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Abstract We introduce a new variational inference (VI)

framework, called energetic variational inference (EVI).

It minimizes the VI objective function based on a pre-

scribed energy-dissipation law. Using the EVI frame-

work, we can derive many existing Particle-based Vari-

ational Inference (ParVI) methods, including the pop-

ular Stein Variational Gradient Descent (SVGD) ap-

proach. More importantly, many new ParVI schemes

can be created under this framework. For illustration,

we propose a new particle-based EVI scheme, which

performs the particle-based approximation of the den-

sity first and then uses the approximated density in the

variational procedure, or “Approximation-then-Variation”

for short. Thanks to this order of approximation and

variation, the new scheme can maintain the variational

structure at the particle level, and can significantly de-

crease the KL-divergence in each iteration. Numerical

experiments show the proposed method outperforms

some existing ParVI methods in terms of fidelity to the

target distribution.
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1 Introduction

Bayesian methods play an important role in statistics

and data science nowadays. They provide a rigorous

framework for uncertainty quantification of various sta-

tistical learning models [23, 65]. The main components

of a Bayesian model includes a set of observational data

{yi}Ii=1 with yi ∈ RD, the model assumption of the

likelihood ρ({yi}Ii=1|x) with certain unknown parame-

ters x ∈ Rd, and a user-specified prior distribution for

the parameters ρ0(x). The key step in Bayesian infer-

ence is to obtain the posterior distribution, denoted by

ρ(x|{yi}Ii=1). Following the Bayes’ theorem, the poste-

rior distribution of the unknown parameters is

ρ(x|{yi}Ii=1) =
ρ({yi}Ii=1|x)ρ0(x)

ρ({yi}Ii=1)
.

However, it is a long standing challenge to obtain the

posterior distribution in practice when the analytical

formula of ρ(x|{yi}Ii=1) is not tractable due to the in-

tegration ρ({yi}Ii=1) =
∫
ρ({yi}Ii=1|x)ρ0(x)dx.

Many approximate inference methods have been de-

veloped to approximate the posterior distribution. Among

them, two popular classes of methods are Markov Chain

Monte Carlo (MCMC) algorithms [24, 29, 47, 71] and

Variational Inference (VI) methods [6,32,51,69]. MCMC

is a family of methods that generate samples by con-

structing a Markov chain whose equilibrium distribu-

tion is the target distribution. Examples include the

Metropolis–Hastings algorithm [29,47], Gibbs sampling

[10, 24], Langevin Monte Carlo (LMC) [55, 58, 60, 71],

and Hamiltonian Monte Carlo (HMC) [17,50].

The VI framework essentially transforms the infer-

ence problem into an optimization problem, which min-

imizes some kind of objective functional over a pre-

scribed family of distributions denoted by Q [6]. The
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objective functional measures the difference between a

candidate distribution in Q and the target distribution.

For Bayesian models, the target distribution is the pos-

terior distribution. VI has a wide application that goes

beyond Bayesian statistics and is a powerful tool for ap-

proximating probability densities. A common choice of

the objective functional is the Kullback-Leibler (KL) di-

vergence [6]. For any two distributions ρ(x) and ρ∗(x),

the KL-divergence from ρ to ρ∗ is given by

KL(ρ(x)||ρ∗(x)) =

∫
ρ(x) ln

(
ρ(x)

ρ∗(x)

)
dx. (1.1)

In the review paper [6], the authors have made a

detailed comparison between MCMC and VI methods,

both conceptually and numerically. Essentially, MCMC

methods guarantee the convergence of the generated

samples to the target distribution when certain condi-

tions are met. But the price of this asymptotic prop-

erty is that MCMC methods tend to be more com-

putationally intensive and thus might not be suitable

for large datasets. On the contrary, VI methods do not

have this asymptotic guarantee. For particle-based VI,

the fidelity of the empirical distribution of the parti-

cles to the target distribution depends on the VI algo-

rithm as well as the number of particles. On the other

hand, since VI is essentially an optimization problem

and it can take advantage of the stochastic optimiza-

tion methods, VI methods can be significantly faster

than MCMC. For detailed differences and connections

between the two types of methods, see [45] and [61]. In

this paper, we only focus on the VI approaches.

The VI framework minimizes KL(ρ(x)||ρ∗(x)) with

respect to ρ ∈ Q in order to approximate the target

distribution ρ∗. In traditional VI methods [6], Q is of-

ten taken as a family of parametric distributions. There

also have been growing interests in flow-based VI meth-

ods, in which Q consists of distributions obtained by a

series of smooth transformations from a tractable ini-

tial reference distribution. Examples include normaliz-

ing flow VI methods [34, 57, 62] and particle-based VI

methods (ParVIs) [11, 12, 40–43]. One ParVI method

that has attracted much attention is the Stein Varia-

tional Gradient Descent (SVGD) [15, 36, 43, 70]. Many

existing ParVI methods can be viewed as some version

of the approximated Wasserstein gradient flow of the

KL-divergence [42]. As explained in Section 3, these

methods may not preserve the variational structure at

the particle level because approximation of the density

function is performed after the variational step.

In this paper, we introduce a new variational infer-

ence framework, named as Energetic Variational Infer-

ence (EVI). It consists of two ingredients, a continu-

ous formulation of the variational inference, and a dis-

cretization strategy that leads to a practical algorithm.

Inspired by the non-equilibrium thermodynamics, we

propose using a energy-dissipation law to describe the

mechanism of minimizing the VI objective functional,

for instance, the KL-divergence. An energetic varia-

tional inference algorithm can be obtained by employ-

ing an energetic variational approach and a proper dis-

cretization. Using the EVI framework, we can derive

and explain many existing ParVI methods, such as the

SVGD method. More importantly, many new ParVI

schemes can be created under the EVI framework. To

demonstrate how to develop a new EVI method, we

propose a new particle-based EVI scheme, which per-

forms the particle-based approximation of the density

first and then uses the approximated density in the

variational procedure. Thanks to this “Approximation-

then-Variation” order, we can derive a system of or-

dinary differential equations (ODEs) of particles that

preserves the variational structure at the particle level,

which is different from many existing methods. Such

an ODE system can be solved via the implicit Euler

method, which can be reformulated into an optimiza-

tion problem. By the virtue of the variational structure

at the particle level, we can significantly decrease the

discretized KL-divergence in every iteration and push

the density of the particles close to the target distribu-

tion efficiently.

In the remaining sections, we first introduce some

preliminary background on the flow map and the en-

ergetic variational approach that is commonly used in

mathematical modeling in Section 2. In Section 3, we

propose the energetic variational inference (EVI) frame-

work. Specifically, we first lay out the general contin-

uous formulation of the EVI, and then introduce two

different ways to discretize the continuous EVI. One is

the “Approximation-then-Variation” approach and the

other is the “Variation-then-Approximation” approach.

Both lead to particle-based EVI methods. The dynam-

ics of the particles are described by an ODE system,

which can be solved by explicit or implicit Euler meth-

ods. Using the implicit-Euler, we propose one new ex-

ample of particle-based EVI, called EVI-Im. In Section

4, we compare the EVI-Im with some existing particle-

based VI methods. The paper is concluded in Section

5.

2 Preliminary

Before reviewing the preliminary topics on flow map

and energetic variational approaches, we first clarify

some notations used in this paper. Let f(x, t) be a

scalar function of d-dimensional space variable x ∈ X ⊆
Rd and time t ∈ [0,∞). We denote the derivative of
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f(x, t) with respect to t as ḟ(x, t) or ḟ for short, and

thus ḟ is still a scalar function. The gradient of f(x, t)

with respect to x is ∇f(x, t) or ∇f , and thus ∇f is a

d-dimensional function. When the time t is taken at a

series of discrete values, i.e., t = 0, 1, 2, . . ., the discrete

t becomes the index of a sequence of function values

of f evaluated at x. We write the integer index in the

superscript position of f , i.e., f t(x). The subscript po-

sition of f is to label different functions.

