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Optimal Classification of Gaussian Processes in Homo-
and Heteroscedastic Settings

José L. Torrecilla · Carlos Ramos-Carreño · Manuel Sánchez-Montañés ·
Alberto Suárez

Abstract A procedure to derive optimal discrimination
rules is formulated for binary functional classification

problems in which the instances available for induction
are characterized by random trajectories sampled from
different Gaussian processes, depending on the class
label. Specifically, these optimal rules are derived as the
asymptotic form of the quadratic discriminant for the
discretely monitored trajectories in the limit that the set

of monitoring points becomes dense in the interval on
which the processes are defined. The main goal of this
work is to provide a detailed analysis of such optimal
rules in the dense monitoring limit, with a particular fo-

cus on elucidating the mechanisms by which near perfect
classification arises. In the general case, the quadratic
discriminant includes terms that are singular in this

limit. If such singularities do not cancel out, one obtains
near perfect classification, which means that the error
approaches zero asymptotically, for infinite sample sizes.

This singular limit is a consequence of the orthogonality
of the probability measures associated to the stochas-
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tic processes from which the trajectories are sampled.
As a further novel result of this analysis, we formulate

rules to determine whether two Gaussian processes are
equivalent or mutually singular (orthogonal).

Keywords Functional data analysis - Optimal
classification - Gaussian processes - Reproducing kernel
Hilbert spaces - Near perfect classification

1 Introduction

Functional data classification is an active research field
that has multiple applications in different areas, such as

medicine (Zhu et al. 2012; Epifanio and Ventura-Campos
2014), genomics (Leng and Müller 2006; Song et al. 2008;
Rincón and Ruiz-Medina 2012), spectrometry (Rossi and
Villa 2006), weather modelling and forecasting (Martin-
Barragan et al. 2014), speech recognition (Rossi and
Villa 2006), and the analysis of handwriting (Hubert
et al. 2017). In these types of classification problems, the
instances available for induction are characterized by
functions of a continuous parameter, such as trajectories
in time or curves in space (Ramsay and Silverman 2005;
Ferraty and Vieu 2006). Functional classification prob-
lems exhibit significant qualitative differences with their
multivariate counterparts (Cuevas 2014; Wang et al.
2016). These differences arise from several factors, such
as the continuous structure of functions, the lack of a
natural ordering in multivariate data, the sparsity in the
measurements, and, what is especially relevant for this

work, the fact that the densities of random functions do
not exist (Delaigle and Hall 2010). In some cases, even if
the individual class-conditional probability densities do
not exist, an optimal classification rule can still be given
in terms of the Radon-Nikodym derivative, which plays
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the role of the likelihood ratio in these types of infinite-

dimensional problems (Báıllo et al. 2011). In practice,

functional data are never complete, in the sense that

they are measured only in a grid of points. Furthermore,

in some cases the measurements are sparse, which can

be a source of additional difficulties (Müller 2016).

In this work we derive explicit expressions of opti-

mal prediction rules for binary classification problems

in which the data instances are characterized by tra-

jectories X, sampled from Gaussian processes (GPs)

defined on the interval [0, T ] in the real line. The Gaus-

sian processes from which the instances are sampled are

different for each of the two classes. The problem has

been analyzed earlier in the literature in both the homo-

and heteroscedastic settings (Delaigle and Hall 2012,
2013; Dai et al. 2017; Berrendero et al. 2018b). The

main contribution of the current work is to derive such

rules by first considering the problem of classifying the

discrete-time process that results from monitoring the
Gaussian process at a finite set of times. Since the joint

distribution of the values of the discretely monitored

process is a multivariate Gaussian random variable, the

optimal classifier, also called the Bayes rule, is a qua-

dratic discriminant (Hastie et al. 2009). By taking the

limit of this quadratic discriminant as the set of mon-

itoring points becomes dense in [0, T ], one obtains an

optimal rule for the classification of the continuous-time

Gaussian processes. In the general case, this is a singular

limit because some of the terms in the discriminant rule

diverge. Carrying out a detailed analysis of these optimal

classification rules and their singularities in the dense

monitoring limit, we provide novel derivations of some

known results and gain insight into the mechanisms by

which near perfect classification occurs (Delaigle and

Hall 2012). Specifically, for these types of problems, an

optimal classification rule is obtained by balancing the

singular terms that appear in the quadratic discriminant

in the dense monitoring limit. The conditions for near

perfect classification when the Gaussian processes have

different means were first derived in Delaigle and Hall

(2012) in the homo- and heteroscedastic settings. The

current paper builds on that work by considering the

covariance structure as well. A further novel result is

the derivation of explicit rules to determine whether two

Gaussian processes are equivalent or mutually singular

(Hájek 1958; Feldman 1958). Two processes are said

to be equivalent when their zero measure sets coincide.

They are mutually singular (orthogonal) when there is a

non-empty set that has zero measure under one process

and measure one for the other one. The equivalence

rules are derived from the observation that for the two

processes to be equivalent, the singularities that appear

in the corresponding classification rule must cancel out.

The structure of the article is as follows: The func-

tional classification problem is formulated in Section 2.

A natural framework for the analysis of these types of

problems is the theory of Reproducing Kernel Hilbert

Spaces (RKHS’s), which is reviewed in Section 3. The

procedure for deriving optimal rules for the classification

of Gaussian processes based on discrete monitoring is

introduced in Section 4. The type of classification prob-

lem that is obtained depends on whether the Gaussian

processes are equivalent (non-singular classification) or

orthogonal (singular, near perfect classification). For
this reason, the conditions for the equivalence of Gaus-

sian processes are discussed in Section 5. Sections 6

and 7 are devoted to homoscedastic and heteroscedastic

classification problems, respectively. An experimental

evaluation of the limit rules derived in this work and a

comparison with other functional classification methods

is presented in Section 8 for both simulated and real-

world problems. Finally, Section 9 provides a summary

of the conclusions of this work.

2 Statement of the problem

In functional classification, the instances available for

learning are characterized by pairs (X,Y ), where X is

a function of the continuous parameter t ∈ I and Y is

a discrete class label. In a binary classification problem

Y ∈ {0, 1}. For the sake of simplicity, we assume that

I is a compact interval in the real line (e.g., t ∈ [0, T ]).

Nonetheless, the results can be readily extended to cases

in which I is a compact domain in a Euclidean space

of arbitrary dimension. Assuming that we have at our

disposal a set of labeled training examples Dtrain =

{(xi, yi)}Ntrain

i=1 , the goal is to induce from these data a

predictor that, given a known x as input, produces a

class label as output.

Assume that the functions x ≡ {x(t); t ∈ I} are

realizations of the stochastic process

(X(t) | Y = 0) = m0(t) + Z0(t) w. p. 1− p
(X(t) | Y = 1) = m1(t) + Z1(t) w. p. p, (1)

where p is the prior of class 1 (0 < p < 1), and m0(t),

m1(t) are the mean of class 0 and class 1 instances,

respectively. Both means are square-integrable deter-

ministic functions on I∫
t∈I
|mi(t)|2 dt <∞, i = 0, 1. (2)

The stochastic terms, Z0 and Z1, are assumed to be zero-

mean Gaussian processes with continuous covariance

functions (kernels) K0 and K1, respectively.
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Without loss of generality, the mean m0 can be

subtracted from all trajectories to obtain the equivalent

classification problem

(X(t) | Y = 0) = Z0(t) w. p. 1− p
(X(t) | Y = 1) = m(t) + Z1(t) w. p. p, (3)

where m(t) = m1(t)−m0(t).

The measures P0 and P1 are the laws of the stochastic

processes X0 = (X | Y = 0) and X1 = (X | Y = 1),

respectively. For Gaussian processes, Hájek (1958) and

Feldman (1958) established that these measures are

either equivalent or mutually singular. Necessary and

sufficient conditions for the equivalence of Gaussian

measures have been given in the literature (Varberg

1961; Parzen 1961b,a; Shepp 1966; Sato 1967; Kuelbs

1970).

In the case that P0 and P1 are equivalent (P0 ∼ P1),

the Radon-Nikodym derivative between the two mea-

sures dP1

dP0
(X), which is the analogue of the likelihood

ratio for infinite-dimensional functional spaces, exists.

Furthermore, the Bayes rule (i.e., the optimal classifica-

tion rule) can be expressed in terms of this derivative

(Báıllo et al. 2011). Specifically, the optimal predictor

for an instance characterized by the trajectory x is

I
[
dP1

dP0
(X)

∣∣∣∣
X=x

>
1− p
p

]
, (4)

where I is the indicator function (i.e., I [True] = 1,

I [False] = 0). When the two measures are mutually sin-
gular (P0 ⊥ P1), near perfect classification is obtained

(Berrendero et al. 2018b). Near perfect classification was

first discussed in (Delaigle and Hall 2012). In that paper
the authors showed that zero classification error can be

achieved in the asymptotic (infinite sample) limit for

Gaussian processes with different means that fulfill cer-
tain conditions both in the homo- and heteroscedastic

settings. In the current article, we build on this seminal

work and provide detailed derivations of optimal classi-

fication rules that illustrate the emergence of the near

perfect classification phenomenon in different cases, in-

cluding those involving the covariances of the Gaussian

processes.

The expression of the Bayes rule given by Eq. (4) is

formal and cannot be directly used in practical applica-

tions. Approximations based on the use of density ratios

of finite dimensional projections have been proposed

in Delaigle and Hall (2013); Galeano et al. (2015); Dai

et al. (2017). The derivation of explicit forms for the

optimal rule for a limited class of functional classifi-

cation problems of this type has also been considered

earlier in the literature mainly in the homoscedastic

(K0 = K1 = K) setting. However, the derivation of

optimal classification rules in the heteroscedastic setting

(K0 6= K1) and for singular cases in which near perfect

classification is obtained remains elusive (Delaigle and

Hall 2012, 2013; Cuesta-Albertos and Dutta 2016; Dai

et al. 2017; Berrendero et al. 2018b). In a homoscedastic

setting, some related results, including the singular case,

have been derived in the context of signal detection

(Kailath 1966, 1971).

