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Abstract A fast Bayesian method that seamlessly fuses

classification and hypothesis testing via discriminant

analysis is developed. Building upon the original dis-

criminant analysis classifier, modelling components are

added to identify discriminative variables. A combina-

tion of cake priors and a novel form of variational Bayes

we call reverse collapsed variational Bayes gives rise to

variable selection that can be directly posed as a mul-

tiple hypothesis testing approach using likelihood ra-

tio statistics. Some theoretical arguments are presented

showing that Chernoff-consistency (asymptotically zero

type I and type II error) is maintained across all hy-

potheses. We apply our method on some publicly avail-

able genomics datasets and show that our method per-

forms well in practice for its computational cost. An R

package VaDA has also been made available on Github.
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1 Introduction and literature review

Classification is a fundamental component of machine

learning that is applicable in many disciplines. A pop-

ular classification method, initially known as discrimi-

nant analysis, was first introduced by Fisher (1936) and

has more recently been adapted by Dudoit et al. (2002)

and Fernández-Delgado et al. (2014) to achieve con-

sistently good performance for some high dimensional

datasets. This class of methods involves a comparison

of group proportions and group-conditional distribu-

tions of variables, also known as features in machine

learning literature, to arrive at a classification decision

rule. However, this decision rule can not be computed

when applying discriminant analysis (DA) to high di-

mensional data, i.e., when the number of observations,

n, is less than number of variables, p. Furthermore, the

standard DA model of Fisher (1936) is not designed

to identify discriminative (or signal) variables. With-

out modification of the base DA model, its usage in

high dimensional problems where signal identification

is important is limited, e.g., bioinformatics. Moreover,

the gradual accumulation of estimation errors as the

number of noise variables increases can lead to a sub-

stantial loss in classification accuracy (Fan and Fan,

2008).

In discriminant analysis, the group-conditional dis-

tribution of variables are commonly assumed to be Gaus-

sian. This simplifies the classification rule to a difference

in Mahalanobis distances of a new observation from the

group-conditional distributions. Since the MLE of the

covariance matrix required to compute the Mahalanobis

distance is singular in high dimensional data, i.e., when

n < p, the classification decision rule cannot be com-

puted. A straightforward solution to this problem is to

use alternative estimators such as the Moore-Penrose
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inverse (Courrieu, 2005; Chen and Feng, 2014; Cai and

Liu, 2011) or an alternative covariance matrix. For ex-

ample, Thomaz et al. (2006) proposed a stabilised co-

variance matrix, whereas Fisher and Sun (2011) and

Guo et al. (2007) used different forms of penalised es-

timators which we shall describe in further details in

Section 6.

Another common solution is to utilise dimension re-

duction techniques such as principal components or t-

distributed stochastic neighbour embeddings (t-SNEs)

(van der Maaten and Hinton, 2017) to project the orig-

inal variables into a lower dimensional space. The high

dimensionality issue has also been tackled by making

the näıve Bayes assumption, i.e., the covariance ma-

trix for the variables is assumed to be diagonal (Du-

doit et al., 2002). Numerous examples of discriminant

analysis models, sometimes called näıve Bayes classi-

fiers, that have made this assumption can be found in

Tibshirani et al. (2003); Fan and Fan (2008); Witten

(2011); Witten and Tibshirani (2011). While dimen-

sion reduction solutions are simple to implement, they

do not necessarily address the need to identify discrimi-

native variables commonly required in high dimensional

data analysis.

An approach that addresses high dimensionality and

identifies signal variables is to implement a two-stage

algorithm. In the first stage, a hypothesis test is per-

formed on each of the variables to identify signal vari-

ables. In the second stage, variables that are identi-

fied as signals are retained and used to fit a DA model

(e.g., Fan and Fan, 2008). Care must be taken when

choosing an appropriate variable selection method as

such methods can lead to inflated family-wise type I
error, false discovery rates or other multiple testing is-

sues (Shaffer, 1995). This can be easily resolved with

one of numerous remedial measures (see for example,

Bonferroni, 1936; Benjamini and Hochberg, 1995; Ben-

jamini and Daniel, 2001; Storey, 2003). A notable cri-

terion, known as higher criticism thresholding, exhibits

asymptotic optimality and good performance in sev-

eral multiple testing metrics such as false discovery rate

and missed detection rate under some sparsity assump-

tions (Donoho and Jin, 2004, 2008). This criterion has

been incorporated as an option in two-stage DA al-

gorithms such as shrinkage DA (R package: SDA) and

factor-adjusted discriminant analysis (R package: FADA)

(Ahdesmäki and Strimmer, 2010; Perthame et al., 2016).

A modified version of the criterion, known as expanded

higher criticism (EHC) (Duarte Silva, 2011), has been

incorporated into diagonal linear discriminant analysis

(DLDA) and factor-based linear discriminant analysis

(R package: HiDimDA). Although many of these algo-

rithms utilise selection criteria that have good theoret-

ical properties, information from the variable selection

stage is lost when the variable selection and classifica-

tion are done in two separate stages. For example, two

variables yielding adjusted p-values of 0.001 and 0.04

may be selected, but their difference in signal strengths

remain unaccounted for. This, in turn, may lead to an

unnecessary loss of classification accuracy.

The loss of information can be circumvented by fus-

ing the two stages. This fusion can be realised in pe-

nalised discriminant analysis models. In such methods

a penalty function induces sparsity in the estimated dis-

criminant vector (product of precision matrix and mean

difference), that is used for both variable selection and

classification. Witten and Tibshirani (2011) introduced

two penalty options to the Fisher’s discriminant prob-

lem (R package: penalizedLDA) which will be further

elaborated in the Section 6, whereas an L1 penalty is

introduced through a regression framework in Clem-

mensen et al. (2011) and Mai et al. (2012). Other ex-

amples may be found in Cai and Liu (2011), Shao et al.

(2011) and Safo and Ahn (2016). While penalised DA

models have demonstrated desirable theoretical prop-

erties and good numerical results in these papers, the

results are often very sensitive to the setting of the tun-

ing parameter of the penalty function. Usually costly

cross-validation is often necessary to determine an ap-

propriate value of this tuning parameter.

In this paper, we propose a Bayesian DA model that

integrates both variable selection and classification. The

model overcomes high dimensionality by adopting the

näıve Bayes assumption leading to an invertible esti-

mated covariance matrix. There are numerous works in

the literature that either criticise or justify this assump-
tion. The loss in classification accuracy under this as-

sumption was demonstrated through several simulation

studies especially when the correlation structure is com-

plex (Clemmensen, 2013; Perthame et al., 2016) and

theoretical criticisms were made in Mai et al. (2012).

However, näıve Bayes DA models demonstrated excel-

lent classification performance in several studies on pub-

licly available gene expression datasets (Dudoit et al.,

2002; Tibshirani et al., 2003; Fan and Fan, 2008; Wit-

ten, 2011) and its worst-case misclassification error has

good asymptotic convergence properties under appro-

priate conditions on the covariance matrix (Bickel and

Levina, 2004). The substantially lower computational

cost associated with a diagonal covariance matrix also

makes the assumption attractive. In our view, the key

issue here is a potential trade-off between faster com-

putational speed obtained by using the näıve Bayes as-

sumption and improvement in classification accuracy

by accounting for correlation. We believe when there

is low to moderate correlation between predictors, or
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for very high dimensional problems that this trade-off

favours näıve Bayes DA.

Unlike the two-stage methods, the Bayesian hierar-

chical setup of our proposed model fuses both variable

selection and classification in an omnibus fashion. By

doing so we avoided any loss of information between

the variable selection and classification stages. By intro-

ducing variable selection parameters into our Bayesian

model, we allow posterior inferences to be made on the

discriminativeness of each variable. The variable selec-

tion component fits naturally into a multiple hypothesis

testing (MHT) paradigm. By choosing the cake priors

(Ormerod et al., 2017) and approximating the compu-

tationally intensive posterior densities with a new vari-

ant of variational Bayes inference known as reverse col-

lapsed variational Bayes (RCVB), the resultant deci-

sion rule overcomes the problems associated with MHTs

such as inflated type I errors. Since the variable se-

lection rule depends on a set of approximate posterior

probabilities, the choice of the selection threshold can

also be intuitively determined. The resultant classifica-

tion rule takes the form of a weighted näıve Bayes lin-

ear discriminant analysis (when variances are assumed

equal). The computational cost of the algorithm is also

reduced by utilising Taylor’s approximation to reduce

the number of updates in the RCVB cycles. An im-

plementation of our approach uses C++ for high perfor-

mance computing. These endeavours to keep the com-

putational cost low are aimed at ensuring the scalability

of our models to many high dimensional gene expres-

sion datasets when computing resources are limited.

