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Abstract The linear time invariant state–space model representation is common to
systems from several areas ranging from engineering to biochemistry. We address the
problem of systematic optimal experimental design for this class of model. We con-
sider two distinct scenarios: (i) steady-state model representations and (ii) dynamic
models described by discrete-time representations. We use our approach to construct
locally D–optimal designs by incorporating the calculation of the determinant of the
Fisher Information Matrix and the parametric sensitivity computation in a Nonlinear
Programming formulation. A global optimization solver handles the resulting numer-
ical problem. The Fisher Information Matrix at convergence is used to determine
model identifiability. We apply the methodology proposed to find approximate and
exact optimal experimental designs for static and dynamic experiments for models
representing a biochemical reaction network where the experimental purpose is to
estimate kinetic constants.
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1 Motivation1

As a motivating example we consider a (bio-) chemical reaction network modeled by2

a Linear-Time Invariant (LTI) state–space model, which also provides the basis for3

our numerical exploration of the calculation and properties of optimum experimental4

designs. For a recent review of (bio-) chemical reaction networks the reader is referred5

to Loskot et al. (2019). The reaction kinetic model describing the convective-based6

transfer network of a given component will only have linear kinetics. Specifically, the7

inflow and outflow terms are represented using zero order kinetics with the interme-8

diate transitions being of first order (Hangos et al., 2013). The 𝑛 chemical species9

(metabolites) of a reaction network are denoted as 𝜒1, · · · , 𝜒𝑛, the concentrations of10

which are respectively 𝑥1, · · · , 𝑥𝑛, forming the vector x of state variables. A network11

can be represented by a stoichiometric matrix 𝑇 ∈ R𝑛𝑥×𝑛𝑟 where each entry 𝑇𝑖, 𝑗12

represents the production or consumption of metabolite 𝑖 ∈ {1, · · · , 𝑛𝑥} in reaction13

𝑗 ∈ {1, · · · , 𝑛𝑟 }. The 𝑇𝑖, 𝑗 are +1 if the metabolite is produced, −1 if it is consumed14

and 0 otherwise; 𝑛𝑟 is the number of reactions in the network.15

In modern biological research, it is very common to collect detailed information16

on time dependent chemical concentration data for large networks of biochemical17

reactions (Crampin et al., 2004). One technique uses the differential uptake of isotopes18

of carbon. Tracers containing an increased amount of Carbon-13 can be introduced19

into the network to aid the identification of molecules. Examples, with a discussion20

of experimental design, include Bouvin et al. (2015) and Wiechert et al. (2001). A21

first step in design is to ensure that proposed measurements lead to identification of22

potential models. The main purpose in the chemical networks with which this paper is23

concerned is then to identify the exact structure of the network of chemical reactions24

and to provide efficient estimates of the respective rate constants. We consider model25

identifiability and parameter estimation problems for both steady-state and dynamic26

models.27

This paper addresses the D–optimal design of experiments for parameterizing LTI28

state–space models, handling both static and dynamic kinds of experiments. Static29

experiments are those where inputs are initially chosen and kept constant over time30

until the system reaches a steady state, and the underlying model is the steady-state31

LTI state–space model. Here, the experimenter will run the experiments several times,32

with a different constant input u at each trial, and the response ywill be observed after33

the system has converged to a new steady-state. In dynamic experiments the inputs34

can vary during the experiment at a previously defined grid of time instants of the35

experimental horizon. These experiments are to be run a single time, and the inputs36

remain constant during the time slots forming the discretized grid, but are allowed to37

change at their bounds. The process is also sampled at a previously set grid of times,38

that may (or may not) coincide with the grid used to manipulate the inputs.39

1.1 Models and related literature40

Here, we introduce the formalism of LTI space-state models. In this paper we employ41

the nomenclature commonly used in systems theory. Specifically, x ∈ X ⊂ R𝑛𝑥42
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denotes the vector of state variables that fully characterize the state of the system,43

u ∈ U ⊂ R𝑛𝑢 is the vector of control variables, known without error, and used44

as control factors in the experiments, y is the vector of variables measured in the45

experiment, called responses, i.e. y ∈ Y ⊂ R𝑛𝑦 ⊆ R𝑛𝑥 where 𝑛𝑦 (≤ 𝑛𝑥) is the number46

of response variables, and 𝜃𝜃𝜃 ∈ ΘΘΘ ⊂ R𝑛𝜃 the vector of parameters to be estimated.47

Here,U,X,Y andΘΘΘ are compact domains of factors, states, responses and parameters,48

respectively;ΘΘΘ =
⊗𝑛𝜃

𝑗=1 [𝜃LO𝑗 , 𝜃UP𝑗 ] is a compact set in the domain of the parameters,49

𝜃 𝑗 represents a local value of parameter 𝑗 and 𝜃LO𝑗 and 𝜃
UP
𝑗
are the lower and upper50

values admissible for 𝜃 𝑗 . The LTI state–space model relates control variables, states51

and responses as follows52

dx
d𝑡

= 𝐴(𝜃𝜃𝜃) x + 𝐵 u(𝑡) (1a)

y = 𝐶 x + 𝜖𝜖𝜖, (1b)

where 𝐴(𝜃𝜃𝜃) ∈ R𝑛𝑥×𝑛𝑥 is a time-invariant (i.e., independent of time) matrix, 𝐵 ∈53

R𝑛𝑥×𝑛𝑢 is the matrix of constants relating the state variables to the inputs, and 𝐶 ∈54

R𝑛𝑦×𝑛𝑥 is the matrix of coefficients relating the responses to the state variables.55

Equation (1a) is the state equation; 𝐴(𝜃𝜃𝜃) can be sparse with many entries 0. The56

time 𝑡 ∈ [0, 𝐻] is bounded by 𝐻, the horizon to be considered in the simulation57

(or experiment). 𝐵 and 𝐶 are also time invariant and known. Equation (1b) is the58

measurement equation. Let 𝜖𝜖𝜖 ∈ R𝑛𝑦 be the vector of observational errors; each59

component 𝜖𝑖 is described by an i.i.d. Gaussian probability distributionN(0, 𝜎𝑖) with60

mean 0 and standard error 𝜎𝑖 , 𝑖 ∈ {1, · · · , 𝑛𝑦}. The dynamic behavior of process61

states (and responses) can be adjusted by manipulating the control factors. Thus, the62

dynamic model includes the time dependence of u, i.e. u(𝑡). A steady-state version63

of the model (1) is64

x = −𝐴(𝜃𝜃𝜃)−1 𝐵 u (2a)
y = 𝐶 x + 𝜖𝜖𝜖 . (2b)