A natural framework for these types of functional

classification problems is the theory of Reproducing Ker-

nel Hilbert Spaces (Cucker and Smale 2002; Berlinet and

Thomas-Agnan 2004; Manton and Amblard 2015). For

this reason, in the next section we provide an overview

of properties of these types of spaces that will be used

later in this article to derive optimal rules for the classi-

fication of Gaussian processes.

3 Reproducing Kernel Hilbert Spaces

A Reproducing Kernel Hilbert Space (RKHS) is a space

of real-valued functions on I endowed with an inner

product that is a reproducing kernel. A kernel K(s, t)

is a symmetric positive-semidefinite function on I × I.

The reproducing property for the kernel K associated

with the RKHS HK implies that

f(t) = 〈f(·),K(·, t)〉K ,∀f ∈ HK , (5)

where 〈·, ·〉K denotes the inner product in HK .

Throughout this work we will assume that K is con-

tinuous and bounded. The positivity condition implies

that for any finite set of distinct values {tn}Ni=1 ∈ IN
the N ×N Gram matrix K, whose elements are Knm =

K(tn, tm), for 1 ≤ n,m ≤ N , is positive-semidefinite

(i.e. all its eigenvalues are non-negative).

Let H(0)
K be the space of functions that can be

expressed as finite linear combinations of the form

f(·) =
∑r
n=1 αnK(tn, ·). This space is endowed with

the inner product

〈f, g〉K =

r∑
n=1

s∑
m=1

αnβmK(tn, tm), (6)

where g(·) =
∑s
m=1 βmK(tm, ·). The RKHS associated

to K, denoted by HK , is the set of functions f : I → R
that is the completion in the corresponding norm of the

space H(0)
K .

Let L2(I) denote the space of square integrable func-

tions on I. Associated to kernel K, it is possible to

define a covariance operator K : L2(I)→ L2(I), by the

integral equation

Kf(t) =

∫
s∈I

K(t, s)f(s)ds. (7)
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This operator is self-adjoint and positive. The eigenval-

ues and eigenfunctions of this operator are∫
s∈I

K(t, s)φj(s)ds = λjφj(t), j = 1, 2, . . . (8)

with 0 < . . . ≤ λ2 ≤ λ1 < ∞, and {φj(s)}∞j=1, an

orthonormal basis in L2(I)∫
t∈I

φi(t)φj(t)dt = δij , i, j = 1, 2, . . . . (9)

If the kernel is only positive-semidefinite, some of the
eigenvalues of K could be zero. In that case, there is no

loss of generality in considering only the linear subspace

spanned by the set of eigenvectors corresponding to pos-

itive (non-zero) eigenvalues of the covariance operator

(see, e.g., Remark 3 of Section 3 in Cucker and Smale

(2002)).

By Mercer’s theorem (Parzen 1959; Cucker and

Smale 2002), the spectral representation of the kernel is

K(s, t) =

∞∑
i=1

λiφi(s)φi(t). (10)

The convergence of this series is absolute for each (s, t) ∈
I × I and uniform on I × I. In this representation, the

RKHS associated to kernel K is the space of functions

that fulfill

HK =

{
f ∈ L2(I) : f =

∞∑
i=1

fiφi,

∞∑
i=1

f2i
λi

<∞
}
.

(11)

The corresponding inner product is

〈f, g〉K =

∞∑
i=1

figi
λi

, (12)

with g =
∑∞
i=1 giφi(t). Finally, the set of functions{

ϕj(s) =
√
λjφj(s)

}∞
j=1

form an orthonormal basis in

HK .

3.1 Stochastic processes and RKHS’s

There is an alternative construction of the RKHS that

takes as a starting point the zero-mean second-order

stochastic process {Z(t), t ∈ I}, whose covariance func-

tion is

K(s, t) = E [Z(s)Z(t)] , s, t ∈ I. (13)

Consider L0(Z), the linear span of the process Z, whose

elements are of the form
∑N
n=1 αnZ(tn), with {αn}Nn=1 ∈

RN , {tn}Nn=1 ∈ IN for some integer N . Let L(Z) be the

closure of L0(Z) in L2(Ω), the space of zero-mean ran-

dom variables with finite second moments. By Loève’s

representation theorem (Berlinet and Thomas-Agnan

2004) it is possible to define an isomorphism that maps

each
∑
n αnZ(tn) ∈ L(Z) onto a unique element

ψ

(∑
n

αnZ(tn)

)
(t) = E

[∑
n

αnZ(tn)Z(t)

]
=
∑
n

αnK(tn, t), t ∈ I (14)

inHK . Since
∑
n αnK(tn, t) converges in the norm sense

to an element of the RKHS (because
∑
n αnZn belongs

to the closure of L0(Z) in L2(Ω)), it also converges

pointwise for all t ∈ I to the same limit (Corollary 1 of

Berlinet and Thomas-Agnan (2004)). This isomorphism

preserves the inner product; i.e., it is a congruence. This

congruence is referred to as Loève’s isometry (Lukić and

Beder 2001). It maps Z(s) onto K(s, t)

ψ(Z(s))(t) = K(s, t), s, t ∈ I. (15)

Conversely, the inverse congruence ψ−1Z maps the func-

tion f =
∑
n αnK(tn, ·) ∈ HK onto the random variable

ψ−1Z (f) =
∑
n αnZ(tn) ∈ L(Z). Therefore, the value of

the random trajectory at t ∈ I can be expressed as

Z(t) = ψ−1Z (K(·, t)) . (16)

In terms of this isometry, the inner product between the

functions f =
∑
n αnK(tn, ·) and g =

∑
m βmK(tm, ·),

both in HK is

〈f, g〉K =
∑
n,m

αnβmK(tn, tm) = E
[
ψ−1Z (f)ψ−1Z (g)

]
.

(17)

Following Parzen (1961a), this isometry can be used to

define the mapping

〈Z, f〉K = ψ−1Z (f) =
∑
n

αnZ(tn) ∈ L(Z), (18)

for Z, a trajectory of the stochastic process, and f ∈ HK .

This mapping, which can be viewed as a formal extension

of the definition of the inner product, is well-defined

even though, except for trivial cases, Z /∈ HK with

probability one (Kailath 1971; Berlinet and Thomas-

Agnan 2004). The quantity 〈Z, f〉K is the unique linear
square-integrable functional of Z that satisfies (Parzen

1959; Kailath 1971)

E [Z 〈Z, f〉K ] = f, ∀f ∈ HK . (19)

Finally, it is also possible to express this congruence

inner product as

〈Z, f〉K =

∞∑
i=1

ζifi
λi

, (20)
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in terms of f(t) =
∑∞
i=1 fiφi(t), t ∈ I, and of Z(t) =∑∞

i=1 ζiφi(t), t ∈ I, the Karhunen-Loève expansion of

the process (Berlinet and Thomas-Agnan 2004). The co-

ordinates of this expansion are computed by projecting

Z onto the basis of eigenfunctions of K

ζi =

∫
t∈I

Z(t)φi(t)dt, i = 1, 2, . . . . (21)

They are zero-mean independent normal random vari-

ables

E [ζi] = 0

E [ζiζj ] = λiδij , i, j = 1, 2, . . . . (22)

In the following section, these properties will be used to

derive rules for the optimal classification of trajectories

sampled from two different Gaussian processes.

4 Optimal rules for Gaussian process

classification

Consider a stochastic process X defined by Eq. (3).

Assume that the trajectories of this process are moni-

tored at a set of appropriately chosen distinct discrete
times tN = {tn}Nn=1 ∈ IN . Let X represent the N -

dimensional column vector whose components are the

discretely monitored values of the trajectories

X† = (X(t1), X(t2), . . . , X(tN )) , (23)

where the superscript † indicates the standard transposi-

tion of matrices. By the properties of Gaussian processes,

the class-conditioned distribution of X is a multivariate

Gaussian

X | Y = 0 ∼ N (0,K0) w. p. 1− p
X | Y = 1 ∼ N (m,K1) w. p. p (24)

where

m† = (m(t1), m(t2), . . . , m(tN )) (25)

is a row vector whose components are the values of mean

of the class 1 trajectories at the monitoring times. The

corresponding column vector is denoted by m.

The quantities K0 and K1 are the corresponding N×
N Gram matrices. The elements of these matrices are the

autocovariances of the discretely monitored processes

(Ki)mn = E [Zi(tn)Zi(tm)] = Ki(tn, tm), (26)

for i = 0, 1, and n,m = 1, 2, . . . N . Since they charac-

terize the structure of autocovariances, Gram matri-

ces are positive-semidefinite (i.e., their eigenvalues are

non-negative). If they have zero eigenvalues, in what

follows, the derivations apply to the space spanned by

the eigenvectors corresponding to the positive (non-zero)

eigenvalues.

In the general heteroscedastic case, the Bayes rule for

this multivariate Gaussian binary classification problem

is the quadratic discriminant (see, e.g., Hastie et al.

(2009))

I
[
−1

2
log
|K1|
|K0|

− 1

2
X†
(
K−11 −K−10

)
X

+ X†K−11 m− 1

2
m†K−11 m > log

1− p
p

]
, (27)

where I is the indicator function and |K0| , |K1| are the

determinants of the corresponding covariance matrices.

