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Abstract

We derive a single pass algorithm for computing the gradient and Fisher information of Vecchia’s
Gaussian process loglikelihood approximation, which provides a computationally efficient means
for applying the Fisher scoring algorithm for maximizing the loglikelihood. The advantages of
the optimization techniques are demonstrated in numerical examples and in an application to
Argo ocean temperature data. The new methods are more accurate and much faster than an
optimization method that uses only function evaluations, especially when the covariance function
has many parameters. This allows practitioners to fit nonstationary models to large spatial and
spatial-temporal datasets.

1 Introduction

The Gaussian process model is an indispensible tool for the analysis of spatial and spatial-temporal
datasets and has become increasingly popular as a general-purpose model for functions. Because
of its high computational burden, researchers have devoted substantial effort to developing nu-
merical approximations for Gaussian process computations. Much of the work focuses on efficient
approximation of the likelihood function. Fast likelihood evaluations are crucial for optimization
procedures that require many evaluations of the likelihood, such as the default Nelder-Mead al-
gorithm (Nelder and Mead, 1965) in the R optim function. The likelihood must be repeatedly
evaluated in MCMC algorithms as well.

Compared to the amount of literature on efficient likelihood approximations, there has been
considerably less development of techniques for numerically maximizing the likelihood (see Geoga
et al. (2018) for one recent example). This article aims to address the disparity by providing:

1. Formulas for evaluating the gradient and Fisher information for Vecchia’s likelihood approxi-
mation in a single pass through the data, so that the Fisher scoring algorithm can be applied.
Fisher scoring is a modification of the Newton-Raphson optimization method, replacing the
Hessian matrix with the Fisher information matrix.

2. Numerical examples with simulated and real data demonstrating the practical advantages
that the new techniques provide over an optimizer that uses function evaluations alone.

Among the sea of Gaussian process approximations proposed over the past several decades,
Vecchia’s approximation (Vecchia, 1988) has emerged as a leader. It can be computed in linear
time and with linear memory burden, and it can be parallelized. Maximizing the approximation
corresponds to solving a set of unbiased estimating equations, leading to desirable statistical prop-
erties (Stein et al., 2004). It is general in that it does not require gridded data nor a stationary
model assumption. The approximation forms a valid multivariate normal model, and so it can
be used for simulation and conditional simulation. As an approximation to the target model, it
is highly accurate relative to competitors (Guinness, 2018). Vecchia’s approximation also forms a
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conceptual hub in the space of Gaussian process approximations, since a generalization includes
many well-known approximations as special cases (Katzfuss and Guinness, 2017). Lastly, there are
publicly available R packages implementing it (Finley et al., 2017; Guinness and Katzfuss, 2018).

The numerical examples in this paper show that, in realistic data and model scenarios, the
new techniques offer significant computational advantages over default optimization techniques.
Although it is more expensive to evaluate the gradient and Fisher information in addition to the
likelihood, the Fisher scoring algorithm converges in a small number of iterations, leading to a large
advantage in total computing time over an optimization method that uses only the likelihood. For
isotropic Matérn models, the speedup is roughly 2 to 4 times, and on more complicated models
with more parameters, the new techniques can be more than 40 times faster. This is a significant
practical improvement that will be attractive to practitioners choosing among various methods.

2 Background

Let s1, . . . , sn be locations in a domain D. At each si, we observe a scalar response yi, collected into
column vector y = (y1, . . . , yn)T . Along with the response, we observe covariates xi = (xi1, . . . , xip)
collected into an n × p design matrix X. In the Gaussian process, we model y as a multivariate
normal vector Y with expected value E(Y ) = Xβ (β ∈ Rp), and covariance matrix E((Y −Xβ)(Y −
Xβ)T ) = Σθ, where the (i, j) entry of Σθ is Kθ(si, sj). The function Kθ is positive definite on D×D
and depends on covariance parameters θ. The loglikelihood for β and θ is

log fβ,θ(y) = −n
2

log(2π)− 1

2
log det Σθ −

1

2
(y −Xβ)TΣ−1

θ (y −Xβ). (1)

Unless Σθ has some exploitable structure, evaluation of the loglikelihood involves storing the n2

entries of Σθ and performing O(n3) floating point operations to obtain the Cholesky factor of Σθ,
both of which are computationally prohibitive when n is large.