Here, none of the states, responses and control factors are dependent on time as65

they refer to a time instant where the accumulation term (dx/d𝑡) is null and we66

omit the dependence of u on 𝑡. 𝐴(𝜃𝜃𝜃) is assumed invertible to avoid underdetermined67

parametrization.68

More generally, state–space models are mathematical representations of the dy-69

namics of general systems relating input, state and output variables. They are for-70

malized as first order differential equations and allow a convenient algebrization and71

compactness. Fundamental theoretical results for establishing the properties of state–72

space models and constructing optimal input signals for system identification can73

be found in a vast range of references (Goodwin and Payne, 1977; Kalaba and Sp-74

ingarn, 1982; Ljung, 1999; Titterington, 1980). The optimal design of experiments75

in the time domain and in the frequency domain has been considered for the esti-76

mation of correctly parameterized models. The problem in the time domain reduces77

to a nonlinear optimal control problem; the complexity was one of the reasons that78

motivated researchers to find input designs in the frequency domain. The problem79

in the frequency domain aims at finding a set of finitely parametrized inputs that80
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parametrizes all achievable information matrices (Goodwin and Payne, 1977; Mehra,81

1974; Zarrop, 1979). One of the problems of frequency domain based methods is82

their inability to take time domain constraints into consideration. Here, we address83

the problem in the time domain. An early reference to ODoE for time discrete model84

identification is Goodwin and Payne (1977, Chap. 6) where an adjoint state approach85

was considered for the solution (Kalaba and Spingarn, 1973). Additional results can86

be found in Zarrop (1979, Chap. 2). The formalization of the problem as an optimal87

control problem appeared in Asprey and Macchietto (2000); Espie and Macchietto88

(1989); Körkel et al. (2004); Rudolph and Herrendörfer (1995) among others. The89

time domain is discretized and the decision variables and control actions parametrized90

in each interval so that the number of decision variables is finite (Bryson, 1999). This91

approach is known as dynamic optimization; the original problem is approximated by92

an algebraic representation and may be cast as a NLP solved with convenient algo-93

rithms. Herein, we use a dynamic optimization-based approach to handle the optimal94

ODoE problem for time discrete models.95

The representation of (bio)- chemical reaction networks is an area of chemical and96

biological engineeringwhere state–spacemodels find extensive application (Anderson97

et al., 2011). Very often the parametrization and identification of reaction networks98

require experimental work, and the application of the fundamentals of optimal design99

of experiments (ODoE) may rationalize and reduce the amount of work needed. Here,100

we use the customary parametrization of (bio)- chemical reaction networks as the101

motivating example for proposing general formulations for optimal design of static102

and dynamic experiments for systems represented by Linear-Time Invariant state–103

space models.104

The steady and time discrete LTI state–space models find direct application in105

NMRspectroscopy, network traffic flow, signal processing, control theory and reaction106

network modeling among others. The optimal design of experiments considered in107

this paper aims at determining conditions that provide measurements so that the108

parameters 𝜃𝜃𝜃 in 𝐴(𝜃𝜃𝜃) are estimated with minimum confidence region. This, in turn,109

requires maximizing a measure of the Fisher InformationMatrix (FIM). The choice of110

optimal sampling strategies for system identification was considered by Mehra (1974)111

and Ng and Goodwin (1976), among others. The construction of optimal input signals112

for biological systems identificationwas considered byCobelli and Thomaseth (1985),113

and the identifiability of the state–space model was analyzed by Walter (2013).114

The applications of dynamic experimentation aim at finding the optimal sequence115

of actions on input variables and/or time instants at which sampling is required so116

that the information obtained from experiments is maximized (Asprey and Macchi-117

etto, 2000; Espie and Macchietto, 1989). The problem is formulated as an optimal118

control problem (Pronzato, 2008; Zarrop, 1979), handled numerically with dynamic119

optimization techniques (Hoang et al., 2013; Körkel et al., 2004). Recent applications120

include systems with continuous measurement (Galvanin et al., 2011), online redesign121

of experiments considering the amount of information gathered previously and model122

inaccuracy (Galvanin et al., 2012), the design of robust experiments taking into ac-123

count the uncertainty of the model and violation of the constraints (Telen et al., 2018)124

and an application to a real case study where local identifiability is simultaneously125

monitored and used to transform the problem into a well-conditioned equivalent form126
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(Barz et al., 2013). These applications focus on the optimal design of experiments for127

dynamicmodels, and address locally optimal designs for general nonlinear state–space128

models; but they disregard the static experimentation that can be considered for some129

processes. The LTI state–space model has specificities that broaden its application to130

a large range of systems, namely a structure that:131

i. allows improving the numerical efficiency of the formulations for computing132

optimal experimental designs through taking advantage of the sparsity of 𝐴(𝜃𝜃𝜃);133

and134

ii. generalizes to the use of both static and dynamic experiments for parameter135

estimation.136

The ODoE for LTI models represented by state–space models has not been ad-137

dressed consistently although there is a recognized interest in the optimization of the138

experimental work for estimating the parameters and checking whether or not the139

model is identifiable. The problem was addressed by Brown et al. (2008) for mea-140

surement selection in Chemical Reaction Network (CRN) characterization; Maidens141

and Arcak (2016) considered the problem of finding the optimal substrate injection to142

characterize metabolic networks using magnetic resonance imaging. Their proposed143

solution used a Semidefinite Programming formulation; another context where ODoE144

was applied to LTI systems is in inference about traffic flow networks (Sagnol, 2010;145

Singhal and Michailidis, 2010) and optimal design of Kalman filters (Sagnol and146

Harman, 2015b). The application of nonlinear state–space models to CRN inference147

was considered, among others, by Chis et al. (2016); Eisenberg and Hayashi (2014);148

Telen et al. (2014); Villaverde (2019). We observe that there is a lack of systematic149

methods for finding optimal experimental designs specifically for LTI state–space150

models which simultaneously take advantage of the topology of the model represen-151

tation and of the accuracy and efficiency of the optimization algorithms currently152

available. Further, a strategy that can adapt to find optimal experimental designs for153

both steady-state and dynamic LTI state–space models is certainly a research topic154

worth pursuing. Finally, since the optimal design of experiments can be viewed as155

maximizing a (quantitative) measure of model identifiability, where the usual practice156

is to maximize some functional of the FIM (Walter and Pronzato, 1985, 1988), one157

can use the FIM at convergence of the ODoE problem as a local check of model158

identifiability.159

1.2 The LTI state–space model representation of CRNs160

Now we recall the CRN reaction rate estimation problem conceptualized in §1 and161

demonstrate that under certain conditions it can be represented by an LTI state–space162

model of form (1). We note the formulations developed are general and can be applied163

to models of different areas with the CRN parametrization being one of them.164

Let v ∈ R𝑛𝑟≥0 be the vector of fluxes (or reaction rates) expressed in units of quantity165

ofmatter consumed (or produced) per time.When the network only involves first order166

kinetics, v = 𝐿 (𝜃𝜃𝜃) x, and the model representing the species concentration network167
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becomes168
dx
d𝑡