2.1 Minimizing KL-Divergence Through Flow Maps

The goal of the variational inference is to find a den-

sity function ρ from a family of density functions Q
by minimizing the VI objective functional, such as the

KL-divergence from ρ(x) to the target density function

ρ∗(x). The complexity of this optimization problem is

decided by the feasible region, i.e., the family Q. Tra-

ditional variational inference methods choose Q as a

parametric family of probability distributions. For ex-

ample, the mean-field variational family assumes the

mutual independence between the d dimensions of ran-

dom variable x, i.e., ρ(x) =
∏d
i=1 ρi(xi), where ρi is

a density function from a user specified family of one-

dimensional probability densities [5, 6].

In the flow-based VI methods, the set Q consists of

distributions obtained by smooth transformations of a

tractable initial reference distribution [36]. The idea of

using maps to transform a distribution to another has

been explored in many earlier papers [19, 66]. Specif-

ically, given a tractable reference distribution ρ0(z) :

X 0 → R+ and a sufficiently smooth one-to-one map

φ(·), such that x = φ(z), the family Q is defined by

Q = {ρ[φ](x) = ρ0(φ−1(x))
∣∣det[∇xφ−1(x)]

∣∣ ,x = φ(z),

φ : X 0 → X is a smooth one-to-one map.}
(2.1)

We assume X 0 = X = Rd throughout this paper, but

all the results can be generalized to the case where

X 0 6= X . Moreover, since φ is one-to-one, we can en-

force det[∇zφ(z)] > 0.

Given Q in (2.1), solving the following problem

ρopt = arg min
ρ∈Q

KL(ρ||ρ∗) (2.2)

is equivalent to finding the optimal smooth one-to-one

map φopt such that

ρopt(x) = ρ0(φ−1opt(x)) det[∇xφ−1opt(x)].

As in many optimization approaches, we expect it re-

quires a number of transformations, say K steps, to find

the optimal map, or equivalently,

φopt(·) = ψK ◦ψK−1 . . . ◦ψ1(·).

Each ψt(·) is a smooth and one-to-one map such that

xt = ψt(xt−1). At the tth step, suppose φt(·) = ψt ◦
ψt−1 . . . ◦ψ1(·) is a proper transform, then

ρt(xt) = ρt−1((ψt)−1(xt)) det[∇(ψt)−1(xt)]

= ρ0((φt)−1(xt)) det[∇(φt)−1(xt)].

Intuitively, the series of transformations should move

the initial density ρ0 closer and closer to the target den-

sity ρ∗ and eventually achieve convergence in terms of

the KL-divergence. Therefore, KL(ρt||ρ∗) should be de-

creased after each step, i.e.,

KL(ρt||ρ∗)−KL(ρt−1||ρ∗) ≤ 0.

If we generalize the meaning of t from the discrete

step index to the continuous time t ∈ [0,∞), we can

consider ρt(x) as a density function evolving continu-

ously with respect to time t. To emphasize this point,

we use the notation ρ(x, t) instead of ρt(x). Therefore,

KL(ρ(x, t)||ρ∗(x)) should be decreased with respect to

t, i.e.,
d

dt
KL(ρ(x, t)||ρ∗(x)) ≤ 0.

The key to minimizing the KL-divergence is to deter-

mine the speed of decreasing KL(ρ(x, t)||ρ∗(x)). In Sec-

tion 3, we show how to use the energy-dissipating law

to specify d
dtKL(ρ(x, t)||ρ∗(x)).

When t is generalized to continuous time, φt(·) be-

comes a smooth one-to-one map that also continuously

evolves. Therefore, we use the notation φ(·, t) instead of

φt(·). Since φ(·, t) is a smooth one-to-one map, it can

be defined through a smooth, bounded velocity field

u ∈ Rd × [0,∞) as in Definition 1. This definition is

also used in [64].

Definition 1 Given a smooth and bounded velocity

field u : Rd × [0,∞) → Rd, a flow map φ(z, t) : Rd ×
[0,∞)→ Rd is a map specified by an ordinary differen-

tial equation (for any fixed z){
φ̇(z, t) = u(φ(z, t), t), z ∈ Rd, t > 0

φ(z, 0) = z, z ∈ Rd.
(2.3)

In continuum mechanics, φ(z, t) is known as the

flow map [27, 67]. To better illustrate the idea of the

flow map, we plot it conceptually in Fig. 1. For fixed z,

φ(z, t) is the trajectory of a particle (or sample) with

initial position z. For fixed t, φ(z, t) is a diffeomorphism

between X 0 (the initial domain) and X t (the domain

after t transformations). An intuitive interpretation of

u is that u is the speed of the probability mass, which

is transported due to the transformation φ(·, t). But

directly finding φ(·, t) is a difficult task. Thanks to this

relationship (2.3), we can decide the transform φ(·, t)
by specifying u.
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X 0

z

φ(z, t)

xt

X t

Fig. 1 An illustration of a flow map φ(z, t).

When the flow map is defined by the velocity field

u(x, t), the corresponding distribution ρ(x, t) is given

by

ρ(φ(z, t), t) =
ρ0(z)

det[∇zφ(z, t)]
.

The relation between u and ρ(x, t) is described by the

following proposition.

Proposition 1 (Transportation equation) If φ(z, t)

satisfies (2.3) and x = φ(z, t), the time-dependent prob-

ability density ρ(x, t), which is induced by φ(z, t), sat-

isfies the transport equation{
ρ̇+∇ · (ρu) = 0,

ρ(x, 0) = ρ0(x),
(2.4)

where ρ0 is the initial density and ρ̇ is the derivative of

ρ(x, t) with respect to t.

Equation (2.4) is known as the transport equation or

continuity equation [64, 68]. Its derivation is in Ap-

pendix B. Definition 1 and Proposition 1 indicate that

we only need to determine the transport velocity u (x, t)

so as to determine the flow map φ(z, t) and ρ(φ(z, t), t).

2.2 Energetic Variational Approach

Here we briefly introduce the energetic variational ap-

proach in mathematical modeling [26,37], which is orig-

inated from the pioneering work of L. Rayleigh [56] and

Onsager [52, 53]. It provides a unique way to deter-

mine the dynamics of a system via a prescribed energy-

dissipation law

d

dt
F [φ] = −2D[φ, φ̇], (2.5)

which describes how the total energy of the system de-

creases with respect to time. Here F is the Helmholtz

free energy, −2D ≤ 0 is the rate of energy dissipa-

tion, φ is the state variable of the system, and φ̇ is the

derivative of φ with respect to t. For a given energy-

dissipation law (2.5), the energetic variational approach

derives the dynamics of the system (or how energy F
dissipates over time) through two variational procedure,

the Least Action Principle (LAP) and the Maximum

Dissipation Principle (MDP), which leads to

δD
δφ̇

= −δF
δφ

, (2.6)

where δF
δφ denotes the Fréchet derivative of F with re-

spect to φ, defined as ( δFδφ ,ψ) = limε→0
F(φ+εψ)−F(φ)

ε ,

and δD
δφ̇

denotes the Fréchet derivative of D with respect

to φ̇. More details on the energetic variational approach

and the derivation of (2.6) are shown in Appendix A.

