01 1e+04 1e+07

−
0.

00
1

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

number of Monte Carlo simulations

de
riv

at
iv

e
of

 h
Figure 2: Qualitative behaviour of ∂h/∂ki as a function of ki for p-value estimates with a pseudo-
count (c = 1 in (4)) and for a p-value below (left) and above (right) the testing threshold α.
The guess γi defined in (8) is indicated with a dotted vertical line.

Solving for the optimal allocation is thus straightforward and computationally efficient:
First, suppose a value λ > 0 and the index i ∈ I of a particular hypothesis are given and the
task is to find the value of ki such that (∂h/∂ki)(ki) = −λ, formalised as the following problem:

Pi,λ : return ki ∈ R+ satisfying (∂h/∂ki)(ki) = −λ. (7)

To solve (7) a double binary search can be employed: Starting with an arbitrary starting
value (e.g., k0i = 1), double or halve k0i until an interval [kLi , k

R
i] is obtained such that −λ ∈

[(∂h/∂ki)(k
L
i), (∂h/∂ki)(k

R
i)]. A binary search applied to that interval then finds the solution

ki of Pi,λ in logarithmic time (in the size of the search space). Both steps rely on the fact that
∂h/∂ki are strictly increasing for all i ∈ I. Since the size (length) of the search space is bounded
by K, this operation takes O(logK) for each i ∈ I.

Since the derivatives ∂h/∂ki are negative but strictly increasing for all i ∈ I, lower (higher)
values of λ > 0 yield larger (smaller) ki across all i ∈ I. Thus in a second step, choose an
arbitrary starting value λ0 (e.g., λ0 = 1), determine the corresponding vector k = (k1, . . . , km)
by solving Pi,λ0 for all i ∈ I and check if

∑m
i=1 ki−K is positive or negative. If it is positive, λ0

will be doubled (thus decreasing −λ0) and otherwise halved until an interval [λL, λR] is found
which contains the optimal value λ∗ whose corresponding solution k∗ = (k∗1, . . . , k

∗
m) of Pi,λ∗ for

all i ∈ I satisfies
∑m

i=1 k
∗
i = K. A binary search then finds λ∗ within [λL, λR] in logarithmic

time. The total effort for finding both λ∗ and the optimal allocation of Monte Carlo simulations
can thus be expressed as O(m log(λR − λL) logK). Section 4 shows that for typical testing
scenarios, λ∗ is of the order of around 10−10 to 10−5. In principle, any number of K ≥ 0
simulations can be allocated to the m hypotheses in this way.

2.3.2 P-value estimates with a pseudo-count

When using a pseudo-count, finding ki, i ∈ I, for a given λ as well as finding the optimal λ∗

becomes more challenging. This is due to the fact that the derivatives ∂h/∂ki are not strictly
increasing any more and neither do they attain all values in (−∞, 0). Figure 2 shows examples
of the qualitative behaviour of ∂h/∂ki for a p-value below (left) and above (right) the testing
threshold α.

6

Since in both cases, the derivative is still negative in a limited region, it might nevertheless
be possible to find a λ∗ > 0 that satisfies the KKT conditions. To this end, first determine the
range of admissible values of ki for each hypothesis H0i, i ∈ I, defined as the range of values for
which ∂h/∂ki is negative and strictly increasing. To apply binary search as done for solving (7),
find the range extending from the unique minimum µi (see Figure 2) of the derivative ∂h/∂ki
to the maximal number of Monte Carlo simulations K to be allocated, a natural upper bound
of ki.

However, since K can be large it is non-trivial to locate µi (or even any non-zero value of
the derivative subject to machine precision), and it is helpful to have a guess of the location
of the minimum. This guess can be computed as the point at which the derivative (4) changes
from being positive to negative. In (4), the function φ is always strictly positive, so it suffices
to consider the zero of its prefactor, which is easily computed as

ki(α− pi)− c(α− 1)

2ki
√
kipi(1− pi)

= 0 ⇒ γi := ki =
c(α− 1)

α− pi
. (8)

The quantity γi is referred to as the guess for the minimum of hypothesis H0i (depicted as
dotted vertical line in Figure 2). Note that (8) remains valid for the case c = 0 in which the
minimum is at ki = 0 for all i ∈ I (see Figure 1).

Using γi, a binary search determines the two points to the left and to the right of γi at which
the derivative is first non-zero (subject to machine precision). This gives a search window for
µi (computable in O(logK) time), and µi is then efficiently found with, for instance, a golden
section minimisation procedure (Kiefer, 1953; Avriel and Wilde, 1966) as implemented in the
R function optimise (R Development Core Team, 2011). The complexity of the golden section
search is O(log(1/ε)), where ε is the computational precision (Luenberger, 2003). Once µi is
found, the resulting range of admissible values for ki can be set as [kLi , k

R
i] := [µi,K] for each

i ∈ I.
After [kLi , k

R
i] is determined for each hypothesis H0i, i ∈ I, the optimal value λ∗ has to be

found. For this, a search window for the binary search on λ is again needed: this search window
precisely consists of all those values λ for which Pi,λ has a solution within the admissible range
[kLi , k

R
i] for all indices i ∈ I. However, finding such an interval for λ∗ is not always possible as

shown in the following paragraphs and empirically in Section 4.2.
Since by construction, ∂h/∂ki is strictly increasing within [kLi , k

R
i] for all i ∈ I, the win-

dow [kLi , k
R
i] of admissible values for each ki can be translated to a search window for the

admissible values of λ that correspond to it. To be precise, this search interval is [λLi , λ
R
i] :=

[−(∂h/∂ki)(k
R
i),−(∂h/∂ki)(k

L
i)] for all i ∈ I, since large (small) values of ki correspond to low

(high) values of λ > 0.
It remains to compute the intersection of all [λLi , λ

R
i], i ∈ I, that is the range [λL, λR] :=

[maxi λ
L
i ,mini λ

R
i] of λ values which guarantees that Pi,λ has a solution for all i ∈ I. However,

it can happen that a few single hypotheses cause λL > λR, precisely those in J := {j ∈ I :
λLj > λR ∨ λRj < λL}. In this case, a global optimal allocation might not exist. However, the
existence of an optimal allocation can be guaranteed again if the hypotheses in J are removed
from I.

If [λL, λR] is an interval of non-zero length, then by construction Pi,λ can be solved for all
i ∈ I and for any λ ∈ [λL, λR]. In particular, for any given λ ∈ [λL, λR], Pi,λ is solved with
a binary search on the individual search window [kLi , k

R
i] for each i ∈ I as in Section 2.3.1,

and the optimal λ∗ is likewise found with a binary search within [λL, λR], again with total
computational effort O(m log(λR − λL) logK).

