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Abstract

High dimensional linear regression problems are often fitted using Lasso approaches. Al-

though the Lasso objective function is convex, it is not differentiable everywhere, making the

use of gradient descent methods for minimization not straightforward. To avoid this technical

issue, we apply Nesterov smoothing to the original (unsmoothed) Lasso objective function. We

introduce a closed-form smoothed Lasso which preserves the convexity of the Lasso function,

is uniformly close to the unsmoothed Lasso, and allows us to obtain closed-form derivatives

everywhere for efficient and fast minimization via gradient descent. Our simulation studies

are focused on polygenic risk scores using genetic data from a genome-wide association study

(GWAS) for chronic obstructive pulmonary disease (COPD). We compare accuracy and run-

time of our approach to the current gold standard in the literature, the FISTA algorithm. Our

results suggest that the proposed methodology provides estimates with equal or higher accuracy

than the FISTA algorithm while having the same asymptotic runtime scaling. The proposed

methodology is implemented in the R-package smoothedLasso, available on the Comprehensive

R Archive Network (CRAN).

Keywords: COPD; FISTA; LASSO; Nesterov; Penalized linear regression; Polygenic risk scores;

Smoothing.

1 Introduction

Many substantive research questions in health, economic and social science require solving a classical

linear regression problem y = Xβ + ε. Here, the data matrix X ∈ Rn×p, the parameter vector

β ∈ Rp, and the response vector y ∈ Rn encode n ∈ N linear equations in p ∈ N variables, and
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ε ∼ Nn(0, σ2In) is an n-dimensional, independently and normally distributed error term with mean

zero and some variance σ2 > 0 (where In denotes the n-dimensional identity matrix). The approach

remains one of the most widely used statistical analysis tools.

Traditionally, linear regression problems have been solved by finding parameter estimates β that

minimize the squared error, leading to the least squares estimate arg minβ ‖Xβ − y‖22. However,

their lack of robustness, as well as sparsity requirements in high dimensional settings with p� n,

are two problems that have led to the development of alternative estimation approaches, e.g. the

least absolute shrinkage and selection operator (Lasso) of Tibshirani (1996) or least-angle regression

(LARS) of Efron et al. (2004).

This article focuses on Lasso regression, which obtains regression estimates β̂ by solving

β̂ = arg min
β

1

n
‖Xβ − y‖22 + λ ‖β‖1 , (1)

where ‖ · ‖2 is the Euclidean norm, ‖ · ‖1 is the L1 norm, and λ > 0 is a tuning parameter (called

the Lasso regularization parameter) controlling the sparseness of the solution β̂.

As the objective function in eq. (1) is convex, minimization via steepest descent (quasi-Newton)

methods is sensible. However, many applications in biostatistics, especially those that are focused

on big data, such as the simultaneous analysis of genome-wide association studies (Wu et al., 2009)

or the calculation of polygenic risk scores (Mak et al., 2016), involve data sets with several thousand

parameters and are often sparse. In such applications, conventional gradient-free solvers can lose

accuracy. This is due to the non-differentiability of the L1 penalty term in eq. (1), i.e. the term

‖β‖1 =
∑p

i=1 |βi|.

We address this issue by smoothing the Lasso objective function. We apply Nesterov smooth-

ing (Nesterov, 2005) to the non-differentiable ‖β‖1 penalty term in eq. (1). This will result in

an approximation of the Lasso objective function that is differentiable everywhere. The Nesterov

formalism depends on a smoothing parameter µ that controls the smoothness level.

Our approach has three major advantages: (1) The smoothing preserves the convexity of the

Lasso objective function; (2) it allows us to obtain closed-form derivatives of the smoothed function

everywhere which we use in a gradient descent algorithm; and (3) it provides uniform error bounds

on the difference between the smoothed and the original objective functions. The error bounds
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depend only on the smoothing parameter µ, and by letting µ → 0, the smoothed Lasso objective

function can be made arbitrarily close to the original Lasso objective function, thus justifying its

use as a surrogate of the original Lasso objective. However, when smoothing the L1 penalty of the

Lasso, the resulting regression estimates are typically dense. That is, the lack of the L1 penalty

somewhat causes a loss of the variable selection property, though regression estimates for those

variables which are non-selected by the classical Lasso will typically be very small. Therefore, an

easy fix to obtain sparse estimates again is to apply some form of thresholding.

