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Abstract

In the following article we consider the numerical approximation of the non-linear filter in continuous-time,
where the observations and signal follow diffusion processes. Given access to high-frequency, but discrete-
time observations, we resort to a first order time discretization of the non-linear filter, followed by an Euler
discretization of the signal dynamics. In order to approximate the associated discretized non-linear filter, one
can use a particle filter. Under assumptions, this can achieve a mean square error of O(ε2), for ε > 0 arbitrary,
such that the associated cost is O(ε−4). We prove, under assumptions, that the multilevel particle filter of [17]
can achieve a mean square error of O(ε2), for cost O(ε−3). This is supported by numerical simulations in several
examples.
Key words: Multilevel Monte Carlo, Particle Filters, Non-Linear Filtering.

1 Introduction
The non-linear filtering problem in continuous-time is found in many applications in finance, economics and engi-
neering; see e.g. [1]. We consider the case where one seeks to filter an unobserved diffusion process (the signal) with
access to an observation trajectory that is, in theory, continuous in time and following a diffusion process itself. The
non-linear filter is the solution to the Kallianpur-Striebel formula (e.g. [1]) and typically has no analytical solution.
This has led to a substantial literature on the numerical solution of the filtering problem; see for instance [1, 8].

In practice, one has access to very high-frequency observations, but not an entire trajectory and this often means
one has to time discretize the functionals associated to the path of the observation and signal. This latter task can
be achieved by using the approach in [20], which is the one used in this article, but improvements exist; see for
instance [5, 6]. Even under such a time-discretization, such a filter is not available analytically, for most problems of
practical interest. From here one must often discretize the dynamics of the signal (such as Euler), which in essence
leads to a high-frequency discrete-time non-linear filter. This latter object can be approximated using particle filters
in discrete time, as in, for instance, [1]; this is the approach followed in this article. Alternatives exist, such as
unbiased methods [10] and integration-by-parts, change of variables along with Feynman-Kac particle methods [8],
but, each of these schemes has its advantages and pitfalls versus the one followed in this paper. We refer to e.g. [6]
for some discussion.

Particle filters generate N samples (or particles) in parallel and sequentially approximate non-linear filters using
sampling and resampling. The algorithms are very well understood mathematically; see for instance [8] and the
references therein. Given the particle filter approximation of the time-discretized filter, using an Euler method for
the signal, one can expect that to obtain a mean squared error (MSE), relative to the true filter, of O(ε2), for ε > 0
arbitrary, the associated cost is O(ε−4). This follows from standard results on discretizations and particle filters.
In a related context of regular, discrete time observations and dynamics, with the signal following a diffusion, [17]
(see also [16]) show that when the MSE for a particle filter is O(ε2), the cost is O(ε−3) and one can improve particle
filters using the multilevel Monte Carlo (MLMC) method [12, 13, 14], as we now explain.

MLMC is an approach which can help to approximate expectations w.r.t. probability measures that are induced
by discretizations, such as an Euler method. The idea is to create a telescoping sum representation of an expectation
w.r.t. an accurate discretization and interpolate with differences of expectations of increasingly coarse (in terms
of the discretization) probability measures. Then, if one can sample from appropriate couplings of the pairs of
probability measures in the differences of the expectations, one can reduce the computational effort to achieve a
given MSE. In the case of [17], one can achieve a MSE O(ε2), for cost O(ε−2.5) for a class of processes.

In this paper we apply the methodology of [17], which combines particle filters with the MLMC methodology
(termed the multilevel particle filter), to the non-linear filtering problem in continuous-time. The main issue is that
in order to mathematically understand the application of this methodology to this new context, several new results
are required. The main difference to the case of [17], other than the processes involved, is the fact that one averages
over the data in the analysis of filters in continuous-time. This requires one to analyze the properties of several
time-discretized Feynman-Kac semigroups, in order to verify the mathematical improvements of the approach (see
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also [11]). Under assumptions, we prove that to achieve a MSE of O(ε2), one requires a cost of O(ε−3). This is
verified in several numerical examples. We remark that the mathematical results are of interest beyond the context
of this article, for instance, unbiased estimation; see [2] for example.

This article is structured as follows. In Section 2 we formalize the problem of interest. Our approach is detailed
in Section 3. The theoretical results are presented in Section 4 and illustrated numerically in Section 5. The proofs
of our theoretical results are housed in the appendix.

2 Problem
We introduce some notations in Section 2.1 and continuous time non-linear filtering in Section 2.2. Time-discretization
of the non-linear filters is considered in Section 2.3, followed by a discussion of multilevel estimation in this context
in Section 2.4.

2.1 Notations
Let (X,X ) be a measurable space. For ϕ : X→ R we write Bb(X) as the collection of bounded measurable functions.
Let ϕ : Rd → R, Lip‖·‖2(Rd) denotes the collection of real-valued functions that are Lipschitz w.r.t. ‖ · ‖2 (‖ · ‖p
denotes the Lp−norm of a vector x ∈ Rd). That is, ϕ ∈ Lip‖·‖2(Rd) if there exists a C < +∞ such that for any
(x, y) ∈ R2d

|ϕ(x)− ϕ(y)| ≤ C‖x− y‖2.

We write ‖ϕ‖Lip as the Lipschitz constant of a function ϕ ∈ Lip‖·‖2(Rd). For ϕ ∈ Bb(X), we write the supremum
norm ‖ϕ‖ = supx∈X |ϕ(x)|. P(X) denotes the collection of probability measures on (X,X ). For a measure µ on (X,X )
and a function ϕ ∈ Bb(X), the notation µ(ϕ) =

∫
X
ϕ(x)µ(dx) is used. B(Rd) denote the Borel sets on Rd. dx is used

to denote the Lebesgue measure. For (X×Y,X ∨Y) a measurable space and µ a non-negative measure on this space,
we use the tensor-product of functions notation for (ϕ,ψ) ∈ Bb(X)×Bb(X), µ(ϕ⊗ψ) =

∫
X×Y ϕ(x)ψ(y)µ(d(x, y)). If

K : X×X → [0,∞) is a non-negative operator and µ is a measure, we use the notations µK(dy) =
∫
X
µ(dx)K(x, dy)

and for ϕ ∈ Bb(X), K(ϕ)(x) =
∫
X
ϕ(y)K(x, dy). For A ∈ X , the indicator function is written as IA(x). Ns(µ,Σ)

(resp. ψs(x;µ,Σ)) denotes an s−dimensional Gaussian distribution (density evaluated at x ∈ Rs) of mean µ and
covariance Σ. If s = 1 we omit the subscript s. For a vector/matrix X, X∗ is used to denote the transpose of X.
For A ∈ X , δA(du) denotes the Dirac measure of A, and if A = {x} with x ∈ X, we write δx(du). For a vector-
valued function in d−dimensions (resp. d−dimensional vector), ϕ(x) (resp. x) say, we write the ith−component
(i ∈ {1, . . . , d}) as ϕ(i)(x) (resp. x(i)). For a d× q matrix x, we write the (i, j)th−entry as x(ij). For µ ∈ P(X) and
X a random variable on X with distribution associated to µ, we use the notation X ∼ µ(·). For a finite set A ∈ X ,
we write Card(A) as the cardinality of A.

2.2 Model
Let (Ω,F) be a measurable space. On (Ω,F) consider the probability measure P and a pair of stochastic processes
{Yt}t≥0, {Xt}t≥0, with Yt ∈ Rdy , Xt ∈ Rdx for (dy, dx) ∈ N2, and with X0 = x∗ ∈ Rdx given:

dYt = h(Xt)dt+ dBt (1)
dXt = b(Xt)dt+ σ(Xt)dWt (2)

where h : Rdx → Rdy , b : Rdx → Rdx , σ : Rdx → Rdx×dx with σ non-constant and of full rank and {Bt}t≥0, {Wt}t≥0

are independent standard Brownian motions of dimension dy and dx respectively. The structure of the model is
the ‘standard one’ in non-linear filtering (e.g. [1]) and we will restrict ourselves to this form. To minimize certain
technical difficulties, the following assumption is made throughout the paper:

(D1) We have:

1. σ(ij) is bounded with σ(ij) ∈ Lip‖·‖2(Rdx), for all (i, j) ∈ {1, . . . , dx}2 and a(x) := σ(x)σ(x)∗ is uniformly
elliptic for all x ∈ Rdx .

2. (h(i), b(j)) are bounded and (h(i), b(j)) ∈ Lip‖·‖2(Rdx) × Lip‖·‖2(Rdx), for all (i, j) ∈ {1, . . . , dy} ×
{1, . . . , dx}.
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Let {Ft}t≥0 be a filtration on F such that {Bt}t≥0 and {Wt}t≥0 are independent standard Brownian motions.
Let T > 0 be an arbitrary positive real number and introduce the probability measure P, which is equivalent to P
on FT , defined by the Radon-Nikodym derivative

ZT :=
dP
dP

= exp
{∫ T

0

h(Xs)
∗dYs −

1

2

∫ T

0

h(Xs)
∗h(Xs)ds

}
.

Under P, {Xt}t∈[0,T ] follows the dynamics (2) and independently {Yt}t∈[0,T ] is a standard Brownian motion. The
solution to the Zakai equation is given by

γt(ϕ) := E
[
ϕ(Xt) exp

{∫ t

0

h(Xs)
∗dYs −

1

2

∫ t

0

h(Xs)
∗h(Xs)ds

}∣∣∣Yt]
for ϕ ∈ Bb(Rdx), where Yt is the filtration generated by the process {Ys}0≤s≤t. Our objective is to, recursively in
time, estimate the filter

ηt(ϕ) :=
γt(ϕ)

γt(1)

for ϕ ∈ Bb(Rdx).

2.3 Discretized Model
For the rest of the article, we will fix a time horizon T ∈ N. In practice, we will have to work with a discretization
of the model in (1)-(2) for the following reasons.

1. One only has access to a finite, but possibly very high frequency data.

2. ZT is typically unavailable analytically.

3. There may not be a non-negative and unbiased estimator of the transition densities induced by the model
(1)-(2).

We will assume access to a path of data {Yt}0≤t≤T which is observed at a high frequency, as mentioned above.
Let l ∈ N0 denote a given level and consider an Euler discretization of step-size ∆l = 2−l:

X̃k∆l
= X̃(k−1)∆l

+ b(X̃(k−1)∆l
)∆l + σ(X̃(k−1)∆l

)[Wk∆l
−W(k−1)∆l

] (3)

for k ∈ {1, 2, . . . , 2lT}, initialized at X̃0 = x∗. It should be noted that the Brownian motion in (3) is the same as
in (2) under both P and P. Then, for k ∈ N0, we define the potential functions

Glk(xk∆l
) := exp

{
h(xk∆l

)∗(y(k+1)∆l
− yk∆l

)− ∆l

2
h(xk∆l

)∗h(xk∆l
)
}

and note that their product over time

ZlT (x0, x∆l
, . . . , xT−∆l

) :=

2lT−1∏
k=0

Glk(xk∆l
) = exp

{ 2lT−1∑
k=0

[
h(xk∆l

)∗(y(k+1)∆l
− yk∆l

)− ∆l

2
h(xk∆l

)∗h(xk∆l
)
]}

is simply a discretization of ZT (of the type of [20]). We can then define the time-discretized filter at time t ∈ N as

γlt(ϕ) := E
[
ϕ(Xt)Z

l
t(X̃0, X̃∆l

, . . . , X̃t−∆l
)|Yt

]
ηlt(ϕ) :=

γlt(ϕ)

γlt(1)
(4)

where ϕ ∈ Bb(Rdx), and for notational convenience we set ηl0(dx) := δx∗(dx). To define the time-discretized filter
between unit times, for (p, t) ∈ N0 × {∆l, 2∆l, . . . , 1−∆l}, we set

γlp+t(ϕ) := E
[
ϕ(Xp+t)Z

l
p(X̃0, X̃∆l

, . . . , X̃p−∆l
)
( t∆−1

l −1∏
k=0

Gl
p∆−1

l +k
(X̃p+k∆−1

l
)
)∣∣∣Yp+t]

ηlp+t(ϕ) :=
γlp+t(ϕ)

γlp+t(1)
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where ϕ ∈ Bb(Rdx) and Zl0(x−∆l
) = 1. We note that the approach that we will consider is not constrained to

the particular choice of ∆l; the one chosen here is the one often used in previous works on MLMC and diffusions
and we will continue with this convention. We also remark, as mentioned in the introduction, that more precise
discretization schemes exist and improvements in the approximation of ZT are possible, but not considered.