In Section 2 we specify the model and discuss our

choice of priors. Section 3 introduces our RCVB approx-

imation. We will discuss its application to our model in

Section 4. In Section 5, we state some asymptotic prop-

erties of our variable selection criterion induced by our

proposed model and hence show that our variable se-

lection rule circumvents issues with MHTs. In Section

6 we compare the performance of our proposed model

with existing solutions by an application to simulated

and publicly available datasets and discuss the choice

between two versions of our proposed model. Section 7

concludes.

2 The variational discriminant analysis model

Consider the training dataset {xi, yi}ni=1 where for each

i we have xi = (xi1, . . . , xip)
T as a vector of predictor-

variables and yi ∈ {0, 1} as an observed group label.

In this paper, we present the model in the context of a

binary classification problem but its extension to multi-

ple groups should be possible. In addition, we have used

bold-faced symbols to denote the vector of parameters

across subscripts. We assume that yi is observed for all

i = 1, . . . , n. In line with machine learning terminology,

we shall refer to this dataset with observed group labels

as the training data.

We consider the following hierarchical model for our

data set. For all i = 1, . . . , n, each (xi, yi) is distributed

as follows. Let γj ∈ {0, 1}, 1 ≤ j ≤ p be a binary

variable indicating whether variable j is discriminative.

If γj = 1, then

xij | yi, µj1, σ2
j1

iid∼ N (µj1, σ
2
j1) if yi = 1;

xij | yi, µj0, σ2
j1

iid∼ N (µj0, σ
2
j1) if yi = 0,

(1)

and if γj = 0, then

xij |µj , σ2
j

iid∼ N (µj , σ
2
j ), (2)

where N (m, s2) denotes the Gaussian distribution with

mean m and variance s2. When γj = 1, discriminative-

ness is induced by imposing dependence between the

Gaussian parameters and group label yi. We model the

conditional distribution of the group labels as

yi | ρy
iid∼ Bernoulli(ρy),

where ρy denotes the probability of observing a group

1 sample from the population.

To avoid the computational problem of inverting

huge covariance matrices, we make the the näıve Bayes

assumption by imposing conditional independence be-

tween the variables given the Gaussian parameters and

group labels, i.e. xij |= xik for any j 6= k.

2.1 Homogeneity of group-specific variances

We have assumed that the group conditional variances

are equal, i.e,. Var(xij |yi = 1, σ2
j1) = Var(xij |yi = 0, σ2

j1).

Gaussian discriminant analysis models that adopt this

assumption are known as linear discriminant analysis

(LDA) since the resultant decision rule is linear in the

variables x (see Bickel and Levina, 2004; Ahdesmäki

and Strimmer, 2010; Duarte Silva, 2011; Witten and

Tibshirani, 2011; Clemmensen et al., 2011; Perthame

et al., 2016). Those that allow for different group con-

ditional variances are known as quadratic discriminant

analysis (QDA) (Srivastava et al., 2007). The choice be-

tween LDA and QDA boils down to conditions which

LDA is robust to the violation of variance homogeneity.

Some simulation studies (Marks and Dunn, 1974; Za-

vorka and Perrett, 2014) led to the unexpected conclu-

sion that LDA exhibits better performance than QDA

when the sample size is small and the departure from

the variance homogeneity assumption is mild. As pointed
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out by a reviewer, this superiority can be understood by

observing that LDA has lesser parameters than QDA.

Consequently, the more efficient parameter estimation

compensates for the model misspecification. In spite of

existing findings, superior performance by LDA cannot

be guaranteed in publicly available datasets where it

is plausible for us to have many true signals with large

differences in group-conditional variances. While a com-

promising solution between QDA and LDA has been

proposed by Friedman (1989), we propose two variants

of our model - a variational linear discriminant analysis

(VLDA) and a variational quadratic discriminant anal-

ysis (VQDA), that correspond to LDA and QDA meth-

ods respectively. This allows us to study the robustness

of näıve Bayes LDA under varying differences in the

group-conditional variances and have a QDA version of

our proposed model ready when LDA fails.

2.2 Choice of priors

The choice of priors is of paramount importance in

Bayesian modelling as it affects the computational course

of the posterior inference and allows prior knowledge to

influence results of the analysis. A natural choice of pri-

ors for γ and ρy uses

γj | ργ
iid∼ Bernoulli(ργ), with ργ ∼ Beta(aγ , bγ),

and

ρy ∼ Beta(ay, by),

where the random parameter ργ may be interpreted as

the probability of including a true signal in the dataset.

For the rest of this paper, we have chosen a flat prior

for ρy by assigning the hyperparameters ay = by = 1.

When considering settings for aγ and bγ , we assume

that the true model consists of p0 noise and p1 signal

variables, and that the total number of variables grow

at a non-polynomial rate of n. Here, we propose the

setting aγ = 1 and

bγ =
p2n√
n+ 1

exp

[
κ(n+ 1)

log(n+ 1)r

]
(3)

for some r < 1 and κ > 0, to induce desirable asymp-

totic properties in our resultant variable selection rule

(see Section 5).

The choice of priors for the Gaussian parameters

is a more complex issue. Most research is conducted

in the absence of reliable prior knowledge and there-

fore diffuse priors are a popular choice. However, a dif-

fuse prior may not retain the “diffuse” property after a

model reparametrisation. Besides this property, we also

require our priors to lead to model selection consistency

in our variable selection rule and strong concordance

with frequentist approaches (information consistency)

in both variable selection and classification rules. The

latter criterion would help avoid unnecessary dilemma

when users compare the inference results of our model

with most other discriminant analysis models that are

frequentist in approach.

Recently, Ormerod et al. (2017) has proposed the

cake prior which can be made diffuse under some setting

of hyperparameters. For a two-sample test of Gaussian

data, they have also obtained Bayes factors which have

good asymptotic properties. Furthermore, the Bayes

factor takes the form of a penalized likelihood ratio

statistic. The cake priors for our Gaussian parameters

are as follows. For VLDA the model under H0j for vari-

able j is (2) and the model under H1j for variable j is

(1). The cake priors for these hypotheses are given by

µj |σ2
j ∼ N (0, h1/2σ2

j ), σ2
j

iid∼ LN(0, 2h1/2),

µjk|σ2
j1 ∼ N (0, (n/nk)h1/3σ2

j1) for k = 0, 1,

and σ2
j1

iid∼ LN(0, 2h1/3).

where n1 =
∑n
i=1 yi, n0 = n − n1, LN refers to the

log-normal distribution and h > 0 is a common hyper-

parameter shared between {H0j}pj=1 and {H1j}pj=1.

Analogously, the VQDA model under H1j is

xij | yi, µj1, σ2
j1

iid∼ N (µj1, σ
2
j1) if yi = 1;

xij | yi, µj0, σ2
j0

iid∼ N (µj0, σ
2
j0) if yi = 0,

(4)

and is equivalent to (2) under H0j so that the group

conditional variances differ. The cake priors in this case

are given by

µj |σ2
j ∼ N (0, h1/2σ2

j ), σ2
j

iid∼ LN(0, 2h1/2),

µjk|σ2
jk ∼ N (0, (n/nk)h1/4σ2

jk), for k = 0, 1,

and σ2
jk

iid∼ LN(0, 2(n/nk)h1/4), for k = 0, 1,

The interested reader may refer to Ormerod et al. (2017)

for details about the cake prior construction. Although

cake priors do not lead to closed form expressions for

the posterior of γ and the group labels of new observa-

tions, we will observe in Section 4 that they yield ap-

proximate posteriors that satisfy both model selection

and information consistency when implemented with a

posterior inference method described in the next sec-

tion.
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3 Approximating the posterior

For most models posterior distributions are known only

up to a normalising constant. While Markov chain Monte

Carlo (MCMC) methods are the most widely used meth-

ods for making inferences from such posteriors, a new

class of fast, deterministic algorithms known as varia-

tional Bayes approximation is gaining popularity in the

computer science literature and has demonstrated com-

parable results at a fraction of MCMC’s computational

cost in complex problems presented by Blei and Jordan

(2006), and Luts and Ormerod (2014).

We now provide a review of variational Bayes (VB)

approximation and then describe a modification of this

method called reverse collapsed variational Bayes. For

a more comprehensive introduction to VB the reader

may refer to Ormerod and Wand (2010) and Blei et al.

(2017).

3.1 Variational Bayes

Given a model’s parameter θ and data D, the posterior

density of θ may be expressed as

p(θ|D) =
p(θ,D)

p(D)
.

The denominator is known as the marginal likelihood

of the data and involves the evaluation of an integral

or a sum that may be computationally infeasible. The

endpoint of the variational Bayes (VB) algorithm is to

choose an approximation q(θ) to the posterior density

p(θ|D) from a set of functions F that are more compu-

tationally feasible by minimising the Kullback-Leibler

(KL) divergence

DKL(q||p) = Eq
[

log

{
q(θ)

p(θ|D)

}]
, (5)

where Eq refers to the expectation with respect to q(θ).