We benchmark our proposed smoothing approach against the current gold standard for mini-

mizing the Lasso objective function, the FISTA algorithm of Beck and Teboulle (2009). FISTA is a

proximal gradient version of the algorithm of Nesterov (1983) which combines the basic iterations

of the Iterative Shrinkage-Thresholding Algorithm (Daubechies et al., 2004) with a Nesterov accel-

eration step. Among others, the algorithm is implemented in the R-package fasta on CRAN (Chi

et al., 2018). We use this package as a benchmark. The FISTA algorithm requires the separate

specification of the smooth and non-smooth parts of the objective function including their explicit

gradients. In contrast to our approach, a variety of tuning parameters need to be selected by the

user, e.g. an initial starting value, an initial stepsize, parameters determining the lookback window

for non-monotone line search, and a shrinkage parameter for the stepsize.

The benchmark of our approach against FISTA is carried out on simulated data, with the aim

to assess accuracy and runtime scaling of both algorithms in n and p, and on a real-world dataset

of polygenic risk scores of COPDGene (genetic epidemiology of COPD). Polygenic risk scores are a

statistical aggregate of risks typically associated with a set of established DNA variants. The goal

of polygenic risk scores is to predict the disease risk of an individual, that is the susceptibility to

a certain disease given the individual’s genotypes at the established risk loci and other important

epidemiological covariates such as age, sex etc. Such scores are usually calibrated on large genome-

wide association studies (GWAS) via high-dimensional regression of the genetic variants to the

outcome. Since the potential for broad-scale clinical use to identify people at high risk for certain

diseases has been demonstrated (Khera et al., 2018), polygenic risk scores have become a widespread

tool for the early identification of patients who are at high risk for a certain disease and who could

benefit from intervention measures. For this reason, increasing the accuracy of scores is desirable,

which is what we address with the proposed smoothing approach.
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This article is structured as follows. Section 2 applies Nesterov smoothing to the Lasso objective

function. Using polygenic risk scores as an example, we evaluate the proposed methodology in a

simulation study in Section 3. The article concludes with a discussion in Section 4. The proof of

our theoretical result is given in Appendix C. The methodology of this article is implemented in

the R-package smoothedLasso, available on CRAN (Hahn et al., 2020).

Throughout the article, X·,i denotes the ith column of a matrix X. Similarly, XI,· (and yI)

denote the submatrix (subvector) consisting of all rows of X (entries of y) indexed in the set I.

Moreover, X−I,· (and y−I) denote the submatrix (subvector) consisting of all rows of X (entries of

y) not indexed in the set I. Finally, |·| denotes the absolute value, and ‖·‖∞ denotes the supremum

norm.

2 Smoothing the Lasso objective function

This section lays the theoretical foundation for the modified Lasso approach we propose to address

the non-differentiability of the L1 penality term in eq. (1), while the smooth L2 term remains

unchanged. The substitute of the term ‖β‖1 =
∑p

i=1 |βi| in eq. (1) will be computed with the help

of a technique called Nesterov smoothing, whose details are given in Section 2.1. In Section 2.2,

we simplify the general Nesterov smoothing approach for the particular case of the Lasso penalty

and show how our approach results in explicit closed-form expressions for both the smoothed Lasso

and its gradient. The uniform closeness of the smoothed Lasso we propose and the original Lasso

objective function is proven in Section 2.3.

2.1 Summary of Nesterov smoothing

We briefly summarize the idea of Nesterov smoothing. We are given a piecewise affine and convex

function f : Rq → R which we aim to smooth, where q ∈ N. We assume that f is composed of

k ∈ N linear pieces (components) and can thus be expressed as

f(z) = max
i=1,...,k

(
A[z, 1]>

)
i
,
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where A ∈ Rk×(q+1) is a matrix whose rows contain the linear coefficients for each of the k linear

pieces (with the constant coefficients being in column q + 1), z ∈ Rq, and [z, 1] ∈ Rq+1 denotes the

vector obtained by concatenating z and the scalar 1.

Let µ ≥ 0 be the Nesterov smoothing parameter. Using a so-called proximity (or prox) func-

tion ρ, which is assumed to be nonnegative, continuously differentiable, and strongly convex, f is

replaced by the approximation

fµ(z) = max
w∈Qk

{
〈A[z, 1]>, w〉 − µρ(w)

}
,

where Qk ⊆ Rk is the unit simplex in k dimensions defined as

Qk =

{
w ∈ Rk :

k∑
i=1

wi = 1, wi ≥ 0 ∀i = 1, . . . , k

}
.