= 𝑆 v = 𝑆 𝐿 (𝜃𝜃𝜃) x = 𝐴(𝜃𝜃𝜃) x + 𝐵 u(𝑡), (3)

where 𝑆 is the constant stoichiometric matrix (Varma and Palsson, 1994) and 𝐿 (𝜃𝜃𝜃)169

contains all the kinetic parameters, even those referring to the conceptual zero-order170

reactions converting inflow terms into intermediate metabolites. Matrix 𝐿 (𝜃𝜃𝜃) can be171

decoupled intomatrices 𝐴(𝜃𝜃𝜃), which includes all the kinetic rates used for representing172

first order kinetics, and 𝐵 assumed to be known. In this context u is the vector of inflow173

terms and refers to reactant species entering the network (with zero-order kinetics).174

The rates of the conceptual zero-order reactions give the desired values of u. That is,175

choosing 𝑢𝑖 is choosing the conceptual rate of the zero-order (or saturated) reactions176

modeling inflows. When 𝑢𝑖 = 0, the flux is deactivated, otherwise, when 𝑢𝑖 > 0, the177

flux is activated. In the optimal design of experiments, the vector of support points u178

is chosen to maximize a given information criterion of the network parametrization.179

This optimal choice ensures the local identifiability of the model parameters (when180

this is possible) and the most precise estimation of the model parameters, in the sense181

of a scalar function of their asymptotic covariances being minimal. In turn, the vector182

of measurements corresponds to the set of states that are measured, and Equation (1b)183

is used for forecasting the responses.184

As an example, consider the kinetic network formed by 6 state variables (𝑛𝑥 =185

6) with 3 input variables (𝑛𝑢 = 3) and 10 parameters to be estimated (𝑛𝜃 = 10)186

represented by matrices (Frøysa et al., 2020)187

𝐴(𝜃𝜃𝜃) =

©­­­­­­­«

−𝜃1 − 𝜃2 − 𝜃3 0 0 0 0 0
𝜃1 −𝜃4 − 𝜃5 0 0 0 0
0 𝜃4 −𝜃6 − 𝜃9 0 0 0
𝜃2 0 0 −𝜃7 0 0
𝜃3 𝜃5 0 𝜃7 −𝜃8 0
0 0 𝜃6 0 𝜃8 −𝜃10

ª®®®®®®®¬
, 𝐵 =

©­­­­­­­«

1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0

ª®®®®®®®¬
,

and graphically represented in Figure 1. Here, we consider that all process states are188

measured from the experiments, i.e., the experimental response variables correspond189

to the states affected by observational error. It means that the matrix 𝐶 in (2b) is the190

identity matrix of size 6.191

Briefly, the ODoE aims at finding the set of combinations of u that assure max-192

imization of a given measure of the information content. The example introduced193

above of the identification of CRN is used for demonstration, since the characteri-194

zation of chemical reaction networks is currently of appreciable interest, playing an195

important role in systems biology, (bio-) chemical engineering, and the emerging field196

of synthetic biology (Loskot et al., 2019; van der Schaft et al., 2016). The problem197

considered by Frøysa et al. (2020) offered a motivating example and we use their198

results for comparison. Their strategy to find the optimal design of experiments in-199

volves (i) generating a set of potential control action vectors using the vertex of the200

design space; and (ii) find the optimal combination. This approach does not consider201

explicitly the time in the dynamics (or the time discretization interval Δ𝑡 at which202

the system is sampled and actions implemented), only finds the set of actions that203

lead to information maximization. Practically, it is comparable to our framework to204
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x4 x5 x6
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θ8 θ10

Figure 1 Example of kinetic metabolic network.

determine optimal static experiments. We extend the results in their paper and include205

the time explicitly in the model. Thus, we find the optimal vectors of actions (which206

can be similar) and the optimal sequence having into account the system dynamics;207

this sequence can not be interchanged without loosing information. Practically, our208

formulation for dynamic experimentation relies on the representation of the prob-209

lem as an optimal control problem, and we use a dynamic optimization approach to210

handle the problem numerically which requires discretizing the horizon of the exper-211

iment. Next, the NLP problem is solved using a simultaneous approach exploiting the212

representation of dynamic profiles by parametric approximations.213

1.3 Novelty and organization214

This paper contains five elements of novelty:215

i. the development of general Nonlinear Programming (NLP) formulations to find216

continuous and exact locally D–optimal experimental designs to estimate the217

parameters in matrix 𝐴(𝜃𝜃𝜃) in steady-state LTI state–space models employing218

static experiments;219

ii. the development of general NLP formulations to find locally D–optimal exper-220

imental designs for time discrete LTI state–space models employing dynamic221

experimentation where the control actions are optimized so that they assure the222

maximization of the information gathered in the experiment and the dynamics223

of the system is explicitly considered. The resulting optimal control problem is224

cast as a dynamic optimization problem after discretizing the time domain and225

parametrizing the variables profiles at the grid; the problem is then solved with a226

simultaneous-based technique;227

iii. to avoid the effect of inaccuracy in the estimation of variables on the amount of228

information, we use a dual time grid, where a tighten grid is used for updating229

the state and response variables and a coarser grid used to sample the process and230

actuate;231

iv. the diagnostic of model identifiability using the results of the ODoE, specifically232

the FIM at convergence; and233
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v. demonstrating the application of the formulations proposed to the identification234

of biochemical reaction networks.235

The paper is organized as follows. Section 2 introduces the background and the236

notation used to formulate the problem as well as the fundamentals of nonlinear237

programming and the time discrete LTI model. Section 3 presents the mathematical238

programming formulation for finding D–optimal designs for steady-state and dynamic239

state–space models. Details of the construction of the FIM are given, which in turn240

requires the calculation of the sensitivity coefficients. Section 4 applies the previous241

formulations to finding optimal designs. Comparisons involving uniform and non-242

uniform optimal designs for steady-state models are provided and compared to ODoE243

for dynamic models. After solving the ODoE problem, model identifiability is ana-244

lyzed. Finally, Section 5 reviews the formulation and offers a summary of the results245

obtained.246

2 Notation and background247

This section establishes the nomenclature used in the representation of the models.248

In §2.1 we present the experimental design problems outlined above and in §2.2 we249

address the dynamic solution of the LTI model considering a time-discrete represen-250

tation as well as the construction of the FIM. Then, §2.3 overviews the fundamentals251

of NLP.252

2.1 Optimal experimental design253

Bold face lowercase letters represent vectors, bold face capital letters continuous do-254

mains, blackboard bold capital letters discrete domains and capital letters are for ma-255

trices. Finite sets containing 𝜄 elements are compactly represented by J𝜄K ≡ {1, · · · , 𝜄}.256