Conversely, the final range [λL, λR] of admissible λ values can be translated into the minimal
and maximal number of Monte Carlo simulations that can be allocated in an optimal way for the
given p-values p. The minimal and maximal numbers are

∑m
i=1 k

L
i and

∑m
i=1 k

R
i , respectively,

where kLi is the solution of Pi,λR for all i ∈ I and kRi is the solution of Pi,λL for all i ∈ I (the

7

0 5000 10000 15000 20000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

number of Monte Carlo simulations

fu
nc

tio
n

g

0 5000 10000 15000 20000

0.
2

0.
4

0.
6

0.
8

1.
0

number of Monte Carlo simulations

fu
nc

tio
n

g
Figure 3: Qualitative behaviour of the expected number of misclassifications gi (see (1)) as a
function of ki when computing p-value estimates without a pseudo-count (c = 0 in (4)) and for
a p-value below (left) and above (right) the testing threshold. Each new “branch” begins at a
multiple of 1/α plus one simulation, that is at ν/α+ 1 for ν ∈ N (here, α = 1/5000).

minimal optimal allocation is obtained for the largest admissible value of λ > 0 and likewise
for the maximal optimal allocation). These bounds on the minimal and maximal numbers of
simulations which can be allocated in an optimal way will be used in Section 4.2.

2.4 Extension to other multiple testing procedures

The previous derivations specifically addressed the Bonferroni correction with constant thresh-
old α. However, since the computation of the optimal allocation assumes full knowledge of
both the p-values p and the threshold α, this is not a restriction. This is due to the fact that
the result of any multiple testing procedure P (p, α) can equivalently be obtained by applying
the Bonferroni correction to p with constant threshold set to the p-value of the last rejected
hypothesis by P .

3 A simulated annealing algorithm to attempt the computation
of the optimal integer allocation

Section 2 considered the computation of the optimal allocation of Monte Carlo simulations
under the assumption that k ∈ Rm+ using a normal approximation of the Binomial distribution
in (1). In this section, a scheme based on simulated annealing (SA) of Kirkpatrick et al. (1983)
is derived in order to attempt to solve (3) directly. To this end, Section 3.1 first considers the
behaviour of the functions gi occurring in (3). Section 3.2 discusses the design of a suitable
proposal function for SA and Section 3.3 introduces the actual SA algorithm. Although the
optimality of the found integer allocation cannot be guaranteed any more, a simulation study
(Section 4.2) will later give empirical evidence that the optimal integer allocation is likely of
the same form as the optimal real-valued KKT allocation.

8

0 5000 10000 15000 20000

0.
4

0.
6

0.
8

1.
0

number of Monte Carlo simulations

fu
nc

tio
n

g

0 5000 10000 15000 20000

0.
00

0.
05

0.
10

0.
15

0.
20

number of Monte Carlo simulations

fu
nc

tio
n

g
Figure 4: Qualitative behaviour of the expected number of misclassifications gi (see (1)) as a
function of ki when computing p-value estimates with a pseudo-count (c = 1 in (4)) and for a
p-value below (left) and above (right) the testing threshold. Each new “branch” begins at a
multiple of 1/α simulations (here, α = 1/5000).

3.1 Qualitative behaviour of the probability of misclassifications

In order to motivate the design of the SA proposal in Section 3.2, consider the behaviour of the
function gi depicted exemplarily in Figure 3 for a p-value pi below (left) and above (right) the
testing threshold α = 1/5000.

In Figure 3, the absence of a pseudo-count (c = 0 in (4)) is crucial. A rejection is obtained
if a p-value estimate is below α, where generating 0 simulations is defined to yield a p-value
of 0 and hence a correct rejection. Thus when generating less than 5000 simulations for a
p-value below α (left), only the case of 0 simulations leads to a sure rejection (and thus to
a correct decision, that is a probability of misclassification of zero). Generating more than
0 simulations results in a non-zero probability of observing at least 1 exceedance (in which
case the hypothesis under consideration will be erroneously non-rejected), thus increasing the
probability of a misclassification. On reaching 1/α = 5000 simulations, both 0 or 1 exceedances
will lead to a rejection and hence to a correct decision, thus causing the expected number of
misclassifications to drop again.

For a p-value above α (right), the inverse effect happens. Generating no simulations leads
to a p-value of 0 (resulting in a rejection) and thus to a sure misclassification. Generating more
simulations decreases the expected number of misclassifications. On reaching 1/α = 5000 simu-
lations, observing both 0 and 1 exceedances leads to a rejection and thus to a misclassification,
causing the expected number of misclassifications to increase again.

Figure 4 depicts a similar behaviour of the number of misclassifications when computing
p-value estimates with a pseudo-count (c = 1 in (4)). Here, generating no simulations results
in a p-value estimate of 1 and thus in a sure non-rejection, and likewise generating any number
of simulations less than 1/α − 1 leads to a p-value estimate strictly above α irrespective of
the number of observed exceedances. As expected, in Figures 3 and 4 the probability of a
misclassification vanishes for any hypothesis H0i as ki →∞, i ∈ I.

9

Algorithm 1: proposal

input: k, S, α, j0 ← b1/αc;
1 Set j ← j0 or j ← 1 with probability 0.5 each;
2 if ∃i ∈ S: ki ≥ j then
3 Uniformly draw u from {i ∈ S : ki ≥ j};
4 ku ← ku − j;
5 v ← arg maxi∈I gi(ki)− gi(ki + j);
6 kv ← kv + j;

7 end
8 return k;

Algorithm 2: SA

input: k0, F , P , smax, β ← 10−4;
1 k ← k0;
2 for s← 1 to smax do
3 T ← β/ log(s+ 1);

4 k̃ ← P (k);

5 a← min
(

1, exp((F (k)− F (k̃))/T)
)

;

6 Uniformly draw u from [0, 1];

7 if u < a then k ← k̃;

8 end
9 return k;

3.2 The choice of the simulated annealing proposal

When no pseudo-count is used (c = 0 in (4)), according to Figure 3, it is only sensible to
allocate batches of 1/α Monte Carlo simulations to hypotheses with p-values below the testing
threshold. The same applies to hypotheses with p-values above the threshold, except when a
hypothesis receives less than 1/α simulations, in which case the probability of a misclassification
for that hypothesis decreases as more simulations are being allocated to it (corresponding to
the first branch in Figure 3, right). A similar observation holds true for p-values computed with
a pseudo-count (Figure 4).

Based on this observation, Algorithm 1 offers a sensible proposal for an SA algorithm.
The function proposal takes as inputs the current allocation of Monte Carlo simulations k =
(k1, . . . , km) to all m hypotheses, a finite set S ⊆ I indicating which hypotheses ought to be
eligible for a fine tuning of their currently allocated number of simulations, the threshold α and
a jump size j0 which is preset to b1/αc.