As shown in (Nesterov, 2005, Theorem 1), fµ is both smooth and uniformly close to f , meaning

that for all z ∈ Rq, the approximation error is uniformly upper bounded by

sup
z∈Rq
|f(z)− fµ(z)| ≤ µ sup

w∈Qk
ρ(w) = O(µ). (2)

The larger the value of µ the more f is smoothed, while µ = 0 recovers the original function

f = f0. Two choices of the prox function are given a closer look in Section 2.2. Smoothing with

the so-called entropy prox function results in the smooth approximation fµe having a closed-form

expression given by

fµe (z) = µ log

(
1

k

k∑
i=1

e
(A[z,1]>)

i
µ

)
, (3)

which satisfies the uniform bound

sup
z∈Rq
|f(z)− fµe (z)| ≤ µ log(k). (4)

Similarly, the smooth approximation of f with the help of the so-called squared error prox function
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given by ρs(w) = 1
2

∑k
i=1

(
wi − 1

k

)2
for w ∈ Rk can be written as

fµs (z) = 〈ĉ(z), A[z, 1]>〉 − µρs(ĉ(z)). (5)

In eq. (5), ĉ(z) ∈ Rk is the Michelot projection (Michelot, 1986) of the vector c(z) = (c1(z), . . . , ck(z)),

given componentwise by ci(z) = 1/µ ·
(
A[z, 1]>

)
i
− 1/k for i ∈ {1, . . . , k}, onto the k-dimensional

unit simplex Qk. The approximation fµs via squared error prox function satisfies the uniform bound

sup
z∈Rq
|f(z)− fµs (z)| ≤ µ

(
1− 1

k

)
. (6)

2.2 Application to the Lasso objective function

For given X ∈ Rn×p, y ∈ Rn, and λ > 0, according to eq. (1), the Lasso objective function

L : Rp → R given by

L(β) =
1

n
‖Xβ − y‖22 + λ‖β‖1 (7)

is smooth in its first term but non-differentiable in the penalty term ‖β‖1 =
∑p

i=1 |βi|. We thus

smooth the latter, where it suffices to apply Nesterov smoothing to each absolute value indepen-

dently.

Let k = 2. Using one specific choice of the matrix A ∈ R2×2 given by

A =

 −1 0

1 0

 ,

we rewrite the (one dimensional) absolute value as f(z) = max{−z, z} = maxi=1,2

(
A[z, 1]>

)
i
,

where here and in the following subsections z ∈ R is a scalar.

2.2.1 Entropy prox function

For the entropy prox function, eq. (3) with A as in Section 2.2 simplifies to

fµe (z) = µ log

(
1

2
e−z/µ +

1

2
ez/µ

)
,
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which according to eq. (4) satisfies the approximation bound

sup
z∈R
|f(z)− fµe (z)| ≤ µ log(2). (8)

The first and second derivatives of fµe are given by

∂

∂z
fµe (z) =

−e−z/µ + ez/µ

e−z/µ + ez/µ
=: gµe (z),

∂2

∂z2
fµe (z) =

4

µ(e−z/µ + ez/µ)2
=: hµe (z).

Together, smoothing eq. (7) with the entropy prox function results in

Lµe (β) =
1

n
‖Xβ − y‖22 + λ

p∑
i=1

fµe (βi),

∂Lµe
∂βi

(β) = − 2

n
〈y −Xβ,X·,i〉+ λgµe (βi),

∂2Lµe
∂βi∂βj

(β) =
2

n
(X>X)ij + I(i = j) · λhµe (βi),

(9)

where the entropy prox smoothed Lasso is Lµe , its explicit gradient is ∂Lµe /∂βi, and its Hessian

matrix is given by ∂2Lµe /∂βi∂βj . The function I(·) denotes the indicator function.