3 Energetic Variational Inference

3.1 Continuous Formulation

In this subsection, we first propose a continuous for-

mulation of EVI. The idea is to specify the dynamics

of minimizing KL-divergence via an energy-dissipation

law, and we can employ the energetic variational ap-

proach to obtain the equation of the flow map φ(z, t).

More specifically, as an analogy to physics, the KL-

divergence is viewed as the Helmholtz free energy [49],

i.e., F [φ] = KL(ρ(x, t)||ρ∗). The free energy F depends

on φ since x = φ(z, t) as a result of the flow map. We

can impose an energy-dissipation law

d

dt
KL(ρ(x, t)||ρ∗) = −

∫
η(ρ)||φ̇||2dx, (3.1)

where D = 1
2

∫
η(ρ)||φ̇||2dx. Because the flow map φ

can be defined by the velocity field u (Definition 1),

thus

D =
1

2

∫
η(ρ)||φ̇||2dx =

1

2

∫
η(ρ)||u||2dx ≥ 0.

The functional η(ρ) is a user-specified functional of ρ

satisfying η(ρ) > 0 if ρ > 0. We denote ||a|| =
√
aTa

for a ∈ Rd as the l2 norm of a vector.

Since ρ(x, t) = ρ0(φ−1(x, t)) is determined by φ(z, t)

for a given ρ0(z), the KL-divergence can be viewed as a

functional of φ. By taking variation of KL with respect

to φ (see Appendix C for the detailed derivation), we

can obtain

−
δKL(ρ[φ]||ρ∗)

δφ
= −(∇ρ+ ρ∇V ), (3.2)

where ρ[φ](x, t) = ρ0(φ−1(x, t)) and V = − ln ρ∗.

Meanwhile, taking variational of D with respect φ̇

yields
δD
δφ̇

= η(ρ)φ̇.
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Then according to (2.6), φ̇, i.e., the transport velocity

u satisfies

η(ρ)φ̇ = −(∇ρ+ ρ∇V ). (3.3)

This equation gives us the specification of the transport

velocity u based on the energy-dissipation law (3.1).

Thanks to the transport equation (2.4), ρ can be ob-

tained from the specified u. Therefore, (3.3) can be used

to find the ρ that minimizes the KL-divergence in the

admissible set. Indeed, combining (3.3) with the trans-

port equation (2.4), we have

ρ̇ = ∇ ·
(

ρ

η(ρ)
(∇ρ+ ρ∇V )

)
, (3.4)

which is the continuous differential equation formula-

tion for ρ. One can choose η(ρ) to control the dynamics

of the system. In the remainder of the paper, we choose

η(ρ) = ρ, which is consistent with Wasserstein gradient

flow [22,33,63]. We should emphasize the above deriva-

tion is rather formal. Under the suitable assumptions,

one can show the existence of φ(z, t) for the equation

(3.3). We refer interested readers to [2, 9, 20] for theo-

retical discussions.

Remark 1 Different choices of dissipation laws lead to

different dynamics to an equilibrium. For instance, we

can take the energy-dissipation law in [39]

d

dt
KL(ρ(x, t)||ρ∗) = −

∫ (
η(ρ)||u||2 + ν(ρ)||∇u||2

)
dx.

(3.5)

In this paper, we show that even with the simplest

choice of the dissipation η(ρ) = ρ, the EVI frame-

work can already lead to several new and existing ParVI

methods. We will study the benefit of other choices of

dissipation in future work.

3.2 Particle-based EVI

In practice, there are two ways to approximate a prob-

ability density in Q defined in (2.1). One is to approx-

imate the transport map φ(z, t) directly, as used in

variational inference with normalizing flow [57]. The

transport map can be approximated either by a family

of parametric transformations [57] or a piece-wise lin-

ear map [8,38]. The main difficulty in such approaches

is how to compute det[∇zφ(z, t)] efficiently. We refer

readers to [8, 38,54,57] for details.

Alternatively, a probability density in Q can be ap-

proximated by an empirical measure defined by a set

of sample points {xi(t)}Ni=1. As used in many ParVI

methods,

ρ(x, t) ≈ ρN (x, t) =
1

N

N∑
i=1

δ(x− xi(t)), (3.6)

where xi(t) = φ(xi(0), t) and xi(0) is sampled from

the initial reference distribution ρ0. The sample points

{xi(t)}Ni=1 at time t are called “particles” in the ParVIs

literature. Instead of computing the map φ(z, t) explic-

itly at each time-step, only {xi(t)}Ni=1 are computed in

ParVIs. One can view this as a deterministic method

to sample from the posterior. The evolution of particles

{xi(t)}Ni=1 can be characterized by a system of ODEs,

and it can be derived from the energy-dissipation law

(3.1) using the proposed EVI framework, as shown in

the follows.

There are two ways to derive such an ODE system.

For short, we call them “Approximation-then-Variation”

and “Variation-then-Approximation” approaches. Es-

sentially, the two approaches use different orders of den-

sity approximation and variational procedure, which

may lead to different ODE systems.

The Approximation-then-Variation approach starts

with a discrete energy-dissipation law

d

dt
Fh({xi(t)}Ni=1) = −2Dh({xi(t)}Ni=1, {ẋi(t)}Ni=1),

(3.7)

which can be obtained by inserting the empirical ap-

proximation (3.6) into the continuous energy-dissipation

law with a suitable kernel regularization. For instance,

a discrete version of (3.1), which is the proposed dis-

sipation mechanism of the KL-divergence, can be ob-

tained by applying the particle approximation ρN (x, t)

to (3.1). To avoid ln δ(x− xi(t)) operation, we replace

ρN by the convolution Kh ∗ ρN inside the log function,

where Kh is a kernel function. This particle-based ap-

proximation leads to the regularized energy-dissipation

law

d

dt

∫
ρN ln(Kh ∗ ρN ) + V ρNdx = −

∫
Ω

ρN ||u||2dx,

(3.8)

where

Kh∗ρN =

∫
Kh(x−y)ρN (y, t)dy =

1

N

N∑
j=1

Kh(x−xj(t)).

We denote Kh(x − xj) by Kh(x,xj), which is a more

conventional notation in the literature. A typical choice

of Kh is the Gaussian kernel

Kh(x1,x2) =
1

(
√

2πh)d
exp

(
−||x1 − x2||2

h2

)
. (3.9)

The regularized free energy (3.8) is proposed in [7] and

has been used to design the Blob variational inference

method in [11]. By assuming u(xi(t), t) ≈ ẋi(t), the
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discrete energy is

Fh
(
{xi}Ni=1

)
=

1

N

N∑
i=1

ln

 1

N

N∑
j=1

Kh(xi,xj)

+ V (xi)

 ,

(3.10)

and the discrete dissipation is

− 2Dh
(
{xi}Ni=1

)
= − 1

N

N∑
i=1

||ẋi(t))||2, (3.11)

where ẋi(t) = d
dtxi is the velocity of each particle.

We can derive the equation of ẋi(t) via a discrete

energetic variational approach [38]

δDh
δẋi(t)

= −δFh
δxi

, (3.12)

which is the energetic variational approach performed

at the particle level. An advantage of employing the dis-

crete energetic variational approach is that the resulting

system of ẋi(t)’s preserves the variational structure at

the particle level. The benefit of this property is dis-

cussed in Remark 2 in Section 3.3. By direct derivation

of the variations of the both sides of (3.12), we obtain

a systems of ODEs for xi(t) as

ẋi(t) =−

(∑N
j=1∇xiKh(xi,xj)∑N
j=1Kh(xi,xj)

+

N∑
k=1

∇xiKh(xk,xi)∑N
j=1Kh(xk,xj)

+∇xiV (xi)

)
,

for i = 1, . . . , N.
(3.13)

It corresponds to the ODE system of the Blob scheme

proposed in [11] for ParVI. However, our derivation of

(3.13) is different from [11].