Algorithm 1 works as follows. First, the actual jump size j to be used is set to either j0 or 1
with probability 0.5 each. This ensures that the SA algorithm will not be restricted to allocating
batches of j0 simulations only, but will be able to fine-tune the allocation. If there exists at least
one hypothesis from which j simulations can be taken for re-allocation, then an index u is drawn
uniformly among all those hypotheses currently receiving at least j simulations, j is substracted
from ku, and the j simulations are allocated in a greedy fashion to the hypothesis which yields
the largest decrease in its expected number of misclassifications. The greedy allocation is not
necessary but employed here to speed up the slow SA scheme. Alternatively, the j simulations
can also be allocated to any randomly chosen hypothesis.

10

3.3 A simulated annealing approach

Using the proposal in Algorithm 1, the minimisation in (3) can now be attempted with the help
of a simple SA scheme (Kirkpatrick et al., 1983) given in Algorithm 2.

Algorithm 2 works as follows. In each iteration, the proposal function P is called with the
current allocation k (initialised with some allocation k0) and its proposed new allocation is
saved in k̃. Both the current allocation k and the proposed new allocation k̃ are evaluated on F
(the function to be minimised, in our case F = g defined in (2)) and a standard SA acceptance
probability a is computed. If F (k̃) ≤ F (k) then the argument of the exponential function will
be non-negative and thus a = 1, leading to a sure acceptance of the proposal k̃ in line 7. If
F (k̃) > F (k) then the proposal k̃ will only be accepted with probability a in line 7. Since in
this case the proposal k̃ actually increases the objective function, SA has the ability to leave
local minima. The aforementioned steps are repeated over a pre-specified number of iterations
smax. The last accepted proposal k is returned as the output of Algorithm 2.

To turn SA into a steepest descent optimiser over time, the argument of the exponential
function is weighted by 1/T using a temperature T which is decreased in every step (line 3). Em-
ploying a logarithmic decrease ensures, under conditions, that SA will find the global minimum
of F as smax →∞ (Henderson et al., 2003).

The initial allocation kinit can be chosen as follows. If c = 0 then it is sensible to set kiniti

to a multiple of 1/α plus one for all indices in {i ∈ I : pi ≤ α}, and likewise kiniti is set to a
multiple of 1/α for all {i ∈ I : pi > α} (see Figure 3). Similarly, for c = 1, kiniti is set to a
multiple of 1/α for all indices in {i ∈ I : pi ≤ α}, and to a multiple of 1/α minus one otherwise.
If at the end,

∑m
i=1 k

init
i < K, one Monte Carlo simulation each is added to a randomly drawn

entry among {i ∈ I : pi > α} ({i ∈ I : pi ≤ α}) for c = 0 (c = 1) until
∑m

i=1 k
init
i = K is

satisfied. Afterwards, the two calls

k1 := SA(k0 = kinit, F = g(k), P = proposal(k, S = {i ∈ I : pi > α}, α = α), smax = 106),

k2 := SA(k0 = k1, F = g(k), P = proposal(k, S = {i ∈ I : pi ≤ α}, α = α), smax = 106),

optimise the allocation of Monte Carlo simulations both above and below the threshold, where
g is as defined in (2). Since kinit ∈ Nm0 ,

∑m
i=1 k

init
i = K, and since the proposal in Algorithm 1

only performs swaps of an integer number of simulations between hypotheses, it is guaranteed
that k1, k2 ∈ Nm0 and that both sum up to K. The integer allocation of Monte Carlo simulations
in vector k2 is returned as the SA approximation of the optimal allocation k∗ solving (3).

4 Simulation study

This section discusses the optimal allocation for a given distribution of p-values (Section 4.1)
and shows that the optimal real-valued and integer allocations are qualitatively similar (Sec-
tion 4.2), both for a finite K and asympotically. Section 4.3 empirically demonstrates that while
adaptively generating Monte Carlo simulations at runtime to approximate the unknown p-values
of multiple hypotheses, the QuickMMCTest algorithm of Gandy and Hahn (2017) allocates sim-
ulations in a way that asympotically coincides with the optimal (real-valued) allocation. A
comparison on a real dataset to the other algorithms listed in Section 1 is given in Section 4.4.

4.1 Relationship between p-value distribution and optimal allocation

This section visualises how the distribution of p-values is related to the optimal (real-valued)
allocation of Monte Carlo simulations to all hypotheses. For this, m p-values are drawn from
the mixture distribution proposed in Sandve et al. (2011): The mixture distribution consists
of a proportion π0 of true null hypotheses drawn from a uniform distribution in [0, 1], and a
proportion 1−π0 drawn from a Beta(0.25, 25) distribution. This distribution resembles p-value

11

+++++++++++++++++++++++++++++
+++++++++++
++++++
++++
++++
+++++
++++
+++
+
+++
++
+++
++
+++
+++
++++
+
++
+
+
+
+++++
+++
+
++
++++
+
++++
++++
+++
++++++
++++++++++++++++++++++

++++++++++++++++++
++
++++
++++
++++++++
++++++++++++++++++
++

++++++
++++++++
+++++++
+++++
++++++++
++++++
+++++
+++
+++
++++
+
++++
++++
+++++
++++
+++++++
+++++
++++
++++++
++++++
++
+
++++
+++
+++++++
++++
+++++++
+++++++
+++++++
++++++
+++++++++++++++
++++++++++++++++++
++

0 500 1000 1500 2000

0
50

0
10

00
15

00

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

−
30

−
25

−
20

−
15

−
10

−
5

0

lo
g(

p−
va

lu
e)

Figure 5: Exemplary p-value distribution for m = 2000 hypotheses (solid line, p-values on the
logarithmic right axis), testing threshold α = 0.1/m (horizontal dashed line) and number of
simulations allocated to each hypothesis (crosses, numbers given on the left axis).

distributions observed in real data studies (e.g., genome testing) and has already been used in
Gandy and Hahn (2014, 2016, 2017).

Figure 5 shows the distribution of m = 2000 p-values drawn with π0 = 0.4 (logarithmic axis
on the right). The relatively low proportion π0 of true null hypotheses is employed in this and
the following sections to better visualise the p-value distribution and the resulting allocation
of simulations. The testing threshold is set to α = 0.1/m. Using the known p-values, the
optimal allocation of K = 106 simulations was computed as described in Section 2.3.1 (without
a pseudo-count, case c = 0) and added to Figure 5 as crosses (numbers given on the left axis).
The optimal allocation was found with λ∗ = 6.76 · 10−5.