In principle, the Lasso objective can be minimized using a (second order) Newton-Raphson or

a (first order) quasi-Newton approach. However, since X ∈ Rn×p with n < p, the matrix X>X

is singular, meaning that for the Hessian to be invertible one needs the added diagonal elements

λhµe (βi) to be large. However, this is usually not true, since if βi is nonzero, then in a neighborhood

of the true Lasso estimate the term (e−βi/µ + eβi/µ)−2 will be exponentially small. Thus to make

λhµe (βi) large for a fixed µ, we need λ to be exponentially large. Likewise, given λ and βi, too

small or too large values of µ will make hµe vanish. However, since typically λ and µ are fixed, the

Hessian in eq. (9) will be singular except for a few artificial cases and thus the second order Newton-

Raphson method will not be applicable. In the simulations we therefore focus on quasi-Newton

methods which require only Lµe and its gradient ∂Lµe /∂βi.
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2.2.2 Squared error prox function

Similarly, eq. (5) with A as in Section 2.2 simplifies to

fµs (z) = 〈ĉ(z), [−z, z]〉 − µρs(ĉ(z)).

where ĉ(z) ∈ R2 is the Michelot projection of the vector c(z) = 1/µ · [−z, z] − 1/k onto the two-

dimensional unit simplex Q2. According to eq. (6), we obtain the approximation bound

sup
z∈R
|f(z)− fµs (z)| ≤ 1

2
µ. (10)

The derivative of fµs is given by

∂

∂z
fµs (z) = 〈ĉ(z), [−1, 1]〉 =: gµs (z),

see (Hahn et al., 2017, Lemma 4) for a proof of this result. The second derivative ∂2fµs /∂z2 does

not have a closed form expression, though it can be approximated numerically. Analogously to

the results for the entropy prox function, smoothing eq. (7) with the squared error prox function

results in

Lµs (β) =
1

n
‖Xβ − y‖22 + λ

p∑
i=1

fµs (βi),

∂Lµs
∂βi

(β) = − 2

n
〈y −Xβ,X·,i〉+ λgµs (βi),

∂2Lµs
∂βi∂βj

(β) =
2

n
(X>X)ij + I(i = j) · λ ∂

2fµs
∂z2

∣∣∣∣
z=βi

(11)

where as before, the smoothed Lasso via squared error prox function is Lµs , its explicit gradient is

∂Lµs /∂βi, and its Hessian matrix is ∂2Lµs /∂βi∂βj .

As in Section 2.2.1 we observe that the Hessian matrix is singular since X>X is singular, and

since the additional diagonal entries stemming from λ∂2fµs /∂z2 are usually too small to make the

Hessian invertible. We therefore again resort to a quasi-Newton method to minimize Lµs with the

help of its gradient ∂Lµs /∂βi only.
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2.3 Theoretical error bounds

The approximation bounds on the absolute value, given in eqs. (8) and (10), carry over to bounds

on the distance between the unsmoothed and smoothed Lasso objective functions, as shown in the

following proposition.

Proposition 1. The smoothed Lasso objective functions with entropy and squared error prox, given

in eqs. (9) and (11), satisfy the following uniform bounds:

sup
β∈Rp

|Lµe (β)− L(β)| ≤ λpµ log(2),

sup
β∈Rp

|Lµs (β)− L(β)| ≤ λpµ

2
.

Moreover, both Lµe and Lµs are strictly convex.

In Proposition 1 the Lasso parameter λ > 0 and the dimension p are fixed for a particular esti-

mation problem, thus allowing to make the approximation error arbitrarily small as the smoothing

parameter µ → 0. This justifies the use of our proposed smoothed Lasso as a surrogate of the

original (non smooth) Lasso objective function. Moreover, the convexity of the Lasso is preserved.

3 Simulation studies for polygenic risk scores for COPD

In this section, we evaluate three approaches to compute Lasso estimates on simulated data (Sec-

tion 3.1) as well as real data coming from a genome-wide association study for COPDGENE (Regan

et al., 2010), in which polygenic risk scores are computed and evaluated (Section 3.2). Of the three

approaches we consider, the first two utilize existing methodology, while the last approach imple-

ments the methodology we developed in this paper:

1. We carry out the minimization of eq. (1) using R’s function optim. The optim function

implements the quasi-Newton method BFGS for which we supply the explicit (though non-

smooth) gradient ∂L/∂βi = −2/n · 〈y−Xβ,X·,i〉+ λsign(βi). This approach will be referred

to as the unsmoothed Lasso;

2. We use the FISTA algorithm as implemented in the fasta R-package (Chi et al., 2018),

available on The Comprehensive R Archive Network (R Core Team, 2014);
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3. We minimize the smoothed Lasso objective function of eq. (9) using its explicit gradient.