Since

Eq
[

log

{
q(θ)

p(θ|D)

}]
= Eq

[
log

{
q(θ)p(D)

p(θ,D)

}]
,

= log p(D)− Eq
[

log

{
p(θ,D)

q(θ)

}]
,

minimising (5) is also equivalent to maximising the Ex-

pected Lower Bound Order (ELBO) given by

ELBOVB = Eq
[

log

{
p(θ,D)

q(θ)

}]
. (6)

One common choice for F is the set of mean field func-

tions F = {q(θ) | q(θ) =
∏J
j=1 qj(θj)}, where {θj}Jj=1

is a partition of θ. This choice of F leads to the optimal

approximating densities

qj(θj) ∝ exp
[
E−qj

{
log p(θ,D)

}]
, ∀ j = 1, . . . , J, (7)

as shown, for example, in Ormerod and Wand (2010).

The notation E−qj refers to expectation with respect to∏
l 6=j ql(θl). The parameters of each qj(θj) is updated

iteratively with the batch coordinate-ascent variational

inference algorithm as described in Zhang and Zhou

(2017).

3.2 Reverse collapsed variational Bayes

A variant of VB called collapsed variational Bayes (CVB)

was first coined in the context of latent Dirichlet allo-

cation (Teh et al., 2007). The key idea behind these

methods is to collapse, or marginalise over a subset of

parameters before applying VB methodology. The CVB

approach of Teh et al. (2007) results in a better approx-

imation in comparison to VB, but is no different con-

ceptually since it can be thought of simply as applying

VB to the marginalized likelihood. We now introduce a

reverse collapsed variational Bayes (RCVB) which can

result in a different approximation to CVB. In this form

the lower bound is calculated by using VB for one set

of parameters, and the remaining set of parameters are

collapsed over by marginalization.

To fix ideas, let θ1 and θ2 be a partition of the

parameter vector θ. Suppose we have a density q2(θ2)

such that the quantity

log p(D,θ1) ≡ Eq2(θ2) log

{
p(D,θ1,θ2)

q2(θ2)

}
can be evaluated analytically for all θ1. Using Jensen’s

inequality it is easy to show that

log p(D,θ1) ≥ log p(D,θ1)

for all θ1. If we use log p(D,θ1) as an approximation of

log p(D,θ1) we can then marginalise over θ1 to obtain

the following lower bound on the log marginal likeli-

hood:

ELBORCVB ≡ log

∫
p(D,θ1)dθ1,

= log

∫
exp

[
Eq2 log

{
p(D,θ1,θ2)

q2(θ2)

}]
dθ1,

where the integral can be interchanged with a sum when

appropriate. Since log p(D,θ1) ≥ log p(D,θ1) we have

ELBORCVB ≥ ELBOVB and hence RCVB yields an ap-

proximation of the log marginal likelihood that is more

accurate than VB.
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Now suppose that we have partitioned θ into three

sets of parameters θ1, θ2 and θ3, and we want to apply

VB-type approximations to θ2 and θ3 while integrating

out θ1 analytically. The iterations for RCVB algorithms

would be to repeat the following two steps for an ar-

bitrarily large number of iterations until convergence:

1. q2(θ2) ∝
∫

exp

[
Eq3 log

{
p(D,θ1,θ2,θ3)

q3(θ3)

}]
dθ1.

2. q3(θ3) ∝
∫

exp

[
Eq2 log

{
p(D,θ1,θ2,θ3)

q2(θ2)

}]
dθ1.

(8)

Similarly to VB, the parameters of each qj(θj) is

updated iteratively with the batch coordinate-ascent

variational inference algorithm.

The above ideas are easily generalizable to an arbi-

trary partition size. In the next section we demonstrate

the use of RCVB to perform posterior inference for our

proposed model.

4 Posterior inference in variational

discriminant analysis

The endpoint of variational discriminant analysis with

variable selection (VaDA) is to identify the signal vari-

ables and the true group label of new observations at

a low computational cost. The calculations provided in

the rest of this section will pertain only to VLDA. Poste-

rior inference calculations for VQDA are provided in the

appendix. Given m new observations {(xn+i, yn+i)}mi=1

where {yn+i}mi=1 are latent, we may regard γ and {yn+i}mi=1

as the parameters of interest. Let

θ1 = (µ1,µ0,µ,σ
2
1,σ

2, ρy, ργ)

be the parameters not required for inference, which will

be collapsed over. We provide details about the infer-

ence for m = 1 and will describe the generalisation to

any m > 1 towards the end. Let X = [x1, . . . ,xn]T =

[x̃1, . . . , x̃p] ∈ Rn×p , where x̃j is the column vector

of variable j of the data and y = (y1, . . . , yn)T is the

observed column vector of binary responses. Let D =

(X,y) denote the training data. The posterior distribu-

tion of γj given D and xn+1 may be expressed as

p(γj | D,xn+1) =
p(γj ,D,xn+1)

p(D,xn+1)
.

Following arguments for a diffused prior in Ormerod

et al. (2017), we let h → ∞. The marginal likelihood

of the observed data (D and xn+1) in the denominator

can be written as

p(D,xn+1)

=
∑

yn+1∈{0,1}

∑
γ∈{0,1}p

∫
p(D,xn+1, yn+1,γ,θ1) dθ1

=

[∏p
j=1 p(x̃j , xn+1,j |γj = 0)

B(ay, by)B(aγ , bγ)

]

×
∑

yn+1∈{0,1}

[
B(ay + n1 + yn+1, by + n0 + 1− yn+1)

×
∑

γ∈{0,1}p
exp

{
logB(aγ + 1Tγ, bγ + p− 1Tγ)

+ 1
2γ

TλBayes(x̃j , xn+1,j ,y, yn+1)
}]
,

(9)

where B(a, b) = Γ (a)Γ (b)/Γ (a+b) is the beta function,

n1 = 1Ty, n0 = n− n1, and λBayes is a column vector

of size p which is defined as follows. The likelihood ratio

statistic corresponding to the test {H0j : γj = 0} using

model (2) against {H1j : γj = 1} which uses (1) for

variable j is

λLRT(x̃j , xn+1,j ,y, yn+1) = (n+ 1) log

(
σ̂2
j

σ̂2
j1

)
,

where the maximum likelihood estimates (MLEs) are

σ̂2
j1 =

1

n+ 1

[
||yT {x̃j − µ̂j11}||2

+ ||(1− yT ){x̃j − µ̂j01}||2

+ yn+1(xn+1,j − µ̂j1)2 + (1− yn+1)(xn+1,j − µ̂j0)2
]
,

σ̂2
j = 1

n+1

{
||x̃j − µ̂j01||2 + (xn+1,j − µ̂j)2

}
,

µ̂j1 = 1
n1+yn+1

{
yT x̃j + yn+1xn+1,j

}
,

µ̂j0 = 1
n0+1−yn+1

{
(1− y)T x̃j + (1− yn+1)xn+1,j

}
µ̂j = 1

n+1

{
1T x̃j + xn+1,j

}
.

Then the jth entry of λBayes is (as h→∞)

λBayes(x̃j , xn+1,j ,y, yn+1)

→ λLRT(x̃j , xn+1,j ,y, yn+1)− log(n+ 1).

The marginal likelihood in equation (9) involves a com-

binatorial sum over 2p+1 binary combinations. Hence,

exact Bayesian inference is computationally infeasible

for large p and approximation is required. We will use
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RCVB to approximate the posterior p(γ, yn+1|D,xn+1)

using the partition

qRCVB(yn+1,γ) = qRCVB(yn+1)

p∏
j=1

qRCVB

j (γj).

We shall henceforth drop the superscript RCVB. Note

that since γj ∈ {0, 1} and yn+1 ∈ {0, 1} we have

qj(γj) = w
γj
j (1− wj)1−γj ,

and

q(yn+1) = ỹyn+1(1− ỹ)1−yn+1 ,

where w and ỹ are variational parameters to be opti-

mized over, i.e., qj(γj) and q(yn+1) are densities corre-

sponding to a Bernoulli(wj) and Bernoulli(ỹ) distribu-

tion. The variational parameter wj may be interpreted

as the approximate posterior probability that the hy-

pothesis H1j is true when tested against H0j . The in-

terpretation of ỹ is analogous.