The limit of this rule as N → ∞ and the set of

monitoring points t∞ = {tn}∞n=1 becomes dense in I
can be formally written as

I
[
−1

2
log
|K1|
|K0|

− 1

2
(〈X,X〉K1 − 〈X,X〉K0)

+ 〈X,m〉K1
− 1

2
〈m,m〉K1

> log
1− p
p

]
. (28)

The angular brackets 〈·, ·〉Ki denote the inner product in

Hi, the reproducing kernel Hilbert spaces (RKHS) asso-

ciated to the kernel Ki, or, if such quantity is ill-defined,

related mathematical constructs whose particular form

will be made explicit later on in this work. The quan-

tity |K1|
|K0| represents the asymptotic form of the ratio of

determinants of the Gram matrices |K1|
|K0| in the limit of

dense monitoring (see Appendix A).

In general cases, this limit is singular. A first type

of singularity occurs if m /∈ H0 ∩H1. In such case, the

terms 〈X,m〉K1 and 〈m,m〉K1 in Eq. (28) diverge. A

second type of singularity appears in the quadratic terms

of the discriminant when the Hilbert space Hi is infinite-

dimensional. In that case, the trajectories of the process

X do not belong to HK with probability one (Kailath

1971; Berlinet and Thomas-Agnan 2004). Therefore, in

the dense monitoring limit, the quantities 〈X,X〉Ki
also

diverge. Finally, also for infinite-dimensional Hi, the

determinant of the corresponding covariance operator,

|Ki|, vanishes and its logarithm diverges.

As illustrated in this work, these singularities are

in fact at the origin of the near perfect classification

phenomenon (Delaigle and Hall 2012). Specifically, if the

singularities present in the classification rule Eq. (28)

cancel out, the measures of the two underlying Gaussian

processes are equivalent. Otherwise, they are mutually

singular (orthogonal) and near perfect classification is

obtained.

From these observations, we note that Eq. (28),

which can be seen as the functional generalization of the

quadratic discriminant for multivariate data, should be

viewed only as a mnemonic for Eq. (27) in the limit of
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dense monitoring. In subsequent sections, the singular

limit of this rule is analyzed in detail for different classi-

fication problems in both the homo- and heteroscedastic

settings. In particular, the conditions for the equivalence

between the two Gaussian processes are discussed in

Section 5. In section 6 we analyze homoscedastic classifi-

cation problems, for which K0 = K1 = K. In this case, if

m = m1−m0 ∈ HK , the laws P0 and P1 are equivalent.

In consequence, the classification problem is not singular

and Eq. (28) is the Bayes rule (Berrendero et al. 2018b).

Near perfect classification is obtained when m does not
belong to HK . In such case the singularities in the terms

that involve m dominate in Eq. (28). Nonetheless, it

is still possible to derive optimal classification rules by

carrying out a careful analysis of the behavior of those

divergent terms in this singular limit. The general het-

eroscedastic classification problem K0 6= K1 is analyzed

in Section 7. Near perfect classification can be obtained

by an alternative mechanism that involves the quadratic

terms of the discriminant, which are singular. As in the

homoscedastic case, if the singularities in Eq. (28) can-

cel out, P0 and P1 are equivalent, and the classification

problem is not singular.

5 Equivalence of Gaussian processes

From the form of the optimal classification rule intro-

duced in the previous section it is possible to derive

conditions for the equivalence of the probability mea-

sures P0 and P1 associated to the Gaussian processes

GP (m0,K0) and GP (m1,K1), respectively.

The derivation starts from the observation that P0

and P1 are equivalent if the corresponding classification

problem is not singular (Báıllo et al. 2011; Berrendero

et al. 2018b). In that case, the optimal classification rule

is

I
[
dP1

dP0
(X) >

1− p
p

]
, (29)

where dP1

dP0
(X) is the Radon-Nikodym derivative.

If m0 6= 0 it is possible to determine whether the

trajectory {X(t); t ∈ I} has been sampled either from

GP (m0,K0) or from GP (m1,K1) using Eq. (28) with

the replacements X −m0 for X and m = m1−m0. The

classification rule becomes

I

[
− 1

2
log
|K1|
|K0|

− 1

2

(
‖X −m1‖2K1

− ‖X −m0‖2K0

)
> log

1− p
p

]
, (30)

where ‖X −mi‖2Ki
= 〈X−mi, X−mi〉Ki , with i = 0, 1,

which are the functional analogues of the Mahalanobis

distance (Galeano et al. 2015; Berrendero et al. 2018a).

Again, the quantities that appear in this expression

exhibit singularities and should therefore be interpreted

as the corresponding discrete approximations in the

limit of dense monitoring.

A first type of singularity in this classification rule

arises when m = m1 −m0 /∈ H0 ∩ H1. Specifically, as-

suming that X is a trajectory drawn from GP (m1,K1),

it can be written as X = m1 +Z1, where Z1 is the zero-

mean Gaussian process GP (0,K1). In the expression

of ‖X −m0‖2K0
one would get, among others, the term

‖m1 −m0‖2K0
, which diverges because m = m1 −m0 /∈

H0. Note that this singularity cannot be cancelled by any

other term in Eq. (30). A parallel argument can be used

for trajectories drawn from GP (m0,K0), interchanging

the subindices 0 and 1, to prove that, if m = m1−m0 /∈
H1, one would get the term ‖m1 −m0‖2K1

in Eq. (30).

This term is also singular because m = m1 −m0 /∈ H1.

As in the previous case, the singularity cannot be can-

celled by any other term in Eq. (30).

Even if one assumes that m = m1 −m0 ∈ H0 ∩H1,

which implies that the divergences described in the

previous paragraph are not obtained, a second type

of singularity can appear in the quadratic terms of Eq.

(30). Specifically, the terms ‖X −mi‖2Ki
, i = 0, 1 diverge

whenHi is infinite dimensional (Berrendero et al. 2018a).

However, if the Gaussian processes are equivalent, the

singularities in the term
(
‖X −m1‖2K1

− ‖X −m0‖2K0

)
cancel out, so that the classification rule given by Eq.

(30) is well defined.

A related singularity affects also the term that in-

volves the ratio of the determinants of the covariance

operators. If the Hilbert space Hi is infinite dimensional,

zero is an accumulation point of the spectrum of the

covariance operator Ki (Spence 1975). Therefore, the in-

dividual determinants of the covariance operators vanish

|Ki| ≡ lim
N→∞

N∏
j=1

λij = 0, i = 0, 1, (31)

where {λ0j}∞j=1 and {λ1j}∞j=1 are the eigenvalues of K0

and K1, respectively. Therefore, the condition for equiv-

alence between P0 and P1 is that the ratio determinants

|K0|
|K1|

= lim
N→∞

|K0|
|K1|

= lim
N→∞

N∏
j=1

λ0j
λ1j

, (32)

be finite and different from zero. The last equality in

Eq. (32), which involves the limit of dense monitoring,

is derived in Appendix A.
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In summary, if the processes are equivalent, the

classification problem is not singular. Therefore,

m = m1 −m0 ∈ H0 ∩H1, (33)

so that the terms that depend solely on the means in

Eq. (30) are well-defined, and the singularities of the

quadratic terms cancel out

‖X −m1‖2K1
− ‖X −m0‖2K0

<∞, (34)

0 <
|K0|
|K1|

= lim
N→∞

N∏
j=1

λ0j
λ1j

<∞. (35)

If these conditions do not hold, the classification prob-

lem is singular and the measures are not equivalent. In

consequence, according to the Hájek-Feldman dichotomy

(Hájek 1958; Feldman 1958), they are mutually singular

(orthogonal).

For processes that are equivalent, combining Eqs. (29)

and (30), the Radon-Nikodym derivative of P1 with re-

spect to P0 is

dP1

dP0
(x) =

( |K0|
|K1|

)1/2

exp

{
−1

2

(
‖x−m1‖2K1

− ‖x−m0‖2K0

)}
. (36)

Furthermore, the inner products in H0 and H1, the

RKHS’s corresponding to the kernels K0 and K1, re-

spectively, are related by the expression

〈f, g〉K1
= 〈f, g〉K0

−〈f, 〈δK, g〉K1
〉K0

, f, g ∈ H0∩H1,

(37)

where δK = K1 − K0. This relation can be proven

making use of the reproducing property of K0 in H0,

and of K1 in H1:

Let f ∈ H0 ∩H1. Using g(·) = K1(x, ·) in Eq. (37)

〈f(·),K1(x, ·)〉K1

= 〈f(·),K1(x, ·)〉K0
− 〈f(·), 〈δK(·, ·),K1(x, ·)〉K1

〉K0

= 〈f(·),K1(x, ·)〉K0 − 〈f(·), δK(x, ·)〉K0

= 〈f(·),K0(x, ·)〉K0 = f(x).

Using these results for equivalence, we now proceed

to analyze the classification of Gaussian processes in

both the homo- and heteroscedastic settings.

6 Homoscedastic classification problems

In homoscedastic classification problems, the kernels

of the Gaussian processes for the two classes are equal

K0 = K1 = K. Therefore, the quadratic terms of the

functional discriminant function (i.e., the first two terms

on the left-hand side of the expression inside the indica-

tor function in Eq. (27)) cancel out. The optimal rule

for the discretely monitored process is Fisher’s linear

discriminant

I
[
X†K−1m− 1

2
m†K−1m > log

1− p
p

]
. (38)

In the limit of dense monitoring the decision rule can

be formally written as

I
[
〈X,m〉K −

1

2
〈m,m〉K > log

1− p
p

]
. (39)

The angular brackets, 〈·, ·〉K denote the inner product

in HK , the RKHS associated to the kernel K, or, if such

quantity is ill-defined, a related mathematical construct

that will be described presently.