We now detail the sequential structure of the time-discretized filter (4) that will facilitate its numerical approx-
imation in Section 3.1. We write a path under discretization level l on a unit time interval starting from p ∈ N0

as
ulp := (xp, xp+∆l

, . . . , xp+1) ∈ (Rdx)∆−1
l +1 =: El.

For ϕ ∈ Bb(Rdx), we define its extension on El, ϕϕϕl : El → R by

ϕϕϕl(x0, x∆l
, . . . , x1) := ϕ(x1).

We denote the product of potential functions on a time-discretized unit interval starting from p ∈ N0 as

Gl
p(u

l
p) :=

∆−1
l −1∏
k=0

Gl
p∆−1

l +k
(xp+k∆l

).

Let M l : Rdx → P(El) denote the joint Markov transition of a path (x0, x∆l
, . . . , x1) defined by the Euler dis-

cretization (3) with initialization x ∈ Rdx , i.e. for ϕ ∈ Bb(El), we have

M l(ϕ)(x) :=

∫
El

ϕ(x0, x∆l
, . . . , x1)δx(dx0)

[∆−1
l∏

k=1

ψdx(xk∆l
;x(k−1)∆l

+ b(x(k−1)∆l
)∆l, a(x(k−1)∆l

)∆l)
]
d(x∆l

, . . . , x1).

For p ∈ N, define the (prediction) operator Φlp : P(El)→ P(El) as

Φlp(µ)(ϕ) :=
µ(Gl

p−1M
l(ϕ))

µ(Gl
p−1)

(5)

for (µ, ϕ) ∈ P(El) × Bb(El) (see e.g. [7] for more motivation and properties of this operator). To clarify notation
in the preceding equation, we note that

µ(Gl
p−1M

l(ϕ)) =

∫
El

µ(d(xp−1, xp−1+∆l
, . . . , xp))G

l
p−1(xp−1, xp−1+∆l

, . . . , xp−∆l
)M l(ϕ)(xp).

The predictor can be defined as

πlp(ϕ) :=

∫
Rdx

ηlp(dx)

∫
El

M l(x, du)ϕ(u)

for (p, ϕ) ∈ N0 × Bb(El), and can be shown to satisfy the recursion

πlp(ϕ) = Φlp(π
l
p−1)(ϕ)

for p ∈ N. Lastly, note that one can also write the time-discretized filter at time t ∈ N in terms of the predictor at
time t− 1 using the Bayes’ update

ηlt(ϕ) =
πlt−1(Gl

t−1ϕϕϕ
l)

πlt−1(Gl
t−1)

(6)

for ϕ ∈ Bb(Rdx).

2.4 Multilevel Estimation
In multilevel estimation, the basic idea is to approximate the following identity

ηLt (ϕ) = η0
t (ϕ) +

L∑
l=1

(
[ηlt − ηl−1

t ](ϕ)
)

(7)

for ϕ ∈ Bb(Rdx), where L ∈ N denotes a given number of levels. The main objective is to construct a simulation
method which can approximate the differences in the summands [ηlt − ηl−1

t ](ϕ) in a dependent manner, so as to
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reduce the variance relative to approximating ηLt (ϕ) directly. The details are discussed in many articles, such as
[12, 13, 15, 17].

The highest level L is typically chosen to target a specific bias and this is the strategy considered here. In our
context, there is a potential complication as L also determines the level frequency of the data that are used - this
is discussed below.

In Section 3.1, we will introduce particle filters to obtain Monte Carlo approximations of the filtering expectation
η0
t (ϕ) at level 0. In Section 3.2, we then describe how to approximate the summands [ηlt − ηl−1

t ](ϕ) for levels
l ∈ {1, . . . , L} using a specific coupling of the particle filters at levels l and l − 1. Assuming that these coupled
particle filters are simulated independently for each successive level, the resulting methodology is the multilevel
particle filter [17]. The motivations and properties of this algorithm are studied in [15] and we refer the reader to
that article for more details.

3 Methodology
To simplify notation, throughout this section, we omit the ·̃ notation fromX for the Euler discretization. This section
concerns particle filtering approximations. In Section 3.1, we introduce particle filters and their approximation of
time-discretized filtering expectations. Section 3.2 then details a coupling of particle filters between successive
levels and its approximation of differences of time-discretized filtering expectations. Section 3.3 ends this section
by building on the previous two subsections to describe the multilevel particle filter and its multilevel estimator.

3.1 Particle Filter
We now consider approximating the time-discretized filter ηlt(ϕ) for some given level l ∈ N0 using a particle filter.
Recall that the filtering expectation η0

t (ϕ) at level l = 0 is needed to approximate the multilevel identity in (7).
The objective of the particle filter (PF) is to provide an approximation of the formulae (5) and (6). For a given
N ∈ N, the particle filter generates a system of random variables on (ENl )n+1 at a time n ∈ N0 according to the
probability measure

Q(d(ul,1:N
0 , . . . , ul,1:N

n )) =
( N∏
i=1

M l(x∗, du
l,i
0 )
) N∏
i=1

n∏
p=1

Φlp(π
l,N
p−1)(dul,ip )

where for ϕ ∈ Bb(El)

πl,Np−1(ϕ) :=
1

N

N∑
i=1

ϕ(ul,ip−1) (8)

denotes the empirical measure at time p− 1. An algorithmic description of the particle filter is given in Algorithm
1. For (t, ϕ) ∈ N× Bb(Rdx) one can approximate the time-discretized filter ηlt(ϕ) corresponding to step-size ∆l via

ηl,Nt (ϕ) :=
πl,Nt−1(Gl

t−1ϕϕϕ
l)

πl,Nt−1(Gl
t−1)

, (9)

which can be seen as a particle approximation of (6) using the empirical measure (8) with N particles. For
(l, p, t, ϕ) ∈ N × N0 × {∆l, 2∆l, . . . , 1 − ∆l} × Bb(Rdx) one can also obtain a particle approximation of the time-
discretized filter at time p+ t, ηlp+t(ϕ), using

ηl,Np+t(ϕ) :=

∑N
i=1

(∏t∆−1
l −1

k=0 Gl
p∆−1

l +k
(xl,ip+k∆l

)
)
ϕ(xl,ip+t)∑N

i=1

∏t∆−1
l −1

k=0 Gl
p∆−1

l +k
(xl,ip+k∆l

)
.

3.2 Coupled Particle Filter
In this section, we describe how to approximate the summands [ηlt − ηl−1

t ](ϕ) for levels l ∈ {1, . . . , L} in the
multilevel identity (7) using a specific coupling of particle filters at levels l and l−1. For (l, ϕ) ∈ N×Bb(Rdx ×Rdx)
(resp. (l, ϕ) ∈ N× Bb(R4dx)), we define ϕϕϕl : El × El−1 → R (resp. ϕϕϕl : (El × El−1)2 → R)

ϕϕϕl
(
(x0, x∆l

, . . . , x1), (x′0, x
′
∆l−1

, . . . , x′1)
)

:= ϕ(x1, x
′
1)

5



Algorithm 1 Particle Filter.

1. Initialize: For i ∈ {1, . . . , N}, generate ul,i0 from M l(x∗, ·). Set p = 1.

2. Update: For i ∈ {1, . . . , N}, generate ul,ip from Φlp(π
l,N
p−1)(·). Set p = p+ 1 and return to the start of 2.

(resp. ϕϕϕl
(
(x0, x∆l

, . . . , x1), (x′0, x
′
∆l−1

, . . . , x′1), (v0, v∆l
, . . . , v1), (v′0, v

′
∆l−1

, . . . , v′1)
)

:= ϕ(x1, x
′
1, v1, v

′
1)). The follow-

ing exposition closely follows [15], with modifications to the context here. Let P̌ l : Rdx × Rdx → P((Rdx)∆−1
l ×

Rdx)∆−1
l−1) be a Markov kernel, for paths (x∆l

, . . . , x1) and (x′∆l−1
, . . . , x′1) constructed by using the same Brownian

increments in the discretization (3) (see e.g. [12] or [18, Section 3.3]). Let M̌ l : Rdx × Rdx → P(El × El−1) be a
Markov kernel defined for (u, v, ϕ) ∈ Rdx × Rdx × Bb(El × El−1) as

M̌ l(ϕ)
(

(u, v)
)

:=

∫
El×El−1

ϕ(ul, ul−1)δu(dxl0)δv(dx
l−1
0 )P̌ l

(
(xl0, x

l−1
0 ), d((xl∆l

, . . . , xl1), (xl−1
∆l−1

, . . . , xl−1
1 ))

)
.

Note that for any (u, v) ∈ Rdx × Rdx , (A,B) ∈ B(El) ∨B(El−1)

M̌ l
(

(u, v), A× El−1

)
= M l(u,A) and M̌ l

(
(u, v′), El ×B

)
= M l−1(v,B),

i.e. M̌ l is a coupling of M l and M l−1 using common Brownian increments in the discretization scheme (3).
We now describe a construction to couple the resampling steps for the particle filters at levels l and l − 1; this

was considered in [17] and is based on a maximal coupling of the resampling indices to promote the sampling of
common ancestors. Let (p, ϕ, µ) ∈ N× Bb(El × El−1)× P(El × El−1) and define the probability measure:

Φ̌lp(µ)(ϕ) := µ
(
{Fp−1,µ,l ∧ Fp−1,µ,l−1}M̌l(ϕ)

)
+
(

1− µ
(
{Fp−1,µ,l ∧ Fp−1,µ,l−1}

))
×

(µ⊗ µ)
({
F p−1,µ,l ⊗ F p−1,µ,l−1

}
M̄l(ϕ)

)
(10)

where for (u, v) ∈ El × El−1

F p−1,µ,l(u, v) =
Fp−1,µ,l(u, v)− {Fp−1,µ,l(u, v) ∧ Fp−1,µ,l−1(u, v)}

µ(Fp−1,µ,l − {Fp−1,µ,l ∧ Fp−1,µ,l−1})

F p−1,µ,l−1(u, v) =
Fp−1,µ,l−1(u, v)− {Fp−1,µ,l(u, v) ∧ Fp−1,µ,l−1(u, v)}

µ(Fp−1,µ,l−1 − {Fp−1,µ,l ∧ Fp−1,µ,l−1})

Fp−1,µ,l(u, v) = Ǧp−1,µ,l(u)⊗ 1

Fp−1,µ,l−1(u, v) = 1⊗ Ǧp−1,µ,l−1(v)

Ǧp−1,µ,l(u) =
Gl
p−1(u)

µ(Gl
p−1 ⊗ 1)

Ǧp−1,µ,l−1(v) =
Gl−1
p−1(v)

µ(1⊗Gl−1
p−1)

and for ((u, v), (u′, v′)) ∈ (El × El−1)× (El × El−1) and ϕ ∈ Bb(El × El−1)

M̄ l(ϕ)((u, v), (u′, v′)) = M̌ l(ϕ)(u, v′).

Recalling that the process (2) starts at x∗, we define for ϕ ∈ Bb(El × El−1)

π̌l0(ϕ) := M̌ l(ϕ)
(

(x∗, x∗)
)

and for (p, ϕ) ∈ N× Bb(El × El−1)
π̌lp(ϕ) = Φ̌lp(π̌p−1)(ϕ). (11)

6



Algorithm 2 Sampling from Φ̌lp(π̌
l,N
p−1)(·).