As expected, and as confirmed by empirical studies (Gandy and Hahn, 2017), hypotheses
with very small or very large p-values only require relatively few Monte Carlo simulations for
stable decisions. As the p-value distribution approaches a neighbourhood of the testing threshold
from either side, more simulations are required to minimise the total number of misclassifications
in the optimal allocation. However, it turns out that in this example, hypotheses with p-values
too close to the testing threshold are not worth being invested too many simulations in since
the numbers required for a (reasonably) low probability of a misclassification are too large.
Therefore, in the optimal allocation, those misclassifications are traded in for being able to use
the unspent simulations on other hypotheses instead which are slightly further away from the
threshold.

It is not always the case that hypotheses too close to the threshold receive less Monte Carlo
simulations than those in an immediate neighbourhood. Figure 6 shows the optimal real-valued
allocations for three scenarios using K = 106 and sets of p-values drawn from the Sandve
et al. (2011) distribution with parameter π0 = 0.5. For m = 1000 hypotheses and threshold
α = 10−3 (left), hypotheses close to the threshold do not receive many simulations. However,
when increasing the threshold to α = 10−1 (middle), this effect disappears and the optimal
allocation invests most simulations in the hypotheses closest to the threshold. When increasing
the number of hypotheses to m = 10000 while keeping α = 10−1 constant, hypotheses close to
the threshold again receive less simulations.

This can be explained as follows. Suppose the optimal λ∗ was known. The optimal allocation

12

0 200 400 600 800 1000

1
10

10
0

10
00

10
00

0

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

0 200 400 600 800 1000

1
10

0
10

00
0

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

0 2000 4000 6000 8000 10000

1
5

10
50

50
0

50
00

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

Figure 6: Progression of optimal allocations k∗: m = 1000 and α = 10−3 with mini∈I |pi−α| ∝
10−5 (left), m = 1000 and α = 10−1 with mini∈I |pi − α| ∝ 10−3 (middle), m = 10000 and
α = 10−1 with mini∈I |pi − α| ∝ 10−5 (right). The y-axes display log(1 + k∗).

consists of the k∗i for each hypothesis H0i, i ∈ I, which satisfies (6). The derivative ∂hi/∂ki in
(6) is of the order

∂hi
∂ki
∝ α− pi√

kipi(1− pi)
· φ

(√
ki(α− pi)√
pi(1− pi)

)
for both cases pi ≤ α and pi > α, where it was used that c = 0. The quantity of interest is
α− pi: For a p-value pi > α (pi < α) further away from the threshold, α− pi is of the order of
pi (of the order of α), and k∗i has to be sufficiently large to ensure (∂hi/∂ki)(k

∗
i) = −λ∗. If pi

is very close to α, α− pi can be magnitudes smaller than both pi and α, and the k∗i satisfying
(∂hi/∂ki)(k

∗
i) = −λ∗ need only be relatively small.

Figure 6 confirms this picture: The p-value distribution of Sandve et al. (2011) consists of a
proportion 1− π0 of very small p-values from a Beta(0.25, 25) distribution, which cluster close
to zero, and a proportion π0 of p-values drawn from a uniform distribution which scatter within
the entire interval [0, 1]. In Figure 6 (left), α = 10−3 falls within the p-values from the Beta
cluster, causing mini∈I |pi − α| to be small (of the order of 10−5) and the optimal allocation to
spend less Monte Carlo simulations right at the threshold. When increasing the threshold to
α = 10−1 (middle) while keeping m fixed, α now falls within the uniform p-values which are
scattered over the entire interval [0, 1], thus causing mini∈I |pi − α| ∝ 10−3 to increase to the
point that hypotheses at the threshold receive most simulations. However, mini∈I |pi − α| can
be made smaller again simply by increasing m, for instance to m = 10000 (thus increasing the
p-value density in [0, 1] which leads to mini∈I |pi − α| ∝ 10−5), causing the optimal allocation
to again spend less simulations at the threshold (right).

4.2 Comparison of the optimal real-valued and integer allocations

Figure 7 compares the optimal real-valued allocation k∗ (dashed line), computed both without
(left) and with (right) a pseudo-count (Sections 2.3.1 and 2.3.2), to the SA integer solution kSA
of Section 3 (crosses). The p-value distribution is again the mixture distribution of Sandve et al.
(2011) (see Section 4.1) with parameters m = 500, π0 = 0.5, K = 2 · 106 and α = 0.1.

As seen in Figure 7, the two allocations are qualitatively similar. The KKT solution (dashed
line) is smoother (since it is allowed to allocate a real-valued number of Monte Carlo simulations
to each hypothesis) and has a more pronounced spike at the threshold, whereas SA seems to
allocate less simulations to hypotheses at the threshold and more simulations to those hypotheses
further away from the threshold.

For the case c = 0 (Figure 7, left), the optimal allocation of simulations k∗ is found for
λ∗ = 1.92 · 10−11 (in this example run). For the case c = 1 (Figure 7, right), the com-
putation of the optimal allocation was initially not possible since the hypotheses with ranks

13

0 100 200 300 400 500

1e
+

00
1e

+
02

1e
+

04
1e

+
06

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

+++++++++++++++++++++++
+++++++++++++++++++++++++

++
++

++++++++++++++++++++++++++++++
+++++++++++++++++++++++

++++++++++++++++++++++
+++++++++++

++++++++++
+++++++
++
++++++
+++
+++
++
+
++
+

+

++

++
+++

++

+++
+
+++
+
+++++++++++++++++++++++++++++++++++++++

+
++
+++++
+
+++++++++++

0 100 200 300 400 500

1e
+

00
1e

+
02

1e
+

04
1e

+
06

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

++

+

+

+

++
+
+++++

+

+

++++

++
+
+

+++

++
+

+

+

+++++++++++++++++++++++
+
++
++
++
+++++++++++++++++++

+
++
+++++++++++++++++++++++++

++++++++
+
++
+++++++++++++++++++++++++++

++++++++++
+++++++++++++++++++++++++

+++++++++++++++++++++++++++
++++++++++++++++++++++

+++++++++++++++++
++++++++
+++++++++
++++
+++++
+++
+++
++
+
+++

+
+

+

+

+
+
+
++++++
++

+++
+++

Figure 7: Optimal KKT allocation k∗ computed as in Sections 2.3.1 and 2.3.2 (dashed line)
and integer solution kSA computed as in Section 3 (crosses), both without (left) and with a
pseudo-count (right). The y-axes display log(1 + k∗) and log(1 + kSA), respectively.

483, . . . , 500 (based on the ordered m = 500 p-values) caused the search interval [λL, λR] for
the optimal λ∗ to be empty (see Section 2.3.2). Removing the hypotheses with indices in
J := {483, . . . , 500} led to [λL, λR] = [1.35 · 10−11, 9.40 · 10−10] which translates to the range
of simulations [1930003, 3007833] that can be allocated in an optimal way using KKT. Since
K = 2 · 106 falls within that range, the optimal λ∗ = 7.11 · 10−10 was efficiently found.