Vecchia’s loglikelihood approximation is a modification of the conditional representation of a
joint density function. Let g(1) = ∅, g(i) ⊂ (1, . . . , i− 1) and yg(i) be the corresponding subvector
of y. Vecchia’s loglikelihood approximation is

`(β, θ) =

n∑
i=1

log fβ,θ(yi|yg(i)), (2)

leading to computational savings when |g(i)| is small. As mentioned in the introduction, Vecchia’s
likelihood approximation corresponds to a valid multivariate normal distribution with mean Xβ
and a covariance matrix Σ̃θ. To motivate why obtaining the gradient and Fisher information poses
an analytical challenge, consider the partial derivative of Vecchia’s loglikelihood with respect to θj :

∂`(β, θ)

∂θj
=

1

2
(y −Xβ)T Σ̃−1

θ

∂Σ̃θ

∂θj
Σ̃−1
θ (y −Xβ)− 1

2
Tr

(
Σ̃−1
θ

∂Σ̃θ

∂θj

)
, (3)

where (∂Σ̃θ/∂θj) is an n × n matrix of partial derivatives of Σ̃θ with respect to θj . Not only is

∂Σ̃θ/∂θj too large to store in memory, the covariances Σ̃θ are not easily computable, nor are their
partial derivatives. In the next section, we outline a simple reframing of Vecchia’s likelihood that
leads to a computationally tractable method of evaluating the gradient and Fisher information.
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3 Derivations for Single Pass Algorithm

To derive formulas for the gradient and Fisher information, it is helpful to rewrite the conditional
likelihoods in terms of marginals. To this end, define ui = yg(i) and vi = (yg(i), yi). Define the
design matrices for ui and vi, respectively, as Qi and Ri, and define the covariance matrices for ui
and vi, respectively as Ai and Bi (suppressing dependence on θ). The notation is chosen to follow
the mnemonic device that the first of the two letters alphabetically is a subvector or submatrix of
the second letter. Vecchia’s loglikelihood can then be rewritten as

`(β, θ) =
m∑
i=1

log fβ,θ(vi)− log fβ,θ(ui) (4)

=− 1

2

n∑
i=1

[log detBi − log detAi] (5)

− 1

2

n∑
i=1

[
(vi −Riβ)TB−1

i (vi −Riβ)− (ui −Qiβ)TA−1
i (ui −Qiβ)

]
− n

2
log(2π). (6)

Our proposed algorithm for obtaining the likelihood, gradient, and Fisher information involves
computing the following quantities in a single pass through the data.

(logdet) =

n∑
i=1

(log detBi − log detAi) (7)

(dlogdetj) =

n∑
i=1

(
Tr(B−1

i Bi,j)− Tr(A−1
i Ai,j)

)
(8)

(ySy) =
n∑
i=1

(
vTi B

−1
i vi − uTi A−1

i ui
)

(9)

(XSy) =
n∑
i=1

(
RTi B

−1
i vi −QTi A−1

i ui
)

(10)

(XSX) =
n∑
i=1

(
RTi B

−1
i Ri −QTi A−1

i Qi
)

(11)

(dySyj) = −
n∑
i=1

(
vTi B

−1
i Bi,jB

−1
i vi − uTi A−1

i Ai,jA
−1
i ui

)
(12)

(dXSyj) = −
n∑
i=1

(
RTi B

−1
i Bi,jB

−1
i vi −QTi A−1

i Ai,jA
−1
i ui

)
(13)

(dXSXj) = −
n∑
i=1

(
RTi B

−1
i Bi,jB

−1
i Ri −QTi A−1

i Ai,jA
−1
i Qi

)
(14)

(Trjk) =

n∑
i=1

[
Tr(B−1

i Bi,jB
−1
i Bi,k)− Tr(A−1

i Ai,jA
−1
i Ai,k)

]
, (15)

where Ai,j and Bi,j are the matrices of partial derivatives of Ai and Bi, respectively, with respect
to θj . The quantities having the form (d ∗ j) are simply the partial derivatives of the corresponding
quantity (∗) with respect to θj . Each of these quantities can be updated at each i = 1, . . . , n, and
so all can be evaluated in a single pass through the data. We refer to them collectively as our
single-pass quantities.
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3.1 Profile Likelihood, Gradient, and Fisher Information

Given covariance parameter θ, denote the maximum Vecchia likelihood estimate of β as β̂(θ). Since
β̂(θ) has a closed form expression (Section 3.2), we can maximize the profile likelihood `(β̂(θ), θ)
over θ alone. The profile likelihood can be written in terms of our single-pass quantities as