The Variation-then-Approximation approach in-

serts the empirical approximation (3.6) to (3.3). Note

that (3.3) is obtained after the variational step in (2.6).

Thus variation step is done before the approximation

step. Formally, the main difficulty in applying the em-

pirical approximation (3.6) to (3.3) is how to evaluate

∇ρN (x, t), since ρN (x, t) is defined based on δ func-

tions as in (3.6), and ∇δ is not well defined. One way

to circumvent this difficulty is to introduce a suitable

kernel regularization [14, 35]. Different kernel regular-

ization methods will result in different ODE systems of

particles. In the following, we show that by applying

approximation to (3.3), which is the result of variation

procedure, we can obtain some existing ParVI methods.

As pointed out in [42] and [44], the ODE system

corresponding to the standard SVGD is

ẋi(t) = −
N∑
j=1

(Kh(xi,xj)∇V (xj) +∇xiKh(xi,xj)) .

This ODE system can also be obtained using the EVI

framework as well. After approximating ρ by ρN in

(3.3), we can convolute to the right-hand side of (3.3)

by a kernel function Kh to obtain

ρN (x, t)u = Kh ∗ (ρN∇V +∇ρN (x, t)),

which directly leads to the same ODE system as the

above one of SVGD.

Another ParVI method is the Gradient Flow with

Smoothed test Function (GFSF), proposed by [41]. Us-

ing the EVI framework, GFSF can be obtained by ap-

plying convolution to both sides of (3.3) with a kernel

function Kh

Kh ∗ (ρNu) = −Kh ∗ (ρN∇V +∇ρN ),

which gives us (let Kij = Kh(xi,xj) for short)

N∑
j=1

Kijẋj(t) = −
N∑
j=1

(Kij∇V (xj) +∇xiKh(xi,xj)) .

Although its right-hand is exactly the descent direction

in SVGD, the left is different from SVGD.

The third ParVI method we discuss is the Gradi-

ent Flow with Smoothed Density (GFSD), proposed

in [14, 35, 41]. Under the EVI framework, GFSD can

be obtained from u = −∇ρ/ρ−∇V , by applying con-

volution to both the numerator and denominator of the

first term with a kernel function Kh, i.e.,

u(x) =
ρN ∗ ∇Kh

ρN ∗Kh
−∇V (x).

It leads to the same ODE system of the GFSD

ẋi(t) = −

(∑N
j=1∇xiKh(xi,xj)∑N
j=1Kh(xi,xj)

+∇V (xi)

)
.

In SVGD and GFSF, kernel function are applied to the

velocity equation directly, whereas in GFSD, the δ func-

tion in the empirical measure (3.6) is approximated by

a suitable kernel Kh(x), that is

ρ̃N (x, t) =
1

N

N∑
j=1

Kh(x− xj(t)), (3.14)

which is more widely used in statistics [25].

Here we aim to show the readers that EVI is a very

general framework for variational inference. Even if we
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choose a simple form of η(ρ) = ρ, exchanging the varia-

tion and approximation steps can lead to various ODE

systems of the particles. Some of these ODE systems

have already been created from other perspectives as

shown above. But many new ParVI methods can be

created, as shown in Section 3.3. This is an appealing

advantage of the proposed EVI.

3.3 Explicit vs Implicit Euler

In this subsection, we discuss how to derive a ParVI

algorithm from the ODE system. To solve the ODE

system (3.13) derived from the “Approximation-then-

Variation” approach, one can use the explicit or implicit

Euler method. Using the explicit Euler method, we ob-

tain the following numerical scheme

1

N

xn+1
i − xni
τn

= − Fh
δxi

(
{xni }Ni=1)

)
, (3.15)

where τn is the step-size. Here Fh is the discrete KL-

divergence defined in (3.10), and Fh
δxi

is

δFh
δxi

(
{xni }Ni=1)

)
=

1

N

(∑N
j=1∇xiKh(xni ,x

n
j )∑N

j=1Kh(xni ,x
n
j )

+

N∑
k=1

∇xiKh(xnk ,x
n
i )∑N

j=1Kh(xnk ,x
n
j )

+∇xiV (xni )

)
.

Scheme (3.15) is exactly the Blob scheme proposed in

[11]. The explicit Euler scheme is also used to solve var-

ious ODE systems associated with other existing ParVI

methods [11, 40, 41, 43]. To implement these methods,

AdaGrad [18] is often used to update the step-size. Al-

though these algorithms perform well in practice, the

AdaGrad scales each component of the updating direc-

tion differently. As a result, the updating directions of

these algorithms are different from their original ODE

systems. So the Blob scheme is equivalent to minimize

the discrete energy Fh({xi}Ni=1) by the AdaGrad algo-

rithm.

An alternative approach is to adopt the implicit Eu-

ler scheme for the temporal discretization, i.e.,

1

N

xn+1
i − xni

τ
= −δFh

δxi

(
{xn+1

i }Ni=1

)
. (3.16)

The equations (3.16) for i = 1, . . . , N form a system of

nonlinear equations. To solve them, we first define

Jn({xi}Ni=1) :=
1

2τ

N∑
i=1

||xi − xni ||2/N + Fh({xi}Ni=1).

(3.17)

In fact, (3.16) is the gradient of Jn({xi}Ni=1) with re-

spect to the vectorized {xi}Ni=1 (see the proof of The-

orem 1 in Appendix D). Therefore, we can solve the

nonlinear equations by solving the optimization prob-

lem.

{xn+1
i }Ni=1 = argmin{xi}Ni=1

Jn({xi}Ni=1), (3.18)

which is the celebrated proximal point algorithm (PPA)

[59]. The first term in (3.17) can be viewed as a regular-

ization term. Intuitively, when τ is relatively small, the

first term can be the dominating term of Jn({xi}Ni=1)

compared with Fh({xi}Ni=1). Since it is also quadratic in

{xi}Ni=1, it can make the optimization relatively easier

to solve than directly minimizing Fh({xi}Ni=1). Besides,

with a properly chosen τ value, the minimizer of (3.18)

can lead to a small value of Fh({xi}Ni=1), which is also

close to {xni }Ni=1. The optimization problem (3.18) can

be solved by a suitable nonlinear optimization. We can

show the following convergence result. Its proof is in

Appendix D.

Theorem 1 For a sufficiently smooth target distribu-

tion ρ∗ and any given {xni }Ni=1, there exists at least one

minimal solution of (3.18) {xn+1
i }Ni=1 that also satisfies

Fh({xn+1
i }Ni=1)−Fh({xni }Ni=1)

τ
≤ − 1

N

N∑
i=1

||xn+1
i − xni ||2

2τ2
.

(3.19)

Moreover, if the series {xni }Ni=1 satisfies (3.19), then

{xni }Ni=1 converges to a stationary point of Fh({xi}Ni=1)

as n→∞.

Theorem 1 guarantees the existence of a solution of

(3.16) that also decreases the discrete KL-divergence

in each iteration. We summarize the algorithm of us-

ing the implicit Euler scheme to solve the ODE system

(3.13) into Algorithm 1. Here MaxIter is the maximum

number of iteration of the outer loop.