In what follows, the Bayes rule will be derived for

general non-singular homoscedastic GP classification

problems. Then we will illustrate how to derive optimal

rules in specific singular instances of such problems.

6.1 Non-singular homoscedastic classification

In a homoscedastic setting, the classification problem

is not singular if m = m1 − m0 ∈ HK (lemma 5d of

Parzen (1961b)). In that case, P0 and P1 are equivalent.

Provided that an appropriate interpretation is given

to its constituents, Eq. (39) is the Bayes rule for this

functional classification problem. The error of this opti-

mal rule, which is the infinite-dimensional analogue of

Fisher’s linear discriminant, is

L∗ = (1− p)Φ
(
− 1

2 ‖m‖K − 1
‖m‖K

log p
1−p

)
+ pΦ

(
− 1

2 ‖m‖K + 1
‖m‖K

log p
1−p

)
, (40)

where Φ is the cumulative distribution function of a

standard normal random variable (Berrendero et al.

2018b).

As mentioned earlier, the terms in Eq. (39) need

to be given an appropriate interpretation in the limit

of dense monitoring. Let’s consider first the term that

involves the inner product of m

lim
N→∞

m†K−1m = 〈m,m〉K = ‖m‖2K . (41)

The convergence of the discretized approximation to the

square norm of m ∈ HK can be proven for monotone

increasing (nested) sets of monitoring times using lemma

5c of Parzen (1961b).

If the RKHS is infinite dimensional, the trajectories

of the random process do not belong to HK with proba-

bility one (Kailath 1971; Lukić and Beder 2001; Berlinet

and Thomas-Agnan 2004). In such case, 〈X,m〉K cannot
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represent an inner product in HK . Nonetheless, since

m ∈ HK , we have

E
[
Z(tn)

(
X†K−1m

)]
= m(tn), tn ∈ tN (42)

E
[
Z(t)

(
X†K−1m

)]
= m̂(t), t /∈ tN , (43)

where Z(t) is a random function sampled from a zero-

mean Gaussian process with a kernel function K. The

quantity m̂(t) is the optimal prediction for m(t) with

t ∈ I, assuming that {m(tn)}Nn=0, the values of the

mean at the monitoring times, are known (Rasmussen

and Williams 2005). In the limit of dense monitoring

lim
N→∞

E
[
Z(t)

(
X†K−1m

)]
= m(t), ∀t ∈ t∞, (44)

for any m ∈ HK . Extending by continuity this relation

to all t ∈ I, and using Eq. (19), the dense-monitoring

limit of this linear functional defines Loève’s isometry

〈X,m〉K = lim
N→∞

X†K−1m = ψ−1X (m). (45)

The spectral form of this congruence inner product is

(Berlinet and Thomas-Agnan 2004)

〈X,m〉K =

∞∑
j=1

µjξj
λj

, (46)

where {λj}∞j=1 are the eigenvalues of K, and {µj}∞j=1,

{ξj}∞j=1 are the coefficients of the Karhunen-Loève ex-

pansions

m(t) =

∞∑
j=1

µjφj(t), (47)

X(t) =

∞∑
j=1

ξjφj(t), (48)

respectively.

6.2 Singular (near perfect) homoscedastic classification

When m /∈ HK , the measures P0 and P1 are mutu-

ally singular (orthogonal). In this case, near perfect

classification is obtained (Parzen 1961a; Kailath 1966,

1971; Berrendero et al. 2018b). The terms 〈X,m〉K and

〈m,m〉K diverge. These divergences, which are of the

same type, dominate in Eq. (39). Therefore the term

that depends on the class priors, which is non-singular
for 0 < p < 1, can be dropped out. With an appropriate

interpretation of the limit, the decision rule is

I
[

lim
m̂H→m

(
〈X, m̂H〉H −

1

2
〈m̂H, m̂H〉K

)
> 0

]
, (49)

where m̂H ∈ HK is an approximation to the mean

m /∈ HK , whose squared norm is 〈m̂H, m̂H〉K . The

quantity 〈X, m̂H〉K is defined through Loève’s isometry.

The limit in Eq. (49) needs to be understood as fol-

lows: Since the elements of HK are dense in L2(I) when

K has no zero eigenvalues (Cucker and Zhou 2007), it

is possible to build a sequence of approximating clas-

sification problems with m̂H ∈ HK that converges to

m ∈ L2(I). The singular homoscedastic classification

problem with m /∈ HK can be seen as the limit of a

sequence of classification problems involving functions

m̂H ∈ HK in the approximating sequence (Theorem 6

of Berrendero et al. (2018b)). An optimal classification

rule for these related problems is given by Eq. (39).
Since 〈m,m〉K diverges, the corresponding classification

errors, which are given by limit of Eq. (40), tend to zero.

6.2.1 Brownian processes with different means

This singular limit can be illustrated in the discrimina-

tion of trajectories sampled from one of two Brownian

processes with the same variance but different means.

Let us consider a homoscedastic classification problem
in which the class 0 trajectories are realizations of a

zero-mean Brownian process in t ∈ [0, T ] and the class 1

trajectories are sampled from a Brownian process with

a piecewise linear mean

m(t) =


0 0 ≤ t < t1
mT

t−t1
t2−t1 t1 ≤ t < t2

mT t2 ≤ t < T

, (50)

with mT = m(T ), a constant, and 0 < t1 ≤ t2 < T .

The Brownian process kernel is

KBM (s, t) = σ min{s, t}, σ > 0. (51)

The RKHS associated with this kernel is HBM , the

Sobolev space of absolutely continuous functions f in

t ∈ [0, T ], such that f(0) = 0, and whose derivatives are

square integrable in that time interval (i.e. f ′ ∈ L2[0, T ]).

The corresponding inner product between f, g ∈ HBM
is

〈f, g〉BM =
1

σ2

∫ T

0

f ′(t)g′(t)dt. (52)

The mean m given by Eq. (50) is in HBM provided that

t1 < t2. In such case, its squared norm is

〈m,m〉BM =
1

σ2

∫ T

0

|m′(t)|2 dt =
m2
T

σ2

1

t2 − t1
. (53)

Since HBM is an infinite-dimensional RKHS, the sample

trajectories X do not belong to that space with probabil-

ity one (Lukić and Beder 2001). In the case of Brownian

motion it is clear that the sample trajectories, which are

continuous but non-differentiable, are not in HBM . In

consequence, the term 〈X,m〉BM , which appears in the
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Fig. 1 Homoscedastic classification: zero-mean Brownian mo-
tion vs. Brownian motion with a piecewise linear mean.
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Fig. 2 Homoscedastic near perfect classification: zero-mean
Brownian motion vs. Brownian motion with a step function
mean.

decision rule, cannot be understood as an inner product
in that space. Nonetheless, it can be computed starting

from Eq. (52) and integrating by parts

〈X,m〉BM =

∫ T

0

X ′(t)m′(t)dt = −
∫ T

0

X(t)m′′(t)dt

=
mT

σ2

X(t2)−X(t1)

t2 − t1
. (54)

To derive this expression we have employed the fact that

the Brownian trajectories start at the origin (X(0) = 0),

and that for the piecewise linear mean given by Eq. (50),

m′(T ) = 0. Using Eqs. (39), (53), and (54), the Bayes

rule becomes

I
[
mT

σ2

(
(X(t2)−X(t1))− mT

2

)
> (t2 − t1) log

1− p
p

]
.

A non-singular classification problem of this type is

depicted in Fig. 1, where T = 1, mT = 1, t1 = 0.3,

t2 = 0.7, and σ = 1.

In the limit t2 → t+1 , the mean exhibits a finite

discontinuity at t1 and therefore, is not in HBM . In this

case, the decision rule is

I
[(
X(t+1 )−X(t1)

)
>
mT

2

]
, (55)

and near perfect classification (zero asymptotic error)

is obtained. As is apparent from Fig. 2, this rule has

an obvious interpretation: one needs to compare the
values of trajectory immediately before and after the

jump of m(t) at t = t1. Class 0 trajectories should be

continuous. Class 1 trajectories should exhibit the same

discontinuity as the mean. This rule guarantees perfect

classification provided that the values of the trajectories

can be monitored with arbitrarily high resolution in t.

7 Heteroscedastic classification problems

In contrast with the homoscedastic case, which has

received wide attention in the literature (Parzen 1961a;

Kailath 1966, 1971; Delaigle and Hall 2012; Berrendero

et al. 2018b), most work on the heteroscedastic case is

fairly recent and limited to specific examples (Delaigle

and Hall 2012, 2013; Dai et al. 2017; Berrendero et al.

2018b). In fact, no general rule has been proposed in the

literature for this setting, even in the non-singular case.

The difficulty lies in the interpretation of the singular

terms that appear in the optimal rule (Eq. (28)). As

discussed in Section 5, when the divergences cancel

out, we have a non-singular classification problem. By

contrast, if the divergences do not cancel out, an optimal

decision rule can be derived by balancing the singular

terms. In this singular case near perfect classification
is obtained. We shall now proceed to study these cases

separately and in detail.

7.1 Non-singular heteroscedastic classification

A heteroscedastic classification problem is non-singular

if the Gaussian process laws P0 and P1 are equivalent.

For this to be the case, m ∈ H0 ∩ H1, so that the

terms that involve m in Eq. (28) must be well-defined.

Furthermore, the singularities of the quadratic terms in

the optimal rule need to cancel out: On the one hand,

the limit

lim
N→∞

X†
(
K−11 −K−10

)
X ≡ 〈X,X〉K1

−〈X,X〉K0
(56)

should be finite when the set of monitoring points be-

comes dense in I. On the other hand, the limit

lim
N→∞

N∏
j=1

λ1j
λ0j
≡ |K1|
|K0|

. (57)

should exist and be different from zero.
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If these conditions are obtained, the divergences in

the individual terms of Eq. (28) cancel out and the

resulting classification rule is well defined. Formally, it

can be written as

I

[
− 1

2
log
|K1|
|K0|

(58)

−1

2
(〈X −m,X −m〉K1

− 〈X,X〉K0
) > log

1− p
p

]
.