`(β̂(θ), θ) = −n
2

log(2π)− 1

2
(logdet)− 1

2

[
(ySy)− 2(XSy)β̂(θ) + β̂(θ)T (XSX)β̂(θ)

]
. (16)

Therefore the partial derivatives can also be written in terms of the single pass quantities as

∂`(β̂(θ), θ)

∂θj
=− 1

2
(dlogdetj)− 1

2

[
(dySyj)− 2(dXSyj)β̂(θ) + β̂(θ)T (dXSXj)β̂(θ)

]
− 1

2

[
−2(XSy)

∂β̂(θ)

∂θj
+ 2β̂(θ)T (XSX)

∂β̂(θ)

∂θj

]
, (17)

where (∂β̂(θ)/∂θj) is the column vector of partial derivatives of the p entries of β̂(θ) with respect
to covariance parameter θj . The Fisher information is

I(θ)jk =
1

2

n∑
i=1

[
Tr(B−1

i Bi,jB
−1
i Bi,k)− Tr(A−1

i Ai,jA
−1
i Ai,k)

]
=

1

2
(Trjk) .

It remains to be shown that β̂(θ) and ∂β̂(θ)/∂θj can be computed using our single-pass quantities.

3.2 Mean Parameters

The profile likelihood estimate β̂(θ) satisfies ∂`(β, θ)/∂βj = 0 for every j = 1, . . . , p. These partial
derivatives are ∂`(β, θ)/∂β1...

∂`(β, θ)/∂βp

 =

n∑
i=1

RTi B
−1
i (vi −Riβ)−QTi A−1

i (ui −Qiβ), (18)

giving the equation[
n∑
i=1

(
RTi B

−1
i Ri −QTi A−1

i Qi

)]
β̂(θ) =

[
n∑
i=1

(
RTi B

−1
i vi −QTi A−1

i ui

)]
. (19)

Therefore, the profile likelihood estimate of β is

β̂(θ) = (XSX)−1(XSy), (20)

a function of our single pass quantities. Taking partial derivatives with respect to θj yields

∂β̂(θ)

∂θj
= (XSX)−1(dXSyj)− (XSX)−1(dXSXj)(XSX)−1(XSy), (21)

also a function of our single pass quantities.
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4 Numerical Studies

This section contains timing results, comparing the R optim implementation of the Nelder-Mead
algorithm to the Fisher scoring algorithm. In Fisher scoring, we reject steps that do not increase
the loglikelihood, dividing the step size by 2 iteratively. If we cannot increase the loglikelihood
along the Fisher step direction, we attempt to step along the gradient. For both Nelder-Mead
and Fisher scoring, we first generate estimates using Vecchia’s approximation with |g(i)| = 10
nearest neighbors, then refine the estimates using |g(i)| = 30. In Nelder-Mead, we evaluate only
the likelihood, not the gradient and Fisher information. The Fisher scoring algorithm stops when
the dot product between the step and the gradient is less than 1e-4. Default stopping criteria were
used for Nelder-Mead algorithm. We simulate all datasets from the same model:

Y (s) = µ+ Z(s) + ε(s), (22)

where µ = 0, Z is a Gaussian process with exponential covariance functionK(s1, s2) = σ2 exp(−‖s1−
s2‖/α), and ε(s) are i.i.d. N(0, τ2) with τ2 = 0.2. We take (σ2, α) = (2, 0.3). Data are simulated
on an evenly spaced grid of 4900 locations on [0, 1]2. In addition to the exponential covariance with
unknown variance and range, we estimate parameters in three covariance models that generalize
the exponential:

K(s1, s2) =
σ2

Γ(ν)2ν−1

(
‖s1 − s2‖

α

)ν
Kν
(
‖s1 − s2‖

α

)
(23)

K(s1, s2) =
σ2

Γ(ν)2ν−1
(‖Ls1 − Ls2‖)ν Kν (‖Ls1 − Ls2‖) (24)

K(s1, s2) = exp

 J∑
j=1

bj(φj(s1) + φj(s2))

 σ2

Γ(ν)2ν

(
‖s1 − s2)‖

α

)ν
Kν
(
‖s1 − s2‖

α

)
. (25)

The first is an isotropic Matérn covariance function. The second is a geometrically anisotropic
Matérn covariance, with anisotropy parameterized by the 2 × 2 lower triangular matrix L. The
third is a Matérn covariance with a nonstationary variance function. The nonstationary variances
are defined in terms of pre-specified known basis functions φj and unknown parameters bj . For
identifiability purposes, the J = 8 basis functions are an orthogonal basis that is also orthogonal to
a constant function. The orthogonal basis is formed by applying Gram-Schmidt orthogonalization
to a set of Gaussian basis functions.