Note that due to the smoothed L1 penalty, the resulting estimates returned by the smoothed

Lasso are typically dense, though sparse estimates are easily obtained by applying some form

of thresholding.

The main function of the fasta package which implements the FISTA algorithm, also called fasta,

requires the separate specification of the smooth and non-smooth parts of the objective function

including their explicit gradients. We follow Example 2 in the vignette of the fasta R-package in

Chi et al. (2018) and supply both as specified in eq. (7). Additionally, we employ a uniform random

starting value as done for the unsmoothed and smoothed Lasso. The initial stepsize is set to τ = 10

as in Example 2 of Chi et al. (2018). The lookback window for non-monotone line search and the

shrinkage parameter for the stepsize are left at their default values.

Three potential implementations are unconsidered in this simulation section for the following

reasons. The glmnet algorithm of Friedman et al. (2010), available in the R-package glmnet, is

a variant of FISTA which performs a cyclic update of all coordinates, whereas FISTA updates

all coordinates per iteration. We thus focus on FISTA. Since the R-package SIS accompanying

Fan and Li (2001) does itself rely on glmnet for computing regression estimates, we omit it in this

section. The LARS algorithm of Efron et al. (2004) is implemented in the R-package lars on CRAN

(Hastie and Efron, 2013). As remarked in Friedman et al. (2010), LARS is slower than glmnet/

FISTA. Additionally, since the implementation of Hastie and Efron (2013) always computes a full

Lasso path, it is considerably slower than the other methods.

All results are averages over 100 repetitions. The Lasso regularization parameter was fixed at

λ = 0.3 after performing 10-fold cross validation. Details of the cross validation computation are

given in Appendix A. The smoothing parameter of the approach of Section 2.2 was fixed at µ = 0.1

in all simulations. As shown in Proposition 1, the smaller µ the better the proposed smoothed

Lasso will approximate the original Lasso, though numerical instabilities may occur if µ is chosen

too close to the machine precision. All computations were carried out on 100 cluster nodes, each

one having a lx24-amd64 architecture with 4 cores per node, 94 GB of memory, and running 64-bit

CentOS 6 Linux.

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 22, 2021. ; https://doi.org/10.1101/2020.03.06.980953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.980953


0 2000 4000 6000 8000 10000

n

L2
 n

or
m

 o
f e

st
im

at
ed

 to
 tr

ue
 p

ar
am

et
er

s

0.
00

5
0.

05
0.

5
1

5
10

unsmoothed LASSO
FISTA
smoothed LASSO

100 200 500 1000 2000 5000 10000

n

tim
e 

[s
]

1
2

5
10

20
50

unsmoothed LASSO
FISTA
smoothed LASSO

Figure 1: Simulation study: L2 norm of parameter estimate to truth (left) and runtime in seconds
(right) as a function of n ∈ [1, 10000] while p = 1000. Logarithmic scale on the y-axes.

3.1 Application to simulated data

We designed our simulation study so that it mimics the application to a genome-wide association

study, i.e. we simulate X ∈ Rn×p from a multidimensional normal distribution, where the entries

of the mean vector of the multidimensional normal distribution are sampled independently from a

uniform distribution in [0, 0.5]. To ensure positive definiteness of the covariance matrix Σ of the

multidimensional normal distribution, we set Σ = 1
2(A+ A>) + nDn, where Dn is a n× n matrix

with ones on its diagonal, and zeros otherwise. The added term nDn ensures positive definiteness.

After X is obtained, we generate the entries of the true β independently from a standard normal

distribution, and set all but nz ∈ {0, . . . , p} out of the p entries to zero. The number of non-zero

entries nz ∈ N is a parameter of the simulations. The response y ∈ Rn is then easily obtained

as y = Xβ + ε, where the entries of the noise vector ε ∈ Rn are generated independently from

a Normal distribution with mean zero and some standard deviation σ. The smaller the standard

deviation, the easier the recovery of β will be (see Appendix B for a study on how the choice of σ

influences the recovery of β). We will employ σ = 0.5 in all simulations. In this subsection, we fix

the number of true non-zero parameters at 20% (that is, nz = 0.2p), resulting in sparse parameter

vectors.
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Figure 2: Simulation study: L2 norm of parameter estimate to truth (left) and runtime in seconds
(right) as a function of p ∈ [1, 5000] while n = 1000. Logarithmic scale on the y-axes.