In the following subsection, this non-singular limit will

be illustrated using the standard Brownian motion and

the standard Brownian bridge processes in the interval

[0, T ], which are known to be equivalent when 0 ≤ T < 1

(Varberg 1961; Shepp 1966). Therefore, for this range

of values of T , the problem is heteroscedastic, but not

singular. It becomes singular at T = 1.

7.1.1 Standard Brownian vs. Brownian bridge processes

The standard Brownian bridge in [0, 1] is a zero-mean

Gaussian process whose kernel is

KBB(s, t) = min{s, t} − st, s, t ∈ [0, 1]. (59)

The corresponding RKHS is

HBB =

{
f : f(t) =

∫ t

0

f ′(s)ds; f(1) = 0; f ′ ∈ L2[0, 1]

}
.

This process, if considered in the interval [0, T ], with

T < 1, has the inner product

〈f, g〉BB =

∫ T

0

f ′(t)g′(t)dt+
f(T )g(T )

1− T (60)

In this interval, the Brownian bridge is equivalent to

the standard Brownian process, whose kernel is

KBM (s, t) = min{s, t}, (61)

and whose associated RKHS is

HBM =

{
f : f(t) =

∫ t

0

f ′(s)ds; f ′ ∈ L2[0, 1]

}
. (62)

When restricted to the interval [0, T ], its inner product

is

〈f, g〉BM =

∫ T

0

f ′(t)g′(t)dt. (63)

Let X be a trajectory in the [0, T ] interval that is

either a sample from a Brownian motion process, with

probability 1− p (class 0), or from a Brownian bridge

process, with probability p (class 1). Trajectories from

either of these processes are continuous but not differen-

tiable. Therefore, they do not belong to the correspond-

ing Hilbert spaces. In consequence, the individual inner

products 〈X,X〉Ki , for i ∈ {0, 1} are singular. However,

the difference

〈X,X〉BB − 〈X,X〉BM =
(X(T ))

2

1− T , (64)

is well defined for 0 ≤ T < 1 because the singular terms

in Eqs. (60) and (63), which involve the derivatives f ′

and g′, are identical, and therefore cancel out.

To derive the expression for the ratio of determinants

in Eq. (58) we consider the discretely monitored pro-

cess in [ 1
N , T ] at regularly spaced times {tn = n∆T}Tn=1,

with ∆T = T
N for some integer N , which will eventually

be made to approach∞. The point t0 = 0 is excluded be-

cause both processes take the same deterministic value

(i.e., X(t = 0) = 0).

The Gram (autocovariance) matrix of such a dis-

cretely monitored standard Brownian process is

(KBM )mn = ∆T min{m,n}, m, n = 1, . . . , N. (65)

The determinant of this matrix is

|KBM | = (∆T )
N
. (66)

The corresponding Gram matrix for the discretely

monitored standard Brownian bridge is

(KBB)mn =
T

N

(
min{m,n} −mn T

N

)
, (67)

for m,n = 1, . . . , N . The determinant of this matrix is

|KBB | = (1− T ) (∆T )
N
. (68)

Thus, the ratio of the determinants of the covariance

matrices for the discretely monitored standard Brownian

motion and the standard Brownian bridge is

|K1|
|K0|

= 1− T, ∀N > 0. (69)

Therefore,

|KBB |
|KBM |

= lim
N→∞

|KBB |
|KBM |

= 1− T. (70)

Using this result in Eq. (28), we get the optimal

classification rule for this problem (see, e.g., Berrendero
et al. (2018b))

I

[
−1

2
log(1− T )− 1

2

(X(T ))
2

1− T > log
1− p
p

]
. (71)

The error of this rule is

L∗ =(1− p)
(

1− 2Φ

(−D√
T

))
+ p

(
2Φ

(
−D√

T (1− T )

))
,

(72)
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where Φ is the cumulative distribution function of a

standard normal distribution, and

D =

√
−2(1− T )

(
log

(
1− p
p

)
+

1

2
log(1− T )

)
.

Note that in the limit T → 1−, the two terms on

the left of the expression within the indicator func-

tion diverge, and dominate the classification rule. These

divergences signal that near perfect classification classi-

fication is obtained in this limit. Dropping the term that

involves the priors, which is not singular, the optimal

rule in the limit T → 1− becomes

I
[
(X(T ))

2
< (1− T ) log

1

1− T

]
. (73)

Since (X(T ))
2 ≥ 0 and the term on the right hand side

approaches zero, the optimal rule for T = 1 is

I [X(1) = 0] . (74)

That is, one needs to inspect the value of X(1). This

quantity is 0 for Brownian bridge trajectories, and differ-

ent from 0 with probability 1 for Brownian trajectories.

Finally, using result given by Eq. (36) of Section 5,

the Radon-Nikodym derivative of the Brownian bridge

measure with respect to the Brownian motion measure

is

dPBB
dPBM

(x) =

(
1

1− T

) 1
2

exp

{
−1

2

(x(T ))
2

1− T

}
. (75)

It is straightforward to also verify that the inner-

products of the two processes are related by Eq. (37)

with δK(s, t) = −st
− 〈f, 〈g, δK〉BB〉BM

=

∫ T

0

f ′(t)
d

dt

[∫ T

0

g′(s) t ds+
g(T )Tt

1− T

]
dt

= f(T )

[
g(T ) +

g(T )T

1− T

]
=
f(T )g(T )

1− T
= 〈f, g〉BB − 〈f, g〉BM .

7.2 Singular (near perfect) heteroscedastic classification

In the heteroscedastic setting a first type of singular clas-

sification problem arises when m = m1−m0 /∈ H0 ∩H1

(Delaigle and Hall 2012). In this case, the analysis made

in Section 6.2 remains valid and near perfect classifica-

tion is obtained. For this case, an optimal classification

rule is (49) with K = K1.

A second mechanism for near perfect classification

is obtained if the singularities in the terms log |K1|
|K0| and

(〈X,X〉K0 − 〈X,X〉K1) , do not separately cancel out.

In this case, the measures induced by GP (0,K0) and

GP (m,K1) are mutually singular. The decision rule

Eq. (28) is dominated by the divergent terms. One

can therefore drop the terms that involve m and the

class priors, which are non-singular, and obtain the near

perfect classification rule

I
[ 〈X,X〉K0 − 〈X,X〉K1

log |K1| − log |K0|
> 1

]
. (76)

In this rule, the ratio of divergent terms needs to be

understood as

I

[
lim
N→∞

X†
(
K−10 −K−11

)
X

log |K1| − log |K0|
> 1

]
, (77)

in the limit of dense monitoring.

In what follows, the validity of Eq. (77) is illustrated

in the classification of two Brownian processes with

equal mean and different variances, which are known to

be mutually singular.

7.2.1 Classification of Brownian processes with

different variances

Consider the heteroscedastic functional classification

problem

X(t) =

{
Z0(t) w. p. 1− p
Z1(t) w. p. p

, (78)

for t ∈ [0, T ], where Z0(t) and Z1(t) are zero-mean

Brownian processes of variances σ2
0 and σ2

1 , respectively.

Since all trajectories start at the same level X(0) = 0,

they need to be monitored only at times {tn = n∆T}Nn=1

with ∆T = T/N . The autocovariance matrices of the

discretely monitored processes are

(Ki)mn = σ2
i∆T min{m,n}, m, n = 1, . . . , N, (79)

for i = 0, 1. The determinant of this matrix is

|Ki| =
(
σ2
i∆T

)N
. (80)

The corresponding inverses are symmetric tridiagonal

matrices

K−1i =
1

σ2
i∆T



2 −1 0 . . . 0 0

−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0

. . .

0 0 0 . . . 2 −1

0 0 0 . . . −1 1

 . (81)

The term in the denominator of Eq. (77) is

log |K1| − log |K0| =
N∑
j=1

log
σ2
1

σ2
0

=
T

∆T
log

σ2
1

σ2
0

, (82)
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where we have used that N = T
∆T . Similarly,

X†K−1i X =
T

∆T

σ2
X(N)

σ2
i

, (83)

where

σ2
X(N) =

1

N

N∑
n=1

(X(tn)−X(tn−1))
2

∆T
. (84)

For this problem, if the non-singular terms are dropped,

Eq. (27) becomes

I
[
σ2
X(N) > θ

]
, (85)

with θ =
(

1
σ2
0
− 1

σ2
1

)−1
log

σ2
1

σ2
0
. In the limit N → ∞

(therefore, ∆T → 0+), the optimal classification rule is

I
[
σ2
X > θ

]
, (86)

where σ2
X = limN→∞ σ2

X(N). This near perfect classi-

fication rule can be written also in terms of Kullback-

Leibler divergences between normal distributions with

the same mean and different variances

I [KL (N(0, σX), N(0, σ1))

< KL (N(0, σX), N(0, σ0))] . (87)

As in the homoscedastic case, this rule guarantees perfect

classification only if the values of the trajectories can

be measured with arbitrarily high resolution in time.

We will now analyze the convergence of the singu-

lar decision rule for the discretely monitored Brownian
processes (Eq. (85)) to its asymptotic limit (Eq. (86)).