Excluding µ, which is estimated by profile maximum likelihood, but including the nugget vari-
ance τ2, the four models have 3, 4, 6, and 12 unknown parameters. Each model has a multiplicative
variance parameter σ2. In the Nelder-Mead algorithm, we profile out σ2, whereas In Fisher scoring,
we do not. We found that profiling σ2 does not substantially influence convergence speed in Fisher
scoring. All positive parameters are mapped to the real line by a log transform. Each model was
fit to each dataset on an independent R process running on a single thread of an 8-core (16 thread)
Intel Xeon W-2145 (3.7GHz, 4.5GHz Turbo) processor with 16GB RAM. Fifteen datasets were sent
to each of 14 threads, yielding 210 simulated datasets.

Hisotograms of the timing results are given in Figure 1. Considering the median times, Fisher
scoring is 2-3 times faster for the isotropic models (3 and 4 parameters), more than 10 times
faster for the stationary Matérn model (6 parameters), and 47 times faster for the nonstationary
model (12 parameters). There is also no noticeable loss in accuracy, which we can evaluate by
comparing the maximum loglikelihoods returned by Fisher scoring to the loglikelihoods returned
by Nelder-Mead. For the isotropic models, the two loglikelihoods never differed by more than 0.001
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Figure 1: Results of optimization timing study. Each plot shows histograms of time (in seconds)
until convergence for one of the four covariance functions over 210 replicates. The plotted numbers
indicate the median time until convergence.

units. In the stationary model, the Fisher scoring loglikelihood was more than 0.01 larger than the
Nelder-Mead loglikelihood in 11 of the 210 datasets, whereas the Nelder-Mead loglikelihood was
never more than 0.01 larger than the Fisher scoring loglikelihood. For the nonstationary model,
the Fisher scoring loglikelihoods were more than 0.01 larger than the Nelder-Mead loglikelihoods in
199 of the 210 datasets, whereas the Nelder-Mead loglikelihoods were more than 0.01 larger in just
3 of the 210 datasets. Not only does Nelder-Mead take nearly 50 times longer than Fisher scoring
in the nonstationary model, it usually does not find the actual maximum likelihood estimates.

4.1 Identifiability

Surprisingly, the maximum likelihood estimate of the nugget variance can be a negative number.
This is not an error of the optimization algorithm (a triumph rather); in these cases, the algorithm
finds a negative nugget with a higher likelihood than any nonnegative nugget can produce. Negative
nugget estimates occur most frequently when the data are evenly spaced and when the maximum
likelihood estimate of the smoothness parameter is small (ν < 0.25). In this scenario, the covariance
function has a narrow peak at distances smaller than the minimum spacing between locations. This
happened frequently enough in our testing of the Fisher scoring algorithm that we found it necessary
to impose a penalty on very small values of the nugget and smoothness parameters, since it is not
sensible to return negative nugget estimates. The penalties are

pen(τ2) = −0.01 log(1 + 0.01/τ2), pen(ν) = −0.01 log(1 + 0.2/ν).

The likelihood function also has difficulty jointly identifying variance and range parameters when
the range parameter estimate is much larger than the maximum distance between points in the
dataset. This is a theoretically well-studied problem (Zhang, 2004) that no optimization routine
can overcome. We have found that penalizing large variance parameters helps improve convergence
of Fisher scoring without sacrificing accuracy. We used the penalty

pen(σ2) = log(1 + eσ
2/σ̃2−6),

where σ̃2 is the estimate of the residual variance parameter in a least squares fit of the response
to the constant covariate. This imposes essentially no penalty on the parameter unless it is several
times larger than the least squares estimate, after which the penalty increases roughly linearly in
σ2. These two identifiability problems can be handled more elegantly in a Bayesian framework, but
we do not pursue that here because identifiability is not the focus of this paper.
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Figure 2: Plot of Argo data and variograms evaluated at 10km for the spatial-only model, and
the spatial-temporal model.