1. With probability π̌l,Np−1

(
{Fp−1,π̌l,N

p−1,l
∧ Fp−1,π̌l,N

p−1,l−1}
)
generate wp ∈ (El × El−1) according to

∑N
i=1 Fp−1,π̌l,N

p−1,l
(wl,ip−1) ∧ Fp−1,π̌l,N

p−1,l−1(wl−1,i
p−1 )M̌ l

(
(xl,ip , x̄

l−1,i
p ), ·

)
∑N
i=1 Fp−1,π̌l,N

p−1,l
(wl,ip−1) ∧ Fp−1,π̌l,N

p−1,l−1(wl−1,i
p−1 )

.

2. Otherwise, generate wp ∈ (El × El−1) according to

1

N2

N∑
i=1

N∑
j=1

{
F p−1,π̌l,N

p−1,l
(wl,ip−1)⊗ F p−1,π̌l,N

p−1,l−1(wl,jp−1)
}
M̌ l
(

(xl,ip , x̄
l−1,j
p ), ·

)
.

Now it can be shown that (see [17]) that for (t, ϕ) ∈ N× Bb(Rdx), we have

ηlt(ϕ) =
π̌lt−1((Gl

t−1ϕϕϕ
l)⊗ 1)

π̌lt−1(Gl
t−1 ⊗ 1)

and ηl−1
t (ϕ) =

π̌lt−1(1⊗ (Gl−1
t−1ϕϕϕ

l−1))

π̌lt−1(1⊗Gl−1
t−1)

, (12)

i.e. the above coupling construction admits as marginal distributions the time-discretized filters at levels l and
l− 1. We note that this construction is by no means unique, nor, as discussed in [15] for the purposes of multilevel
estimation optimal in any sense. When dx = 1, an alternative scheme which uses Wasserstein coupling is used in
[16] (see also [15]). This latter procedure is considered in Section 5, but is not mathematically analyzed.

The objective of the coupled particle filter (CPF) is to provide an approximation of the formulae (10) and (12).
For p ∈ N0 set wlp = (ulp, ū

l−1
p ) ∈ El × El−1. For a given N ∈ N, a CPF generates a system of random variables on

((El × El−1)N )n+1 at a time n ∈ N0 according to the probability measure

Q̌(d(wl,1:N
0 , . . . , wl,1:N

n )) =
{ N∏
i=1

M̌ l
(

(x∗, x∗), dw
l,i
0

)} N∏
i=1

n∏
p=1

Φ̌lp(π̌
l,N
p−1)(dwl,ip )

where for ϕ ∈ Bb(El × El−1)

π̌l,Np−1(ϕ) :=
1

N

N∑
i=1

ϕ(wl,ip−1) (13)

denotes the empirical measure at time p− 1. To run a CPF, one must understand how to sample from Φ̌lp(π̌
l,N
p−1)(·)

which is detailed in Algorithm 2. An algorithmic description of the CPF is then described in Algorithm 3. Using
a particle approximation of (12) with the empirical measure (13), we can approximate [ηlt − ηl−1

t ](ϕ), ϕ ∈ Bb(Rdx)
with

[ηlt − ηl−1
t ]N (ϕ) :=

π̌l,Nt−1((Gl
t−1ϕϕϕ

l)⊗ 1)

π̌l,Nt−1(Gl
t−1 ⊗ 1)

−
π̌l,Nt−1(1⊗ (Gl−1

t−1ϕϕϕ
l−1))

π̌l,Nt−1(1⊗Gl−1
t−1)

. (14)

For (l, p, t, ϕ) ∈ {2, 3, . . . } × N0 × {∆l−1, 2∆l−1, . . . , 1 − ∆l−1} × Bb(Rdx) one can also estimate the differences of
the time-discretized filter at time p+ t, [ηlp+t − ηl−1

p+t](ϕ), as

[ηlp+t−ηl−1
p+t]

N (ϕ) :=

∑N
i=1

(∏t∆−1
l −1

k=0 Gl
p∆−1

l +k
(xl,ip+k∆l

)
)
ϕ(xl,ip+t)∑N

i=1

∏t∆−1
l −1

k=0 Gl
p∆−1

l +k
(xl,ip+k∆l

)
−

∑N
i=1

(∏t∆−1
l−1−1

k=0 Gl−1

p∆−1
l−1+k

(x̄l−1,i
p+k∆l−1

)
)
ϕ(x̄l−1,i

p+t )∑N
i=1

∏t∆−1
l−1−1

k=0 Gl−1

p∆−1
l−1+k

(x̄l−1,i
p+k∆l−1

)
.

3.3 Multilevel Particle Filter
We can now describe the multilevel particle filter (MLPF) using the developments in Sections 3.1 and 3.2.

1. Level 0: Run a PF as in Algorithm 1 with N0 samples, independently of all other levels.
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Algorithm 3 A Coupled Particle Filter.

1. Initialize: For i ∈ {1, . . . , N}, generate wl,i0 from M̌ l
(

(x∗, x∗), ·
)
. Set p = 1.

2. Update: For i ∈ {1, . . . , N}, generate wl,ip from Φ̌lp(π̌
l,N
p−1)(·) as described in Algorithm 2. Set p = p + 1 and

return to the start of 2.

2. Level l ∈ {1, . . . , L}: Run a CPF (to approximate the time-discretized filters at levels l and l − 1) as in
Algorithm 3 with Nl samples, independently of all other levels.

Using the multilevel identity (7), an estimator of expectations ηLt (ϕ) for t ∈ N, ϕ ∈ Bb(Rdx) with respect to the
time-discretized filter at the highest level L is then given by

ηL,ML
t (ϕ) := η0,N0

t (ϕ) +

L∑
l=1

[ηlt − ηl−1
t ]Nl(ϕ) (15)

where η0,N0

t (ϕ) is the estimator in (9) at level l = 0 with N = N0 samples, and [ηlt − ηl−1
t ]Nl(ϕ) is the estimator

in (14) with N = Nl samples. We now consider estimating expectations with respect to the time-discretized filter
at level L between unit times. For (l, p, t, ϕ) ∈ {1, . . . , L − 1} × N0 × {∆l, 2∆l, . . . , 1 − ∆l} × Bb(Rdx), one can
approximate ηLp+t(ϕ) as a by-product of the above procedure using

ηL,l,ML
p+t (ϕ) :=

L∑
m=l+1

{∑Nm

i=1

(∏t∆−1
m −1

k=0 Gm
p∆−1

m +k
(xl,ip+k∆m

)
)
ϕ(xm,ip+t)∑Nm

i=1

∏t∆−1
m −1

k=0 Gl
p∆−1

m +k
(xl,ip+k∆m

)
−

∑Nm

i=1

(∏t∆−1
m−1−1

k=0 Gm−1

p∆−1
m−1+k

(x̄m−1,i
p+k∆m−1

)
)
ϕ(x̄m−1,i

p+t )∑Nm

i=1

∏t∆−1
m−1−1

k=0 Gm−1

p∆−1
m−1+k

(x̄m−1,i
p+k∆m−1

)

}
+

∑Nl

i=1

(∏t∆−1
l −1

k=0 Gl
p∆−1

l +k
(xl,ip+k∆l

)
)
ϕ(xl,ip+t)∑Nl

i=1

∏t∆−1
l −1

k=0 Gl
p∆−1

l +k
(xl,ip+k∆l

)
(16)

where the mth−term of the summand on the R.H.S. has been obtained by a CPF at level m, and the second term
in the sum on the R.H.S. is the level l particles from the CPF run targeting (ηlt, η

l−1
t ).

4 Theoretical Results
We consider the estimator (15) in our analysis. The estimator (16) can also be analyzed with the same approach
with only additional notational complications. E is used to denote expectations w.r.t. the simulated process, which
averages over the dynamics of the data, under the probability measure P. The proofs needed for the following result
are given in the appendix. Below, we write A := {(l, q) ∈ {1, . . . , L}2 : l 6= q}. The following theorem gives a bound
on the MSE.

Theorem 4.1. Assume (D1). Then for any t ∈ N0, there exists a C < +∞ such that for any L ∈ {1, 2, . . . },
((N0, . . . , NL), ϕ) ∈ NL+1 × Bb(Rdx) ∩ Lip‖·‖2(Rdx)

E[(ηL,ML
t (ϕ)− ηt(ϕ))2] ≤

C(‖ϕ‖+ ‖ϕ‖Lip)2

(
L∑
l=0

(
∆

1/2
l

Nl
+

∆
1/4
l

N
3/2
l

)
+

L∑
l=1

L∑
q=1

IA(l, q)

(
∆

1/4
l

N
1/2
l

+
∆

1/8
l

N
3/4
l

)(
∆

1/4
q

N
1/2
q

+
∆

1/8
q

N
3/4
q

)
+ ∆L

)
.

Proof. We consider

E[(ηL,ML
t (ϕ)− ηt(ϕ))2] ≤ 2E[[ηL,ML

t − ηLt ](ϕ)2] + 2E[[ηLt − ηt](ϕ)2]. (17)
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For the right-most term on the R.H.S. of (17), one can use Remark A.1 (in the appendix). For the left-most term
on the R.H.S. of (17), one has by the C2−inequality that

E[[ηL,ML
t − ηLt ](ϕ)2] ≤ 2E[[η0,N0

t − η0
t ](ϕ)2] + 2E

( L∑
l=1

{[ηlt − ηl−1
t ]Nl − [ηlt − ηl−1

t ]}(ϕ)

)2
 . (18)

The first term on the R.H.S. of (18) can be dealt with using Remark A.3 (in the appendix). For the second term on
the R.H.S. of (18), one can multiply out the brackets and apply Proposition A.1 for the terms with second moments.
For the cross product terms, which are only independent conditional on the data, one can use the Cauchy-Schwarz
inequality and Proposition A.1.

Remark 4.1. It is remarked that Theorem 4.1 is given in terms of the probability measure P not P; in the literature,
one would typically state the result under P. However, as

E((ηL,ML
t (ϕ)− ηt(ϕ))2] = E[Zt(η

L,ML
t (ϕ)− ηt(ϕ))2],

by following the proofs, for instance of Lemmata A.1 and A.4, one can still deduce the same result under P. The
calculations are of a fairly standard nature and are omitted for brevity.

Remark 4.2. We note that the constant C in Theorem 4.1 depends upon t. As seen in [15], the task of bounding
the asymptotic variance uniformly in t (for models as in [17]) is particularly difficult and one expects even more
arduous calculations for the finite-sample variance. All of our below discussion does not consider t, although this is
of course a very important issue.

We note that if one considers (9), then the MSE associated to this estimator can be upper-bounded (using the
C2−inequality, Remark A.4 along with Lemma A.10 and Remark A.1) by

C(‖ϕ‖+ ‖ϕ‖Lip)2

(
1

N
+ ∆L

)
. (19)

Note that the bias term is O(∆L) and not O(∆2
L) (as in e.g. [17]) as our results averages over the uncertainty in

the data, as is often done in the literature in the analysis of continuous-time particle filters (e.g. [1]). The order of
the bias can be improved by using higher-order discretization methods.

Let ε > 0 be arbitrary. From Theorem 4.1, to obtain a bound on the MSE of O(ε2), one can first choose the
highest level L so that the bias is ∆L = O(ε2). Then by having Nl = O(ε−2∆

−1/4
L ∆

3/4
l ) samples at level l, the upper-

bound in Theorem 4.1 would be O(ε2). The associated cost to achieve this MSE is O(
∑L
l=0 ∆−1

l Nl) = O(ε−3). For
the estimator (9), it follows from the upper-bound in (19) that choosing the level L to keep the bias ∆L = O(ε2)
and having N = O(ε−2) number of samples would require a cost of O(∆−1

L N) = O(ε−4). We note that if the
diffusion coefficient σ in (2) were constant, one would expect that the MSE associated to (15) to be upper-bounded
by a term of O(

∑L
l=0

∆l

Nl
+ ∆L). By choosing Nl = O(ε−2∆lL), one can then show that the cost to achieve a MSE

of O(ε2) is O(ε−2 log(ε)2) for the MLPF method. For the PF, again the cost is O(∆−1
L N) = O(ε−4).