4.1 Variable selection

With reference to the steps in (8), we will apply VB

approximation over γ−j and yn+1, and integrate ana-

lytically over θ1, i.e., for 1 ≤ j ≤ p we have

qj(γj) ∝
∫

exp
[
E−qj{log p(D,xn+1, yn+1,γ,θ1)}

]
dθ1,

∝ exp

[
E−qj

{
logB(aγ + 1Tγ, bγ + p− 1Tγ)

}
+

γj
2 E−qj

{
λBayes(x̃j , xn+1,j ,y, yn+1)

}]
.

For a sufficiently large n, we can avoid the need to eval-

uate the expectation E−qj
{
λBayes(x̃j , xn+1,j ,y, yn+1)

}
by applying Taylor’s expansion to approximate the MLEs

with

E−qj log(aγ + 1Tγ−j) ≈ log(aγ + 1Tw−j),

E−qj log(bγ + p− 1Tγ−j − 1)

≈ log(bγ + p− 1Tw−j − 1),

σ̂2
j1 ≈ 1

n

[
||yT {x̃j − µ̂j11}||2 + ||(1− yT ){x̃j − µ̂j01}||2

]
,

σ̂2
j ≈ 1

n ||x̃j − µ̂j1||
2,

µ̂j1 ≈ 1
n1

yT x̃j , µ̂j0 ≈ 1
n0

(1− y)T x̃j , µ̂j ≈ 1
n1T x̃j ,

(10)

and hence λBayes does not depend on the new observa-

tion (xn+1, yn+1). By using the approximation in (10),

we have

wj =
qj(γj = 1)

qj(γj = 1) + qj(γj = 0)
,

≈ expit

[
log(aγ + 1Tw−j)− log(bγ + p− 1Tw−j − 1)

+ 1
2λBayes(x̃j ,y)

]
,

= expit

[
log(aγ + 1Tw−j)− log(bγ + p− 1Tw−j − 1)

− 1
2 log(n+ 1) + 1

2λLRT(x̃j ,y)

]
,

= expit

[
penaltyj + 1

2λLRT(x̃j ,y)

]
,

Each wj may be viewed, from a frequentist perspec-

tive, as a “test statistic” for H1j against H0j . Hence, a

natural decision rule is to identify variable j as a signal

if wj > cw for some constant cw ∈ (0, 1).

The penaltyj term in the expression for wj can be

interpreted as a data dependent penalty term which

trades off the probability of type I errors against power.

This presents the task of identifying signal variables in

our model as a multiple hypothesis testing problem us-

ing penalized likelihood ratio statistics. The constant bγ
is particularly important. While we have chosen aγ = 1

and bγ given by (3) for some r < 1 and κ > 0, one may

specify other values of bγ . If bγ is too small, then false

positives will occur when p is allowed to diverge with n.

If bγ is too large, then there will be potentially too many

false negatives. Ideally we want bγ to be as small as pos-

sible whilst having asymptotically zero false positives.

Since the updates of each wj no longer depends on ỹ af-

ter applying the Taylor’s expansion results, each RCVB

cycle only involves the update of wj over 1 ≤ j ≤ p until

convergence.

4.2 Classification

We will apply variational Bayes approximation over γ

and integrate analytically over θ1 to obtain the approx-

imate density for yn+1, i.e.,

q(yn+1) ∝
∫

exp
[
E−y{log p(D,xn+1, yn+1,γ,θ1)}

]
dθ1,

∝ exp

[
logB(ay + n1 + yn+1, by + n0 + 1− yn+1)

− 1
2 (n+ 1)wT log

{
(n+ 1)σ̂2

1

}]
,
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Table 1 Iterative scheme for obtaining the parameters in the optimal densities q(γ, yn+1, . . . , yn+m) in VLDA

Require: For each j, initialise w
(0)
j with a number in [0, 1].

while ||w(t) −w(t−1)||2 is greater than ε do

At iteration t,

1: η
(t)
j ← log

{
aγ + 1Tw

(t−1)
−j

}
− log

{
bγ(r, κ) + p− 1Tw

(t−1)
−j − 1

}
− 1

2 log(n+ 1) + 1
2 (n+ 1) log(σ̂2

j )

− 1
2 (n+ 1) log(σ̂2

j1)

2: w
(t)
j ← expit(η

(t)
j )

Upon convergence of w, compute for i = 1, . . . ,m

3: ỹi ← expit
[
log
(n1+ay
n0+by

)
+ (1 + 1

n )
(
µ̂0 − µ̂1

)T
WΣ−1

{
xn+i − 1

2 (µ̂0 + µ̂1)
}]

where log
{

(n + 1)σ̂2
1

}
is the element-wise log of the

column vector (n+ 1)σ̂2
1. Note that each element in σ̂2

1

is function of yn+1.

Thus, the corresponding variational parameter ỹ is

ỹ =
q(yn+1 = 1)

q(yn+1 = 1) + q(yn+1 = 0)
,

≈ expit

[
log

(
n1 + ay
n0 + by

)
+ (1 + 1

n ) LDA(xn+1)

]
,

where

LDA(xn+1)

=
(
µ̂0 − µ̂1

)T
WΣ−1

{
xn+1 − 1

2 (µ̂0 + µ̂1)
}

is the näıve Bayes LDA classification rule assuming

a balanced training dataset that is downweighted by

W = diag(w1, . . . , wp), and Σ is a diagonal matrix

with entries {σ̂2
j1}

p
j=1. Note that when W = Ip and

ay = by = 0 the classification of yn+1 is the same as for

a frequentist näıve Bayes LDA.

In the general case whereby there are m new obser-

vations to be classified, the variational parameter for

yn+i is

ỹi = expit

[
log

{
n1 + E−qi(yn+1:n+m) + ay

n0 +m− E−qi(yn+1:n+m) + by

}

+ (1 + 1
n ) LDA(xn+i)

]
, (11)

where E−qi denotes the expectation with respect to

approximate densities of y−(n+i) and γ. For computa-

tional efficiency, we may replace the moment estimates

in the expression for LDA(xn+1) with their respective

Taylor’s expansion approximation in (10) and omit the

term E−qi(yn+1:n+m). Hence, for 1 ≤ i ≤ m, the updates

in (11) may be approximated as

ỹi ≈ expit

[
log

(
n1 + ay
n0 + by

)
+ (1 + 1

n ) LDA(xn+i)

]
.

(12)

This approximation allows us to update wj in each

RCVB cycle and use only their converged values to up-

date ỹi for 1 ≤ i ≤ m. In addition, the updates of ỹi
do not depend on each other. Hence, the length of each

update cycle is kept at p. We may use ỹi to construct

a classification rule by classifying observation n + i to
group 1 if ỹn+i > cy for some cy ∈ (0, 1).

The RCVB algorithm may be found Table 1. Notice

that at iteration t, we use values of w at iteration t− 1

instead of the values at the current time step. This is in

line with the batch update strategy described in Zhang

and Zhou (2017).

It is worth noting that the appearance of the terms

λLRT(x̃j) and LDA(xn+i) in the updates for wj and

ỹi provides reassurance that there is some concordance

between the frequentist methods and our proposed vari-

able selection and classification rules, and hence fulfils

the consistency criterion which we considered in Section

2.2 when choosing our priors.

4.3 Keeping the computational cost low

As mentioned in Section 1, a major objective is to pro-

pose a classifier that is scalable and has high computa-

tional speed even under limited computing power. We
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summarise key steps taken to help achieve our objective

below:

– Näıve Bayes assumption for group-conditional co-

variances to avoid inverting huge matrices.

– Fast approximate posterior inference using a pro-

posed version of variational inference (RCVB) in-

stead of MCMC which is usually slower to converge.

– Reduce the number of steps in each RCVB cycle

by Taylor’s expansion to isolate updates for classi-

fication probabilities (ỹi) from the updates of the

variable selection probabilities (wj).

– Fast implementation with C++ that is a compiler-

based language in contrast to an interpreter-bsaed

language such as R. Compilers execute repeat loops

more efficiently than interpreters. The reader may

refer to Eddelbuettel (2013) for a detailed exposition

on the computational advantages of compiler-based

languages.

5 Variable selection asymptotics

Here, we establish the consistency of the VLDA vari-

able selection rule. Although Wang and Blei (2018) has

demonstrated the consistency of variational Bayes es-

timates in their recent work, their result cannot be di-

rectly applied to our setting as they have assumed a

fixed model dimension while we have allowed pn to grow

with n. The statement for consistency of VLDA is equiva-

lent to showing a desirable asymptotic property, known

as Chernoff-consistency for the sequence of tests that

favours the hypothesis γj = 1 if wj > cw. A sequence

of hypothesis tests {Tj}pj=1 is Chernoff-consistent if the

sum of type I and II probabilities converge to 0, i.e.,∑
j∈J0

P(Reject H0j with test Tj)→ 0,

and the sum of type II errors probabilities∑
j∈J1

P(Do not reject H0j with test Tj)→ 0,

where J0 = {j : H0j is true}, J1 = {j : H1j is true}.
For our case, we need to demonstrate the convergence

E(t) =

p∑
j=1

∣∣w(t)
j (Xj)− γ∗j

∣∣ = op(1).

as n approaches infinity, where γ∗j is the true value of γj .