Figure 1 (left) shows results on simulated data of dimension n ∈ [1, 10000] while keeping p =

1000 fixed. We measure the accuracy of the obtained Lasso estimates through their L2 norm to

the generated true parameters. We observe that the unsmoothed and smoothed Lasso approaches

seem to suffer from numerical instabilities for small n. As n increases, both the unsmoothed and

smoothed Lasso approaches stabilize. The FISTA algorithm yields stable estimates for all n. The

accuracy of the smoothed Lasso approaches the one of FISTA for large n. As expected, all methods

become more accurate as the number of data points n increases.

Figure 1 (right) shows that the unsmoothed and smoothed Lasso approaches have an almost

identical runtime. We find that although highly optimized, FISTA is only a low multiple factor

faster than our approaches and, more importantly, its asymptotic runtime scaling is comparable to

the one of the smoothed Lasso.

Similarly to the previous experiment, in Figure 2 (left) we keep n = 1000 fixed and investigate

the dependence of all four approaches on p ∈ [1, 5000]. Again, the unsmoothed and smoothed Lasso

approaches seem to suffer from numerical instabilities for smaller p, while FISTA is very stable.

Importantly, the smoothed Lasso seems to outperform FISTA for very large p. As expected, while

keeping the data size n fixed, estimation becomes more challenging for all methods as p increases.
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Figure 2 (right) confirms the timing results seen in the assessment of the dependence on n. The

unsmoothed and smoothed approaches have virtually equal speeds, while FISTA is again slightly

faster. Notably, the scaling of the runtimes seems to be roughly equal for all three methods.

Since the unsmoothed Lasso does not come with the guarantee we established for our smooth-

ing approach (see Section 2.3) and is outperformed by the smoothed Lasso, we will focus in the

remainder of the simulations on FISTA and smoothed Lasso only.

3.2 Application to polygenic risk scores

We evaluate the smoothed Lasso approach on polygenic risk scores of the COPDGene study (genetic

epidemiology of COPD), a multi-center case-control study designed to identify genetic determinants

of COPD and COPD-related phenotypes (Regan et al., 2010). The study has been sequenced as

part of the TOPMed Project. The data is available through NHLBI TOPMed (2018).

For the study, non-Hispanic Whites and African Americans aged 45 to 80 were recruited as

COPD cases and controls. The dataset contains n = 4010 individuals (rows), all of which had at

least 10 pack-years of smoking history. For each individual, we observe p = 9153 datapoints, among

them the covariates age, sex, packyears, height and five PCA vectors. The remaining entries are

SNP data per individual. The input data are summarized in a matrix X ∈ Rn×p. The response

y ∈ Rn is the fev1 ratio, also called the Tiffeneau-Pinelli index, per individual. It describes the

proportion of lung volume that a person can exhale within the first second of a forced expiration in a

spirometry (pulmonary function) test. We aim to fit the four covariates, the five PCA vectors, and

the SNP data to the response using our smoothing approach, with the aim to obtain a polygenic

risk score of higher accuracy than obtained through conventional methods (see Section 1).

3.2.1 Results from a single run

We solve y = Xβ for the given X and y using our smoothed Lasso approach of eq. (9), and compare

it to the FISTA algorithm.

Table 1 shows results for a single application of both algorithms. After computing the estimate

β̂ with each method, we consider ‖y−Xβ̂‖2, the L2 norm between the fitted and generated (true)

response. We observe that FISTA with standard choices of its tuning parameters seems to have

trouble locating the minimum of the Lasso objective function, and is thus worse than smoothed
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method L2 norm runtime [s]

FISTA 284.6 66.6
smoothed Lasso 26.3 116.6

Table 1: COPDGene study: L2 norm of fitted to true response and runtime in seconds for a single
application of any method to the dataset of polygenic risk scores.
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Figure 3: COPDGene study: L2 norm of predicted to withheld data in cross-validation (left) and
runtime in seconds (right) as a function of the number of withheld entries. Dataset of polygenic
risk scores. Logarithmic scale on the y-axes.

Lasso. However, the FISTA method beats our approach in terms of runtime.

3.2.2 Cross validation

To quantify the accuracy of the methods further, we perform a simple cross validation experiment

in which we withhold a random set of row indices I (of varying size) of the dataset X and the

corresponding entries of the response y and fit a linear model to the rest of the data, that is we fit

y−I = X−I,·β. After obtaining an estimate β̂, we use the withheld rows of X to predict the withheld

entries of y, that is we compute XI,·β̂. We evaluate the quality of the prediction by computing the

L2 norm ‖XI,·β̂ − yI‖2 between predicted and withheld data.