An issue that may appear in practice is that by increasing the highest level L, one must have access to data
that was observed at a frequency of 2−L. This could create a bottleneck for the multilevel procedure as one cannot
exceed the frequency at which the data was observed. A possible remedy is to linearly interpolate the data, in
which case, one may want to consider the robust filter (see [3] and [1, Chapter 5]).

5 Numerical Results
In the following, we introduce four models in Section 5.1, detail some implementation settings in Section 5.2 and
conclude with our numerical findings in Section 5.3.

5.1 Models
We set the model dimensions as dx = dy = 1 and the initialization as X0 = x∗ = 0. We will consider four different
models for the signal and the observation function h(x) = x in all cases. Data were generated from the process
under the probability measure P.
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Ornstein-Uhlenbeck. This process is defined as the solution of

dXt = θ(µ−Xt)dt+ σdWt.

The parameters in the example are taken as θ = 1, µ = 0 and σ = 0.5.
Langevin dynamics. The (overdamped) Langevin dynamics is defined by the stochastic differential equation

(SDE)

dXt =
1

2
∇ log π(Xt)dt+ dWt

where π(x) denotes the stationary probability density function. We select the latter as the t−distribution with 10
degrees of freedom (with zero location, unit scale).

Geometric Brownian motion. This process is defined by the following SDE

dXt = µXtdt+ σXtdWt

We set the model parameters as σ = 0.2 and µ = 0.02.
SDE with a non-linear diffusion term. Lastly, we consider the SDE

dXt = θ(µ−Xt)dt+
1√

1 +X2
t

dWt

with parameters θ = 0 and µ = 0.
We remark that none of these models satisfy (D1). This assumption, which can hold for certain models, is

mainly used to keep the mathematical proofs at a sensible length and simultaneously providing a formal proof of
the properties that we expect to see in more generality for problems of practical interest. This will be illustrated
below.

5.2 Simulation Settings
We will compare the standard approach based on the PF (Section 3.1) to the MLPF (Section 3.3). We will also
consider another multilevel method proposed in [16]. For the case of a constant diffusion coefficient (resp. non-
constant) of the signal, we expect that one can set ∆L = O(ε2) and Nl = O(ε−2∆

3/2
l ) (resp. Nl = O(ε−2∆lL)) in

the approach of [16] to achieve a MSE of O(ε2) with a cost of O(ε−2) (resp. O(ε−2 log(ε)2)). We note that, to our
knowledge, there is no proof of this result in our context and it is a topic to be considered in future work.

In the following, we consider computing the expected value of the signal, i.e. ϕ(x) = x, at T = 100 time units.
For all examples, the multilevel estimator (15) is considered at levels L ∈ {4, . . . , 9}. For the Ornstein-Uhlenbeck
model, the ground truth is computed using a Kalman filter. For all other examples, the results from a particle filter
at level L = 10 with N = 100 × 210 particles is used as an approximation of the ground truth. For each level l
of the PF, Nl = 100 ×∆l particles are used. The number of particles in the MLPF and the multilevel method of
[16] are specified using the discussion in Section 4 and the above paragraph, respectively. All results are averaged
over multiple runs. We employ adaptive resampling for all three approaches; resampling is performed whenever the
effective sample size of the coarse filter (when using a CPF) falls below half the number of samples simulated.

5.3 Results
Our numerical results are summarized in Figure 1 in terms of log-log (base 10) plots of the cost against MSE. These
plots agree with our theoretical findings in Section 4. For all models, the slope of the plots in Figure 1 corresponding
to PF is around −2, which matches with a cost of O(ε−4) to achieve a MSE of O(ε2). For models (with constant
diffusion coefficient) on the first row Figure 1, we observe slopes close to −1, which corresponds roughly to a cost
of O(ε−2 log(ε)2) to obtain a MSE of O(ε2). Similarly, for models (with non-constant diffusion coefficient) on the
second row of Figure 1, slopes of approximately −1.5 agrees with a cost of O(ε−3) for a MSE of O(ε2). Lastly, we
also observe that the conjectured improvements of the method in [16] seem to be confirmed in these examples.
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Figure 1: Log-log plots of cost against MSE for the PF (mustard), MLPF (black) and the multilevel method of [16]
(baby blue).
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A Proofs

A.1 Objective and Structure
The main objective of this appendix is to provide a meaningful bound, in terms of l and N , on

E[{[ηlt − ηl−1
t ]N − [ηlt − ηl−1

t ]}(ϕ)2].

This is the main result which we will need to prove Theorem 4.1. The typical way that this can be achieved is to
consider the predictor π̌l,Nt in (14). Our strategy to consider this latter object first in Lemma A.1, which provides
an upper-bound in terms of N and the expectation of some operators. The remainder of the proof is then concerned
with the control of these expectations in terms of l; this result is given in Lemma A.4. Finally these results are
used to prove the bound of interest in Proposition A.1. The remaining technical developments are all used to
achieve these results. At a first reading, one can then proceed as just looking at Lemmata A.1 and A.4 followed by
Proposition A.1.

The structure of this appendix is as follows. In Section A.2 we provide some additional notations and results
which will be used in the appendix. In Section A.3, we give results on the coupled particle filter and in particular
Lemma A.1. Within this section are two additional subsections; Sections A.3.1 and A.3.2. In Section A.3.1, we
consider the ‘coupling ability’ of the coupled particle filter. That is, how close particle pairs are, in terms of
∆l, which is the critical property of CPFs and indeed multilevel methods. Our results in this section are simply
specializations of the results already proved in [17]. In Section A.3.2, we give the important results Lemma A.4 and
Proposition A.1. The results in the afore-mentioned appendices depend themselves on some important properties
of non-linear filtering problems in continuous time and particle filters. The non-linear filtering properties are given
in Section A.4 and this can be read more-or-less linearly. The results are fairly well understood in the literature,
but are provided for completeness of the article. The particle filter is considered in Section A.5 and the results are
essentially the standard ones, for instance in [8], given in the context of this paper. One way to read the appendix
is, begin with Section A.2 and then to read, linearly, Section A.3 in its entirety, accepting the results in Sections
A.4 and A.5 and those latter sections can then be read (which can both be read linearly). Another way is Section
A.2-A.4-A.5-A.3.

A.2 Some Notations
Some operators are now defined. For (l, p, n) ∈ N3

0, n > p, (up, ϕ) ∈ El × Bb(El), let

Ql
p,n(ϕ)(up) :=

∫
ϕ(un)

( n−1∏
q=p

Gl
q(uq)

) n∏
q=p+1

M l(uq−1, duq),

where we use the convention Ql
p,p(ϕ)(up) = ϕ(up). One could interpret this as a type of weighted evolution operator

from time p to n when a discretization of ∆l is used. In addition, for (l, p, n) ∈ N3
0, n > p, (up, ϕ) ∈ El×Bb(El), let

Dl
p,n(ϕ)(up) :=

Ql
p,n(ϕ− πln(ϕ))(up)

πlp(Q
l
p,n(1))

where Dl
p,p(ϕ)(up) = ϕ(up)− πlp(ϕ). The latter operator would facilitate certain martingale decompositions in the

following.
Throughout our arguments, C is a finite constant whose value may change from line to line, but does not depend

upon l nor N . The particular dependencies of a given constant will be clear from the statement of a given result.
As h is bounded, there exists −∞ < C < C < +∞, such that for any (l, n) ∈ N×N0 and un ∈ El, almost surely

Gl
n(un) ≤ G

l

n

Gl
n(un) ≥ Gl

n
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where

G
l

n = C exp
{∆−1

l −1∑
i=0

dy∑
k=1

(
CI[0,∞)((Y

(k)
n+(i+1)∆l

− Y (k)
n+i∆l

))(Y
(k)
n+(i+1)∆l

− Y (k)
n+i∆l

) +

CI(−∞,0)((Y
(k)
n+(i+1)∆l

− Y (k)
n+i∆l

))(Y
(k)
n+(i+1)∆l

− Y (k)
n+i∆l

)
)}

(20)

Gl
n = C exp

{∆−1
l −1∑
i=0

dy∑
k=1

(
CI[0,∞)((Y

(k)
n+(i+1)∆l

− Y (k)
n+i∆l

))(Y
(k)
n+(i+1)∆l

− Y (k)
n+i∆l

) +

CI(−∞,0)((Y
(k)
n+(i+1)∆l

− Y (k)
n+i∆l

))(Y
(k)
n+(i+1)∆l

− Y (k)
n+i∆l

)
)}
. (21)

Moreover, for any r ∈ N, it is straightforward to verify that these upper and lower bounds have finite Lr and L−r
moments that do not depend upon l.

A.3 Results for the Coupled Particle Filter
Set, for l ∈ N, (n, p, ϕ) ∈ N2

0 × Bb(Rdx), p ≤ n

T l,1p,n(ϕ) := E[max{(Gl
n)−2, (Gl−1

n )−2}(Dl
p,n(Gl

nϕϕϕ
l)(U l,1p )−Dl−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,1

p ))2]

and for p < n

T l,2p,n(ϕ) := E[(Dl
p,n(Gl

nϕϕϕ
l)(U l,1p )−Dl−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,1

p ))2]1/2 + ‖ϕ‖2E[(Gl
p(U

l,1
p )−Gl−1

p (Ū l−1,1
p ))2]1/2.

Lemma A.1. Assume (D1). Then for any n ∈ N0, there exists a C < +∞ such that for any (l, N, ϕ) ∈ N× N×
Bb(Rdx)

E
[
max{π̌l,Nn (Gl

n ⊗ 1)−2, π̌l,Nn (1⊗Gl−1
n )−2}(π̌l,Nn − π̌ln)((Gl

nϕϕϕ
l)⊗ 1− 1⊗ (Gl−1

n ϕϕϕl−1))2
]
≤

C

(
1

N

n∑
p=0

T l,1p,n(ϕ) +
1

N3/2

n−1∑
p=0

T l,2p,n(ϕ)

)
.

Proof. We have the following standard Martingale plus remainder decomposition [9, Lemma 6.3]

(π̌l,Nn − π̌ln)((Gl
nϕϕϕ

l)⊗ 1− 1⊗ (Gl−1
n ϕϕϕl−1)) =

n∑
p=0

(π̌l,Np − Φ̌lp(π̌
l,N
p−1))(Dl

p,n(Gl
nϕϕϕ

l)⊗ 1− 1⊗Dl−1
p,n (Gl−1

n ϕϕϕl−1)) +

n−1∑
p=0

{ π̌l,Np (Dl
p,n(Gl

nϕϕϕ
l)⊗ 1)

π̌l,Np (Gl
p ⊗ 1)

[π̌lp − π̌l,Np ](Gl
p ⊗ 1)−

π̌l,Np (1⊗Dl−1
p,n (Gl−1

n ϕϕϕl−1))

π̌l,Np (1⊗Gl−1
p )

[π̌lp − π̌l,Np ](1⊗Gl−1
p )

}
.

Using the C2−inequality multiple times:

E[max{π̌l,Nn (Gl
n⊗1)−2, π̌l,Nn (1⊗Gl−1

n )−2}(π̌l,Nn −π̌ln)((Gl
nϕϕϕ

l)⊗1−1⊗(Gl−1
n ϕϕϕl−1))2] ≤ C

( n∑
p=0

E[T1(p)2]+

n−1∑
p=0

E[T2(p)2]
)

(22)
where

T1(p) := max{π̌pnl,N (Gl
n ⊗ 1)−2, π̌l,Nn (1⊗Gl−1

n )−2}1/2(π̌l,Np − Φ̌lp(π̌
l,N
p−1))(Dl

p,n(Gl
nϕϕϕ

l)⊗ 1− 1⊗Dl−1
p,n (Gl−1

n ϕϕϕl−1))

T2(p) := max{π̌l,Nn (Gl
n ⊗ 1)−2, π̌l,Nn (1⊗Gl−1

n )−2}1/2 ×(
π̌l,Np (Dl

p,n(Gl
nϕϕϕ

l)⊗ 1)

π̌l,Np (Gl
p ⊗ 1)

[π̌lp − π̌l,Np ](Gl
p ⊗ 1)−

π̌l,Np (1⊗Dl−1
p,n (Gl−1

n ϕϕϕl−1))

π̌l,Np (1⊗Gl−1
p )

[π̌lp − π̌l,Np ](1⊗Gl−1
p )

)
.