5 Case Study: Argo Ocean Temperature Data

Argo is a global program that deploys floating ocean temperature sensors (International Argo
Program, 2019). Each Argo float operates on a 10 day cycle, during which it descends to a 2000m
depth and returns to the surface, collecting temperature and salinity measurements along the depth
profile. The floats drift freely in the horizontal direction with ocean currents. As of May 2019,
3,799 floats covered the globe. We analyze a subset of the observations collected at 100 dbar
(approximately 100m depth) between January 1 and March 31, 2016. Preprocessed data were
provided by Mikael Kuusela and are described in more detail in Kuusela and Stein (2018). In total,
there are 32,492 measurements over the three month period. The data are plotted in Figure 2.

We model the data from day t and location s on the sphere S ⊂ R3 as

Y (s, t) = β0 + β1L(s) + β2L
2(s) + Z(s+ Φ(s), t) + ε(s, t),

where L(s) is the latitude of location s, Z(s, t) is a Gaussian process with covariance function Kθ,
Φ : R3 → R3 is a spatial warping function, and ε(s, t) are i.i.d. mean zero normals with variance
τ2. We consider both spatial and spatial-temporal models for Kθ:

Kθ((s1, t1), (s2, t2)) =
σ2

2ν−1Γ(ν)
(dα(s1, s2))

ν Kν (dα(s1, s2)) ,

Kθ((s1, t1), (s2, t2)) =
σ2

2ν−1Γ(ν)
(dα((s1, t1), (s2, t2)))

ν Kν (dα((s1, t1), (s2, t2))) .

The function dα is Euclidean distance scaled by either a spatial range parameter or spatial and
temporal range parameters

dα(s1, s2) =
‖s1 − s2‖

α
, dα((s1, t1), (s2, t2)) =

(
‖s1 − s2‖2

α2
1

+
|t1 − t2|2

α2
2

)1/2

.

The warping function Φ is assumed to be a linear combination of the gradients of the five spherical
harmonic functions of degree 2, where the gradient is with respect to the three Euclidean coor-
dinates. We use degree 2 because the degree 0 function is constant, and the degree 1 spherical
harmonics have constant partial derivatives (as a function of s), and so degree 1 warpings simply
translate all points by the same vector and do not affect the covariances. We also consider the
special case of Φ(s) = 0 for all s, which corresponds to isotropic models in space and time. The
spatial warping model has 9 parameters, while the space-time warping model has 10. The isotropic
models have 4 and 5 parameters.
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loglikelihood time (minutes)
Model Fisher Scoring Nelder-Mead Fisher Scoring Nelder-Mead

Isotropic Spatial −6167.675 −6167.676 2.76 7.06
Warping Spatial −5812.902 −5812.912 6.56 79.96

Isotropic Space-Time −237.038 −237.039 3.62 10.61
Warping Space-Time 0.000 −2.038 12.13 190.31

Table 1: Optimization results for four models fit to Argo float data. Reported loglikelihoods are
differences from largest loglikelihood

We fit each model using both Fisher scoring and Nelder-Mead, with the results given in Table 1.
Fisher scoring is able to fit the space-time warping model in 12.13 minutes, whereas Nelder-Mead
ran for 190 minutes and returned a loglikelihood value 2.038 units lower. In the spatial-only warping
model, Fisher Scoring finished in 6.56 minutes, whereas Nelder-Mead returned a loglikelihood value
0.01 lower after 80 minutes. The two methods produced nearly the same loglikelihoods on the
isotropic models, with Fisher scoring running more than twice as fast. The results closely mirror
the numerical study, where Fisher scoring had its largest improvements in both speed and accuracy
when fitting models with the many parameters. Finally, in Figure 2, we plot Var(Y (s, t)−Y (s+h, t))
as a function of s, with ‖h‖ = 10km. The images show that the warping model produces an
anisotropic variogram, with larger increment variances near the equator.

6 Discussion

We believe that practitioners will benefit from the availability of high quality algorithms for fitting
nonstationary Gaussian process models to large spatial and spatial-temporal datasets. The methods
are applicable to any covariance function that is differentiable with respect to its parameters. This is
important because it separates the tasks of constructing models and developing methods for fitting
the models, freeing us to select the most appropriate covariance function for the data rather than
the most appropriate model for which a specialized method exists. The Fisher scoring algorithm, as
well as anisotropic, nonstationary variance, and warping covariance functions, will be implemented
in version 0.2.0 of the GpGp R package (Guinness and Katzfuss, 2018).
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