To quantify the similarity between the SA and KKT solutions, Figure 8 compares both
allocations as the number of hypotheses m, the number of Monte Carlo simulations K, and
the number of iterations smax of SA increase. Naturally, when increasing m, it is necessary
to increase K as well to ensure that enough simulations are available for all m hypotheses,
and likewise with increasing parameters m and K the SA algorithm requires more iterations
smax to compute allocations. The parameters m, K and smax are thus increased together as
(mn,Kn, s

max
n) = (50 ·2n, 105 ·2n, 106 ·2n) for n ∈ {0, . . . , 5}. As SA allocates an integer number

of simulations, it seems unreasonable to assume that the SA allocation in vector kSA and the
optimal real-valued KKT allocation k∗KKT will coincide in an L2 sense. Instead, Figure 8 shows
‖kSA−k∗KKT‖/Kn, the relative difference in L2 norm between the two allocation vectors which is
normalised with respect to the number of simulations Kn spent. Each datapoint is the median
of 100 repetitions. Figure 8 indicates that the normalised L2 difference between both allocation
vectors seems to decrease.

4.3 Comparison to Thompson sampling in the QuickMMCTest algorithm

This section compares the optimal KKT allocation computed in Section 2.3 with the allocation
returned by the QuickMMCTest algorithm of Gandy and Hahn (2017).

QuickMMCTest can be used to compute a decision (rejection or non-rejection) for a given set
of hypotheses with unknown p-values based solely on Monte Carlo simulations. The algorithm
aims to use more simulations for hypotheses with an (analytical and unknown) p-value close
to the testing threshold (thus having a less stable decision, in the sense that their decision
switches from being rejected to non-rejected if the data were analysed repeatedly), and less
simulations for hypotheses with a p-value further away from the threshold (thus having a more
stable decision). To compute a stability measure, QuickMMCTest starts with a uniform prior on

14

+

+

+

+

+

+

0 1 2 3 4 5

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

Triples (mn,Kn,sn
max) for n ∈ {0,...,5}

|k
S

A
 −

 k
K

K
T

*
|/K

n

Figure 8: Relative difference in vectors kSA (allocation of SA of Section 3) and k∗KKT (optimal
KKT allocation computed as in Section 2.3.1) as a function of (mn,Kn, s

max
n), n ∈ {0, . . . , 5}.

the p-value of each hypothesis and updates a Beta-Binomial model for each p-value as more
simulations are generated. Based on Thompson sampling (Thompson, 1933; Agrawal and Goyal,
2012), in each iteration, a new p-value is drawn from each posterior and new rejections and non-
rejections are computed for the sampled p-value distribution. Repeating this step several times
gives a measure of how stable the current decision on each hypothesis is, which is then used to
compute weights employed to allocate a new batch of simulations. Further details can be found
in Gandy and Hahn (2017).

Figure 9 (left) shows the number of Monte Carlo simulations allocated to each hypothesis
in an example run of QuickMMCTest (crosses), as well as the optimal KKT allocation (dashed
line). For this, m = 500 p-values were generated using the Sandve et al. (2011) distribution
(see Section 4.1) with π0 = 0.5 and the two allocations were computed with K = 107 and
α = 0.1/m. To ensure a fine-tuned allocation, QuickMMCTest was run with parameter ∆ = 10m
(that is with a low average number of 10 simulations spent per hypothesis in each iteration), all
other parameters were kept at the default values given in Gandy and Hahn (2017). As visible
in Figure 9 (left), QuickMMCTest manages to allocate simulations without knowledge of the
p-values in a qualitatively similar fashion to the optimal allocation.

To quantify this similarity, as in Section 4.2, both the QuickMMCTest allocation kQMT and
the optimal KKT allocation k∗KKT are compared as both the number of hypotheses m and the
number of simulations K increase. Like SA, QuickMMCTest is a probabilistic method which
allocates integer numbers of simulations and thus Figure 9 (right) shows ‖kQMT − k∗KKT‖/Kn,
the relative difference in L2 norm between the two allocation vectors which is normalised with
respect to the number of simulations Kn spent. The parameters m and K are increased together
as (mn,Kn) = (50 · 2n, 105 · 2n) for n ∈ {0, . . . , 8}. Each datapoint is the median of 100
repetitions. As visible in the plot, the normalised L2 difference between both allocation vectors
seems to decrease.

A repetition of this experiment for a higher proportion of null hypotheses π0 = 0.9 can be
found in Section B, again confirming the asympotic similarity of the two allocation vectors.

15

+++
++
++++
+
+

++
+
+
+

++
++

+++

++
+

+

+

+
+

+

++
+

+

+++

0 100 200 300 400 500

0
20

00
00

60
00

00
10

00
00

0
14

00
00

0

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

+

+

+

+

+

+
+ + +

0 2 4 6 8

0.
05

0.
10

0.
15

0.
20

0.
25

Pairs (mn,Kn) for n ∈ {0,...,8}

|k
Q

M
T
 −

 k
K

K
T

*
|/K

n
Figure 9: Left: Optimal KKT allocation computed as in Section 2.3.1 (dashed line) and integer
allocation of QuickMMCTest (crosses). No pseudo-count (c = 0 in (4)). Right: Relative difference
in vectors kQMT (allocation of QuickMMCTest) and k∗KKT (optimal KKT allocation computed
as in Section 2.3.1) as a function of (mn,Kn), n ∈ {0, . . . , 8}.

4.4 Comparison to other algorithms on a real dataset

This section compares QuickMMCTest to other algorithms on a dataset of gene modifications
(so-called H3K4me2 modifications) of Pekowska et al. (2010). This dataset was used as a
motivating example in the original publication of QuickMMCTest in Gandy and Hahn (2017).
The dataset contains midpoints of gene modifications on a genome, and the permutation test of
(Sandve et al., 2011, Section 3.2) is used in Gandy and Hahn (2017) to test if gene modifications
appear more often in the lower half of the genome. Preparing the dataset as outlined in (Gandy
and Hahn, 2017, Section 3) leads to 3465 hypotheses under consideration.

QuickMMCTest is compared to the seven algorithms listed in Section 1, precisely the näıve
method which generates a constant number of K/m simulations per hypothesis as well as the
algorithms of Besag and Clifford (1991), Guo and Peddada (2008), van Wieringen et al. (2008),
Sandve et al. (2011), Jiang and Salzman (2012), and Gandy and Hahn (2014). Each of those
algorithms relies on one or more parameter, and the specific choice of parameters employed in
this section is given in Section C for each algorithm.