Algorithm 1 EVI with Implicit Euler Scheme (EVI-

Im)

Input: The target distribution ρ∗(x) and a set of initial
particles {x0

i }Ni=1 drawn from a prior ρ0(x).
Output: A set of particles {x∗i }Ni=1 approximating ρ∗.
for n = 0 to MaxIter do

Solve {xn+1
i }Ni=1 = argmin{xi}Ni=1

Jn({xi}Ni=1).

Update {xni }Ni=1 by {xn+1
i }Ni=1.

end for

Using Algorithm 1, we update the position of parti-

cles by closely following the continuous energy-dissipation

law, which provides an efficient way to push the parti-

cles to approximate the target distribution. In prac-

tice, it is not necessary to obtain the exact minimizer
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of Jn({xi}Ni=1) in each iteration. In fact, we only need

to find {xn+1
i }Ni=1 such that

Fh({xn+1
i }) ≤ Fh({xni }),

which usually can be achieved in a few steps via the

gradient descent method or Newton-like methods with

suitable step sizes to Jn({xi}Ni=1). One can even adopt a

line search procedure to guarantee that Jn({xn+1
i }Ni=1) ≤

Jn({xni }Ni=1). This optimization perspective can also

lead to other ParVI methods. For example, the idea of

Stein Variational Newton (SVN) type algorithms [12,

15] is the same as doing one Newton step to decrease

Jn({xi}Ni=1).

To implement Algorithm 1, we adopt the gradient

descent with Barzilai-Borwein step size [4] to solve the

optimization problem (3.18). Numerical experiments show

that such algorithm usually can find a stationary point

of Jn({x}Ni=1) that also satisfies (3.19) with relatively

small value of τ . Since it is not necessary to find the

exact optimal solution of Jn({x}Ni=1), especially in the

early stage of the outer loop in Algorithm 1, we can fix

the maximum number of iterations for the inner loop

(the loop of minimizing Jn({x}Ni=1)) to reduce compu-

tation.

Remark 2 The key point in the proposed numerical al-

gorithm is to reformulate the implicit Euler scheme into

an the optimization problem (3.18), which is equiva-

lent to apply the proximal point algorithm (PPA) [59]

to the discrete energy Fh({xi}Ni=1). We can decrease

Fh({xi}Ni=1) in each iteration and have the convergence

of the algorithm at the discrete level. In other words,

in each iteration, the particles are moved as they are

intended by the specified dissipation law or the mecha-

nism of decreasing the KL-divergence. This is the bene-

fit of the Variation-then-Approximation approach. For

other ParVI methods, it is unclear whether the right-

hand sides of the ODEs are the gradients of some func-

tions. Therefore, even though the implicit Euler scheme

can be applied to these ParVI methods, the resulted

ODE system can not be reformulated as an optimiza-

tion problem, as we have shown in (3.18).

High-order temporal discretization can also be used

to solve (3.13), such as the Crank-Nicolson scheme and

BDF2 [31]. Within the variational structure at the par-

ticle level, these schemes can also be formulated into

optimization problems [16,46].

3.4 Choice of Kernel

We briefly discuss the choice of kernel, or more pre-

cisely, the choice of bandwidth h. The role of kernel

function Kh(x−xi) is essentially to approximate δ(x−
xi). Considering this role, h should be as small as pos-

sible when the number of particles is large. However,

in practice, since the number of particles is finite, it is

not clear how small h should be. Intuitively, for Gaus-

sian kernel, h controls the inter-particle distances. In

the original SVGD [43], the bandwidth is set to be

h = med2/ logN where med is the median of the pair-

wise distance between the current particles. The me-

dian trick updates the bandwidth after each iteration.

However, as shown in [41], the median trick only works

well for the SVGD. In [41], the authors proposed a Heat

Equation based (HE) method. Their idea is to compute

the optimal bandwidth after each iteration such that

the evolution of approximated density matches the rule

of the Heat Equation. Although the HE method works

well during the numerical experiments, it requires solv-

ing an optimization problem to obtain the optimal h af-

ter each iteration, which is time-consuming. Recently,

a matrix-valued kernel for SVGD has been proposed

in [70], in which some anisotropic kernels are used. The

selection of kernels is based on Fisher information, i.e.,

the Hessian of the V (x). Although matrix-valued ker-

nel works well in practice, as we have shown in Section

4.2, the computational costs will be large.

The optimal bandwidth and the choice of kernel

function are problem-dependent. Sometimes, a non-Gaussian

kernel might be better [21]. We do not intend to further

the discussion here. In the examples of Section 4, we fix

the bandwidth of the Gaussian kernel by conducting

multiple trials. The results show that fixed kernel band-

width works well in many situations for the proposed

Algorithm 1.

4 Experiments

We present several examples that demonstrate the pro-

posed EVI scheme summarized in Algorithm 1 (or EVI-

Im for short). The results are compared with some other

deterministic ParVI methods, including AdaGrad based

classical SVGD [43], matrix-valued SVGD [41], and Blob

method [11]. Additionally, we also compare our method

with a gradient-based MCMC sampling method, Langevin

Monte Carlo (LMC) [55,58,60] or its stochastic gradient

variant, SGLD [71], given by

xn+1 = xn − εn∇(log ρ∗) +
√

2εnξ,

where ξ is the random term ξ ∼ N (0, 1), and ρ∗ is the

target/posterior distribution.

In EVI-Im, the number of iterations is “n” defined in

the outer loop in Algorithm 1. Therefore, one iteration

leads to one update of the positions of all the particles.
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We need to point out that the amount of computation

in one iteration of the outer loop of the EVI-Im method

is much larger than the other ParVI methods discussed

here since the optimization problem (3.18) needs to be

solved in each iteration of EVI-Im. To compare the com-

putational costs, we also show the actual CPU time of

each method in Section 4.2 and 4.4.

4.1 Toy examples via EVI-Im

We first test the EVI-Im on three toy examples, which

are widely used as benchmark tests in existing VI lit-

erature [11, 41, 57]. In all three examples, the target

distributions are known up to a constant, and we can

view the EVI-Im as a deterministic sampling method

for these unnormalized probability densities.

iterations = 1 iterations = 5 iterations = 30

iterations = 1 iterations = 50 iterations = 200

iterations = 1 iterations = 10 iterations = 50
Fig. 2 The particles obtained by EVI-Im algorithm approx-
imating three target distributions plotted as contours.

The first example is modified from [28]. The target

distribution is given by

ρ(x) ∝ exp

{
−x

2
1

2
− 1

2
(10x2 + 3x21 − 3)2

}
.

The second example is similar to the examples tested

in [41,57], and the target distribution is

ρ(x) ∝ exp
{
−2((x21 + x22)− 3)2

+ log
(
e−2(x1−2)2 + e−2(x2+2)2

)}
,

which has two components. The third example is adapted

from [57] and [11] with the target distribution given by

ρ(x) ∝ exp

{
−1

2

[
x2 − sin(πx1

2 )

0.4

]2}
.

In all three examples, the initial particles are sam-

pled from the two-dimensional standard Gaussian dis-

tribution. We use N = 50 particles for the first example

and N = 120 particles for the second and third exam-

ples. The bandwidth of the kernel is h = 0.05 for the

first and second examples and h = 0.2 for the third

example. We set τ = 0.01 for all examples. The final

results in Fig. 2 show that the particles returned by the

EVI-Im approximate the target distributions reason-

ably well. The second example is the most challenging

one and requires more iterations because the support

region (where the density is significantly larger than 0)

of the target distribution is not connected and contains

two banana-shaped areas.