Without loss of generality, we will assume σ2
1 > σ2

0 . The

accuracy of the prediction rule given by Eq. (85) as a

function of N , the number of monitoring points, is

Acc(N) = pP
(
σ2
X(N) > θ | Y = 1

)
+ (1− p)P

(
σ2
X(N) < θ | Y = 0

)
. (88)

Since (X(tn)−X(tn−1)) ∼ N
(

0, σX
√
∆T
)

, then N
σ2
X

σ2
i

follows a chi-square distribution with N degrees of free-

dom. In consequence,

Acc(N) = p

[
1− cdfχ2

(
N

θ

σ2
1

, N

)]
+ (1− p) cdfχ2

(
N

θ

σ2
0

, N

)
, (89)

where cdfχ2 (z, ν) is the cumulative distribution function

of a χ2 distribution with ν degrees of freedom evaluated

at z. In the asymptotic limit of a densely monitored

process limN→∞Acc(N) = 1, which means that near

perfect classification is obtained.

To illustrate this convergence, we have performed a

set of experiments with simulated trajectories of zero-

mean Brownian processes of variances σ2
0 = 1 and σ2
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Fig. 3 Classification accuracy for the discrimination of Brown-
ian processes with equal means and different variances (Eq. 78).
The solid lines trace the dependence of the accuracy, averaged
over 1000 replications of the problem, as a function of N , the
number of monitoring intervals. The shaded band corresponds
to one standard deviation above and below this average. The
dashed lines correspond to the theoretical expected accuracy.
Finally, the red dotted lines correspond to the expected accu-
racy plus/minus one standard deviation.
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{1.05, 1.5, 5} in the time interval [0, 1], starting from

0 at t = 0. Each experiment consists in generating

M = 50 trajectories from each of these classes. The

trajectories are sampled at N+1 regularly spaced times,

including the origin, with N = 2b, 0 ≤ b ≤ 10. Then, the

decision rule given by Eq. (85) is used to classify the 2M

trajectories generated. The whole process was repeated

1000 times so that, for each N , the expected accuracy

and its standard deviation of the accuracy on the sample

of 2M = 100 trajectories can be computed. In a sample

of 2M trajectories the number of correctly classified
cases follows a binomial distribution with a success

probability equal to Acc(N). Since the variance of the

number of successes in the binomial distribution is given

by 2MAcc(N) (1−Acc(N)), the standard deviation of

the observed accuracy of the decision rule given by

Eq. (85) in a sample of size 2M is
√

Acc(N)·(1−Acc(N))
2M

with Acc(N) given by Eq. (89).

Fig. 3 displays the dependence of the accuracy of the

optimal decision rule as a function of N , for the different

values of the ratio σ2
1/σ

2
0 considered. From the analysis

of these plots one concludes that sample estimates are

in good agreement with the theoretical values of the

expected accuracy and their standard deviations. Fur-

thermore, it is apparent that the larger the differences

between σ2
1 and σ2

0 are, the faster the approach to the

asymptotic regime in which near perfect classification

is obtained.

8 Empirical evaluation

In this section we compare the performance of the limit
rules derived in this work with functional classifiers
proposed in the literature. As test-bed for comparison
we use simulated data and a real-world problem from
quantitative finance. To make it possible to reproduce
the results, the code for the experiments is available
at https://github.com/GAA-UAM/GP-Bayes-Rules-Experiments.
The simulated data correspond to the classification problems
considered in Subsections 6.2.1 (homoscedastic and singu-
lar), 7.1.1 (heteroscedastic and equivalent), and 7.2.1 (het-
eroscedastic and singular). Assuming that the classes are
balanced (p = 1 − p = 1/2), we generate Ntrain trajecto-
ries in the interval [0, T ] and their corresponding class labels,

Dtrain = {(xi, yi)}Ntrain
i=1 , according to Eq. (3). To investigate

how the accuracies of the different methods depend on the
amount of data available for induction, experiments with dif-
ferent training set sizes (Ntrain ∈ {50, 200, 1000}) have been
carried out. The trajectories {x(t), t ∈ [0, T ]} are monitored
discretely on a regular grid

x(tn), tn = ∆Tb, n = 0, 1, . . . , Nb, (90)

where ∆Tb = T
Nb
. The dependence on the size of the moni-

toring grid is analyzed by considering different numbers of
discretization intervals; namely Nb = 2b, b = 1, . . . , 10. Unbi-
ased estimates of the generalization accuracy are made in test
sets of size Ntest = 1000, which are generated independently

of the training data. The values reported are averages over
100 independent replications, with the corresponding standard
deviations.

The financial classification problem consists in the dis-
crimination between the stocks of different car manufacturing
companies (BMW, GM, and Tesla) on the basis of the time
series of their market prices. According to expert knowledge,
in this real-world example, the log-differences of the asset
prices are expected to approximately follow a Brownian pro-
cess (Osborne 1959; Fama 1965). The standard deviations of
these processes, or, in financial terminology, their volatilities,
should be different. Therefore, an appropriate model for their
classification is given by (78); i.e., two Brownian processes
with different variances. In this case, besides the comparison of
methods, the experiments serve also as an empirical validation
of this Brownian hypothesis.

The classifiers that are compared in this section are the
following:

– LDA: The standard multivariate linear discriminant ap-
plied to the discretely monitored trajectories.

– QDA: The standard multivariate quadratic discriminant
applied to the discretely monitored trajectories.

– PLS+Centroid: This classifier consists in applying a cen-
troid rule to the output of a partial least squares regres-
sion model. It is one of the most accurate methods among
those considered in the seminal paper by Delaigle and Hall
(2012).

– PCA+QDA: This classifier is based on a proposal by
Galeano et al. (2015) to compute the functional analogue of
the Mahalanobis distance. In that paper, the authors argue
that this method is equivalent to applying a quadratic
discriminant to the first few principal components of the
trajectories to be classified.

– RKC: The Reproducing Kernel classification rule is based
on first performing variable selection according to a cri-
terion that involves the Mahalanobis distance and then
applying a linear discriminant analysis (Berrendero et al.
2018b). The name reflects the fact that it has a natural
interpretation in the corresponding RKHS. This rule has
been proven to be optimal if the functional classification
problem is homoscedastic and the probability measures
are equivalent.

– Limit-Rule: Classification rule derived from the analysis
of the quadratic discriminant for the discretized process
(Eq. (27)) in the limit of dense monitoring.

The different methods have been implemented in Python.
LDA, QDA, PCA and PLS regression make extensive use of
objects and functions in the scikit-learn package (Pedregosa
et al. 2011). The RKC method has been freshly implemented
following Berrendero et al. (2018b). Functional data objects
have been manipulated with the tools provided by the scikit-

fda package (Ramos-Carreño et al. 2019). The number of
components of the dimensionality reduction methods (PCA,
PLS and RKC) is determined by 10-fold cross-validation in
the range 1 to 20.

We now proceed to present a summary of the results of
this empirical evaluation for the different cases analyzed in
this work.

8.1 Brownian processes with different means

We first study a homoscedastic problem of the form given by
Eq. (3), in which Z0(t) = Z1(t) = Z(t) is a standard Brownian

https://github.com/GAA-UAM/GP-Bayes-Rules-Experiments
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Fig. 4 Classification accuracy for the discrimination of Brownian processes with equal variance and different means (zero mean,
and step function mean). The solid lines trace the dependence of the accuracy, averaged over 100 replications of the problem, as
a function of Nb, the number of monitoring intervals, for different values of Ntrain, the size of the training data. The shaded
bands correspond to one standard deviation above and below the corresponding averages.

Motion process in [0, 1] and m(t) a step function

m(t) =

{
0, 0 ≤ t ≤ t∗
mT , t∗ < t ≤ 1

, (91)

with mT a constant level. This corresponds to the problem
analyzed in Subsection 6.2.1, with t2 → t+1 , t1 = t∗ in Eq. (50),
and T = 1. In such limit, the probability measures of the two
Gaussian processes are mutually singular and near perfect
classification is obtained. In the experiments carried out, the
step is located at t∗ = 0.5 and has a height of mT = 0.3.

The limit-rule for this problem is given by Eq. (55). It
depends only on the location and the size of the discontinuity.
For this rule, t∗, the time instant at which the discontinuity
occurs, is estimated from the training data. Specifically, a
two sided t-test is used to determine whether the difference
of the sample means in class 1 trajectories between consec-
utive monitoring points are significantly different from zero.
The discontinous jump is assumed to be within the interval[
t̂∗, t̂∗ +∆Tb

]
, where

{
t̂∗, t̂∗ +∆Tb

}
is the pair of consecutive

points for which this test yields the lowest p-value. The height
of the step mT is estimated as the empirical mean of the
values of the class 1 trajectories right after the step

m̂T =
1

N
[1]
train

Ntrain∑
i=1

xi(t̂∗ +∆Tb)I[yi = 1], (92)

where N
[1]
train =

∑Ntrain
i=1 I[yi = 1] is the number of class 1

trajectories in the training set.
The curves plotted in Fig. 4 display the dependence of

the average accuracies of the different classifiers as a function
of the number of discretization intervals for different training
set sizes. The shaded bands correspond to deviations of one
standard deviation above and below the average accuracies.
The black horizontal dotted line marks the optimal accuracy,
which in this case is 1.0. From the results obtained we ob-
serve that the limit rule approaches this value asymptotically,
for sufficiently dense monitoring. The RKC method performs
remarkably well in this problem and also approaches perfect
accuracy for large training samples and dense monitoring. For
Brownian processes, the RKC method can be shown to be
optimal for a difference of means that is a continuous piece-
wise linear function starting at 0 (Berrendero et al. 2018b).

The problem considered in our simulation is not of this form,
because the step function exhibits a discontinuity, albeit finite.
Nevertheless, as discussed in Subsection 6.2.1, the discontinu-
ous jump can be obtained as the limit of a sequence of such
continuous functions. Therefore, it is reasonable that RKC
performs as well as the limit rule, which is optimal.