The transpose operation of a matrix/vector is represented by “ᵀ”.257

To introduce the theoretical background to formalize the ODoE problem we con-258

sider static experimentation. Accordingly, the steady-state model (2) is used for de-259

scribing the process, and u is independent of time. We consider continuous designs260

with 𝐾 support points at u1, u2, . . . , u𝐾 where each vector u𝑖 , 𝑖 ∈ J𝐾K, corresponds261

to a combination of control factors (constants) used in each trial; the process is ob-262

served after reaching the steady-state. The weights representing the relative effort at263

these points are, respectively, 𝑤1, 𝑤2, . . . , 𝑤𝐾 where 𝐾 is chosen by the user so that264

𝐾 × 𝑛𝑦 ≥ 𝑛𝜃 .265

Let 𝑁 be the total number of experiments of the experimental plan. Continuous266

designs are used to represent experimental setups where 𝑁 → +∞; consequently267

the weights vary continuously on [0, 1]. To implement continuous designs we take268

roughly 𝑁 × 𝑤𝑘 experiments at u𝑘 , 𝑘 ∈ J𝐾K, subject to 𝑁 × 𝑤1 + · · · + 𝑁 × 𝑤𝐾 = 𝑁 ,269

and each summand is an integer. For models with 𝑛𝑢 control factors, we denote the270

𝑘 th support point by uᵀ
𝑘
= (𝑢𝑘,1, . . . , 𝑢𝑘,𝑛𝑢 ) and represent the design 𝜉 by 𝐾 rows271

(uᵀ
𝑘
, 𝑤𝑘 ), 𝑘 ∈ J𝐾K with

∑𝐾
𝑘=1 𝑤𝑘 = 1. In what is to follow, we let Ξ ≡ U𝐾 × Σ be the272

space of feasible 𝐾-point designs over U where Σ is the 𝐾 − 1-simplex in the domain273
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of weights, i.e. Σ = {𝑤𝑘 : 𝑤𝑘 ≥ 0, ∀𝑘 ∈ J𝐾K,
∑𝐾
𝑘=1 𝑤𝑘 = 1}. We notice that uniform274

designs have 𝑤𝑖 = 1/𝐾 . In finding continuous optimal designs the weights are not275

restricted and these designs are usually non-uniform, that is some of the weights are276

larger than others.277

Exact designs are experimental plans where the weights 𝑤𝑘 are ratios 𝑛𝑘/𝑁278

satisfying the conditions: (i) all 𝑛𝑘 ’s are integer (or null); and (ii) sum to 𝑁 . In practice,279

exact designs are obtained from continuous designs considering an experimental plan280

with 𝑁 experiments and using a rounding procedure (Pukelsheim and Rieder, 1992) or281

Mixed Integer Nonlinear Programming formulations (Duarte et al., 2020) to allocate282

them to support points.283

The log-likelihood function for the parameter estimation problem after the exper-284

imental data are available reduces to the least squares problem285

L(y, 𝜃𝜃𝜃) =
𝑛𝑦∑︁
𝑖=1

𝑛𝑒∑︁
𝑗=1

(𝜂obs𝑖, 𝑗 − 𝜂𝑖, 𝑗 ) 𝑉−1 (𝜂obs𝑖, 𝑗 − 𝜂𝑖, 𝑗 )ᵀ . (4)

See, for example, (Fedorov and Leonov, 2014, Chap. 1). Here, 𝑉 is the (constant)286

variance-covariancematrix, 𝜂obs
𝑖, 𝑗
refers tomeasurements of 𝑦𝑖 from the 𝑗 th experiment,287

𝜂𝑖, 𝑗 stands for predictions constructed using model (1), and 𝑛𝑒 is the number of288

experiments. Consequently, the corresponding global FIM at a singleton point p ∈ ΘΘΘ289

for continuous optimal design 𝜉 is290

M(𝜉 |u, 𝜃𝜃𝜃) = −E
[
𝜕

𝜕𝜃𝜃𝜃

(
𝜕L(𝜉 |p)
𝜕𝜃𝜃𝜃ᵀ

)]
=

𝐾∑︁
𝑗=1
𝑤 𝑗 𝑀 (u 𝑗 |p) =

=

𝐾∑︁
𝑗=1
𝑤 𝑗 𝐹 (u 𝑗 |p)ᵀ 𝑉−1 𝐹 (u 𝑗 |p), (5)

where w is the vector of weights of the support points in the design (or experiments if291

a static experimental setup is adopted), 𝐾 is the number of support points, previously292

set by the user, 𝑀 (u 𝑗 |p) is the elemental FIM at u 𝑗 . Further, we assume𝑉 is a 𝑛𝑦 ×𝑛𝑦293

identity matrix as in Draper and Hunter (1966), i.e. the measurement error of each of294

the responses is independent of the others and their standard error is equal;E[•] stands295

for expectation. Let 𝐹 (u 𝑗 |p) be the sensitivity of the measurements with respect to296

the parameters at support point 𝑗 , i.e., 𝐹 (u 𝑗 |p) = 𝐶 𝜕x/𝜕𝜃𝜃𝜃 |u 𝑗 ,p.297

To derive the sensitivity matrix consider the steady-state LTI state–space model298

(2). Let 𝐴(𝜃𝜃𝜃) =
∑𝑛𝜃
𝑖=1 𝜃𝑖 𝐸𝑖 where 𝐸𝑖 is a 𝑛𝜃 × 𝑛𝜃 matrix populated with elements299

“+1”, “0” and “−1” such that 𝐸𝑖 = 𝜕𝐴(𝜃𝜃𝜃)
𝜕𝜃𝑖
. Using (2a), chain-rule differentiation leads300

to301

𝐹 (u|𝜃𝜃𝜃) = 𝜕E(y)
𝜕𝜃𝜃𝜃

= ⊕𝑛𝜃
𝑖=1 𝐶 𝐴(𝜃𝜃𝜃)−1 𝐸𝑖 𝐴(𝜃𝜃𝜃)−1 𝐵 u. (6)

where the symbol ⊕ is used to represent the concatenation of columns into a matrix,302

and 𝐹 (u|𝜃𝜃𝜃) is an (𝑛𝑦 × 𝑛𝜃 )-matrix, whose 𝑖th column is 𝐶 𝐴(𝜃𝜃𝜃)−1 𝐸𝑖 𝐴(𝜃𝜃𝜃)−1 𝐵 u.303

Despite the linearity of 𝐴(𝜃𝜃𝜃) its inversion leads to nonlinear dependence of y on 𝜃𝜃𝜃.304

Thus, we focus on locally optimal designs, as they do ensure optimality for a vector,305
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i.e. 𝜃𝜃𝜃 ≡ p. Similar approaches for calculating sensitivities are discussed in Perry et al.306