The optimal allocation derived in Section 2.2 requires full knowledge of the p-values of all
hypotheses, which are actually unavailable for a real dataset. Therefore, the p-values of all
hypotheses are approximated once using 106 permutations per hypothesis. The resulting p-
value estimates (computed with a pseudo-count) are used to both compute the optimal KKT
allocation of Monte Carlo simulations as well as to model the number of exceedances by drawing
Binomial samples as described in Section 2.1. Moreover, computing the optimal allocation
for a p-value distribution with many hypotheses and a high proportion of true nulls can be
computationally challenging due to numerical instabilities of the KKT derivatives. Therefore,
to simply computations, a subsample of size m = 500 of the 3465 p-values of the Pekowska et al.
(2010) dataset is taken once without replacement, since such a subsample preserves the overall
shape of the p-value distribution. All algorithms are applied to this subsample in a single run.

All algorithms were given K = 107 simulations to allocate. Testing was carried out using a
corrected Bonferroni threshold of α = 0.1/m.

Figure 10 shows the allocation of simulations for QuickMMCTest (left) as well as for Guo

16

++++++++++++++++++++++
+
+

+

+
+
+
++

+

+
+
+
++

+

+

+

+

+

+

++

+
+

+

+

+
+

+

+
+
+

++
+++
++
+
++

0 100 200 300 400 500

0e
+

00
2e

+
05

4e
+

05
6e

+
05

8e
+

05
1e

+
06

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

+++++++++++

+

+++++++++

+

+

+++++

+

+++++++

+

++++++++++

+

++++++

++

+

+

++

+

+

+

+

++

++

0 100 200 300 400 500

0e
+

00
2e

+
05

4e
+

05
6e

+
05

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

++++++++++++++++++++++++++++++
+
++++++
+

+

+

+++
+

+
+++
+
+++
++
++
++
++

0 100 200 300 400 500

0e
+

00
2e

+
05

4e
+

05
6e

+
05

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

Figure 10: Optimal KKT allocation computed as in Section 2.3.1 (dashed line) and integer
allocation (crosses) of QuickMMCTest (left), Guo and Peddada (2008) (middle) and Sandve et al.
(2011) (right). Subsampled dataset of Pekowska et al. (2010) with m = 500. No pseudo-count
(c = 0 in (4)).

algorithm ‖k − k∗KKT‖/K
QuickMMCTest 0.115
näıve method 0.196
Besag and Clifford (1991) 0.193
Guo and Peddada (2008) 0.134
van Wieringen et al. (2008) 0.187
Sandve et al. (2011) 0.191
Jiang and Salzman (2012) 0.174
Gandy and Hahn (2014) 0.173

Table 1: Normalised L2 difference of the allocation vector k of each method to the optimal
KKT allocation k∗KKT for K = 107.

and Peddada (2008) (middle) and Sandve et al. (2011) (right). As observed in Figure 9,
QuickMMCTest yields an allocation of a qualitative similar shape as the optimal KKT allo-
cation. The algorithm of Guo and Peddada (2008) approximates the shape of the optimal KKT
allocation by allocating large numbers of batches to the left and to the right of the KKT peak.
Though not shown here, the algorithms of van Wieringen et al. (2008) and Gandy and Hahn
(2014) produce similar allocations. In contrast, the algorithm of Sandve et al. (2011) closely
approximates the right half of the KKT allocation (corresponding to larger p-values), and uses
an upper bound on the number of simulations that hypotheses with small p-values receive. The
algorithms of Besag and Clifford (1991) and Jiang and Salzman (2012) produce similar alloca-
tions (figures not shown here). The näıve method distributes a constant number of Monte Carlo
simulations to each hypothesis which results in the worst approximation of the KKT allocation.

Table 1 shows the normalised L2 difference ‖k − k∗KKT‖/K of the allocation vector k of
each algorithm to the optimal KKT allocation k∗KKT (see Section 4.2). The table shows that
indeed, the allocation of QuickMMCTest yields the closest allocation to the KKT one, followed
by the algorithm of Guo and Peddada (2008). Empirically it turns out that QuickMMCTest often
allocates considerably more simulations than the optimal KKT allocation in the peak around
the threshold (see Figure 10, left), a fact which worsens the quality of its allocation, and that
as K increases, the discrepancy of QuickMMCTest to the other algorithms decreases.

17

5 Discussion

This article considered the problem of allocating a fixed number of K ∈ N Monte Carlo sim-
ulations to m ∈ N hypotheses tested with the Bonferroni correction in order to approximate
p-values. When estimating p-values both with or without a pseudo-count (Davison and Hinkley,
1997), the optimal real-valued (and normally approximated) allocation is derived and computed,
and a scheme based on simulated annealing is proposed to compute an approximation to the
optimal integer allocation.

A simulation study shows that the real-valued and normally approximated optimal KKT
solution is qualitatively similar to the SA integer solution, and moreover that the relative
difference between both allocations seems to decrease (to zero) as m,K, smax →∞. Moreover,
the allocation returned by the QuickMMCTest algorithm of Gandy and Hahn (2017) is compared
to the optimal KKT solution. QuickMMCTest approximates unknown p-values at runtime while
the testing of all hypotheses is in progress, and aims to efficiently allocate the K Monte Carlo
simulations to the hypotheses whose decision (rejected or non-rejected) is most “unstable” (see
Section 4.3). Simulations show that the allocation of QuickMMCTest computed at runtime seems
to asympotically coincide with the optimal KKT solution, thus making QuickMMCTest a very
attractive method to carry out multiple testing in practice. The results also give an intuition
behind the low numbers of misclassifications already observed for this algorithm in Gandy and
Hahn (2017).

The current article leaves scope for further avenues of research. First, since a derivation of
the optimal integer allocation seems infeasible (due to the fact that the problem is non-convex),
it would be worth investigating how far away the optimal real-valued KKT solution is from (one
of the) optima of the integer allocation: this could, in principle, be approached using subdif-
ferential versions of the KKT conditions (Ruszczynski, 2006). Second, a theoretical analysis of
QuickMMCTest could lead to an intuition for a formal proof that its allocation indeed satisfies
some kind of asympotic optimality. This is not entirely unlikely since QuickMMCTest essen-
tially borrows its strength from Thompson sampling (Thompson, 1933), for which optimality
statements have already been proven in the related context of multi-armed bandit methodology
(Agrawal and Goyal, 2012).

A Auxiliary lemma

Lemma 1. If c = 0 and pi 6= α, the derivatives ∂h/∂ki defined in (4) are negative and strictly
increase to zero as ki →∞ for all i ∈ I.

Proof. Case pi ≤ α: Substitute c = 0 into (4) and write ∂hi/∂ki = −A(ki) ·B(ki), where

A(ki) =
ki(α− pi)

2ki
√
kipi(1− pi)

=
α− pi

2
√
kipi(1− pi)

, B(ki) = φ

(
ki(α− pi)√
kipi(1− pi)

)
.