The above sum can be broken down into components:

the sum of variable selection probabilities among noise

variables after cycle t

e
(t)
0 =

∑
`∈J0n

w
(t)
` ,

and the complement sum of variable selection probabil-

ities among true signals after cycle t

e
(t)
1 =

∑
`∈J1n

{1− w(t)
` },

where the subscripts of J1n and J0n emphasizes their

dependence on n. Note that both p0n = |J0n| ↑ ∞
and p1n = |J1n| ↑ ∞ as n diverges. We have also used

notations superscripted with ∗ to denote the true value

of the Gaussian parameters in the frequentist sense. For

example, µ∗jk denotes the actual population mean of

variable j for observations from group k.

We shall now state Theorem 1 in the main paper. Its

proof has been provided in Section 2 of the Electronic

Supplementary Material 1.

Theorem 1 Consider pn vectors of iid random vari-

ables X̃j = (X1j , . . . , Xnj)
T , where (Xij , Xik) are in-

dependent for j 6= k, and pn corresponding pairs of dis-

tributional hypotheses

H0j : Xij
iid∼ N (µj , σ

2
j ),

versus

H1j : Xij
iid∼

{
N (µj1, σ

2
j1), if yi = 1; and

N (µj0, σ
2
j1), if yi = 0,

where yi, 1 ≤ i ≤ n are binary constants, {µj , σ2
j } is the

set of model parameters under H0j, and {µj1, µj0, σ2
j1}

is the set of model parameters under H1j. Assume that

the true model is

Xij
iid∼

{
N (µ∗j1, σ

∗2
j1 ), if yi = 1; and

N (µ∗j0, σ
∗2
j1 ), if yi = 0,

where µ∗j1, µ∗j0, σ∗2j1 are the constant parameters of the

true data-generating Gaussian model. Furthermore, as-

sume that the following set of conditions hold:

1. the maximum of true Gaussian variances maxj∈J1n σ
∗2
j1

are finite for all n ≥ 1,

2. the total number of variables is bounded as pn =

O (exp{n/ log(n)}),

3. the minimal difference in true Gaussian means is

bounded, i.e. minj∈J1n
δ∗2j = Ω({log(n)}−β) for some

β < r, where δ∗j = |µ∗j1 − µ∗j0|.

The sequence of test that favours H1j (identifies vari-

able j as signal) if w
(τ)
j > cw for any cw ∈ (0, 1) and

number of cycles τ ≥ 1 is Chernoff-consistent, where

{w(τ)
j }

pn
j=1 are obtained from the algorithm in Table 1.

The above theorem demonstrates the ability of the

variable selection rule to avoid type I error inflation due

to the increase of pn, a tendency to select all true signal
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variables, and omit all noise variables. However, these

properties are only guaranteed when we choose the cake

priors for the Gaussian parameters and the prior for ργ
in accordance with Section 2.2. We also make a dis-

claimer that our algorithm may not be optimal with

respect to type I and II errors in any sense.

Implicitly speaking, our resultant variable selection

rule is justified by the asymptotic error rates that they

induce. This differs from the existing variable selection

rules such as higher criticism (Donoho and Jin, 2008)

and false-discovery rate controlling procedures (Ben-

jamini and Hochberg, 1995), whereby they are justified

on the basis of a minimised type II error rate for a user-

specified family-wise type I error rate and finite sample

size n.

Our asymptotic justification is in line with theoret-

ical analysis by Mai et al. (2012) that demonstrated

the ability of their model to select the true discrimina-

tive set. Important differences in the assumptions made

are summarised in Section 4 of Electronic Supplemen-

tary Material 1. A key advantage in Mai et al. (2012)

is that they have proved their convergence in a setting

where the true group-conditional covariance matrices

are not necessarily diagonal, whereas independence be-

tween variables is required in our proof. However, a nec-

essary sparsity condition has been imposed on their dis-

criminant vector Mai et al. (2012), whereas convergence

holds in our proof without requiring any sparsity, i.e.

0 < p1n/pn < 1 for all n.

6 Numerical results

In this section, our primary objective is to assess the

performance of VaDA classifiers with sixteen simula-

tion settings and six publicly available gene expres-

sion datasets. A follow-up investigation into the robust-

ness of VLDA to the violation in variance homogeneity

will also be described later. Both VLDA and VQDA vari-

ants will be compared with other discriminant analy-

sis models. Four of the models are implemented in the

R package HiDimDA (Duarte Silva, 2015): the diagonal

linear discriminant analysis with expanded higher criti-

cism (EHC) - Dlda, the factor model linear discriminant

analysis with EHC - RFlda, the maximum uncertainty

linear discriminant analysis - Mlda, and the shrunken

linear discriminant analysis - Slda.

Other DA models include the nearest shrunken cen-

troid (NSC) classifier from pamr (Hastie et al., 2014),

lasso (penLDA-L1) and fused-lasso (penLDA-FL) penalised

Fisher’s linear discriminant analysis from the R pack-

age penalizedLDA (Witten, 2015), the factor-adjusted

shrinkage discriminant analysis from the package FADA

(Perthame et al., 2018), the shrunken centroid linear

discriminant analysis from the package rda (Guo et al.,

2018), and the sparse linear discriminant analysis in

sparseLDA (Clemmensen and Kuhn, 2016).

Lastly, we benchmarked these DA models with two

presently popular classifiers - the support vector ma-

chine svm (Cortes and Vapnik, 1995) from the pack-

age LiblineaR (Helleputte, 2017) and random forest

(Breiman, 2001) from the package caret (Kuhn et al.,

2019). The following classifiers Dlda-EHC, NSC, penLDA-L1,

penLDA-FL, and our proposed VaDA models assumed

pairwise independence between variables.

The codes for both variants of VaDA have been

made publicly available at:

http://www.maths.usyd.edu.au/u/jormerod/

We have also found that a setting of r = 0.98 and

κ = 10−3 works well in both the simulated and gene

expression datasets. The variable selection and classifi-

cation thresholds are cw = 0.5 and cy = 0.5.

6.1 Competing classifiers

Dlda, RFlda, Mlda, Slda and FADA are two-stage clas-

sification algorithm that perform variable selection and

classification in un-integrated stages. In the first stage

of FADA, the matrix of variables X is de-correlated with

a method described in Friguet et al. (2009), and is fol-

lowed by an application of the higher criticism threshold

(see Donoho and Jin, 2008) to select the discriminative

variables. A modified version of the higher criticism,

adapted for large or moderate signals, is used in Dlda,

RFlda, Mlda, and Slda (see Duarte Silva, 2011).

In the second stage, Dlda fits the näıve Bayes LDA

model with the subset of selected variables whereas

RFlda fits a factor-based linear discriminant analysis

with user-specified q as the number of factors. In our

analysis, we have chosen the value of q from {1, 2, 3}
that minimises CV error. The maximum uncertainty

LDA (Thomaz et al., 2006) that replaces small eigen-

values of the sample covariance matrix with the mean

eigenvalue is fitted in Mlda and a data-dependent pe-

nalised covariance matrix LDA is used in Slda. In FADA,

the selected variables from stage one are used to fit a

shrinkage discriminant analysis model (Ahdesmäki and

Strimmer, 2010). Both Mlda and Slda are good algo-

rithms for benchmarking as they performed excellently

on several genomics datasets (Xu et al., 2009).

NSC classifies observations according to the nearest

(group) shrunken centroid. A tuning parameter ∆ con-

trols the amount of shrinkage, and consequently the

sparsity of the estimated difference between the two

group centroids. This filters individually weak but col-

lectively strong false signals. In our analysis, the adap-

HiDimDA
pamr
http://www.maths.usyd.edu.au/u/jormerod/
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tive choice of ∆ is adopted following procedures in Tib-

shirani et al. (2003). NSC is widely used in biomarker

discovery (see Liu et al., 2005; Craig-Shapiro et al.,

2011) and is therefore a good competing classifier.