(2006).307

Herein, we focus on the class of design criteria proposed by Kiefer (1974) where308

each member in the class, indexed by a parameter 𝛿, is positively homogeneous and309

defined on the set of symmetric 𝑛𝜃 × 𝑛𝜃 semi-positive definite matrices given by310

Φ𝛿 [M(𝜉 |u, 𝜃𝜃𝜃)] =
[
1
𝑛𝜃
tr(M(𝜉 |u, 𝜃𝜃𝜃) 𝛿)

]1/𝛿
. (7)

The maximization of Φ𝛿 for 𝛿 ≠ 0 is equivalent to minimizing tr(M(𝜉 |u, 𝜃𝜃𝜃) 𝛿)311

when 𝛿 < 0. Practically, Φ𝛿 becomes [tr(M(𝜉 |u, 𝜃𝜃𝜃)−1)]−1 for 𝛿 = −1, which is312

A–optimality, and [det[M(𝜉 |u, 𝜃𝜃𝜃)]]1/𝑛𝜃 when 𝛿 → 0, which is D–optimality. These313

design criteria are suitable for estimating model parameters as they maximize the FIM314

in various ways. For the D–optimality criterion the volume of the confidence region315

of 𝜃𝜃𝜃 is proportional to det[M−1/2 (𝜉 |u, 𝜃𝜃𝜃)]. Then, maximizing the determinant of the316

FIM leads to the smallest possible volume. Consequently, the ODoE problem can be317

cast as an optimization problem. For example, when p is fixed, the locally D–optimal318

design is defined by319

𝜉𝐷 = argmax
𝜉 ∈Ξ
log {det[M(𝜉 |u, p)]} , (8)

where the criterion (8) is +∞ for designs with singular FIM. Herein we limit our320

analysis to D–optimal designs since these are the most commonly used in practical321

applications. Without loss of generality, the formulations proposed in the following322

sections can easily be extended to other criteria of the Kiefer’s class as well as V– and323

I–optimality when interest is in prediction rather than parameter estimation.324

When the design criterion is convex (which is the case for the D–optimality criteria325

originally formulated), the global optimality of a design 𝜉 in U can be verified using326

an equivalence theorem based on the consideration of the directional derivative of327

the objective function (Fedorov, 1972; Kiefer, 1974; Kiefer and Wolfowitz, 1960;328

Pukelsheim, 1993; Silvey, 1980; Whittle, 1973). For instance, if we let 𝛿𝑢 be the329

degenerate design putting weight one at the point u ∈ U, the equivalence theorem for330

D–optimality is as follows: 𝜉𝐷 is D–optimal if and only if331

tr
{
[M(𝜉𝐷 |u, 𝜃𝜃𝜃)]−1 𝑀 (𝛿𝛿𝛿𝑢)

}
− 𝑛𝜃 ≤ 0, ∀u ∈ U. (9)

Herein, for convenience we reformulate of the D–optimality criterion as a maxi-332

mization problemwhere the objective function is concave (Whittle, 1973). To compare333

the information content obtained from two different designs, say 𝜉𝐷 and 𝜉ref𝐷 , where334

the latter one is the reference, we use the D–optimality efficiency (Atkinson et al.,335

2007, Chap. 11)336

Eff𝐷 =

{
det[M(𝜉𝐷 |u, 𝜃𝜃𝜃)]
det[M(𝜉ref

𝐷
|u, 𝜃𝜃𝜃)]

}1/𝑛𝜃
. (10)

In determining model identifiability we use the FIM at convergence and deter-337

mine the eigenvalues. The smallest eigenvalue, 𝜆min [M(𝜉𝐷 |u, 𝜃𝜃𝜃)], is subsequently338

compared with the tolerance employed to solve the NLP problem.339
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Mathematical programming algorithms can currently solve complex, high–340

dimensional optimization problems, especially when they are convex and a self-341

concordant barrier is available for the constraints. Among the mathematical pro-342

gramming methods two strategies are commonly followed: (i) the design domain is343

discretized, when the optimal design problem reduces to weight optimization where344

convex programming can be used; and (ii) the optimal design problem involves op-345

timizing the weights and location of the support points simultaneously where the346

design domain is continuous. The latter approaches require nonlinear programming347

based methods. Examples of applications of convex programming based algorithms348

for finding continuous optimal designs are Linear Programming (LP) (Gaivoronski,349

1986; Harman and Jurík, 2008), Second Order Conic Programming (SOCP) (Sagnol,350

2011; Sagnol and Harman, 2015a), and Semidefinite Programming (SDP) (Duarte351

and Wong, 2015; Papp, 2012; Vandenberghe and Boyd, 1999). Examples of applica-352

tions requiring nonlinear solvers include: Semi Infinite Programming (SIP) (Duarte353

and Wong, 2014; Duarte et al., 2015), Nonlinear Programming (NLP) (Chaloner and354

Larntz, 1989; Molchanov and Zuyev, 2002), and Global optimization (Boer and Hen-355

drix, 2000; Duarte et al., 2016). Yang et al. (2013) and Pronzato and Zhigljavsky356

(2014) consider the joint problem of weight optimization and choice of support points357

in a compact (continuous) set and propose specific methods with guaranteed con-358

vergence to the optimum. Applications based on optimization procedures relying359

on metaheuristic algorithms are also reported in the literature. See, among others,360

Heredia-Langner et al. (2004) for Genetic Algorithms, Woods (2010) for Simulated361

Annealing, Chen et al. (2015) for Particle Swarm Optimization and Masoudi et al.362

(2019) for the Imperialist Competitive Algorithm.363

The proposed approach for solving the design problem (8) relies on nonlinear364

programming algorithms as we determine the weights and the support points (control365

actions) simultaneously. Our formulation leads to an optimization problem of the NLP366

class; since the problem may have multiple local optima, a global optimizer is used.367

The equations representing the model and the sensitivity construction are embedded368

in the optimal design problem as additional constraints. The same holds for matrix369

algebra operations required for computing D–optimality criteria. This strategy allows370

us to find optimal designs that satisfy the model equations and guarantees that all371

the solutions in the convergence process are feasible. For a detailed analysis of the372

formulation that allows the automation of determinant computation the reader is373

referred to Duarte et al. (2020).374

2.2 Time-discrete state–space models375

In this section we consider the solution of the model (1). We solve the model at a grid376

with intervals Δ𝑡. The sampling (and actuation) interval, Δ𝜏, is an integer multiple377

of Δ𝑡. In general the instants at which the system is sampled and control actions are378

applied form a coarser grid, the points of which coincide with some of the instants at379

which the variables are recalculated, see Figure 2 where a discretization scheme with380

Δ𝜏 = 2 Δ𝑡 is exemplified.381
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Continuous experimental domain (H)0 H
Time horizon

0 1 2 κmax − 3 κmax − 2 κmax − 1

Sampling interval
discretization (τκ)

0 1 2 3 4 `max − 5 `max − 3 `max − 1

Solution interval
discretization (t`)

∆τ

∆t

Discretized domain

Figure 2 Discretization scheme for a sampling and actuation interval twice that of solution interval.