4.2 Comparison on a star-shaped distribution

The two-dimensional synthesized example studied in

[70] is a challenging one, as the posterior has a star-

shaped contour plot shown in Fig. 3. We compare the

EVI-Im (set τ = 0.5) with the Blob method (lr = 0.5),

the classical SVGD (lr = 0.5), the matrix-valued SVGD

(mixture preconditioning matrix kernel [70], lr = 0.5),

and the LMC method (εn = a(b + n)−c with a = 0.1,

b = 1 and c = 0.55). The maximum number of itera-

tions of the inner loop in EVI-Im is set to be 100. Here lr

stands for the learning rate. In all five methods, we use

N = 200 particles and the same initial set of particles

sampled from the two-dimensional standard Gaussian

distribution. For the EVI-Im and the Blob method, we

fix the kernel bandwidth to be h = 0.1. The bandwidth

matrix in the matrix-valued SVGD is set as the exact

Hessian matrices as in [70]. To compare the fidelity of

the particles to the target distribution, we compute the

squared Maximum Mean Discrepancy (MMD2) defined

as [3]

MMD2 =
1

N2

N∑
i,j=1

k(xi,xj) +
1

M2

M∑
i,j=1

k(yi,yj)

− 2

NM

N∑
i=1

M∑
j=1

k(xi,yj)
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with a polynomial kernel k(x,y) = (x>y/3+1)3, where

{xi}Ni=1 are N = 200 particles generated by the differ-

ent methods, and {yj}Mj=1 are 5000 samples that gen-

erated from ρ∗ directly.

The sampling results returned by different methods

are shown in Fig. 3. The MMD2 of each method with

respect to the CPU time and the number of iterations

is shown in Fig. 4. We observe that the results returned

by the EVI-Im and the Blob method are most simi-

lar compared to the other methods. As we mentioned

earlier, they minimize the same discrete KL-divergence

defined in (3.10) with different optimization methods.

The EVI-Im uses PPA whereas the Blob uses AdaGrad.

The CPU time for both approaches is also comparable.

The particles returned by the EVI-Im, the Blob, and

the Matrix-valued SVGD appear to align more regu-

larly than those returned by the standard SVGD. More-

over, the particles returned by the three methods are

more likely to be concentrated in high probability areas,

compared with SVGD and LMC. Using the EVI-Im,

we can obtain a good approximation within less than

20 iterations with τ = 0.5. However, since it solves an

optimization problem in each iteration, the total CPU

time is slightly larger than the Blob method. All meth-

ods have similar computational efficiency to the LMC

in terms of MMD2 vs CPU time, except for the matrix-

valued SVGD. Its computational cost increases dramat-

ically for computing anisotropic kernels in each itera-

tion. We should emphasize that the total CPU time is

sensitive to the choice of learning rate. The learning

rate presented here is chosen to have the best perfor-

mances according to our tests. For EVI-Im, a slightly

large time step-size τ value is preferred for computa-

tional efficiency, but the robustness of the algorithm

requires a relatively small τ .

4.3 Mixture Model

In this subsection, we consider an example of a simple

but interesting mixture model, which is studied in [13]

and [71]. We sample 1000 observed data from yi ∼
1
2 (N(ω1, σ

2)+N(ω1+ω2, σ
2)), where (ω1, ω2) = (1,−2)

and σ = 2.5. Using the prior ω1, ω2 ∼ N(0, 1), the pos-

terior distribution is known except the constant, which

is the marginal distribution of the data. But it is easy to

obtain its two modes, (1,−2) and (−1, 2). The contour

plot of the posterior distribution up to the constant is

in Fig. 5 (a).

Fig. 5 shows the posterior distribution approximated

by EVI-Im and SVGD (lr = 1.0). We have tried the

SVGD with learning rate lr = 0.01, 0.1, 0.5, 1.0 and

choose the best learning rate lr = 1. For the EVI-

Im, we set τ = 0.01. The same N = 100 initial par-

ticles sampled from the prior are used in both meth-

ods, as shown in Fig. 5 (b). Kernel density estimation

with optimal bandwidth selected via cross-validation

is used to generate the estimated posterior distribu-

tion for both methods. It also shows the approximated

distributions of EVI-Im and SVGD at different itera-

tions. When both methods converge, EVI-Im (100 it-

erations) approximates the true posterior distribution

better than the SVGD (1000 iterations). During the

iterations, the particles returned by the EVI-Im also

appear to be aligned more regularly. But among the

particles returned by SVGD, some are clustered but

some are scattered widely. In [13], the authors compared

many other methods, such as Gibbs sampling, SGLD,

and the one-pass sequential Monte Carlo (SMC). Com-

pared to numerical results in [13], the EVI-Im has bet-

ter results than Gibbs sampling, SGLD, and SMC, and

is also comparable to the particle mirror descent algo-

rithm proposed in [13].

4.4 Bayesian Logistic Regression with Real Data Sets

In this subsection, we apply EVI-Im to Bayesian logis-

tic regression models. We first consider a small data set

SPLICE (1,000 training entries, 60 features), a bench-

mark data set used in [48]. Given the data set {ct, yt}1000t=1 ,

the logistic regression model is p(yt = 1|ct,ω) = [1 +

exp(−ωT ct)]−1. The unknown parameters ω are the

regression coefficients, whose prior is N(ω; 0, αI). We

compare the EVI-Im method with the classic SVGD

and the LMC. We useN = 20 particles for each method.

The learning rate in SVGD is set to be 0.1. For LMC,

we take εn = a(b + n)−c with a = 10−4, b = 1 and

c = 0.55. For EVI-Im, we take τ = 0.01 and set the

maximum number of iteration in the inner loop to be

50. We should emphasize these parameters may not

be optimal for all the methods. Fig. 6 shows the log-

likelihood of the training data and test accuracy for all

methods with respect to the CPU time. Although the

test accuracies of the three methods are similar and the

EVI-Im has a slight advantage, the EVI-Im is shown to

achieve a larger log-likelihood with less CPU time of

the training data.

We also apply the EVI-Im to a large data set Cover-

type [70], which contains 581, 012 data entries and 54

features, and compare the proposed EVI-Im algorithm

and the original SVGD method. The prior of the un-

known regression coefficients is chosen to be p(ω) =

N(ω; 0, I). Due to the large size of the data, the compu-

tation of log-likelihood ∇ ln ρ∗ is expensive. Hence, we

randomly sample a batch of data to compute a stochas-

tic approximation of ∇ ln ρ∗. The batch size is set to
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Fig. 3 Particles obtained by various methods [200 particles]: (a) EVI-Im after 20 iterations, (b) Blob method (after 1000
iterations), (c) SVGD (after 1000 iterations), (d) matrix-valued SVGD (after 200 iterations) and (e) LMC (after 3000 iterations)

Fig. 4 MMD2 of each method with respect to CPU time and
number of iterations.
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Fig. 5 Comparison of EVI-Im and the classic SVGD (lr = 1)
at different stages of iterations.

be 256 for all methods. Recall that in the EVI-Im al-

gorithm, we need to solve a minimization problem to

update the positions of the particles in each iteration

of the outer loop. Since we only estimate ∇ ln ρ∗ using

a subset of the complete data, which is only an approx-

imation of the exact estimate using the complete data,

the EVI-Im algorithm does not need to achieve the ex-

act local optimality in each iteration. Thus, we choose

the stochastic gradient descent method AdaGrad [18]

with learning rate lr = 0.1 to minimize Jn({xi}Ni=1).

We set the maximum number of iterations for the inner

loop of AdaGrad to be 100 in the EVI-Im algorithm.

Meanwhile, the time step-size, τ , is set to be 0.1 in the

EVI-Im algorithm. For the SVGD method, we choose

the best learning rate among lr =0.01, 0.05, 0.1, 0.5, 1.0.