The differences between the accuracies of these two meth-
ods and the remaining ones, which are small for coarse monitor-
ing, become larger as Nb increases. The superior performance
of RKC and the limit rule also at small training sizes resides in
the fact that they require estimating fewer parameters. In this
problem, all the information needed for discrimination is in
the difference of means between the two Brownian processes.
For this reason, the classifiers that require the estimation
of the covariance matrix, especially QDA, and PCA+QDA,
which furthermore do not assume homoscedasticity, obtain
very poor results. This is consistent with previous observations
in the literature on the limited accuracy of quadratic discrimi-
nant functions when the dimensions are large and the sample
sizes for the estimation of the covariances are small (Marks
and Dunn 1974; Wahl and Kronmal 1977; Berrendero and
Cárcamo 2019). For larger values of Nb, PCA+QDA, which
involves a dimensionality reduction step before the quadratic
determinant function is computed, becomes more accurate
than standard QDA. This behavior is consistently observed
for all the classification problems analyzed.

The accuracies of PLS+Centroid and LDA are also low
when the training sets are small. Both are global methods,
which are not well adapted to problems in which the discrimi-
nant information is concentrated at a single point. Nonethe-
less, their accuracy markedly improves (especially that of
PLS+Centroid) as the size of the training data becomes larger.

Finally, note that even though QDA and LDA are optimal
for the multivariate version of this problem, the collinearity
inherent to functional data has a marked negative impact in
their predictive performance for finite training sample sizes.
The reason is that these methods require the inversion of
the empirical covariance matrix. This inversion is numerically
unstable when the number of variables (monitoring times) in-
creases for a fixed size of the training sample. By contrast, the
accuracies of PLS+Centroid, PCA+QDA, and RKC (which
makes use of LDA) do not deteriorate with increasing Nb,
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Fig. 5 Classification accuracy for the discrimination of standard Brownian and Brownian bridge processes in [0, T ] with
T = 0.95. The solid lines trace the dependence of the accuracy, averaged over 100 replications of the problem, as a function of
Nb, the number of monitoring intervals, for different values of Ntrain, the size of the training data. The shaded bands correspond
to one standard deviation above and below the corresponding averages.

because they involve a dimensionality reduction in a previous
step.

8.2 Brownian motion vs. Brownian bridge

The problem addressed in this second batch of experiments
is the discrimination of trajectories sampled from a standard
Brownian process and from a Brownian bridge process in the
interval [0, T ]. As described in Section 7.1.1, these processes
are equivalent for T < 1. In the experiments carried out
the value selected is T = 0.95. Therefore, this is a standard
classification problem with a non-zero Bayes error. Specifically,
for the current simulation Eq. (72) yields L∗ = 0.193. The
limit rule is Eq. (71). It depends only on the class priors and
on the value of the trajectory to be classified at T .

In Fig. 5 we present the comparison among the classi-
fiers described in the introduction of the current section. As
expected, the average accuracy obtained with the limit rule
classifier is close to the optimal value of 1− L∗ = 0.807 for all
values of Ntrain and Nb. In this case, since both processes have
the same mean, the information that is useful for discrimina-
tion is in the covariance structure. Therefore linear classifiers,
such as LDA, PLS+Centroid, and RKC are unable to predict
better than random guessing. Both QDA and PCA+QDA
obtain good results when the number of monitoring intervals
is small and the size of the training data is large. Their pre-
dictive performance deteriorates as Nb becomes larger. As in
the previous case, the reason can be traced to the estimation
of the covariance matrix from the sample, which becomes
unreliable at higher dimensions. PCA+QDA is more robust
than QDA because of the dimensionality reduction step.

8.3 Brownian processes with different variances

We now address the classification of trajectories sampled from
two zero-mean Brownian processes of different variances. The
problem, which has been analyzed in detail in Section 7.2.1, is
singular and exhibits near perfect classification. The limit rule
is given by Eq. (86). It requires the estimation of σ2

0 , σ2
1 and

σ2
X from the training data. The variance of each trajectory

is estimated using Eq. (84). The variances σ2
0 and σ2

1 are
estimated as the averages of the variances in the class 0 and
class 1 trajectories, respectively. In the experiments performed
the class 0 trajectories are realizations of a standard Brownian
process with σ2

0 = 1. The class 1 trajectories are sampled from
a Brownian process with σ2

1 = 1.5.
The overall comparison of the different classifiers consid-

ered in this study for this problem is presented in Fig. 6. As
in the previous set of experiments, since the two processes
have the same mean, this is a purely heteroscedastic classi-
fication problem. In consequence, the linear methods, such
as LDA, PLS+Centroid, and RKC, which are based solely
on the differences between means, are equivalent to random
guessing.

The predictions of QDA and PCA+QDA are better than
random and improve with the size of the training data. Nonethe-
less, both methods are suboptimal. In particular, the accuracy
of QDA severely deteriorates with the number of monitoring
points, because of the increased dimension of the problem and
the high collinearity of the functional data.

In this singular case, the limit rule approaches perfect ac-
curacy when the number of monitoring intervals is sufficiently
large even for small training samples. The reason is that the
estimation given by Eq. (84) approaches the exact value of the
variance in the limit N →∞ for a single trajectory. Therefore,
the classification rule achieves perfect accuracy asymptotically,
in the limit of dense monitoring, independently of the size of
the training data.

8.4 Near perfect classification of financial time series

We now provide an illustration of near perfect classification
with real-world data. The goal is to discriminate between time
series of market prices of financial assets. In our experiments,
the daily closing prices of General Motors (GM) from the
New York Stock Exchange (NYSE), Tesla from NASDAQ,
and BMW from Xetra, between January 1, 2014 and Jan-
uary 31, 2018, are used. The data have been retrieved via
the Google Finance API (https://finance.google.com). Days in
which not all three asset price quotations were available have
been discarded. A more sophisticated treatment of missing
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Fig. 6 Classification accuracy for the discrimination of Brownian processes of different variances. The solid lines trace the
dependence of the accuracy, averaged over 100 replications of the problem, as a function of Nb, the number of monitoring
intervals, for different values of Ntrain, the size of the training data. The shaded bands correspond to one standard deviation
above and below the corresponding averages.

values (e.g., linear or Brownian bridge interpolation) does not
lead to significant changes of the results.

For each asset, the sample consists of M = 30 time series of
market prices during non-overlapping periods of NB = 25 = 32
days. The setup of the experiment is described in detail in
Appendix B. These series are displayed in the top plots of
Fig. 7.

There is ample empirical evidence that the time series
of stock prices approximately follow a geometric Brownian
process (Osborne 1959; Fama 1965). Consequently, their log-
differences (i.e. the log-returns) follow an arithmetic Brownian
process. According to standard financial wisdom, financial
assets are characterized mainly by their volatility, which is the
financial term used for the standard deviation of these log-
returns. By contrast, the expected returns (i.e., the drift of the
Brownian process) are much less reliable for discrimination.
Therefore, Eq. (78), which corresponds to Brownian processes
with different standard deviations (volatilities), should provide
a suitable model for the classification problem. We can test
the validity of these observations by comparing the accuracies
of the classification methods described in the introduction
to the current section and the limit rule given by Eq. (85).
In this limit rule, the information on the means (expected
returns) is discarded. Classification is made solely in terms of
the sample estimates of the asset volatilities.

The results of the empirical evaluation are summarized
in the bottom plots of Fig. 7. In each of the columns in this
figure a different binary classification problem is considered.
From left to right: BMW vs. GM, BMW vs. Tesla, and GM
vs. Tesla. The inputs for classification are the discretely moni-
tored trajectories of asset log-returns, which are computed as
described in Appendix B. The accuracy of different classifiers
is estimated using 10-fold stratified cross validation. The plots
display the curves that trace the dependence of the accuracy of
the different classifiers as a function of Nb ∈ {1, 2, 4, 8, 16, 32},
the number of monitoring intervals. The value Nb = 32 cor-
responds to daily intervals, which is the highest monitoring
resolution that can be employed with the available data. For
reference, we provide the theoretical accuracy curves for the
corresponding Brownian processes with the same mean and
volatility as each of the financial asset returns. Uncertainty

intervals of one and two standard deviations above and below
the theoretical accuracy curves are given as shaded bands.

In the first classification problem considered, BMW vs.
GM, all classifiers perform poorly, close to random guessing.
The reason is that these two assets have similar volatilities
(σ2

BMW = 2.545 · 10−4 and σ2
GM = 2.183 · 10−4, respectively)

and, in consequence, are difficult to distinguish. This should
be expected because both companies are car manufactures
that have comparable profiles and are exposed to the same risk
factors. Therefore, the prices of their stock should exhibit sim-
ilar characteristics. By contrast, Tesla is a highly specialized
manufacturer of electric cars, whose main asset is technologi-
cal innovation. Correspondingly, it exhibits higher volatility
than the other two (σ2

Tesla = 6.147 ·10−4). The characteristics
of the BMW vs. Tesla and the GM vs. Tesla classification tasks
are similar. In these two problems, the limit rule given by
Eq. (85) has the best overall results. By contrast, the methods
that rely on the difference of means (LDA, PLS+Centroid,
and RKC) for discrimination have poor accuracies, at the
level of random guessing. This means that the sample means
(expected log-returns) are not useful to discriminate between
these assets. The quadratic discriminant with a covariance
matrix estimated from the sample (QDA) has slightly better
accuracy than random guessing for intermediate values of Nb.
However, for larger values of Nb the results deteriorate. As in
the synthetic data examples, this is a consequence of the poor
quality of the sample estimates of the covariance matrices in
higher dimensions and the high collinearity of functional data
(Marks and Dunn 1974; Wahl and Kronmal 1977; Berrendero
and Cárcamo 2019). The PCA+QDA method does not exhibit
this degradation thanks to the fact that the dimension of the
problem is reduced by selecting a few principal components
before the quadratic discriminant rule is applied.