The solution considering a discrete time representation and successive step dis-382

turbances at control variables u is (Bay, 1999):383

xℓ+1 = exp[𝐴(𝜃𝜃𝜃) Δ𝑡] xℓ + 𝐴(𝜃𝜃𝜃)−1
{
exp[𝐴(𝜃𝜃𝜃) Δ𝑡] − 𝐼𝑛𝑥

}
𝐵 uℓ , (11a)

yℓ =𝐶 xℓ + 𝜖𝜖𝜖, (11b)
x0 =xin, (11c)

where ℓ ∈ {0, · · · , ℓmax − 1} is the counter of discrete time instants at which the384

system is to be updated, ℓmax − 1 is its maximum number, which is previously given;385

the discretization time instants at intervals Δ𝑡 are denoted by 𝑡ℓ where 𝑡ℓ+1 = 𝑡ℓ +386

Δ𝑡. Here, xℓ is the vector of states and yℓ the vector of measurement variables387

observed at 𝑡ℓ , 𝐼𝑛𝑥 is the identity matrix of size 𝑛𝑥 and xin the initial state of the388

system. The grid of sampling points 𝜅 ∈ {0, · · · , 𝜅max − 1} is formed by 𝜏𝜅 = 𝜅 ×389

Δ𝜏 time instants at which the system is sampled and u𝜅 , the vector of inputs, is390

optimally chosen (and implemented) to maximize the amount of information gathered391

from the complete experiment. In our conceptualization we distinguish between the392

discretization grid and the sampling (and actuation) grid. The former controls the393

accuracy of the predictions, and the latter is related to the amount of information394

gathered. The accuracy of estimated variables increases as Δ𝑡 → 0 and may have395

impact on the amount of information gathered. If the prediction error becomes large the396

discretization interval can be reducedwithout affecting the sampling grid. On the other397

hand, since theODoE problem is reformulated as a dynamic optimization problem, the398

dual grid has the same purpose of using more nodes as when simultaneous approaches399

relying on orthogonal collocation are used (Hoang et al., 2013). It also corresponds to400

lower tolerances in error-based step adaptation techniqueswhen sequential approaches401

are considered (Banga et al., 2002).402

In this framework, the control actions are time dependent and can vary over403

the horizon of the experiment. After discretization we consider they are constant404

over discrete sampling intervals, changing only at their limits. Thus, u𝜅 designates405

the vector of actions to be implemented in sampling interval (𝜅 − 1). Within the406

dynamic experimental setup required by (11), we take the input variables to be constant407
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piecewise functions, i.e.408

U =



u0 if 𝑡 ∈ [𝜏0, 𝜏1)
· · · · · ·
u𝜅 if 𝑡 ∈ [𝜏𝜅 , 𝜏𝜅+1)
· · · · · ·
u𝜅max−1 if 𝑡 ∈ [𝜏𝜅max−1, 𝜏𝜅max ),

with the steps occurring at the discrete time instants 𝜏𝜅 . Here, we consider only409

single experiment setups and the optimal design is formed by 𝜅 tuples u𝜅 , 𝜅 ∈410

{0, · · · , 𝜅max − 1},411

𝜉 =

(
uᵀ0 , · · · , uᵀ𝜅 · · · , uᵀ

𝜅max−1
[𝜏0, 𝜏1), · · · , [𝜏𝜅 , 𝜏𝜅+1), · · · , [𝜏𝜅max−1, 𝜏𝜅max )

)
.

The optimal design aims at finding the optimal sequence of input levels that maximizes412

the information content of the complete experiment given a grid of sampling times.413

The sensitivity matrix of the states with respect to 𝜃𝜃𝜃 at time instant 𝑡ℓ is denoted414

by 𝑆x,𝜃𝜃𝜃
ℓ

= 𝜕xℓ/𝜕𝜃𝜃𝜃 with 𝑆x,𝜃𝜃𝜃
ℓ

∈ R𝑛𝑥×𝑛𝜃 . Similarly, the sensitivity matrix of the mea-415

surement variables with respect to the parameters is 𝐹 (uℓ |p) = 𝐶 𝜕x/𝜕𝜃𝜃𝜃 |uℓ ,p. After416

algebraic manipulation they are:417

𝑆
x,𝜃𝜃𝜃
ℓ+1 =Δ𝑡 exp[𝐴(𝜃𝜃𝜃) Δ𝑡]

𝜕𝐴(𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃

xℓ + exp[𝐴(𝜃𝜃𝜃) Δ𝑡] 𝑆x,𝜃𝜃𝜃
ℓ

+

+Δ𝑡 𝐴(𝜃𝜃𝜃)−1 exp[𝐴(𝜃𝜃𝜃) Δ𝑡] 𝜕𝐴(𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃

𝐵 uℓ−

−𝐴(𝜃𝜃𝜃)−1 𝜕𝐴(𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃

𝐴(𝜃𝜃𝜃)−1
{
exp[𝐴(𝜃𝜃𝜃) Δ𝑡] − 𝐼𝑛𝑥

}
𝐵 uℓ , ℓ ≥ 1, (12a)

𝐹 (uℓ |𝜃𝜃𝜃) =𝐶 𝑆x,𝜃𝜃𝜃
ℓ
, ℓ ∈ {0, · · · , ℓmax − 1} (12b)

x0 =xin, (12c)

𝑆
x,𝜃𝜃𝜃
0 =0𝑛𝑥×𝑛𝜃 . (12d)

Here 𝑆x,𝜃𝜃𝜃
0 is the matrix of sensitivities at 𝑡0, and the exponential matrix exp[𝐴(𝜃𝜃𝜃) Δ𝑡]418

is computed via eigendecomposition, i.e. exp[𝐴(𝜃𝜃𝜃) Δ𝑡] = 𝑉 (𝜃𝜃𝜃) exp[Λ(𝜃𝜃𝜃) Δ𝑡] 𝑉 (𝜃𝜃𝜃)−1;419

𝑉 (𝜃𝜃𝜃) is the matrix of eigenvectors of 𝐴(𝜃𝜃𝜃), 𝑉 (𝜃𝜃𝜃)−1 its inverse and Λ(𝜃𝜃𝜃) the corre-420

sponding diagonal matrix containing the eigenvalues. Similarly to Equation (11a), in421