Since pi ≥ 0, ki ≥ 0 and 0 < α− pi (since pi 6= α), and as φ is positive, it follows that A(ki) > 0
and B(ki) > 0, thus ∂h/∂ki < 0.

As A(ki) ∝ k−1/2i and B(ki) ∝ φ
(√
ki
)
, both functions A and B converge to zero as ki →∞,

thus ∂h/∂ki → 0 as ki →∞.
For ki < k′i, A(ki) > A(k′i). Likewise, B(ki) > B(k′i) for ki < k′i. Thus both functions A

and B are strictly decreasing, and so is their product A(ki) · B(ki), implying that ∂hi/∂ki =
−A(ki) ·B(ki) is strictly increasing.

The case pi > α is proven similarly.

Under the assumption that the p-values p = (p1, . . . , pm) are drawn from a distribution
which is absolutely continuous with respect to the Lebesgue measure, and since I = {1, . . . ,m}

18

+++++++
+

+

+

+
+
++

0 100 200 300 400 500

0e
+

00
2e

+
06

4e
+

06
6e

+
06

hypotheses sorted by p−value

nu
m

be
r

of
 M

on
te

 C
ar

lo
 s

im
ul

at
io

ns

+

+

+ +

+

+

+

+
+

0 2 4 6 8

0.
05

0.
10

0.
15

0.
20

0.
25

Pairs (mn,Kn) for n ∈ {0,...,8}

|k
Q

M
T
 −

 k
K

K
T

*
|/K

n
Figure 11: Left: Optimal KKT allocation computed as in Section 2.3.1 (dashed line) and
integer allocation of QuickMMCTest (crosses). No pseudo-count (c = 0 in (4)). Right: Relative
difference in vectors kQMT (allocation of QuickMMCTest) and k∗KKT (optimal KKT allocation
computed as in Section 2.3.1) as a function of (mn,Kn), n ∈ {0, . . . , 8}.

for a finite m ∈ N, the probability of the event {∃i ∈ I : pi = α} is zero. The condition pi 6= α
in Lemma 1 is therefore not a restriction when computing the optimal (real-valued) allocation
for randomly drawn p-values.

B Repetition of the comparison with QuickMMCTest

Figure 11 repeats the comparison of the optimal real-valued KKT allocation to the one of the
QuickMMCTest algorithm for a dataset of m = 500 p-values generated from the Sandve et al.
(2011) distribution with π = 0.9. A proportion of true null hypotheses close to one is what
would be expected in real data studies.

As in Section 4.3, the total number of simulations was K = 107, a standard Bonferroni type
threshold of α = 0.1/m was employed, and QuickMMCTest was run with parameter ∆ = 10m.

Figure 11 (left) shows that QuickMMCTest again captures well the spike in the optimal
allocation of Monte Carlo simulations. Figure 11 (right) shows the relative difference ‖kQMT −
k∗KKT‖/Kn in L2 norm between the two allocation vectors, which is normalised with respect
to the number of simulations Kn. As in Section 4.3, the parameters m and K are increased
together as (mn,Kn) = (50 · 2n, 105 · 2n) for n ∈ {0, . . . , 8}. Each datapoint is the median of
100 repetitions. The figure shows that after an initial slight increase, the difference between the
optimal KKT allocation and the one of QuickMMCTest decreases as n increases. The origin of
the initial slight increase is unknown and remains for further research.

C Choice of parameters for published methods

The algorithms employed in Section 4.4 were run with the following choice of parameters:

1. The näıve method generated K/m simulations per hypothesis.

2. Besag and Clifford (1991) sequentially generated one Monte Carlo simulation at a time
for each hypothesis until either h = 20 exceedances (as proposed by the authors) were

19

observed (in which case this hypothesis was excluded from receiving further simulations)
or the total number of simulations K was reached.

3. Guo and Peddada (2008) generated simulations according to a geometric sequence B0 ≤
B1 ≤ . . . ≤ BN , where N = 9 and the geometric increase was chosen such that

∑N
i=0Bi =

K. Confidence intervals of Clopper and Pearson (1934) at a confidence level 0.01 were
employed as proposed by the authors.

4. van Wieringen et al. (2008) was employed using the 0.001 upper quantile of the standard
Normal distribution (as proposed by the authors) and a batch size of 100 simulations.

5. MCFDR of Sandve et al. (2011) was run with a Besag and Clifford (1991) cutoff of h = 20
exceedances and a batch size of 100 for generating new simulations.

6. Jiang and Salzman (2012) was employed with parameters a = 10, δ = 0.01, and a batch
size of one (as proposed by the authors in their simulation study).

7. MMCTest of Gandy and Hahn (2014) was run with Lai (1976) confidence sequences at a
confidence level of 0.01, a batch size of 10 simulations, and a geometric increase to match
the total number of simulations K over all 10 iterations as done for Guo and Peddada
(2008).

References

Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for the Multi-armed Bandit
Problem. Proceedings of the 25th Annual Conference on Learning Theory, 23(39):1–26.

Avriel, M. and Wilde, D. (1966). Optimality proof for the symmetric Fibonacci search technique.
Fibonacci Quart, 4:265–269.

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and
powerful approach to multiple testing. J Roy Stat Soc B Met, 57(1):289–300.

Besag, J. and Clifford, P. (1991). Sequential Monte Carlo p-values. Biometrika, 78(2):301–304.

Bonferroni, C. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del
R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 8:3–62.

Chen, Y. and Chen, Y. (2017). An Efficient Sampling Algorithm for Network Motif Detection.
J Comput Graph Stat, pages 1–31.

Clopper, C. and Pearson, E. (1934). The Use of Confidence or Fiducial Limits Illustrated in
the Case of the Binomial. Biometrika, 26(4):404–413.

Davidson, R. and MacKinnon, J. (2000). Bootstrap tests: How many bootstraps? Economet
Rev, 19(1):55–68.

Davison, A. and Hinkley, D. (1997). Bootstrap Methods and Their Application. Cambridge
University Press.

Ding, D., Gandy, A., and Hahn, G. (2018). A simple method for implementing Monte Carlo
tests. arXiv:1611.01675, pages 1–17.

Fay, M. and Follmann, D. (2002). Designing Monte Carlo implementations of permutation or
bootstrap hypothesis tests. Amer Statist, 56(1):63–70.

20

Fay, M., Kim, H.-J., and Hachey, M. (2007). On using truncated sequential probability ratio
test boundaries for Monte Carlo implementation of hypothesis tests. J Comput Graph Stat,
16(4):946–967.

Gallagher, S., Richardson, L., Ventura, S., and Eddy, W. (2018). SPEW: Synthetic Populations
and Ecosystems of the World. J Comput Graph Stat, pages 1–30.