It thus suffices to control the terms T1(p), p ∈ {0, 1, . . . , n} and T2(p), p ∈ {0, 1, . . . , n− 1} in an appropriate way.
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Now, using (21) and applying the conditional Marcinkiewicz-Zygmund inequality

E[T1(p)2] ≤ C

N
E[max{(Gl

n)−2, (Gl−1
n )−2}(Dl

p,n(Gl
nϕϕϕ

l)(U l,1p )−Dl−1
p,n (Gl−1

n ϕϕϕl−1)(Ū l−1,1
p ))2]. (23)

For T2(p) we have

T2(p) = max{π̌l,Nn (Gl
n ⊗ 1)−2, π̌l,Nn (1⊗Gl−1

n )−2}1/2 (T3(p) + T4(p) + T5(p))

where

T3(p) := [π̌lp − π̌l,Np ](Gl
p ⊗ 1)

π̌l,Np (Dl
p,n(Gl

nϕϕϕ
l)⊗ 1)

π̌l,Np (Gl
p ⊗ 1)π̌l,Np (1⊗Gl−1

p )

{
π̌l,Np (1⊗Gl−1

p )− π̌l,Np (Gl
p ⊗ 1)

}
(24)

T4(p) := [π̌lp − π̌l,Np ](Gl
p ⊗ 1)

1

π̌l,Np (1⊗Gl−1
p )

{
π̌l,Np (Dl

p,n(Gl
nϕϕϕ

l)⊗ 1)− π̌l,Np (1⊗Dl−1
p,n (Gl−1

n ϕϕϕl−1))
}

(25)

T5(p) :=
π̌l,Np (1⊗Dl−1

p,n (Gl−1
n ϕϕϕl−1))

π̌l,Np (1⊗Gl−1
p )

[π̌lp − π̌l,Np ](Gl
p ⊗ 1− 1⊗Gl−1

p ). (26)

By using (21) and the C2−inequality three times

E[T2(p)2] ≤ C
5∑
j=3

E[max{(Gl
n)−2, (Gl−1

n )−2}Tj(p)2]

so we consider bounding the R.H.S. of this inequality.
For T3(p), using Cauchy-Schwarz then Hölder gives

E[max{(Gl
n)−2, (Gl−1

n )−2}T3(p)2] ≤ E
[∣∣∣ π̌l,Np (Dl

p,n(Gl
nϕϕϕ

l)⊗ 1) max{(Gl
n)−2, (Gl−1

n )−2}
π̌l,Np (Gl

p ⊗ 1)π̌l,Np (1⊗Gl−1
p )

∣∣∣12]1/6
×

E[[π̌lp − π̌l,Np ](Gl
p ⊗ 1)12]1/6E[|π̌l,Np (1⊗Gl−1

p )− π̌l,Np (Gl
p ⊗ 1)|6]1/6 ×

E[|π̌l,Np (1⊗Gl−1
p )− π̌l,Np (Gl

p ⊗ 1)|2]1/2.

For the left-most term on the R.H.S. one can apply Hölder, Lemma A.10 and Corollary A.3. For the term after on
the R.H.S. one can apply Proposition A.2. For the next term, one can use (20). For the right-most term on the
R.H.S. one has

E[|π̌l,Np (1⊗Gl−1
p )− π̌l,Np (Gl

p ⊗ 1)|2]1/2 ≤ E[(Gl
p(U

l,1
p )−Gl−1

p (Ū l−1,1
p ))2]1/2.

Hence, we have that

E[T3(p)2] ≤ C‖ϕ‖2

N2
E[(Gl

p(U
l,1
p )−Gl−1

p (Ū l−1,1
p ))2]1/2. (27)

For T4(p), T5(p), using almost the same strategy , except for using Proposition A.2 for terms such as (for any r ∈ N)

E
[∣∣∣π̌l,Np (Dl

p,n(Gl
nϕϕϕ

l)⊗ 1)− π̌l,Np (1⊗Dl−1
p,n (Gl−1

n ϕϕϕl−1))
∣∣∣r]1/r

yields

E[max{(Gl
n)−2, (Gl−1

n )−2}T4(p)2] ≤ C

N3/2
E[(Dl

p,n(Gl
nϕϕϕ

l)(U l,1p )−Dl−1
p,n (Gl−1

n ϕϕϕl−1)(Ū l−1,1
p ))2]1/2. (28)

and

E[max{(Gl
n)−2, (Gl−1

n )−2}T5(p)2] ≤ C‖ϕ‖2

N3/2
E[(Gl

p(U
l,1
p )−Gl−1

p (Ū l−1,1
p ))2]1/2. (29)

Combining (27)-(29) gives

E[T2(p)2] ≤ C

N3/2
T l,2p,n(ϕ). (30)

The proof is easily completed by noting the bounds in (22), (23) and (30).
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A.3.1 Additional Technical Results for Coupled Particle Filters

The following section is essentially an adaptation of [17, Lemmata D.3-D.4]. Many of the arguments are very similar
to that article, with a modification to the context here. The entire proofs are included for completeness of this
paper.

For (i, l, n) ∈ {1, . . . , N} × N× N0:

• Û l,in , ̂̄U l−1,i

n denote the particles immediately after resampling

• (I l,in , Ī
l−1,i
n ) ∈ {1, . . . , N} represent the resampled indices of (ul,in , ū

l−1,i
n ) and let I ln(i) := I l,in and Ī l−1

n (i) :=
Ī l−1,i
n .

For (l, n) ∈ N× N0, let Sln be the particle indices that choose the same ancestor at each resampling stage:

Sln = {i ∈ {1, . . . , N} :I ln(i) = Ī l−1
n (i), I ln−1 ◦ I ln(i) = Ī l−1

n−1 ◦ Ī l−1
n (i), . . . , I l0 ◦ · · · ◦ I ln(i) = Ī l−1

0 ◦ · · · ◦ Ī l−1
n (i)}.

For n = −1, set Sln = {1, . . . , N}. Let, for (l, n) ∈ N× N0

Gln =σ

({
U l,ip , Ū

l−1,i
p , Û l,ip ,

̂̄U l−1,i

p , I lp, Ī
l−1
p ; 0 ≤ p < n, 1 ≤ i ≤ N

}
∪
{
U l,in , Ū

l−1,i
n , 1 ≤ i ≤ N

})
∨ Yn+1,

Ĝln =σ

({
U l,ip , Ū

l−1,i
p , Û l,ip ,

̂̄U l,ip , I lp, Ī l−1
p ; 0 ≤ p < n, 1 ≤ i ≤ N

}
∪
{
U l,in , Ū

l−1,i
n , Û l,in ,

̂̄U l−1,i

n , 1 ≤ i ≤ N
})
∨ Yn+1.

To avoid ambiguity in the subsequent notations, we set for (i, l, n) ∈ {1, . . . , N} × N× N0

ul,in = (xl,in,n, x
l,i
n,n+∆l

, . . . , xl,in,n+1) ∈ El
ūl,in = (x̄l−1,i

n,n , x̄l−1,i
n,n+∆l−1

, . . . , x̄l−1,i
n,n+1) ∈ El−1.

Lemma A.2. Assume (D1). Then for any (n, r) ∈ N0×N, there exists a C < +∞ such that for any (l, N) ∈ N×N

E

 1

N

∑
i∈Sl

n−1

‖X l,i
n,n+1 − X̄

l−1,i
n,n+1‖r2

1/r

≤ C∆
1/2
l .

Proof. The proof is by induction on n. The case n = 0 follows immediately, for instance by [17, Proposition D.1].
For a general n; following the first four lines of the proof of [17, Lemma D.3], one has

E

 1

N

∑
i∈Sl

n−1

‖X l,i
n,n+1 − X̄

l−1,i
n,n+1‖r2

1/r

≤ CE

 1

N

∑
i∈Sl

n−1

‖X l,Il,in−1

n−1,n − X̄
l−1,Īl,in−1

n−1,n ‖r2

1/r

+ C∆
1/2
l .

Now, I l,in−1 = Ī l−1,i
n−1 for i ∈ Sln−1. The conditional distribution of (X

l,Il,in−1

n−1,n , X̄
l,Īl,in−1,n

n−1,n ) (i ∈ Sln−1) given Sln−1 and
Gln−1 is ∑

i∈Sl
n−2

Gl
n−1(U l,i

n−1)∑N
k=1 Gl

n−1(U l,k
n−1)

∧ Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )

δ(Xl,i
n−1,n,X̄

l,i
n−1,n)∑

i∈Sl
n−2

Gl
n−1(U l,i

n−1)∑N
k=1 Gl

n−1(U l,k
n−1)

∧ Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )

.

Now, we have, almost surely:

E
[
Card(Sln−1)

N

∣∣∣∣Gln−1

]
=

∑
i∈Sl

n−2

Gl
n−1(U l,in−1)∑N

k=1 Gl
n−1(U l,kn−1)

∧
Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )

≤
G
l

n−1

Gl
n−1

Card(Sln−2)

N
. (31)
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Therefore

E

 1

N

∑
i∈Sl

n−1

‖X l,Il,in−1

n−1,n − X̄
l−1,Īl,in−1

n−1,n ‖r2


= E

 1

N

∑
i∈Sl

n−1

E
[
‖X l,Il,in−1

n−1,n − X̄
l−1,Īl−1,i

n−1

n−1,n ‖r2
∣∣∣∣Sln−1,Gln−1

]

= E

Card(Sln−1)

N


∑
i∈Sl

n−2

Gl
n−1(U l,i

n−1)∑N
k=1 Gl

n−1(U l,k
n−1)

∧ Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )

‖X l,i
n−1,n − X̄

l,i
n−1,n‖r2∑

i∈Sl
n−2

Gl
n−1(U l,i

n−1)∑N
k=1 Gl

n−1(U l,k
n−1)

∧ Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )




= E

E [ Card(Sln−1)

N

∣∣∣∣Gln−1

]
∑
i∈Sl

n−2

Gl
n−1(U l,i

n−1)∑N
k=1 Gl

n−1(U l,k
n−1)

∧ Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )

‖X l,i
n−1,n − X̄

l,i
n−1,n‖r2∑

i∈Sl
n−2

Gl
n−1(U l,i

n−1)∑N
k=1 Gl

n−1(U l,k
n−1)

∧ Gl−1
n−1(Ū l−1,i

n−1 )∑N
k=1 Gl−1

n−1(Ū l−1,k
n−1 )




≤ E

E [ Card(Sln−1)

N

∣∣∣∣Gln−1

]
1

Card(Sln−2)

∑
i∈Sl

n−2

‖X l,i
n−1,n − X̄

l−1,i
n−1,n‖r

(
G
l

n−1

Gl
n−1

∧
G
l−1

n−1

Gl−1
n−1

/Gl
n−1

G
l

n−1

∧
Gl−1
n−1

G
l−1

n−1

) .
Then noting (31) and then taking expectations w.r.t. the data on the time interval [n− 1, n] yields:

E

 1

N

∑
i∈Sl

n−1

‖X l,Il,in−1

n−1,n − X̄
l−1,Īl,in−1

n−1,n ‖r2

 ≤ CE
 1

N

∑
i∈Sl

n−2

‖X l,i
n−1,n − X̄

l−1,i
n−1,n‖r

 .
The result hence follows by induction.

Corollary A.1. Assume (D1). Then for any (n, r) ∈ N×N, there exists a C < +∞ such that for any (l, N) ∈ N×N

E

 1

N

∑
i∈Sl

n−1

‖X̂ l,i
n−1,n − ̂̄X l−1,i

n−1,n‖r2

1/r

≤ C∆
1/2
l .

Proof. Easily follows from the proof of Lemma A.2.