(12a), uℓ = u𝜅 for all points of the discretization grid, 𝑡ℓ , ℓ ∈ {0, · · · , ℓmax−1}, falling422

in the 𝜅th interval of the sampling grid. The sensitivities 𝐹 (uℓ |𝜃𝜃𝜃) are updated at all423

discretization points, but only those obtained at sampling points 𝜅 ∈ {0, · · · , 𝜅max−1}424

are used for constructing the FIM. The term 𝜕𝐴(𝜃𝜃𝜃)/𝜕𝜃𝜃𝜃 produces a three-dimensional425

tensor where each slice contains the derivatives 𝜕𝐴(𝜃𝜃𝜃)/𝜕𝜃𝑖 = 𝐸𝑖 , 𝑖 ∈ J𝑛𝜃K.426

2.3 Nonlinear Programming427

In this section we introduce the fundamentals of NLP which are used to solve the428

design problem (8). Nonlinear Programming seeks to find the global optimum x of429
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a convex or nonconvex nonlinear function 𝑓 : X ↦→ R in a compact domain X with430

possibly nonlinear constraints. The general structure of NLP problems is:431

min
x∈X

𝑓 (x) (13a)

s.t. g(x) ≤ 0 (13b)
h(x) = 0, (13c)

where (13b) represents a set of 𝑟𝑖 inequalities, and (13c) represents a set of 𝑟𝑒 equality432

constraints. The functions 𝑓 (x), g(x) and h(x) are twice differentiable. In our context,433

the variable x ∈ X includes the location of the support points as well as the weights434

quantifying the relative effort required at each one. By construction X in (13a) is435

closed which is what we have for Ξ.436

Nested and gradient projection methods are commonly used to solve NLP prob-437

lems. Some examples are the General Reduced Gradient (GRG) (Drud, 1985, 1994)438

and the Trust-Region (Coleman and Li, 1994) algorithms. Other common methods439

are Sequential Quadratic Programming (SQP) (Gill et al., 2005) and the Interior-Point440

(IP) (Byrd et al., 1999). Ruszczyński (2006) provides an overview of NLP algorithms.441

3 Finding D-optimal designs442

In this section we describe the numerical procedure for finding D–optimal experi-443

mental designs for estimation of the parameters 𝜃𝜃𝜃 involved in 𝐴(𝜃𝜃𝜃). First, in §3.1 we444

consider the steady-state model (2), and subsequently, in §3.2 the time-discrete state–445

space model (11) is addressed. Section 3.3 overviews the implementation details. For446

clarification, the first model is to be designated as the SS-LTI model, and the second447

as the TD-LTI model.448

3.1 Locally D–optimal design for SS-LTI model449

Here, we consider the locally D–optimal continuous design problem for the SS-LTI450

model for a given vector p ∈ ΘΘΘ. Let us recall that the design problem consists of451

finding the combination of inputs u and weights w maximizing a given criterion of452

the information extracted from a set of 𝐾 experiments in the feasibility domain Ξ.453

The optimization problem for finding uniform (exact) D–optimal designs is similar454

to that used for continuous designs except for the weights which are set equal to 1/𝐾455

and fixed.456

Practically, this setup can be seen as a static experimental plan where the complete457

set of experiments is planned at one time, and the results at the end of the experiments458

characterizing the steady-states of the system serve to estimate the parameters. The459

experimental design is represented by460

𝜉𝑆𝑆−𝐿𝑇 𝐼 =

(
uᵀ1 , · · · , uᵀ

𝐾

𝑤1, · · · , 𝑤𝐾

)
∈ Ξ, (14)
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where Ξ = U𝐾 × Σ and solves461

max
𝜉 ∈Ξ

log{det[M(𝜉 |u, p)]} (15a)

s.t. Model (2) (15b)
Sensitivity Equations (6) (15c)
𝐾∑︁
𝑖=1

𝑤𝑖 = 1. (15d)

Let each element of M(𝜉 |u, p) be designated as 𝑚𝑖, 𝑗 , 𝑖, 𝑗 ∈ J𝑛𝜃K, and let462

M(𝜉 |u, p) aggregate the information of all the response variables at all the sup-463

port points. Each element of the FIM is determined from (5) using the sensitivity464

matrices generated at the support points, see Fedorov (1971).465

Maximizing log{det[M(𝜉 |u, p)]} is equivalent to maximizing det[M(𝜉 |u, p)]466

which is a concave function of the FIM. The determinant of the FIM is calculated467

applying the Cholesky decomposition. Let log{det[M(𝜉 |u, p)]} = 2
∑𝑛𝜃
𝑖=1 log(𝑞𝑖,𝑖),468

where 𝑞𝑖,𝑖 , 𝑖 ∈ J𝑛𝜃K are the diagonal element of the lower triangular matrix that469

results of the decomposition of the FIM denoted by 𝑄(𝜉 |u, p). Then, maximizing470

det[M(𝜉 |u, p)] is equivalent to maximizing the sum of the logarithms of the diagonal471

elements of 𝑄(𝜉 |u, p). The NLP formulation used for determining locally D–optimal472

designs for the SS-LTI model is473

max
𝜉 ∈Ξ
2

𝑛𝜃∑︁
𝑖=1
log(𝑞𝑖,𝑖) (16a)

s.t. 𝐹𝑘 = 𝐶 𝐴(p)−1 𝜕𝐴(𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃

����
p
𝐴(p)−1 𝐵 u𝑘 , 𝑘 ∈ J𝐾K (16b)

𝑚𝑖, 𝑗 =

𝐾∑︁
𝑘=1

𝑤𝑘 𝐹
ᵀ
𝑘,𝑖, 𝑗

𝑉−1 𝐹𝑘,𝑖, 𝑗 , 𝑖, 𝑗 ∈ J𝑛𝜃K (16c)

𝑚𝑖, 𝑗 =

𝑛𝜃∑︁
𝑙=1

𝑞𝑖,𝑙𝑞 𝑗 ,𝑙 , 𝑖, 𝑗 ∈ J𝑛𝜃K, 𝑖 ≤ 𝑗 (16d)

𝑞𝑖,𝑖 ≥ 𝜁, 𝑖 ∈ J𝑛𝜃K (16e)
𝑞𝑖, 𝑗 = 0, 𝑖, 𝑗 ∈ J𝑛𝜃K, 𝑖 < 𝑗 , (16f)

𝑚𝑖,𝑖 ≥ 𝑞2𝑖, 𝑗 𝑖, 𝑗 ∈ J𝑛𝜃K, (16g)
𝐾∑︁
𝑖=1

𝑤𝑖 = 1, (16h)

where 𝜁 is a small positive constant to ensure the semi-positiveness of the FIM. In474

all examples presented in the following sections we set 𝜁 = 1 × 10−5. Equation (16b)475

generates the matrices of sensitivity of the response variables with respect to 𝜃𝜃𝜃 at the476

support points (which are saved in three-dimensional matrices 𝐹 of size 𝐾 ×𝑛𝜃 ×𝑛𝜃 ).477

Equation (16c) is to construct the FIM, (16d) represents the Cholesky decomposition,478