Lastly, there has been a huge amount of attention

given to sparse discriminant analysis models in the lit-

erature (see Clemmensen et al., 2011). Hence, we have

also chosen to compare our classifiers with the two ver-

sions of penLDA that extended the solution to Fisher’s

discriminant problem (Fisher, 1936) to high dimension

settings. In the two-groups version of Fisher’s discrim-

inant problem, one obtains the estimated discriminant

vector β̂ such that

β̂ = argmax
β∈Rp

(βT Σ̂bβ), (13)

subject to βT Σ̂wβ = 1, where we have assumed that

the estimated within-class covariance matrix Σ̂w is full

rank and Σ̂b is the estimated between-class covariance

matrix. A new observation, xn+1, is mapped under the

transformation xTn+1β̂ and classified in accordance to

its nearest transformed centroid. In the penLDA exten-

sion, Σ̂w is replaced with the diagonal estimate. Spar-

sity is induced on β̂ by imposing either the lasso penalty

(penLDA-L1) or the fused-lasso penalty (penLDA-FL) on

the objective function in (13). The fused lasso penalty

assumes linear ordering in variable indices and is there-

fore not suitable for the publicly available datsets where

such ordering cannot be ascertained. Tuning parame-

ters are selected from 10−4, 10−3, 10−2, 0.1 , 1 or 10 to

minimise CV error.

The DA models rda (Guo et al., 2007) and sparseLDA

(Clemmensen et al., 2011) are examples of non-näıve

Bayes sparse DA. In sparseLDA, the classification prob-

lem is re-formulated as a linear least squares problem.

Two additional terms are introduced into the resultant

objective function to impose sparsity of both the dis-

criminant vector and the precision matrix estimate. The

L1 tuning parameter is selected from 10−8, 10−6, 10−4,

10−3, 0.1 or 1 to minimise CV error. In rda, the group-

specific centroids are replaced with shrunken centroids

(Tibshirani et al., 2003) and a penalised covariance ma-

trix estimate with user-specified penalty is used to re-

place the MLE. Tuning parameters α and δ are selected

from the intervals [0, 1) and [0, 3] respectively to min-

imise CV error.

6.2 Simulation setting

We assess the performance of both VLDA and VQDA with

simulated data. The objective of this simulation study is

to identify situations in which VaDA’s performance dif-

fer from the competing classifier. More specifically, we

want to identify the sparsity conditions on the mean

differences and the correlation threshold for our pro-

posed näıve Bayes models to work well. Performance

of all classifiers will be assessed with sixteen simulation

settings. The settings are motivated from those exam-

ined in Witten and Tibshirani (2011) and Clemmensen

(2013). The response values are generated as follow.

We set yi, for each i, to take values 1 or 0 with proba-

bility 0.5. This simulates a balanced study design and

also gives adequate chance of having at least two ob-

servations per group in each simulation repetition. The

variables are generated as follows.

xi|yi ∼

Np(µ
∗
1,Σ

∗), if yi = 1; and,

Np(µ∗0,Σ
∗), if yi = 0.

We use the term signal strength, denoted by d, to de-

scribe the absolute standardised difference in the group-

conditional means, i.e., dj = 2|µ∗j1 − µ∗j0|/(σ∗2j1 + σ∗2j0 ).

Each simulation yields a dataset of p = 500 variables.

All simulation settings are homogenous with respect

to the group-conditional variance. For s = 1, 2, 3, 4, the

simulation settings {s, s+4, s+8, s+12} have identical

specifications for µ∗1 and µ∗0 but differ in the specifi-

cation for Σ∗. In simulation 1, we specify an indepen-

dence structure Σ∗ = diag(σ∗211 , . . . , σ
∗2
p1). In simulation

5, we simulate a weak correlation structure where Σ∗

is specified such that we have 5 networks of 100 vari-

ables each having an AR(1) correlation where ρ = 0.6.

In simulation 9, we have a moderate correlation struc-

ture where Σ∗ is specified such that all variables have a

AR(1) correlation where ρ = 0.9. In simulation 13, we

specify a strong correlation structure where Σ∗ equals

to a uniform correlation matrix with ρ = 0.8.

Details of their signal strength settings for simula-

tions 1 to 4 are as follow.

Simulation 1:

Here, we simulate the situation when there is a mod-

erate proportion of variables (10%) with non-zero true

signals and that the signal strengths (dj = 0.7) are

moderately strong. We set µ∗jk = 0.7 if k = 1 and

1 ≤ j ≤ 50 and µ∗jk = 0 otherwise. There is also some

linear ordering in this setting. This is a homogeneous

variance setting such that σ∗2j1 = 1 for all 1 ≤ j ≤ p.

Simulation 2:

We test the proposed classifiers in the situation when

there is a sizeable proportion (20%) of variables with

non-zero true signals and that the signal strengths (dj =

0.3) are weak. We set µ∗jk = 0.3 if k = 1 and 1 ≤
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j ≤ 100. There is also some linear ordering in this set-

ting. This is a homogeneous variance setting such that

σ∗2j1 = 1 for all 1 ≤ j ≤ p.

Simulation 3:

We test the proposed classifiers in the situation when

there is a large proportion (40%) of variables with non-

zero true signals and that the signal strengths (dj =

0.7) are moderate. We set µ∗jk = 0.7 if k = 1 and

1 ≤ j ≤ 200. There is also some linear ordering in this

setting. This is a homogeneous variance setting such

that σ∗2j1 = 1 for all 1 ≤ j ≤ p. In this simulation set-

ting, we expect all classifiers to perform well due to the

abundance of detectable signals.

Simulation 4:

We simulate the situation when we have a very small

proportion (2%) of truly discriminative variables and

that the non-zero signal strengths each have moderate

chance (∼37.0%) of being moderately strong (|dj | ≈
0.6). We let µ∗j1 ∼ N (0.5, 0.32) and µ∗j0 = 0 for 1 ≤ j ≤
10. Otherwise, µ∗jk = 0. This is a homogeneous variance

setting such that σ∗2j1 = 1 for all 1 ≤ j ≤ p.

6.3 Performance metrics for simulated datasets

The distribution of classification errors for each sim-

ulation setting is summarised over 25 simulation rep-

etitions with n = 100. In each repetition, we gener-

ated the 1200 observations. The first 100 observations

{(xi, yi)}100i=1 are assigned as the training set. The next

100 observations {(xi, yi)}200i=101 are designated as the

validation set for choosing optimal tuning parameters in

penLDA-L1 and penLDA-FL. The remaining 1000 obser-

vations {(xi, yi)}1200i=201 will make up the testing dataset.

At each iteration, the classification error is computed

as

Classification Error =

∑1200
i=201 I{yi 6= ŷi}

m
, (14)

where ŷi is the predicted classification of testing data i

and m = 1000.

Variable selection performance are compared using

Matthew’s correlation coefficient (Matthews, 1975), com-

puted as

MCC

=
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

(15)

where TP, TN, FP and FN is the number of true posi-

tives, true negatives, false positives and false negatives

respectively in a particular repetition. A higher value

of MCC indicates better variable selection performance.

The MCC presents as a suitable variable selection met-

ric for our simulation settings as it accounts for the

imbalance in the total number of truly discriminative

(TP + FP) and non-discriminative (TN + FN) vari-

ables (Chicco, 2017). Since computational cost has also

been raised in Section 1 as a problem with existing mod-

els, we shall compare the computation time required by

each classifier.

6.4 Simulation results

Boxplots of classification errors and MCCs for simula-

tions 1 to 8 may be found in Figures 1 and 2. Sum-

mary statistics of all simulations are provided in Tables

1 to 4 in Electronic Supplementary Material 2. Since

penLDA-FL requires the variables to have a linear or-

dering structure, we have left it out of the comparisons

for the simulations setting with randomly drawn means

(4, 8, 12 and 16).

VLDA achieved comparatively good classification er-

ror performance under the independence (average rank

= 6.3) and local AR(1) correlation structures (average

rank = 5.5). However, the classifier performed rather

poorly under the global correlation (average rank =

7.3) and uniform correlation structure (average rank

= 11.5). Therefore, it is evident that VLDA is robust to

a mild violation of the näıve Bayes assumption but is

less reliable for classifying data with moderate or strong

correlation structure.

Both proposed models also seem to perform rela-

tively better than all other classifiers when the true

mean differences is sparse, i.e. p1/p ≤ 10% (simulations

1, 4, 5 and 8) under independent and weak correla-

tion. This is due to the strong global penalty bγ im-

posed on all variable selection probabilities. When the

signal strengths are weak (simulations 2 and 6), VLDA

did not perform as well in classification error. This may

be attributed to the corresponding poor performance

in variable selection. Its poor ability to identify weak

signals is explained by observing that the cake priors

for the mean difference µj1 − µj0 is a scale mixture of

normals with the log-normal hyperprior on the scale

parameter. Although the log-normal distribution is re-

garded as heavy-tailed in some textbooks, its tail mass

is not heavy enough to facilitate the weak signals to

overcome the bγ-global penalty effect. An example of

a hyperprior that preserves weak signals from being

masked by the global penalty is the half-Cauchy dis-

tribution as reported by Carvalho et al. (2010). In con-

trast, penLDA-L1 performed very well in simulations 2
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Fig. 1: Classification

errors for simula-

tions 1 to 8 (n =

100). Näıve Bayes

methods in green.
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Fig. 3: Difference in classifica-

tion errors (VQDA − VLDA)

for varying n and ∆σ over 25

reps. (p1 = 25)
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and 6 due to ability of lasso estimators in picking up

weak signals as explained in Fan and Lv (2010).