Figure 3 (left) shows results of this cross-validation experiment. We observe that FISTA with

default choices of its tuning parameters seems to have difficulties to converge to the minimum

of the Lasso objective function, whereas smoothed Lasso performs better. Not surprisingly, the
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quality of the prediction becomes worse in general as the number of withheld entries increases,

since predictions are based on fewer and fewer datapoints. However, this decrease in accuracy

seems to be more pronounced for FISTA than for our smoothed Lasso.

Finally, Figure 3 (right) displays runtime measurements for both approaches. We observe that

smoothed Lasso seems to be rather insensitive to the number of withheld entries apart from a very

large number of withheld entries. The FISTA algorithm is the faster method, however it exhibits

a greater sensitivity to the number of withheld entries, that is the size of the estimation problem.

3.3 Application to synthetic polygenic risk scores

We aim to extend the simulations of Section 3.2 in order to vary the sparsity of the parameter

estimate β̂. To this end, we change the simulation setting as follows. Leaving X ∈ Rn×p unchanged

(n = 4010 individuals and p = 9153 datapoints), we simulate a parameter vector β ∈ Rp in which

nz ∈ {0, . . . , p} entries are drawn from a Beta distribution with shape parameters 1.5 and 10. This

will produce nonzero entries in the vector β of magnitude around 0.15, which is realistic in practice.

The remaining p−nz entries are set to zero. We then calculate the response as y = Xβ+ ε, where

the entries of the noise vector ε ∈ Rn are generated independently from a Normal distribution with

mean 0 and standard deviation 0.1.

After generating X and y, we again use FISTA and smoothed Lasso to recover an estimate β̂.

We evaluate the quality of the estimate using ‖β − β̂‖2, that is using the L2 norm between truth

and estimate.

Figure 4 (left) shows results as a function of the number nz of non-zero entries in the generated

true β. We observe that in this experiment, and in contrast to Figures 1 and 2, the smoothed Lasso

yields both more accurate and more stable estimates than FISTA (as expressed through a lower

deviation from the truth in L2 norm).

Figure 4 (right) shows runtime results for both approaches, showing that in this experiment the

runtime scaling of FISTA seems to be rather insensitive to the simulation scenario. Our smoothed

Lasso is slower than FISTA, and its runtime is more volatile. We note that in this experiment, the

almost constant runtime of FISTA, irrespective of the simulation scenario, is likely a result of its

inability to produce stable estimates in the first place.

Overall, we conclude from the simulations that in the scenarios we investigated, our smoothed
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Figure 4: COPDGene study: L2 norm of parameter estimate to truth (left) and runtime in seconds
(right) as a function of the number of non-zero entries in the simulated true parameter vector.
Dataset of polygenic risk scores. Logarithmic scale on the y-axis of the time plot.

Lasso approach yields estimates with equal or improved accuracy in comparison to the gold standard

FISTA, exhibits roughly the same runtime scaling as FISTA, and comes with a guarantee on its

accuracy.

4 Discussion

This article investigated a smoothing approach for penalized regression using the Lasso. The

smoothing approach allows us to obtain smooth gradients everywhere, which facilitate minimization

of the convex but non-smooth Lasso objective function.

Importantly, our approach comes with a guarantee of correctness. We prove a uniform bound

on the distance between the unsmoothed and smoothed Lasso objective function, thus justifying

the use of our smoothed Lasso as a surrogate of the original (non-smooth) Lasso objective function.

In the scenarios that we investigated, our simulation results suggest that the proposed smoothing

approach yields Lasso estimates with equal or improved accuracy than the gold standard in the

literature, the FISTA algorithm of Beck and Teboulle (2009). Our approach can directly be utilized

for the computation of more accurate polygenic risk scores via high-dimensional regression of genetic
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Figure 5: Cross validation error as a function of the Lasso regularization parameter λ for the FISTA
algorithm. Simulated data with n = 1000 and p = 100.

variants from genome-wide association studies (and other covariates) to a certain outcome. This

has the potential to increase the precision of risk prediction, thereby potentially identifying patients

at high risk early on when they are still able to benefit from preventive steps targeted at reducing

their chance of getting the disease.