One way to avoid this limitation of the quadratic discrim-
inant rule is to use expert knowledge and assume that the
covariance matrix has a Brownian structure. Taking advantage
of this structure, the elements of the covariance matrix need
not be estimated separately. They can be computed in terms
of the volatilities of the assets, which are the only parame-
ters that are actually estimated from the training sample. To
illustrate this point, the accuracy of this method (Brownian-
QDA) is compared with the standard QDA, in which the
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Fig. 7 Discrimination of financial assets on the basis of the time series of their market prices (top plots). The curves that trace
the dependence of the accuracies of different classifiers as a function of Nb, the number of monitoring intervals, are displayed in
the bottom plots.
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Fig. 8 Comparison of QDA, Brownian QDA and the limit rule in the GM vs. Tesla classification problem (left plot). The right
plot corresponds to the same comparison for simulated data of the same characteristics as the real-world problem.

individual elements of the covariance matrix are estimated
separately, and the limit rule given by Eq. (85) in the GM vs.
Tesla classification problem. The results of this comparison
are displayed in the plot on the left-hand side of Fig. 8. By
contrast with the behavior of the standard QDA, the accuracy
of Brownian-QDA improves with the monitoring frequency.
Nevertheless, comparable or better accuracies are achieved if
we use the limit rule, in which only the singular terms in the
quadratic discriminant are retained.

The time series of log-returns analyzed do not necessar-
ily follow a Brownian process. Therefore, one may wonder
whether the conclusions obtained with the real-world data are
reliable. To clarify this point, we carried out simulations of the
classification problem using trajectories from two Brownian
processes with the same volatilities as the GM and Tesla assets.
The results of these experiments are presented in the plot on
the right-hand side of Fig. 8. To obtain these results the differ-
ent classifiers (QDA, Brownian QDA, and the limit rule) are

trained under the same conditions as in the experiments with
the real-world data. Their accuracies are then computed on a
test set of size 1000. The values reported are averages over 100
replications of the classification problem. Uncertainty intervals
of one standard deviation above and below the averages are
plotted as shaded bands. From these results one concludes that
the behavior observed in the experiments with real-world data
is not spurious: The predictive accuracy of the standard qua-
dratic discriminant rule eventually deteriorates as Nb increases.
By contrast, the accuracies of Brownian-QDA and the limit
rule given by Eq. (85) improve with denser monitoring. Note,
however, that even for the largest values of Nb considered,
these classifiers do not achieve perfect classification. There
are several reasons for this shortfall: First, the number of
trajectories available for induction is very small (30 instances
per class). Unfortunately, it is not possible to use much longer
periods for which the hypothesis of constant volatility holds
even in an approximate manner. Second, the daily monitoring
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is insufficiently dense. However, higher frequency data cannot
be used because the intra-day series of prices exhibits dis-
continuities and large deviations from the log-normal model.
Finally, systematic deviations from the Brownian model are
observed in the data. In the period considered, the Brownian
assumption holds only in an approximate manner. Empirically,
one observes that the time series exhibit heteroscedasticity in
time and the log-returns are leptokurtic. Therefore, a more
accurate model should account for the stochastic dynamics of
the volatility (Bollerslev et al. 1992) and the heavy-tailedness
of the log-returns (Cont 2001). In spite of these limitations,
when the volatilities are sufficiently different, the limit rule
given by Eq. (85), performs quite well in practice.

9 Conclusions

In this work we have addressed the problem of learning by
induction from data that are characterized by functions of a
continuous parameter. In particular, we have derived optimal
classification rules for binary classification problems in which
the instances are trajectories sampled from different Gaussian
Processes, depending on the class label. The problem has
been addressed earlier in the literature in both the homo- and
heteroscedastic settings (see, e.g., Delaigle and Hall (2012,
2013); Dai et al. (2017); Berrendero et al. (2018b)). However,
the procedure proposed in this work, which is based on the
asymptotic analysis of the optimal rules for the discretely
monitored trajectories in the limit of dense monitoring, is new.
Furthermore, this procedure has been used to gain insight
into the emergence of near perfect classification, which was
first analyzed in Delaigle and Hall (2012) for differences in
means. The current research expands on that work by ana-
lyzing cases in which near perfect classification arises from
the covariance (quadratic) components as well. Specifically, a
detailed analysis of the dense monitoring limit reveals that
some of the terms that appear in such rules diverge. If the
Gaussian processes are equivalent these divergences cancel
out and non-singular optimal classification rules are obtained.
By contrast, if the Gaussian processes are orthogonal the di-
vergences do not cancel out. As a matter of fact, the singular
terms dominate and near perfect classification is obtained. In
this latter context, optimal rules that achieve zero prediction
error asymptotically (i.e. for sufficiently large sample sizes)
have been derived by considering only the terms that diverge
in the limit of dense monitoring.

To illustrate the validity of the analysis, explicit rules are
given for some classification problems involving Brownian and
Brownian bridge processes. In the cases that such optimal rules
were known, the limit of dense monitoring provides a novel
procedure for their derivation. We also provide explicit rules
for cases in which near perfect classification is obtained. The
accuracy of such limit rules has been evaluated in extensive
simulations and in the classification of time series of financial
asset prices, which are modeled as geometric Brownian motion.

Even though the asymptotic analysis of the classification
rules for the discretely monitored trajectories in the limit of
dense monitoring has been introduced in the context of Gaus-
sian process, the procedure may be applicable to more general
stochastic processes, which are not necessarily Gaussian. This
is a promising line of research that will be addressed in future
work.
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A Discrete monitoring

In the derivations carried out the processes X are monitored
at a set of appropriately chosen discrete times {ti}Ni=i ∈ IN .
The integrals that appear (e.g., in the definitions of the inner
products) are then approximated by Riemann sums∫
t∈I

h(t)dt ≈
1

N

N∑
n=1

h(tn). (93)

For functions that are continuous in I, these Riemman sums
converge to the corresponding definite integrals in the limit
of dense monitoring

lim
N→∞

1

N

N∑
n=1

h(tn) =

∫
t∈I

h(t)dt ∀h ∈ C [I] . (94)

Let K0 and K1 be symmetric, strictly positive kernels
that are continuous in I. Let the corresponding RKHS’s be
infinite dimensional. In the discretized representation, the
kernel functions {Ki(s, t); s, t ∈ I}1i=0 is approximated by Ki,
the corresponding N ×N Gram matrices, whose elements are

(Ki)mn = Ki(tn, tm), n,m = 1, 2, . . . N, (95)

for i = 0, 1. Let {νij =}Nj=1 be the (positive) eigenvalues of

matrix Ki. Theorem 3.4 of Baker (1977) can be used to show
that, in the limit of dense monitoring,

lim
N→∞

νj

∆T
= λj , j = 1, 2, . . . , N (96)

where {λi1 ≥ λi2 ≥ . . . ≥ λiN > 0} are the largest N eigenval-
ues of Ki, the covariance operator associated to the kernel
Ki.

Therefore, the spectrum of the Gram matrix Ki converges
to the spectrum of the covariance operator Ki. In particular,
the ratio of the determinants of the Gram matrix

lim
N→∞

|K1|
|K0|

= lim
N→∞

N∏
j=1

ν1j

ν0j

= lim
N→∞

N∏
j=1

λ1j

λ0j
≡
|K1|
|K0|

, (97)

can be used to define the ratio |K1|
|K0|

when the corresponding

Gaussian processes are equivalent (P0 ∼ P1), in which case
the limit exists (is finite) and is different from zero.

B Setup for the experiment with financial data

The setup of the experiment is as follows: Let {Si(t0), Si(t1), . . . , Si(tL)}
be the time series of asset market prices for stock i monitored
at the equally-spaced instants

tn = t0 + n∆T ; n = 0, 1, . . . , L,
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where L = M(NB + 1) − 1. In the data analyzed ∆T is one
day. Therefore, the quantity Si(tn) is the closing price of the
corresponding stock on the nth day of the period considered.

The time series is broken up into M segments of length
NB + 1, with NB = 2B for some integer B{
Si(t

[m]
0 ), Si(t

[m]
1 ), . . . , Si(t

[m]
NB

)
}M

m=1
,

where t
[m]
n = tn+(m−1)NB

, with n = 0, 1, . . . , NB , and m =
1, 2, . . . ,M . These M time series of NB + 1 prices are then
transformed into the corresponding time series of log-returns{
Xi(t

[m]
0 ), Xi(t

[m]
1 ), . . . , Xi(t

[m]
NB

)
}M

m=1
, (98)

where

Xi(t
[m]
n ) = log

Si(t
[m]
n )

Si(t
[m]
0 )

, n = 0, 1, . . . NB .

The goal is to discriminate between different stocks on the basis
of the corresponding time series of log-returns. In particular,
we will analyze how the accuracy of the predictions depends
on the monitoring frequency. For this reason, discrimination
is made on the basis of Nb + 1 subsampled values within each
segment{
Xi(t

[m]
0 ), Xi(t

[m]
nb

), Xi(t
[m]
2nb

), . . . , Xi(t
[m]
Nbnb

)
}
,

where Nb = 2b, and nb = 2B−b with b = 0, 1, . . . , B. As an
illustration, for b = 0, only two inputs in each time series are
used for discrimination{
Xi(t

[m]
0 ), Xi(t

[m]
NB

)
}
.

For b = B (nB = 1) the complete time series given by Eq. (98)
is used as input to the different classifiers. The higher monitor-
ing the frequency is, the closer the problem is to a functional
paradigm.
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