For all methods, we use N = 20 particles, as in [70].

In the statistical analysis of real data, it is a com-

mon practice to standardize all columns of inputs via

their individual mean and standard deviation in the

preprocessing stage. Thus, we apply both the EVI-Im

and the SVGD algorithms (with lr = 0.1) to the stan-

dardized data. We also apply the SVGD (with lr = 1)

to the non-standardized data, which was done in the

same way as in [70]. The SVGD is implemented using

the codes1 by [70]. For each method, we have run a to-

tal of 20 simulations. In each simulation, we randomly

partition the data into training (80% of the whole) and

testing (20% of the whole) sets. Fig. 7 shows the test

accuracy of the classification of EVI-Im and SVGD ap-

plied to standardized data and SVGD applied to non-

standardized data. The test accuracy is the average of

20 simulations. The CPU time of each point in (b) of

Fig. 7 is the average CPU time of 20 simulations of

every 100 AdaGrad steps for all three methods under

comparison.

For the SVGD (both versions), the number of iter-

ations counts the iterations of the single layer of loop.

For the EVI-Im, there are two layers of loops. The outer

loop is the for-loop in Algorithm 1 and the inner loop

is for the AdaGrad algorithm. As mentioned above, the

1 available from https://github.com/dilinwang820/Stein-
Variational-Gradient-Descent.
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Fig. 6 The log-likelihood of the training data and test accuracy of the SPLICE dataset returned by EVI-Im, SVGD and LMC
methods.

inner loop of AdaGrad has 100 iterations. To compare

it with SVGD, the number of iterations for EVI-Im in

Fig. 7 (a) is defined as

No. of Outer Iterations ×100(No. of Inner Iterations).

Since both methods use the AdaGrad with the same

batch size, both methods conduct a very similar amount

of computation in each iteration, which is confirmed

by the close resemblance between (a) and (b) of Fig.

7. The proposed EVI-Im is the best among the three.

We can also compare the EVI-Im algorithm with the

matrix-valued SVGD. As shown in [70], the matrix-

valued SVGD can reach an accuracy of 0.75 in less than
500 iterations. Using the EVI-Im algorithm with stan-

dardized data, we can reach the same accuracy of 0.75

around 200 iterations.

From Fig. 7, we can first conclude that standard-

ization significantly improves the accuracy and reduce

the variance of the SVGD method. This is expected

because standardization is essentially applying differ-

ent bandwidth values to different input dimensions in-

side the kernel function. As a result, the original SVGD

with standardization performs similarly to the matrix-

valued SVGD proposed in [70], although the latter also

linearly transforms the SVGD direction by multiplying

a preconditioning matrix on the original SVGD direc-

tion. For the same reason, EVI-Im algorithm also ben-

efits from standardization, as it is also a kernel-based

method.

At last, we point out that the proposed EVI-Im al-

gorithm, the SVGD with or without standardized data,

and the matrix-valued SVGD method [70] have simi-

lar performance when they reach convergence. A major

reason is that due to the large size of the data, the KL-

divergence is entirely dominated by the log-likelihood.

Consequently, the interactions between particles play

little effect in the updating of the particles. Thus, there

is no significant distinction between different methods

when they all reach convergence.

5 Conclusion

In this paper, we introduce a new variational infer-

ence framework, called energetic variational inference

(EVI), in which the procedure of minimizing VI object

function is characterized by an energy-dissipation law.

A VI algorithm can be obtained by employing an en-

ergetic variational approach and proper discretization.

The EVI is a general framework. By specifying different

components of EVI, we can derive many ParVI algo-

rithms. These components include

– the continuous energy-dissipation law, such as (3.1)

and (3.5);

– the order of approximation and variation steps;

– numerical schemes or optimization techniques, such

as implicit and explicit Euler, first-order and higher-

order temporal discretization, etc.

We have shown that some combinations of these choices

lead to some existing ParVI methods. But many new

methods can be created as such. In particular, by us-

ing the “Approximation-then-Variation” order, we can

derive a particle system that inherits the variational

structure from the original energy-dissipation law. Nu-

merical examples show that the proposed method has
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(a)

(b)

Fig. 7 The test accuracy of 20 simulations for Bayesian logis-
tic regression on Covertype dataset using different methods
with respect to (a) the number of iterations and (b) CPU time
(in seconds). The number of iterations for EVI-Im is defined
as No. of Outer Iterations × 100(No. of Inner Iterations). The
error bar in each curve corresponds to the standard deviation
of 20 simulations.

comparable performance with the latest ParVI meth-

ods. Another significant aspect is that the EVI frame-

work is not restricted to KL-divergence, and it can be

used to minimize other discrepancy measures on the dif-

ference between two distributions, such as f -divergence

[1]. This opens doors to many varieties in the varia-

tional inference literature. The codes and data for all

examples are available from Github https://github.

com/SimonKafka/EVI.
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A Energetic variational approach

In this appendix, we gives a brief introduction to the en-

ergetic variational approach. We refer interested readers

to [26,37] for a more comprehensive description.

As mentioned previously, the energetic variational

approach provides a paradigm to determine the dynam-

ics of a dissipative system from a prescribed energy-

dissipation law, which shifts the main task in the mod-

eling of a dynamic system to the construction of the

energy-dissipation law. In physics, an energy-dissipation

law, yielded by the first and second Law of thermody-

namics [26], is often given by

d

dt
(K + F)[φ] = −2D[φ, φ̇], (A.1)

where φ is the state variable, K is the kinetic energy,

F is the Helmholtz free energy, and 2D is the energy-

dissipation. If K = 0, one can view (A.1) as a general-

ization of gradient flow [30].

The Least Action Principle states that the equation

of motion for a Hamiltonian system can be derived from

the variation of the action functional A =
∫ T
0

(K−F)dx

with respect to φ(z, t) (the trajectory), i.e.,

δA = lim
ε→0

A[φ+ εδψ]−A[ψ]

ε

=

∫ T

0

∫
X t

(finertial − fconv) · δψdxdt.

This procedure yields the conservative forces of the sys-

tem, that is (finertial−fconv) = δA
δφ . Meanwhile, accord-

ing to the MDP, the dissipative force can be obtained

by minimizing the dissipation functional with respect

to the “rate” φ̇, i.e.,

δD = lim
ε→0

D[φ̇+ εδψ]−D[φ̇]

ε
=

∫
X t
fdiss · δψdx,

or fdiss = δD
δφ̇

. According to the Newton’s second law

(F = ma), we have the force balance condition finertial =

fconv+fdiss (finertial plays role of ma), which defines the

dynamics of the system

δD
δφ̇

=
δA
δφ

. (A.2)

https://github.com/SimonKafka/EVI
https://github.com/SimonKafka/EVI
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In the case that K = 0, we have

δD
δφ̇

= −δF
δφ

, (A.3)

Notice that the free energy is decreasing with respect

to the time when K = 0. As an analogy, if we consider

VI objective functional as F , (A.1) gives a continuous

mechanism to decrease the free energy, and (A.2) or

(A.3) gives the equation φ(z, t).

B Derivation of the transport equation

The transport equation can be derived from the con-

servation of probability mass directly. Let

F(z, t) = ∇zφ(z, t) (B.1)

be the deformation tensor associate with the flow map

φ(z, t), i.e., the Jacobian matrix of φ, then due to the

conservation of probability mass, we have

0 =
d

dt

∫
X t
ρ(x, t)dx =

d

dt

∫
X 0

ρ(φ(z, t), t) det(F(z, t))dz

=

∫
X 0

(
ρ̇+∇ρ · u + ρ(F−T :

dF

dt
)

)
detFdz

=

∫
X t

(ρ̇+∇ρ · u + ρ(∇ · u)) dx = 0,

which implies that

ρ̇+∇ · (ρu) = 0.