Moreover, the idea of smoothing is not restricted to Lasso regression. Other important and

widespread regression operators, such as the elastic net or graphical Lasso, might benefit from a

similar smoothing approach to increase the accuracy of the obtained estimates. Extending the

methodology to those operators remains for future work.

A Selection of the Lasso regularization parameter via cross vali-

dation

We aim to select the Lasso regularization parameter λ using cross validation. To this end, for the

simulation scenario described in Section 3.1 (in particular, for the chosen noise level of σ = 0.5 and

the sparsity level of 20%, as well as n = 1000 and p = 100), we perform 10-fold cross validation as

described in Tibshirani (2013).
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Figure 6: Sensitivity analysis on simulated data: L2 norm of parameter estimate to truth (left) and
runtime in seconds (right) as a function of the standard deviation σ while n = 1000 and p = 2000.
Logarithmic scale on the y-axis of the right plot.

To be precise, we first fix a grid of admissible values of λ from which we would like to choose

the regularization parameter (here, λ ∈ {0, 0.05, 0.1, 0.15, . . . , , 1}). We then randomly divide the

n data points into K = 10 disjoint sets (folds) I1, . . . , IK such that
⋃K
j=1 Ij = {1, . . . , n}. For

each j ∈ {1, . . . ,K}, we withhold the indices in Ij and fit a linear model y−Ij = X−Ij ,·β using

the FISTA algorithm. After obtaining an estimate β̂, we use the withheld rows of X indexed in

Ij to predict the withheld entries of y, that is we compute XIj ,·β̂. We evaluate the accuracy of

the prediction with the L2 norm, that is we compute ‖XIj ,·β̂ − yIj‖2. Repeating this computation

for all j ∈ {1, . . . ,K} allows us to compute an average L2 error over the K folds (called the cross

validation error). We plot this error as a function of λ.

The result is shown in Figure 5. We observe that for the simulation scenario we consider in

Section 3.1, the choice λ = 0.3 is sensible.

B Sensitivity analysis

In the linear regression model y = Xβ + ε under consideration in this work (see Section 1), it is

easy to see that the larger the noise/error ε, the harder it will be to obtain accurate estimates of β.
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To quantify this statement, Figure 6 presents a sensitivity analysis for the recovery accuracy of

the parameter estimate β (measured as the L2 norm between the fitted parameter estimate returned

by the unsmoothed Lasso, FISTA algorithm, and smoothed Lasso, to the truth) as a function of

the standard deviation σ. The setup of the simulation is identical to the one of Section 3.1, though

now n = 100 and p = 200 are fixed. The entries of the noise vector ε ∈ Rn in the model y = Xβ+ ε

are generated independently from a Normal distribution with mean zero and a varying standard

deviation σ ∈ [0, 10].

Figure 6 (left) shows that, as expected, the accuracy of the recovered estimate of β decreases

for all methods as σ increases. However, this increase seems rather slow. The runtime as a function

of σ, depicted in Figure 6 (right), stays roughly constant for all methods, as expected.

C Proof of Proposition 1

Proof. The bounds on Lµe and Lµs follow from eq. (8) and eq. (10) after a direct calculation. In

particular, for the entropy prox function,

sup
β∈Rp

|Lµe (β)− L(β)| = sup
β∈Rp

∣∣∣∣∣λ
p∑
i=1

fµs (βi)− λ
p∑
i=1

|βi|

∣∣∣∣∣
≤ sup

β∈Rp
λ

p∑
i=1

∣∣∣fµs (βi)− f(βi)
∣∣∣

≤ sup
β∈Rp

λ

p∑
i=1

µ log(2)

≤ λpµ log(2),

where f is as defined in Section 2.2 and where it was used that λ ≥ 0. The result for the squared

error prox smoothed Lµs is proven analogously.

Since both fµe and fµs are convex according to (Nesterov, 2005, Theorem 1), and since the least

squares term 1
2‖Xβ − y‖

2
2 is convex, it follows that both Lµe and Lµs remain convex as the sum of

two convex functions.

To be precise, strict convexity holds true. Observe that the second derivative of the entropy
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smoothed absolute value of Section 2.2.1 is given by

∂2

∂z2
fµe (z) =

4e2x/µ

µ
(
e2x/µ + 1

)2 ,
which is always positive, thus making fµe strictly convex. Therefore, Lµe is strictly convex as the

sum of a convex function and a strictly convex function. Similar arguments show that Lµs is strictly

convex.
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