As for variable selection performance in non-weak

signal settings, VLDA performed robustly well even un-

der moderate or strong correlation structure. It is no-

table that the good performance in variable selection

does not translate to good classification performance.

This may be in line with the observations made by Mai

et al. (2012) that distinguished between signal variables

and discriminative variables. Through several exam-

ples, the authors showed that it is the identification of

discriminative variables, and not signal variables, that

lead to better classification performance for LDA mod-

els.

By changing the group-conditional variances in each

setting to create heterogeneous variance settings, VQDA

outperformed VLDA and yielded lower classification er-

ror than the other classifiers for independent and weak

correlation structure (results omitted from paper). This

finding leads us to the follow-up question: how large

should the difference in group-conditional variances be

for us to choose VQDA over VLDA as our preferred model?

We performed further simulations to compare our two

proposed models under various regimes of difference in

group-conditionals SDs ∆σ and training sample size

n over 25 repetitions. Details on the simulation set-

tings and results are summarised in Section 1 of Elec-

tronic Supplementary Material 2 and Figure 3 of this

manuscript. Based on Figure 3 we found that VLDA per-

forms better than VQDA when ∆σ ≤ 0.4. However, as n

increases, the required ∆σ for VQDA to perform better

than VLDA decreases. When ∆σ ≥ 1.6, VQDA performs

better than VLDA even for small n (dark blue patches on

the right of each panel). A similar pattern in classifica-

tion error differences is observed for any p1 ≥ 10. These

findings are similar to those reported in Marks and

Dunn (1974) and Zavorka and Perrett (2014). Based on

this comparison, one should consider the severity of vi-
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olation in the homogeneity of variance assumption and

the training sample size when choosing between VLDA

or VQDA.

6.5 Gene expression datasets

The classifiers are also compared using six gene ex-

pression datasets. The description of the datasets may

be found in the rest of this subsection. Since the sub-

set of truly discriminative variables are unknown for

each dataset, we shall omit the comparison of the vari-

able selection performance. A filtering step is applied

to leukemia (Golub et al., 1999), colon I (Jorissen

et al., 2008), and TCGA-LIHC (Erickson et al., 2016)

datasets to remove genes with mostly 0 readings. We

then standardised each of the six datasets to obtain

zij = (xij − µ̃j)/sj where xij is the gene j reading for

observation i, µ̃j is the sample mean of gene j and sj
is the sample standard deviation. This standardisation

procedure is similar to the one in Dudoit et al. (2002). A

5-fold cross validation over 50 repetitions is performed.

The total number of misclassifications at each it-

eration is summed across the 5 CV sub-iterations to

compare performance between the classifiers. The clas-

sification errors and computational time are presented

in Figure 4 here and Table 6 of Electronic Supplemen-

tary Material 2 respectively.

Colorectal cancer dataset I: This colon cancer dataset

is sourced from Bioconductor and has been analysed

by Jorissen et al. (2008). The dataset consist of n = 155

observations of Affymetrix oligonucleotide arrays. The

response variable is whether the tumour exhibited mi-

crosatellite instability, among which we have 78 mi-

crosatellite instable (MSI) tumours and 77 microsatel-

lite stable (MSS) tumours. We implemented a filtering

step that excludes genes with within-class outliers that

are either 3 IQR above or below the median. This leaves

us with p = 8212 genes.

Colorectal cancer dataset II: This colon cancer dataset

is made available by Alon et al. (1999). For convenience,

we use the version of the dataset that is found in the

rda package. The dataset consist of n = 62 observations

of Affymetrix oligonucleotide arrays. The response vari-

able is cell type, among which we have 40 tumour cells

and 22 normal cells. After several pre-filtering steps by

Guo et al. (2007), we have p = 2000 genes that remain

for classification.

TCGA-LIHC dataset: The Cancer Genome Atlas

Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset

is a collection of clinical, genetic and pathological data

residing in the Genomic Data Commons (GDC) Data

Portal and is made publicly available (Erickson et al.,

2016). The data underwent pre-processing to remove

genes with IQR ≤ 0.3 and the log2(1+FPKM) transfor-

mation is taken. Patients whose survival time are lesser

the the 20th percentile are considered as poor prog-

nosis (npoor = 47) while patients with survival time

greater than 80th percentile are labelled as good prog-

nosis (ngood = 62). Patients who belong to neither sur-

vival category were removed from the analysis. This

leaves us with n = 109 observations of 15681 RNA-seq

readings.

Prostate cancer dataset: The prostate cancer dataset

is made available by Singh et al. (2002). For conve-

nience, we use the version of the dataset that is found

in the sda package. The dataset consist of n = 102

observations of Affymetrix oligonucleotide arrays. The

response variable is cell type, among which we have 52

tumour cells and 50 normal cells from tissue samples

obtained from patients treated with radical prostate-

ctomy. After several pre-filtering steps by Ahdesmäki

and Strimmer (2010), we have p = 6033 genes that re-

main for classification.

Leukemia dataset: The leukemia dataset is made

available by Golub et al. (1999). For convenience, we use

the version of the dataset that is found in the plsgenomics

package. The dataset consist of n = 38 observations of

Affymetrix oligonucleotide arrays. The response vari-

able is leukemia type, among which we have 27 ALL

type and 50 AML type leukemia samples. After remov-

ing genes with low variation ≤ 0.35, we have p = 2440

genes for classification.

Lymphoma dataset: The lymphoma dataset is made

available by Alizadeh et al. (2000). For convenience, we

use the version of the dataset that is found in the spls

package. The dataset consist of 62 samples of 3 vari-

ants of lymphoma. Since our proposed model is suit-

able only for binary classification, we classify a subset

of the data consisting of n = 53 samples of which 42 are

DLBCL-type and 11 are CLL-type lymphoma. A total

of p = 4026 genes are used for classification.

6.6 Gene expression dataset results

Though VLDA is not the best performing classifier for

any of the datasets in terms of classification accuracy,

its classification errors is within a reasonable range from

the best performing ones in all datasets except for prostate

Bioconductor
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Fig. 4: 5-fold CV

classification er-

rors for genomics

datasets (50 reps).

Näıve Bayes meth-

ods in green.
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cancer. In fact, it is ranked among the top 4 classifiers

for both colon II and Leukemia datasets, bearing in

mind that it achieved this level of classification accu-

racy at a computational speed of 104 to 867 times faster

(based on leukemia dataset) than other the other top

classifiers (see Table 4 of Electronic Supplementary Ma-

terial 2). We acknowledge that the performance of our

proposed model is less than satisfactory in the prostate

cancer dataset.

VLDA outperformed VQDA in all datasets except for

colon I which provides some evidence for the robustness

of LDA methods for analysing gene expression datasets.

The performance of the näıve Bayes classifiers are

generally close to non-näıve Bayes classifiers. This in-

dicative of the lack of a strong correlation structure in

these datasets.

7 Limitations and conclusion

We have proposed a fast classifier that integrates two

common objectives in high dimensional data analysis:

variable selection and classification. The Bayesian frame-

work of the classifier lends a two fold-advantage to the

classifier, provided priors are chosen according to the

recommended settings in this paper. Firstly, it leads us

to a variable selection rule that aligns with the multiple

hypothesis testing paradigm. Although our algorithm

may be not asymptotically optimal, we are still able

to establish consistency of the variable selection rule

under a non-polynomial growth rate for the number

of variables. Secondly, the resultant variable selection

and classification rules are functions of the their re-

spective frequentist rules, and hence would show high

concordance with frequentist results. The classifier is

also capable of yielding variable selection and classifi-

cation results that are comparable to non-näıve Bayes

DA models under a weak correlation structure. Fur-

thermore, this is obtained at a very small fraction of the

computational cost incurred by these other DA models.

The speed of our proposed classifiers positions them

as a useful exploratory analysis tool. In bioinformatics,

such high speed algorithms may be deployed to mine

through a large number of datasets for the purpose of

finding new potential markers.