Lemma A.3. Assume (D1). Then for any n ∈ {−1, 0, 1, . . . }, there exists a C < +∞ such that for any (l, N) ∈
N× N

1− E
[
Card(Sln)

N

]
≤ C∆

1/2
l .

Proof. The proof is by induction, with the initialization clear. We have

1− E
[
Card(Sln)

N

]
=

{
1− E

[
N∑
i=1

Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

∧ Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )

]}
+

E

 ∑
i/∈Sl

n−1

Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

− Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )


≤ CE

 ∑
i∈Sl

n−1

∣∣∣∣∣ Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

− Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )

∣∣∣∣∣


+ CE

 ∑
i/∈Sl

n−1

∣∣∣∣∣ Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

− Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )

∣∣∣∣∣
 . (32)
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Now, we note that by using the bounds from (20) and (21)

E

 ∑
i/∈Sl

n−1

∣∣∣∣∣ Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

− Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )

∣∣∣∣∣
 ≤ E

[
Card((Sln−1)c)

N

(G
l

n

Gl
n

+
G
l−1

n

Gl−1
n

)]

≤ C
(

1− E
[
Card(Sln−1)

N

])
. (33)

To conclude the result, we must appropriately deal with the left-most term on the R.H.S. of (32). We have

E

 ∑
i∈Sl

n−1

∣∣∣∣∣ Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

− Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )

∣∣∣∣∣
 ≤ T1 + T2

where

T1 := E

 1∑N
k=1 Gl

n(U l,kn )

∑
i∈Sl

n−1

∣∣Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )

∣∣
T2 := E

 ∑
i∈Sl

n−1

Gl
n(Ū l−1,i

n )

(∑N
k=1 Gl−1

n (Ū l−1,k
n )−

∑N
k=1 Gl

n(U l,kn )∑N
k=1 Gl−1

n (Ū l−1,k
n )

∑N
k=1 Gl

n(U l,kn )

) .
For T1, applying Cauchy-Schwarz and recalling the bounds from (20) and (21),

T1 ≤ E
[

1

(Gl
n)2

]1/2

E


 1

N

∑
i∈Sl

n−1

∣∣Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )

∣∣2


1/2

.

Then applying Jensen and noting that the left-most term on the R.H.S. is upper-bounded by a constant that does
not depend upon l nor N we have

T1 ≤ CE

Card(Sln−1)

N

1

N

∑
i∈Sl

n−1

∣∣Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )

∣∣21/2

.

Conditioning upon Ĝln−1 and applying Lemma A.8 followed by Corollary A.1 yields the upper-bound

T1 ≤ C∆
1/2
l .

For T2, using the bounds (20) and (21), one has

T2 ≤ E

[
Card(Sln−1)

N

(
G
l

n

Gl
nGl−1

n

)∣∣∣∣∣ 1

N

N∑
i=1

{Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )}

∣∣∣∣∣
]
.

Then it easily follows

T2 ≤ E

Card(Sln−1)

N

(
G
l

n

Gl
nGl−1

n

)∣∣∣∣∣∣ 1

N

∑
i∈Sl

n−1

{Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )}

∣∣∣∣∣∣+
Card((Sln−1)c)

N
(G

l

n + G
l−1

n )

 .
Now we set

T3 := E

Card(Sln−1)

N

(
G
l

n

Gl
nGl−1

n

)∣∣∣∣∣∣ 1

N

∑
i∈Sl

n−1

{Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )}

∣∣∣∣∣∣


T4 := E

[
Card(Sln−1)

N

(
G
l

n

Gl
nGl−1

n

)
Card((Sln−1)c)

N
(G

l

n + G
l−1

n )

]
.
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For T3, applying Cauchy Schwarz and Jensen

T3 ≤ E

(Card(Sln−1)

N

(
G
l

n

Gl
nGl−1

n

))2
1/2

E

 1

N

∑
i∈Sl

n−1

{Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )}2

1/2

.

Again, noting that the left-most term on the R.H.S. is upper-bounded by a constant that does not depend upon l
nor N

T3 ≤ CE

 1

N

∑
i∈Sl

n−1

{Gl
n(U l,in )−Gl−1

n (Ū l−1,i
n )}2

1/2

.

Then, applying the above arguments, we have
T3 ≤ C∆

1/2
l .

For T4, taking expectations w.r.t. the data on the time interval [n, n+ 1] yields:

T4 ≤ CE
[
Card((Sln−1)c)

N

]
.

Thus, we have

E

 ∑
i∈Sl

n−1

∣∣∣∣∣ Gl
n(U l,in )∑N

k=1 Gl
n(U l,kn )

− Gl−1
n (Ū l−1,i

n )∑N
k=1 Gl−1

n (Ū l−1,k
n )

∣∣∣∣∣
 ≤ C(∆

1/2
l + 1− E

[
Card(Sln−1)

N

])
. (34)

Combining (32), (33), (34), one can conclude the result via induction.

A.3.2 Rate Proofs for the Coupled Particle Filter

Lemma A.4. Assume (D1). Then for any n ∈ N0, there exists a C < +∞ such that for any (l, N, ϕ) ∈ N× N×
Bb(Rdx) ∩ Lip‖·‖2(Rdx)

n∑
p=0

T l,1p,n(ϕ) ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆
1/2
l

n−1∑
p=0

T l,2p,n(ϕ) ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆
1/4
l .

Proof. We consider T l,1p,n(ϕ) only, as the case of T l,2p,n(ϕ) is very similar.
We have the upper-bound

E[max{(Gl
n)−2, (Gl−1

n )−2}(Dl
p,n(Gl

nϕϕϕ
l)(U l,1p )−Dl−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,1

p ))2] ≤ C
5∑
j=1

Tj

where

T1 := E

[
max{(Gl

n)−2, (Gl−1
n )−2}

(
1

πlp(Q
l
p,n(1))

{Ql
p,n(Gl

nϕϕϕ
l)(U l,1p )−Ql−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,1

p )}
)2
]

T2 := E

max{(Gl
n)−2, (Gl−1

n )−2}

(
Ql−1
p,n (Gl−1

n ϕϕϕl−1)(Ū l−1,1
p )

πlp(Q
l
p,n(1))πl−1

p (Ql−1
p,n (1))

{πl−1
p (Ql−1

p,n (1))− πlp(Ql
p,n(1))}

)2


T3 := E

max{(Gl
n)−2, (Gl−1

n )−2}

(
Ql−1
p,n (1)(Ū l−1,1

p )

πl−1
p (Ql−1

p,n (1))
{πl−1

n (Gl−1
n ϕϕϕl−1)− πln(Gl

nϕϕϕ
l)}

)2


T4 := E

[
max{(Gl

n)−2, (Gl−1
n )−2}

(
πln(Gl

nϕϕϕ
l)

πl−1
p (Ql−1

p,n (1))
{Ql−1

p,n (1)(Ū l−1,1
p )−Ql

p,n(1)(U l,1p )}
)2
]

T5 := E

max{(Gl
n)−2, (Gl−1

n )−2}

(
Ql
p,n(1)(U l,1p )

πlp(Q
l
p,n(1))πl−1

p (Ql−1
p,n (1))

{πlp(Ql
p,n(1))− πl−1

p (Ql−1
p,n (1))}

)2
 .
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We will give bounds on the terms T1 and T2 only. The proofs for appropriate bounds on T3, T4, T5 are very similar
and hence omitted.

For T1, we have T1 = T6 + T7, where

T6 := E

max{(Gl
n)−2, (Gl−1

n )−2}
πlp(Q

l
p,n(1))2

1

N

∑
i∈Sl

p−1

{Ql
p,n(Gl

nϕϕϕ
l)(U l,ip )−Ql−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,i

p )}2


T7 := E

max{(Gl
n)−2, (Gl−1

n )−2}
πlp(Q

l
p,n(1))2

1

N

∑
i∈(Sl

p−1)c

{Ql
p,n(Gl

nϕϕϕ
l)(U l,ip )−Ql−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,i

p )}2
 .

For T6, applying Cauchy-Schwarz (twice) with Lemma A.10 and conditional Jensen yields

T6 ≤ CE

 1

N

∑
i∈Sl

p−1

{Ql
p,n(Gl

nϕϕϕ
l)(U l,ip )−Ql−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,i

p )}4
1/2

.

Then conditioning upon the entire data trajectory and the information up-to resampling at time p− 1, followed by
Lemma A.8 gives the upper-bound

T6 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2

E

 1

N

∑
i∈Sl

p−1

‖X̂ l,i
p−1,p − ̂̄X l−1,i

p−1,p‖42

+ ∆2
l

1/2

.

Applying Corollary A.1 gives
T6 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆l. (35)

For T7, noting (20) and (21) and taking expectations w.r.t. {Yt} on the time interval [p, n+ 1] one has the upper-
bound

T7 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2

(
1− E

[
Card(Slp−1)

N

])
.

Then applying Lemma A.3 one has
T7 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆

1/2
l .

Thus, using (35)
T1 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆

1/2
l .

For T2 applying Cauchy-Schwarz and Corollary A.2

T2 ≤ CE

(Ql−1
p,n (Gl−1

n ϕϕϕl−1)(Ū l−1,1
p ) max{(Gl

n)−2, (Gl−1
n )−2}

πlp(Q
l
p,n(1))πl−1

p (Ql−1
p,n (1))

)4
1/2

∆l.

Applying Hölder (thrice) and Lemma A.10 one has

T2 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆l.

Hence we have shown that

E[(Dl
p,n(Gl

nϕϕϕ
l)(U l,1p )−Dl−1

p,n (Gl−1
n ϕϕϕl−1)(Ū l−1,1

p ))2] ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2∆
1/2
l .

Proposition A.1. Assume (D1). Then for any n ∈ N0, there exists a C < +∞ such that for any (l, N, ϕ) ∈
N× N× Bb(Rdx) ∩ Lip‖·‖2(Rdx)

E
[(

[ηln − ηl−1
n ]N (ϕ)− [ηln − ηl−1

n ](ϕ)
)2] ≤ C(‖ϕ‖+ ‖ϕ‖Lip)2

(
∆

1/2
l

N
+

∆
1/4
l

N3/2

)
.

Proof. The result follows, essentially, by using [17, Lemma C.5] along with Lemmata A.1, A.4, along with Corollary
A.2 (see also Remark A.2).
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A.4 Results for the Non-Linear Filter
In this section, we consider the case of the non-linear filter, with a probability space (Ω,F), with Ft the filtration,
that includes {Yt}t≥0 as standard Brownian motion independent of a diffusion process {Xx

t }t≥0 which obeys (2)
with initial condition x ∈ Rdx and associated Euler discretization (with the same Brownian increments) at level
l (X̃x

∆l
, X̃x

2∆l
, . . . ). We will also consider another diffusion process {Xx∗

t }t≥0 which obeys (2), initial condition
x∗ ∈ Rdx and the same Brownian motion as {Xx

t }t≥0 and associated Euler discretization (with the same Brownian
increments) at level l (X̃x∗

∆l
, X̃x∗

2∆l
, . . . ). Expectations are written E. We set for (p, n) ∈ N2

0, n+ 1 > p

Zxp,n+1 = exp
{∫ n+1

p

h(Xx
s )∗dYs −

1

2

∫ n+1

p

h(Xx
s )∗h(Xx

s )ds
}

with the convention that Zx0,n+1 = Zxn+1. The technical results in this appendix are critical in proving the results in
Appendix A.3. Although some of the results are more-or-less known in the literature (e.g. [20]), we give the proofs
for the completeness of the article.

Lemma A.5. Assume (D1). Then for any (n, r) ∈ N0 × N, there exists a C < +∞ such that for any (l, ϕ, x) ∈
N0 × Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx

E
[∣∣∣ϕ(X̃x

n+1)Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)− ϕ(Xx

n+1)Zxn+1

∣∣∣r]1/r ≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .

Proof. We have

E
[∣∣∣ϕ(X̃x

n+1)Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)− ϕ(Xx

n+1)Zxn+1

∣∣∣r] ≤ C(T1 + T2) (36)

where

T1 := E
[∣∣∣ϕ(X̃x

n+1)Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)− ϕ(Xx

n+1)Zln+1(Xx
0 , X

x
∆l
, . . . , Xx

n+1−∆l
)
∣∣∣r]

T2 := E
[∣∣∣ϕ(Xx

n+1)Zln+1(Xx
0 , X

x
∆l
, . . . , Xx

n+1−∆l
)− ϕ(Xx

n+1)Zxn+1

∣∣∣r].
The term T2 can be treated with a very similar proof to T1 along the lines of [4, Theorem 21.3], so we will give a
proof for T1 only.

One has
T1 ≤ C(T3 + T4) (37)

where

T3 := E
[∣∣∣[ϕ(X̃x

n+1)− ϕ(Xx
n+1)]Zln+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
)
∣∣∣r]

T4 := E
[∣∣∣ϕ(Xx

n+1)
(
Zln+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
)− Zln+1(Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
)
)∣∣∣r].

We now need to appropriately upper-bound T3 and T4. For T3, taking expectations of Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)

w.r.t. the process {Yt} and using the fact that h is bounded along with the fact that ϕ ∈ Lip‖·‖2(Rdx) gives the
upper-bound

T3 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)rE[‖X̃x
n+1 −Xx

n+1‖r2].

Then using standard results on Euler discretization of diffusion processes (e.g. [19])

T3 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)r∆
r/2
l . (38)

For T4 as ϕ ∈ Bb(Rdx), one has

T4 ≤ (‖ϕ‖+ ‖ϕ‖Lip)rE
[∣∣∣Zln+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
)− Zln+1(Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
)
∣∣∣r]. (39)

Now, by the Mean Value Theorem (MVT)

Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)− Zln+1(Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
) =

(
H l
n+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
)−
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H l
n+1(Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
)
)∫ 1

0

H̃ l,s
n+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
, Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
)ds (40)

where for any (l, n, (x0, x∆l
, . . . , xn+1−∆l

), (x′0, x
′
∆l
, . . . , x′n+1−∆l

), s) ∈ {0, 1, . . . }2 × (Rdx)2(n+1)∆−1
l × [0, 1]

H l
n+1(x0, x∆l

, . . . , xn+1−∆l
) = log[Zln+1(x0, x∆l

, . . . , xn+1−∆l
)]

H̃ l,s
n+1(x0, x∆l

, . . . , xn+1−∆l
, x′0, x

′
∆l
, . . . , x′n+1−∆l

)) = exp{sH l
n+1(x0, x∆l

, . . . , xn+1−∆l
) +

(1− s)H l
n+1(x′0, x

′
∆l
, . . . , x′n+1−∆l

)}.

Then, by using (40) in (39) and applying Cauchy-Schwarz

T4 ≤ (‖ϕ‖+ ‖ϕ‖Lip)rE
[∣∣∣ ∫ 1

0

H̃ l,s
n+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
, Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
)ds
∣∣∣2r]1/2×

E
[∣∣∣H l

n+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)−H l

n+1(Xx
0 , X

x
∆l
, . . . , Xx

n+1−∆l
)
∣∣∣2r]1/2. (41)

Now, taking expectations w.r.t. the process {Yt} and using the fact that h is bounded, there exists a C < +∞ such
that

sup
l≥0

sup
s∈[0,1]

E
[∣∣∣H̃ l,s

n+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
, Xx

0 , X
x
∆l
, . . . , Xx

n+1−∆l
)
∣∣∣2r] ≤ C

so, via Jensen, we need only deal with the right-most expectation on the R.H.S of (41), call it T5. Now

H l
n+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
)−H l

n+1(Xx
0 , X

x
∆l
, . . . , Xx

n+1−∆l
) = M l

n+1 −Rln+1

where

M l
n+1 :=

∆−1
l (n+1)−1∑
k=0

[
{h(X̃k∆l

)∗ − h(Xk∆l
)∗}(Y(k+1)∆l

− Yk∆l
)
]

Rln+1 :=
∆l

2

∆−1
l (n+1)−1∑
k=0

[
h(X̃k∆l

)∗h(X̃k∆l
)− h(Xk∆l

)∗h(Xk∆l
))
]

and we set M0 = R0 = 0. Thus, applying the C2r−inequality, one has

T 2
5 ≤ C

(
E[|M l

n+1|2r] + E[|Rln+1|2r]
)
. (42)

We first focus on the first term on the R.H.S. of (42). Applying C2r−inequality dy−times, we have

E[|M l
n+1|2r] ≤ C

dy∑
i=1

E
[∣∣∣∆−1

l (n+1)−1∑
k=0

[
{h(i)(X̃k∆l

)− h(i)(Xk∆l
)}(Y (i)

(k+1)∆l
− Y (i)

k∆l
)
]∣∣∣2r]. (43)

We consider just the ith summand on the R.H.S., as the argument to be used is essentially exchangeable w.r.t. i.
As {M l

n,Fn∆−1
l
}n∈{0,1,... } is a Martingale, applying the Burkholder-Gundy-Davis (BGD) inequality, Minkowski

inequality, along with h(i) ∈ Lip‖·‖2(Rdx):

E
[∣∣∣∆−1

l (n+1)−1∑
k=0

[
{h(i)(X̃k∆l

)− h(i)(Xk∆l
)}(Y (i)

(k+1)∆l
− Y (i)

k∆l
)
]∣∣∣2r] ≤ C∆r

l

(∆−1
l (n+1)−1∑
k=0

E[‖X̃k∆l
−Xk∆l

‖2r2 ]1/r
)r
.

Then using standard results on Euler discretization of diffusion processes:

E
[∣∣∣∆−1

l (n+1)−1∑
k=0

[
{h(i)(X̃k∆l

)− h(i)(Xk∆l
)}(Y (i)

(k+1)∆l
− Y (i)

k∆l
)
]∣∣∣2r] ≤ C∆r

l .

Thus, on returning to (43), we have shown that

E[|M l
n+1|2r] ≤ C∆r

l . (44)
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Noting that as h(i) ∈ Lip‖·‖2(Rdx) and h(i) ∈ Bb(Rdx), it follows that (h(i))2 ∈ Lip‖·‖2(Rdx). So using very similar
calculations to those for M l

n+1 (except not requiring to apply the BGD inequality), one can prove that

E[|Rln+1|2r] ≤ C∆r
l . (45)

Thus combining (44)-(45) with (42), one has that T5 ≤ C∆
r/2
l and hence that

T4 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)r∆
r/2
l . (46)

Noting (37) and using the bounds (38) and (46)

T1 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)r∆
r/2
l .

As noted above, a similar bound can be obtained for T2 and noting (36), the proof is hence concluded.

Lemma A.6. Assume (D1). Then for any (p, n, r) ∈ N2
0 × N, n > p there exists a C < +∞ such that for any

(x, x∗) ∈ Rdx × Rdx

E
[∣∣∣Zxp,n − Zx∗

p,n

∣∣∣r]1/r ≤ C‖x− x∗‖2.
Proof. This result can be proved in a similar manner to considering (40) in the proof of Lemma A.5, that is by using
the MVT and a Martingale plus remainder method. The main difference is that one must use the result (which can
be deduced by [21, Corollary v.11.7] and the Grönwall’s inequality)

sup
t∈[p,n]

E[‖Xx
t −X

x∗
t ‖2r2 ]1/(2r) ≤ C‖x− x∗‖2. (47)

The proof is omitted due to the similarity to the proof associated to (40).

Lemma A.7. Assume (D1). Then for any (n, r) ∈ N0 × N, there exists a C < +∞ such that for any (ϕ, x, x∗) ∈
Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx × Rdx

E
[∣∣∣ϕ(Xx

n+1)Zxn+1 − ϕ(Xx∗
n+1)Zx∗

n+1

∣∣∣r]1/r ≤ C(‖ϕ‖+ ‖ϕ‖Lip)‖x− x∗‖2.

Proof. We have

E
[∣∣∣ϕ(Xx

n+1)Zxn+1 − ϕ(Xx∗
n+1)Zx∗

n+1

∣∣∣r]1/r ≤ T1 + T2

where

T1 := E
[∣∣∣{ϕ(Xx

n+1)− ϕ(Xx∗
n+1)}Zxn+1

∣∣∣r]1/r
T2 := E

[∣∣∣ϕ(Xx∗
n+1){Zxn+1 − Z

x∗
n+1}

∣∣∣r]1/r.
So we proceed to control the two terms in T1 and T2.

For T1, apply Cauchy-Schwarz to obtain the upper-bound

T1 ≤ E[|Zxn+1|2r]1/(2r)E
[∣∣∣{ϕ(Xx

n+1)− ϕ(Xx∗
n+1)}

∣∣∣2r]1/(2r).
As E[|Zxn+1|2r]1/(2r) ≤ C and using ϕ ∈ Lip‖·‖2(Rdx) along with (47) yields

T1 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)‖x− x∗‖2. (48)

For T2 using ϕ ∈ Bb(Rdx)

T2 ≤ (‖ϕ‖+ ‖ϕ‖Lip)E
[∣∣∣Zxn+1 − Z

x∗
n+1

∣∣∣r]1/r.
Applying Lemma A.6 gives

T2 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)‖x− x∗‖2. (49)

Noting (48) and (49) allows one to conclude.

22



Lemma A.8. Assume (D1). Then for any (n, r) ∈ N0×N, there exists a C < +∞ such that for any (l, ϕ, x, x∗) ∈
N× Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx × Rdx

E
[∣∣∣ϕ(X̃x

n+1)Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)− ϕ(X̃x∗

n+1)Zl−1
n+1(X̃x∗

0 , X̃x∗
∆l−1

, . . . , X̃x∗
n+1−∆l−1

)
∣∣∣r]1/r ≤

C(‖ϕ‖+ ‖ϕ‖Lip)
(

∆
1/2
l + ‖x− x∗‖2

)
.

Proof. The expectation in the statement of the Lemma is upper-bounded by
∑3
j=1 Tj where

T1 := E
[∣∣∣ϕ(X̃x

n+1)Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)− ϕ(Xx

n+1)Zxn+1

∣∣∣r]1/r
T2 := E

[∣∣∣ϕ(Xx
n+1)Zxn+1 − ϕ(Xx∗

n+1)Zx∗
n+1

∣∣∣r]1/r
T3 := E

[∣∣∣ϕ(X̃x∗
n+1)Zl−1

n+1(X̃x∗
0 , X̃x∗

∆l−1
, . . . , X̃x∗

n+1−∆l−1
)− ϕ(Xx∗

n+1)Zx∗
n+1

∣∣∣r]1/r.
The proof is completed by applying Lemma A.5 to T1 and T3, and Lemma A.7 to T2.

Lemma A.9. Assume (D1). Then for any (n, p, r) ∈ N0 ×N2, there exists a C < +∞ such that for any (l, ϕ, x) ∈
N0 × Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx

E

[∣∣∣∣∣E[ϕ(X̃x
n+1)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]

−
E[ϕ(Xx

n+1)Zxn|Yn]

E[Zxp |Yp]

∣∣∣∣∣
r]1/r

≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .

Proof. We have

E

[∣∣∣∣∣E[ϕ(X̃x
n+1)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]

−
E[ϕ(Xx

n+1)Zxn|Yn]

E[Zxp |Yp]

∣∣∣∣∣
r]1/r

≤ T1 + T2

where

T1 := E

[∣∣∣∣∣E[ϕ(X̃x
n+1)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]

−
E[ϕ(Xx

n+1)Zln(Xx
0 , X

x
∆l
, . . . , Xx

n−∆l
)|Yn]

E[Zlp(X
x
0 , X

x
∆l
, . . . , Xx

p−∆l
)|Yp]

∣∣∣∣∣
r]1/r

T2 = E

[∣∣∣∣∣E[ϕ(Xx
n+1)Zln(Xx

0 , X
x
∆l
, . . . , Xx

n−∆l
)|Yn]

E[Zlp(X
x
0 , X

x
∆l
, . . . , Xx

p−∆l
)|Yp]

−
E[ϕ(Xx

n+1)Zxn|Yn]

E[Zxp |Yp]

∣∣∣∣∣
r]1/r

.