Gandy, A. (2009). Sequential Implementation of Monte Carlo Tests With Uniformly Bounded
Resampling Risk. J Am Stat Assoc, 104(488):1504–1511.

Gandy, A. and Hahn, G. (2014). MMCTest – A Safe Algorithm for Implementing Multiple
Monte Carlo Tests. Scand J Stat, 41(4):1083–1101.

Gandy, A. and Hahn, G. (2016). A Framework for Monte Carlo based Multiple Testing. Scand
J Stat, 43(4):1046–1063.

Gandy, A. and Hahn, G. (2017). QuickMMCTest: quick multiple Monte Carlo testing. Stat
Comput, 27(3):823–832.

Guo, W. and Peddada, S. (2008). Adaptive Choice of the Number of Bootstrap Samples in
Large Scale Multiple Testing. Stat Appl Genet Mol Biol, 7(1):1–16.

Henderson, D., Jacobson, S., and Johnson, A. (2003). The Theory and Practice of Simulated
Annealing (in the ’Handbook of Metaheuristics’ of Glover and Kochenberger), volume 57.
Springer, Boston, MA.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance.
Biometrika, 75(4):800–802.

Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scand J Stat,
6(2):65–70.

Jiang, H. and Salzman, J. (2012). Statistical properties of an early stopping rule for resampling-
based multiple testing. Biometrika, 99(4):973–980.

Karush, W. (1939). Minima of Functions of Several Variables with Inequalities as Side Con-
straints. MSc Dissertation, Dept of Mathematics, Univ of Chicago, Chicago, Illinois.

Kiefer, J. (1953). Sequential minimax search for a maximum. P Am Math Soc, 4(3):502–506.

Kim, H.-J. (2010). Bounding the resampling risk for sequential Monte Carlo implementation of
hypothesis tests. J Stat Plan Infer, 140(7):1834–1843.

Kirkpatrick, S., Gelatt Jr, C., and Vecchi, M. (1983). Optimization by Simulated Annealing.
Science, 220(4598):671–680.

Kuhn, H. and Tucker, A. (1951). Nonlinear Programming. Proc Second Berkeley Symp on Math
Statist and Prob, pages 481–492.

Lai, T. (1976). On confidence sequences. Ann Stat, 4(2):265–280.

Lan, K. and Wittes, J. (1988). The b-value: a tool for monitoring data. Biometrics, 44(2):579–
585.

Luenberger, D. (2003). Linear and Nonlinear Programming. Springer, 2nd edition.

Mestres, A., Bochkina, N., and Mayer, C. (2017). Selection of the Regularization Parameter in
Graphical Models using Network Characteristics. J Comput Graph Stat, pages 1–27.

21

Mrkvic̆ka, T., Myllymäki, M., and Hahn, U. (2017). Multiple Monte Carlo testing, with appli-
cations in spatial point processes. Stat Comput, 27:1239–1255.

Pekowska, A., Benoukraf, T., Ferrier, P., and Spicuglia, S. (2010). A unique h3k4me2 profile
marks tissue-specific gene regulation. Genome Research, 20(11):1493–1502.

Pesarin, F., Salmaso, L., Carrozzo, E., and Arboretti, R. (2016). Union-intersection permutation
solution for two-sample equivalence testing. Stat Comput, 26:693–701.

Phipson, B. and Smyth, G. (2010). Permutation P-values Should Never Be Zero: Calculating
Exact P-values When Permutations Are Randomly Drawn. Stat Appl Genet Molec Biol, 9(1).

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria.

Ruszczynski, A. (2006). Nonlinear Optimization. Princeton University Press.

Sandve, G., Ferkingstad, E., and Nygard, S. (2011). Sequential Monte Carlo multiple testing.
Bioinformatics, 27(23):3235–3241.

Shen, D., Shen, H., Bhamidi, S., Maldonado, Y., Kim, Y., and Marron, J. (2014). Functional
Data Analysis of Tree Data Objects. J Comput Graph Stat, 23(2):418–438.

Sidak, Z. (1967). Rectangular confidence regions for the means of multivariate normal distri-
butions. J Am Stat Assoc, 62(318):626–633.

Silva, I. and Assunção, R. (2013). Optimal generalized truncated sequential Monte Carlo test.
J Multivariate Anal, 121:33–49.

Silva, I. and Assunção, R. (2018). Truncated sequential Monte Carlo test with exact power.
Brazilian Journal of Probability and Statistics, 32(2):215–238.

Silva, I., Assunção, R., and Costa, M. (2009). Power of the sequential Monte Carlo test.
Sequential Anal, 28(2):163–174.

Simes, R. (1986). An improved Bonferroni procedure for multiple tests of significance.
Biometrika, 73(3):751–754.

Tang, M., Athreya, A., Sussman, D., Lyzinski, V., Park, Y., and Priebe, C. (2017). A Semi-
parametric Two-Sample Hypothesis Testing Problem for Random Graphs. J Comput Graph
Stat, 26(2):344–354.

Thompson, W. (1933). On the Likelihood that One Unknown Probability Exceeds Another in
View of the Evidence of Two Samples. Biometrika, 25(3/4):285–294.

van Wieringen, W., van de Wiel, M., and van der Vaart, A. (2008). A Test for Partial Differential
Expression. J Am Stat Assoc, 103(483):1039–1049.

Wei, S., Lee, C., Wichers, L., and Marron, J. (2016). Direction-Projection-Permutation for
High-Dimensional Hypothesis Tests. J Comput Graph Stat, 25(2):549–569.

Zhang, Y., Zhou, H., Zhou, J., and Sun, W. (2017). Regression Models for Multivariate Count
Data. J Comput Graph Stat, 26(1):1–13.

22

	1 Introduction
	2 The optimal allocation for the Bonferroni correction
	2.1 Formulation of the problem
	2.2 The optimal allocation for a normal approximation
	2.3 Computational considerations when solving the KKT conditions
	2.3.1 P-value estimates without a pseudo-count
	2.3.2 P-value estimates with a pseudo-count

	2.4 Extension to other multiple testing procedures

	3 A simulated annealing algorithm to attempt the computation of the optimal integer allocation
	3.1 Qualitative behaviour of the probability of misclassifications
	3.2 The choice of the simulated annealing proposal
	3.3 A simulated annealing approach

	4 Simulation study
	4.1 Relationship between p-value distribution and optimal allocation
	4.2 Comparison of the optimal real-valued and integer allocations
	4.3 Comparison to Thompson sampling in the QuickMMCTest algorithm
	4.4 Comparison to other algorithms on a real dataset

	5 Discussion
	A Auxiliary lemma
	B Repetition of the comparison with QuickMMCTest
	C Choice of parameters for published methods