We made the assumption that the variables are pair-

wise independent. This assumption is strong and has

two implications. First, the classifier may not yield reli-

able classification results for moderately or strongly cor-

related dataset. If there is a need to classify highly cor-

related data with VaDA, one may employ a de-correlation

technique that preserves the original dimension of the

variable matrix X such as the latent factor method pro-

posed in Friguet et al. (2009). A study of our classifiers’

performance after an implementation of de-correlation

techniques is beyond the scope of our paper. Secondly,

we have established our asymptotic results under the

condition that the variables are truly independent. A

full investigation into the asymptotic behaviour of VLDA

under a non-independent correlation structure will be

pursued as future research.
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Table 3 Iterative scheme for obtaining the parameters in the optimal densities q(γ, yn+1, . . . , yn+m) in VQDA

Require: For each j, initialise w
(0)
j with a number in [0, 1].

while ||w(t) −w(t−1)||2 is greater than ε do

At iteration t,

1: η
(t)
j ← log(1Tw

(t−1)
−j + 1)− log

{
p− 1Tw

(t−1)
−j − 1 + bγ(r, κ)

}
+ 1

2 log(n1n0

2 )

+ξ(n1

2 ) + ξ(n0

2 )− ξ(n2 )− 3
2 log(n+ 1) + 1

2 (n+ 1) log(σ̂2
j )− n1

2 log(σ̂2
j1)− n0

2 log(σ̂2
j0)

2: w
(t)
j ← expit(η

(t)
j )

Upon convergence of w, compute for i = 1, . . . ,m

3: ỹi ← expit

[
log
(
n1

n0

)
+ 1Tw

{
logΓ (n1+1

2 )− logΓ (n1

2 ) + logΓ (n0+1
2 )− logΓ (n0

2 )
}

+1
2
wT

{
logφ(xn+i; µ̂1, σ̂

2
1)− logφ(xn+i; µ̂0, σ̂

2
0)
}]

Despite its limitations, we believe that VaDA is a

computationally-efficient option for analysing most high

dimensional datasets.
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Appendix

VQDA derivations

In the VQDA setting (σ2
j1 6= σ2

j0) the posterior distribu-

tion of γj given D and xn+1 may be expressed as

p(γj | D,xn+1) =
p(γj ,D,xn+1)

p(D,xn+1)
.

By letting h → ∞, the marginal likelihood of the data

in the denominator is of the same form as equation (9)

with the exception that

θ1 = (µ1,µ0,µ,σ
2
1,σ

2
0,σ

2, ρy, ργ),

and

λLRT(x̃j , xn+1,j ,y, yn+1)

= (n+ 1) log(σ̂2
j )− (n1 + yn+1) log(σ̂2

j1)

− (n0 + 1− yn+1) log(σ̂2
j0),

where

σ̂2
j1 = 1

n1+yn+1

[
||yT {x̃j − µ̂j11}||2

+ yn+1(xn+1,j − µ̂j1)2
]
,

σ̂2
j0 = 1

n0+1−yn+1

[
||(1− y)T {x̃j − µ̂j01}||2

+ (1− yn+1)(xn+1,j − µ̂j0)2
]
,

and the jth entry of λBayes is (as h→∞)

λBayes(x̃j , xn+1,j ,y, yn+1)

→ λLRT(x̃j , xn+1,j ,y, yn+1) + log(n1 + yn+1)

+ log(n0 + 1− yn+1)− log(2)− 3 log(n+ 1)

− 2ξ{(n+ 1)/2}+ 2ξ{(n1 + yn+1)/2}
+ 2ξ{(n0 + 1− yn+1)/2},

= λLRT(x̃j , xn+1,j ,y, yn+1)− 2 log(n+ 1)

+O(n−10 + n−11 ),
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where ξ(x) = logΓ (x) + x− x log(x)− 1
2 log(2π). Since

the calculation of the marginal likelihood involves a

combinatorial sum over 2p+1 binary combinations, ex-

act Bayesian inference is also computationally imprac-

tical in the VQDA setting.

Similar to VLDA, we will use RCVB to approximate

the posterior p(γ, yn+1|x,xn+1,y) by

q(yn+1,γ) = q(yn+1)

p∏
j=1

qj(γj).

This yields the approximate posterior for γj as

qj(γj) ∝
∫

exp
[
E−qj{log p(D,xn+1, yn+1,γ,θ1)}

]
dθ1,

∝ exp

[
E−qj

{
logB(aγ + 1Tγ, bγ + p− 1Tγ)

}
+

γj
2 E−qj

{
λBayes(x̃j , xn+1,j ,y, yn+1)

}]
.

For a sufficiently large n, we can avoid the need to eval-

uate the expectation E−qj
{
λBayes(x̃j , xn+1,j ,y, yn+1)

}
by applying Taylor’s expansion to obtain the approxi-

mation

E−qj log(aγ + 1Tγ−j) ≈ log(aγ + 1Tw−j),

E−qj log(bγ + p− 1Tγ−j − 1)

≈ log(bγ + p− 1Tw−j − 1),

σ̂2
j1 ≈ 1

n1
||yT {x̃j − µ̂j11}||2,

σ̂2
j0 ≈ 1

n0
||(1− y)T {x̃j − µ̂j01}||2,

σ̂2
j ≈ 1

n ||x̃j − µ̂j1||
2,

µ̂j1 ≈ 1
n1

yT x̃j , µ̂j0 ≈ 1
n0

(1− y)T x̃j , µ̂j ≈ 1
n1T x̃j ,

(16)

and, similar to VLDA, λBayes does not depend on the new

observation (xn+1, yn+1). By using the approximation

in (16), we have

wj =
qj(γj = 1)

qj(γj = 1) + qj(γj = 0)
,

≈ expit

[
log(aγ + 1Tw−j)− log(bγ + p− 1Tw−j − 1)

+ 1
2 log(n1n0

2 ) + ξ(n1

2 ) + ξ(n0

2 )− ξ(n2 )

− 3
2 log(n+ 1) + 1

2λLRT(x̃j , yn+1)

]
,

= expit

[
penaltyQDA,j + 1

2λLRT(x̃j , yn+1)

]
,

To obtain the approximate density for yn+1, we in-

tegrate analytically over θ1 to obtain

q(yn+1) ∝
∫

exp
[
E−y{log p(D,xn+1, yn+1,γ,θ1)}

]
dθ1,

∝ exp

[
logB(ay + n1 + yn+1, by + n0 + 1− yn+1)

+ 1Tw
{

logΓ (n1+yn+1

2 ) + logΓ (n0+1−yn+1

2 )
}

+ 1
2wT

{
logφ(xn+1; µ̂1, σ̂

2
1)− logφ(xn+1; µ̂0, σ̂

2
0)
}]
,

where the jth element of the p×1 vector φ(xn+1; µ̂k, σ̂
2
k)

is the Gaussian density

φ(xn+1,j ; µ̂jk, σ̂
2
jk),

and the log prefix denotes an element-wise log of a vec-

tor.

In the general case withm new observations, we may

apply Taylor’s expansion results from (16) to compute

the approximate classification probability for yn+i as

ỹi =
q(yn+i = 1)

q(yn+i = 1) + q(yn+i = 0)
,

≈ expit

[
log
(
n1

n0

)
+ 1Tw

{
logΓ (n1+1

2 )− logΓ (n1

2 )

+ logΓ (n0+1
2 )− logΓ (n0

2 )
}

+ 1
2wT

{
logφ(xn+i; µ̂1, σ̂

2
1)− logφ(xn+i; µ̂0, σ̂

2
0)
}]
.

The RCVB alogrithm for VQDA may be found in Table

3.
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Ahdesmäki, M., Strimmer, K.: Feature selection in

omics prediction problems using CAT score and false

discovery rate control. The Annals of Applied Statis-

tics 4(1), 503–519 (2010)

Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I.,

Rosenwald, A., Boldrick, J., Sabet, H., Tran, T., Yu,

X., Powell, J., Yang, L., Marti, G., Moore, T., Hud-

son, J.J., Lu, L., Lewis, D., Tibshirani, R., Sherlock,

G., Chan, W., Greiner, T., Weisenburger, D., Ar-

mitage, J., Warnke, R., Levy, R., Wilson, W., Gr-

ever, M., Byrd, J., Botstein, D., Brown, P., Staudt,

L.: Distinct types of diffuse large b-cell lymphoma

identified by gene expression profiling. Nature 403,

503–511 (2000)

Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra,

S., Mack, D., AJ, L.: Broad patterns of gene ex-

pression revealed by clustering analysis of tumor and



Variational discriminant analysis with variable selection 19

normal colon tissues probed by oligonucleotide ar-

rays. Proceedings of the National Academy of Sci-

ences 96(12), 6745–6750 (1999)

Benjamini, Y., Daniel, Y.: The control of the false dis-

covery rate in multiple testing under dependency.

The Annals of Statistics 29(4), 1165–1188 (2001)

Benjamini, Y., Hochberg, Y.: Controlling the false dis-

covery rate: a practical and powerful approach to

multiple testing. Journal of the Royal Statistical So-

ciety, Series B 57(1), 289–300 (1995)

Bickel, P.J., Levina, E.: Some theory for Fisher’s lin-

ear discriminant function, ‘näıve Bayes’ and some al-
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