Here the operation “:” between two matrix, A : B =∑
i

∑
j AijBij is the Frobenius inner product between

two matrices A,B ∈ Rn×m.

C Computation of Equation (2.10)

In this part, we give a detailed derivation of the varia-

tion of KL(ρ[φ]|ρ∗) with respect to the flow map φ(z) :

X 0 → X t. Consider a small perturbation of φ

φε(z) := φ(z) + εψ(z),

where ψ(z) = ψ̃(φ(z)) is a smooth map satisfying

ψ̃ · ν = 0, on ∂X t

with ν be the outward pointing unit normal on the

boundary, ∂X t. Thus, ψ̃ = ψ(φ−1(x)) and the above

condition indicates that ψ̃ is diffused to zero at the

boundary of X t. For X 0 = X d = Rd, ψ̃ ∈ C∞0 (Rd). We

denote F as the Jacobian matrix of φ, i.e., Fij = ∂φi
∂zj

,

and Fε is the Jacobian matrix of φε, i.e.,

Fε := ∇zφ+ ε∇zψ.

Then we have

d

dε

∣∣∣
ε=0

KL(ρ[φε]||ρ∗)

=
d

dε

∣∣∣
ε=0

(∫
X 0

ρ0
det(Fε)

ln

(
ρ0

det(Fε)

)
det(Fε)dz

+

∫
X 0

ρ0
det(Fε)

V (φε(z)) det(Fε)dz

)
=

d

dε

∣∣∣
ε=0

(∫
X 0

ρ0 ln ρ0 − ρ0 ln detFε + ρ0V (φε(z))dz

)
=

∫
X 0

−ρ0
d

dε

∣∣∣
ε=0

(ln det(Fε) + V (φε(z))) dz

=

∫
X 0

−ρ0(F−> : ∇zψ) + (∇xV ·ψ)ρ0dz.

(C.1)

For two matrices of the same size, define A : B =∑
i

∑
j AijBij = tr(A>B). Since

d det(Fε)

dε
= det(Fε)tr

[
(Fε)−1

dFε

dε

]
,

we have

d det(Fε)

dε

∣∣∣
ε=0

= det(F)tr
[
F−1∇zψ

]
= det(F)(F−> : ∇zψ).

Hence we have the last result in (C.1).

Based on the definition of φ, we have the following.

x = φ(z), z = φ−1(x)

ψ(z) = ψ̃(φ(z)) = ψ̃(x)

ρ(x) = ρ0(φ−1(x)) det(∇xφ−1(x))

ρ0(z) = ρ0(φ−1(x)) =
ρ(x)

det(∇xφ−1(x))
.

The second summand of (C.1) becomes∫
X0

ρ0
[
(∇xV )>ψ

]
dz

=

∫
Xt

ρ(x)

det(∇xφ−1(x))

[
(∇xV )>ψ

]
dφ−1(x)

=

∫
Xt

ρ(x)

det(∇xφ−1(x))

[
(∇xV )>ψ

]
det(∇xφ−1(x))dx

=

∫
Xt
ρ(x) [(∇xV ) ·ψ] dx.

Now we investigate the first summand in (C.1). Based

on the definition of ψ̃, we can see that

(∇xψ̃)i,j =

d∑
k=1

∂ψi
∂zk
· ∂zk
∂xj

=

d∑
k=1

(∇zψ)i,k(∇xφ−1)k,j

∇xψ̃ = ∇zψ
[
∇xφ−1

]>
= (∇zψ)F−>,



Particle-based Energetic Variational Inference 15

because F = ∇zφ(z) =
(
∂xi
∂zj

)
i,j

, F−1 =
(
∂zi
∂xj

)
i,j

=

(∇xφ−1(x))−1. Divergence of ψ̃(x) is

∇x · ψ̃(x) =

d∑
i=1

∂ψ̃i
∂xi

= tr(Jacobian of ψ̃)

=tr(∇xψ̃) = tr((∇zψ)F−>) = tr(F−1∇zψ).

Therefore, the first summand in (C.1) becomes,

−
∫
X0

ρ0(F−> : ∇zψ)dz = −
∫
Xt
ρ(x)(∇x · ψ̃)dx.

Following the corollary of Divergence theorem,

∫
Xt
ρ(x)(∇x · ψ̃)dx+

∫
Xt
ψ̃>(∇xρ(x))dx

=

∮
∂Xt

ρ(x)(ψ̃ · ν)dS = 0,

because the boundary condition ψ̃ · ν = 0 on ∂Xt. So

−
∫
Xt
ρ(x)(∇x · ψ̃)dx

=

∫
Xt
ψ̃>(∇xρ(x))dx =

∫
Xt
∇xρ(x) · ψ̃dx.

Therefore, in X t, by performing integration by parts,

we have

d

dε

∣∣∣
ε=0

KL(ρ[φε]||ρ∗)

=

∫
X t
−ρ[φ](∇x · ψ̃) + ρ∇V · ψ̃dx

=

∫
X t

(∇ρ+ ρ∇V ) · ψ̃dx,

which implies that

δKL(ρ[φ]||ρ∗)
δφ

= ∇ρ+ ρ∇V (C.2)

Recall V = − ln ρ∗. One can notice that if F is an

identity matrix, the result in (C.1) can be written as

−Ez∼ρ0 [trace(∇zψ +∇ ln ρ∗ψT)],

which is exactly the form given by the Stein operator

in [43].

D Proof of Theorem 1

Proof Let X ∈ RD be vectorized {xi}Ni=1, that is

X = (x
(1)
1 , . . . x

(1)
N , . . . x

(d)
1 . . . x

(d)
N ),

where D = N × d. Recall that V (x) = − ln ρ∗. For a

sufficient smooth target distribution ρ∗(x), it is easy to

show that

Fh({xi}) =
1

N

N∑
i=1

ln

 1

N

N∑
j=1

K(xi,xj)

+ V (xi)


is continuous, coercive and bounded from below as a

function of X ∈ RD. We denote Fh({xi}) by Fh(X).

For any given {xni }Ni=1, recall

Jn(X) =
1

2τ
‖X−Xn‖2 + Fh(X),

where ‖ · ‖2X is a norm for X, defined by

‖X−Xn‖2X =
1

N

N∑
i=1

‖xi − xni ‖2.

Since

S = {J(X) ≤ J(Xn)}

is a non-empty, bounded, and closed set, by the co-

erciveness and continuity of Fh(X), Jn(X) admits a

global minimizer Xn+1 in S. Since Xn+1 is a global

minimizer of J(X), we have

1

2τ
‖Xn+1 −Xn‖2X + Fh(Xn+1) ≤ Fh(Xn),

which gives us equation (3.19).

For series {Xn}, since

‖Xk −Xk−1‖2X ≤ 2τ(Fh(Xk−1)−Fh(Xk)),

we have

n∑
k=1

‖Xk −Xk−1‖2X ≤ 2τ(Fh(X0)−Fh(Xn)) ≤ C,

for some constant C that is independent with n. Hence

lim
n→∞

‖Xn −Xn−1‖X = 0,

which indicates the convergence of {Xn}. Moreover,

since

Xn = Xn−1 − τ∇XFh(Xn),

we have

lim
n→∞

∇XFh(Xn) = 0,

so {Xn} converges to a stationary point of Fh(X).
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