T2 can be dealt with in a similar way to T1, except one uses approaches similar to [4, Theorem 21.3] (which is a
similar MVT, Martingale plus remainder method that has been used in the proof of Lemma A.5), so we treat the
former only.

Now, we have
T1 ≤ T3 + T4

where

T3 := E

[∣∣∣∣∣ E[ϕ(X̃x
n+1)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]E[Zlp(X

x
0 , X

x
∆l
, . . . , Xx

p−∆l
)|Yp]

(
E[Zlp(X

x
0 , X

x
∆l
, . . . , Xx

p−∆l
)|Yp]−

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]

)∣∣∣∣∣
r]1/r

T4 := E

[∣∣∣∣∣ 1

E[Zlp(X
x
0 , X

x
∆l
, . . . , Xx

p−∆l
)|Yp]

(
E[ϕ(X̃x

n+1)Zln(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n−∆l
)|Yn]−

E[ϕ(Xx
n+1)Zln(Xx

0 , X
x
∆l
, . . . , Xx

n−∆l
)|Yn]

)∣∣∣∣∣
r]1/r

.
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For T3 applying Cauchy-Schwarz and conditional Jensen,

T3 ≤ E

[∣∣∣∣∣ E[ϕ(X̃x
n+1)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]E[Zlp(X

x
0 , X

x
∆l
, . . . , Xx

p−∆l
)|Yp]

∣∣∣∣∣
2r]1/(2r)

×

E
[∣∣∣Zlp(Xx

0 , X
x
∆l
, . . . , Xx

p−∆l
)− Zlp(X̃x

0 , X̃
x
∆l
, . . . , X̃x

p−∆l
)
∣∣∣2r]1/(2r).

For the left-most expectation on the R.H.S. one can use ϕ ∈ Bb(Rdx), the Hölder and Jensen inequalities along with
the proof approaches in the proof of Lemma A.10 to establish that the expectation is upper-bounded by a constant
C that does not depend upon l, x. For the right-most expectation on the R.H.S. one can use the ideas in (40) to
deduce that

T3 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .

The proof for T4 is similar, except using the ideas for (37) instead of (40). That is, T4 ≤ C(‖ϕ‖ + ‖ϕ‖Lip)∆
1/2
l .

Hence
T1 ≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆

1/2
l .

This completes the argument.

Remark A.1. One can easily deduce: Assume (D1). Then for any (n, r) ∈ N0 × N, there exists a C < +∞ such
that for any (l, ϕ, x) ∈ N0 × Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx

E

[∣∣∣∣∣E[ϕ(X̃x
n)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zln(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n−∆l
)|Yn]

− E[ϕ(Xx
n)Zxn|Yn]

E[Zxn|Yn]

∣∣∣∣∣
r]1/r

≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .

Corollary A.2. Assume (D1). Then for any (n, p, r) ∈ N0 × N2, there exists a C < +∞ such that for any
(l, ϕ, x) ∈ N× Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx

E

[∣∣∣∣∣E[ϕ(X̃x
n+1)Zln(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n−∆l
)|Yn]

E[Zlp(X̃
x
0 , X̃

x
∆l
, . . . , X̃x

p−∆l
)|Yp]

−
E[ϕ(X̃x

n+1)Zl−1
n (X̃x

0 , X̃
x
∆l−1

, . . . , X̃x
n−∆l−1

)|Yn]

E[Zl−1
p (X̃x

0 , X̃
x
∆l−1

, . . . , X̃x
p−∆l−1

)|Yp]

∣∣∣∣∣
r]1/r

≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .

Proof. Can be easily proved by using Lemma A.9.

Remark A.2. Using a similar strategy to Lemma A.9 and Corollary A.2, one can establish the following under
(D1). For any (n, r) ∈ N0×N, there exists a C < +∞ such that for any (l, ϕ, x) ∈ N×Bb(Rdx)∩Lip‖·‖2(Rdx)×Rdx :

E
[∣∣∣E[ϕ(X̃x

n+1)Zln(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n−∆l
)|Yn]− E[ϕ(X̃x

n+1)Zl−1
n (X̃x

0 , X̃
x
∆l−1

, . . . , X̃x
n−∆l−1

)|Yn]
∣∣∣r]1/r

≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l . (50)

For any (n, r) ∈ N2, there exists a C < +∞ such that for any (l, ϕ, x) ∈ N× Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx :

E

[∣∣∣∣∣E[ϕ(X̃x
n+1)Zln+1(X̃x

0 , X̃
x
∆l
, . . . , X̃x

n+1−∆l
)|Yn+1]

E[Zln(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n−∆l
)|Yn]

−
E[ϕ(X̃x

n+1)Zl−1
n+1(X̃x

0 , X̃
x
∆l−1

, . . . , X̃x
n+1−∆l−1

)|Yn+1]

E[Zl−1
n (X̃x

0 , X̃
x
∆l−1

, . . . , X̃x
n−∆l−1

)|Yn]

∣∣∣∣∣
r]1/r

≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .

For any (n, r) ∈ N0 × N, there exists a C < +∞ such that for any (l, ϕ, x) ∈ N× Bb(Rdx) ∩ Lip‖·‖2(Rdx)× Rdx :

E
[∣∣∣E[ϕ(X̃x

n+1)Zln+1(X̃x
0 , X̃

x
∆l
, . . . , X̃x

n+1−∆l
)|Yn+1]− E[ϕ(X̃x

n+1)Zl−1
n+1(X̃x

0 , X̃
x
∆l−1

, . . . , X̃x
n+1−∆l−1

)|Yn+1]
∣∣∣r]1/r

≤ C(‖ϕ‖+ ‖ϕ‖Lip)∆
1/2
l .
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A.5 Results for the Particle Filter
Lemma A.10. Assume (D1). Then for any (p, n, r) ∈ N2

0 × N, n ≥ p, there exists a C < +∞ such that for any
l ∈ N0, (i, ϕ) ∈ {1, . . . , N} × Bb(El)

max{E[πlp(Q
l
p,n(ϕ))−r],E[πl,Np (Ql

p,n(ϕ))−r],E[Ql
p,n(ϕ)(U l,ip )r]1/r} ≤ C‖ϕ‖.

Proof. We start by considering E[Ql
p,n(ϕ)(U l,ip )r]1/r. Applying Jensen’s inequality, we have the upper-bound:

E[Ql
p,n(ϕ)(U l,ip )r] ≤ ‖ϕ‖rE[Gl

p(U
l,i
p )r

n−1∏
q=p+1

Gl
q(Uq)

r]

where Up+1, . . . , Un is a Markov chain of initial distribution M l(U l,ip , ·) and transition M l. As h is bounded, we
have the upper-bound

E[Ql
p,n(ϕ)(U l,ip )r] ≤ C‖ϕ‖rE

[
exp

{
r

∆−1
l −1∑
s1=0

dy∑
s2=1

h(s2)(X l,i
p+s1∆l

)(Y
(s2)
p+(s1+1)∆l

− Y (s2)
p+s1∆l

)
}
×

exp
{
r

n−1∑
q=p+1

∆−1
l −1∑
s1=0

dy∑
s2=1

h(s2)(X l
q+s1∆l

)(Y
(s2)
q+(s1+1)∆l

− Y (s2)
q+s1∆l

)
}]
.

Taking expectations w.r.t. the process {Yt} we have

E[Ql
p,n(ϕ)(U l,ip )r] ≤ C‖ϕ‖rE

[
exp

{r2

2

∆−1
l −1∑
s1=0

dy∑
s2=1

h(s2)(X l,i
p+s1∆l

)2∆l

}
×

exp
{r2

2

n−1∑
q=p+1

∆−1
l −1∑
s1=0

dy∑
s2=1

h(s2)(X l
q+s1∆l

)2∆l

}]
.

Then using the fact that h is bounded, it clearly follows

E[Ql
p,n(ϕ)(U l,ip )r]1/r ≤ C‖ϕ‖.

For the terms E[πlp(Q
l
p,n(ϕ))−r] and E[πl,Np (Ql

p,n(ϕ))−r] one can apply (the conditional) Jensen’s inequality and
essentially the same argument as above and hence the proof is omitted.

Proposition A.2. Assume (D1). Then for any (p, n, r) ∈ N2
0 × N, n ≥ p, there exists a C < +∞ such that for

any l ∈ {0, 1, . . . }, (N,ϕ) ∈ N× Bb(El)

E[|(πl,Np − πlp)(Ql
p,n(ϕ))|r]1/r ≤ C‖ϕ‖√

N
.

Proof. The proof is by induction on p for any fixed n ≥ p. If p = 0 one can apply the conditional Marcinkiewicz-
Zygmund inequality to yield:

E[|(πl,Np − πlp)(Ql
p,n(ϕ))|r]1/r ≤ C√

N
E[Ql

p,n(ϕ)(U l,1p )r]1/r.

Then one has the result by Lemma A.10.
For the induction step, we have the standard decomposition via Minkowski

E[|(πl,Np − πlp)(Ql
p,n(ϕ))|r]1/r ≤ T1 + T2 + T3 (51)

where

T1 = E[|(πl,Np − Φlp(π
l,N
p−1))(Ql

p,n(ϕ))|r]1/r

T2 = E
[∣∣∣Φlp(πl,Np−1)(Ql

p,n(ϕ))

πlp−1(Gl
p−1)

{(πlp−1 − π
l,N
p−1)(Gl

p−1)}
∣∣∣r]1/r

T3 = E
[∣∣∣ (πl,Np−1 − πlp−1)(Ql

p−1,n(ϕ))

πlp−1(Gl
p−1)

∣∣∣r]1/r.
25



By the same argument as for the initialization

T1 ≤
C‖ϕ‖√
N

. (52)

For T2 applying Hölder

T2 ≤ E[πlp−1(Gl
p−1)−3r]1/(3r)E[Φlp(π

l,N
p−1)(Ql

p,n(ϕ))3r]1/(3r)E[|(πlp−1 − π
l,N
p−1)(Gl

p−1)|3r]1/(3r).

For the left-most term on the R.H.S. one can apply Lemma A.10. For the middle term on the R.H.S. one can
apply the conditional Jensen inequality and Lemma A.10. For the right-most term on the R.H.S. one can apply the
induction hypothesis. Hence

T2 ≤
C‖ϕ‖√
N

. (53)

For T3, one can use Cauchy-Schwarz, Lemma A.10 and the induction hypothesis to yield

T3 ≤
C‖ϕ‖√
N

. (54)

Combining (52)-(54) with (51) concludes the proof.

Remark A.3. It is simple to extend Proposition A.2 to the case of the filter. That is, for any (p, n, r) ∈ N2
0 × N,

n ≥ p, there exists a C < +∞ such that for any l ∈ {0, 1, . . . }, (N,ϕ) ∈ N× Bb(El)

E[|(ηl,Np − ηlp)(Ql
p,n(ϕ))|r]1/r ≤ C‖ϕ‖√

N
.

Remark A.4. It is straightforward to extend Proposition A.2 to the following result, under (D1): for any (p, n, r) ∈
N2

0 × N, n ≥ p, there exists a C < +∞ such that for any l ∈ N0, (N,ϕ) ∈ N× Bb(El)

E[|(πl,Np − πlp)(Ql
p,n(Gl

nϕ))|r]1/r ≤ C‖ϕ‖√
N

.

Corollary A.3. Assume (D1). Then for any (p, n, r) ∈ N2
0 × N, n ≥ p, there exists a C < +∞ such that for any

l ∈ N0, (N,ϕ) ∈ N× Bb(El)

E[|πl,Np (Dl
p,n(Gl

nϕ))|r]1/r ≤ C‖ϕ‖√
N

.

Proof. Noting that πlp(Dl
p,n(Gl

nϕ)) = 0 a.s., the result follows immediately by Cauchy-Schwarz, Lemma A.10 and
Proposition A.2 (see Remark A.4).
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