(16e) is to guarantee the positiveness of the diagonal elements of 𝑄(𝜉 |u, p), and479
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(16f) ensures that𝑄(𝜉 |u, p) is upper diagonal. Equation (16g) is a numerical stability480

condition imposed on the Cholesky factorization of positive semidefinite matrices481

(Golub and Van Loan, 2013, Theorem 4.2.8), and (16h) is to constrain the sum of482

weights.483

It is noteworthy that the optimal design of static experiments (Problem 15) can484

be handled with convex techniques such as SOCP and SDP combined with adaptive485

strategies or cutting planes for refining the location of the support points. Typically,486

these techniques iterate between the solution of the problem for finding the optimal487

weights for a previously defined (or updated) grid of candidate points, and the im-488

provement of the support points location using adaptive schemes as in Duarte et al.489

(2018) or cutting planes as in Pronzato and Pázman (2013). In both cases the con-490

vergence may require a large amount of CPU time, especially for models including491

several parameters. Instead, NLP can handle the optimal design problem at once and492

solve simultaneously for the weights and the locations of support points. The result-493

ing optimization problem is NP-hard and may include several optima, thus requiring494

global optimizers that allow certifying the global optimality of the design. Since the495

optimal design problems are typically of small/medium scale, and the Jacobian and496

Hessian matrices can be generated analytically using automatic differentiation, NLP497

guarantees a good compromise between accuracy and numerical efficiency. Also,498

since the design of dynamic experiments (see §3.2) cannot be solved with convex499

techniques and we aim at formalizing a strategy that can easily adapt to static and500

dynamic experiments, NLP was chosen so it allows this generalization.501

3.2 Locally D–optimal design for TD-LTI model502

Here, we present the formulation for finding D–optimal designs for time-discrete503

state–space LTI model (11). The prescribed problem in the ODoE has the form of a504

dynamic experiment in which the input variables are changed along the horizon of505

the experiment so that the information obtained is maximized. The optimal design506

consists of the optimal set of combinations of u in each interval [𝜅 Δ𝑡, (𝜅+1) Δ𝑡), 𝜅 ∈507

{0, · · · , 𝜅max − 1}, i.e.,508

𝜉𝑇 𝐷−𝐿𝑇 𝐼 =

(
uᵀ0 , · · · , uᵀ

𝜅max−1
[𝑡0, 𝑡1), · · · , [𝑡𝜅max−1, 𝑡𝜅max )

)
∈ U𝜅max ,

where u is formed by successive step jumps, 𝜅max is the number of sampling instants509

of the experiment, 𝑡0 = 0 and the time horizon of the experiment is 𝐻 = 𝜅max × Δ𝑡.510

The last action implemented occurs at 𝑡 = (𝜅max − 1) ×Δ𝑡 but the system is monitored511

during the horizon of the experiment, i.e., the responses are measured at 𝜅max time512

instants and the FIM matrix is so scaled. We note that the number of observations513

produced by an experiment is 𝜅max × 𝑛𝑦 . The optimal design problem is as follows:514

max
𝜉 ∈U𝜅max , x∈X

2
𝑛𝜃∑︁
𝑖=1
log(𝑞𝑖,𝑖) (17a)

s.t. xℓ+1 = exp[𝐴(p) Δ𝑡] xℓ + 𝐴(p)−1
{
exp[𝐴(p) Δ𝑡] − 𝐼𝑛𝑥

}
𝐵 uℓ ,
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ℓ ∈ Jℓmax − 1K, (17b)
yℓ = 𝐶 xℓ , ℓ ∈ Jℓmax − 1K (17c)
x0 = xin (17d)

𝑆
x,𝜃𝜃𝜃
ℓ+1 = Δ𝑡 exp[𝐴(p) Δ𝑡] 𝜕𝐴(p)

𝜕𝜃𝜃𝜃
xℓ + exp[𝐴(p) Δ𝑡] 𝑆x,𝜃𝜃𝜃

ℓ
+

+ Δ𝑡 𝐴(p)−1 exp[𝐴(p) Δ𝑡] 𝜕𝐴(p)
𝜕𝜃𝜃𝜃

𝐵 uℓ−

− 𝐴(p)−1 𝜕𝐴(p)
𝜕𝜃𝜃𝜃

𝐴(p)−1
{
exp[𝐴(p) Δ𝑡] − 𝐼𝑛𝑥

}
𝐵 uℓ ,

ℓ ∈ Jℓmax − 1K (17e)

𝐹ℓ = 𝐶 𝑆
x,𝜃𝜃𝜃
ℓ
, ℓ ∈ {0, · · · , ℓmax − 1} (17f)

𝑆
x,𝜃𝜃𝜃
0 = 0𝑛𝑥×𝑛𝜃 (17g)

uℓ = u𝜅 , ℓ ∈ {ℓ : 𝑡ℓ ∈ [𝜏𝜅 , 𝜏𝜅+1)}, 𝜅 ∈ {0, · · · , 𝜅max − 1} (17h)

𝑚𝑖, 𝑗 =

𝜅max−1∑︁
𝜅=0

𝐹
ᵀ
𝑘,𝑖, 𝑗

𝑉−1 𝐹𝑘,𝑖, 𝑗 , 𝑖, 𝑗 ∈ J𝑛𝜃K (17i)

Equations (16𝑑 − 16𝑔) (17j)

Equation (17b) is for the prediction of state variables, (17c) for measurement515

prediction and (17d) is the initialization of the state variables. Equation (17e) is for516

the computation of the sensitivities of the state variables, (17f) the sensitivities of517

the measurements wrt 𝜃𝜃𝜃, and (17g) is the initialization of the sensitivities. Finally,518

(17h) sets the control actions used for updating state variables and sensitivities at519

discretization time instants to the values prescribed for 𝜅th interval of the sampling520

grid, (17i) is to construct the FIM.521

3.3 Implementation aspects522

Here we detail the implementation aspects related to the numerical approach for523

solving the optimal design problem.524

Formulations (16) and (17) are coded in The General Algebraic Modeling525

System environment, commonly known by the initials GAMS (GAMS Development526

Corporation, 2013). GAMS is a general modeling system that supports mathematical527

programming applications in several areas. Upon execution, the code describing the528

mathematical program is automatically compiled, symbolically transcribed into a set529

of numerical structures, and all information regarding the gradient and matrix Hessian530

is generated using the automatic differentiation tool and made available to the solver.531

We provide a sample of such a code in the Supplementary Material.532

The convexity properties of ODoE problems are rather challenging. The calcula-533

tions require matrix algebra operations embedded in the optimization problems which534

in turn produce problemswithmultinomial terms and variables of different scales, that535

may, in principle, lead to multiple local optima. We did not encounter such problems536

in our numerical examples.537
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To determine the optimal design (i.e., solve the ODoE problems) we used a538

multistart heuristic algorithm-based solver, OQNLP. The algorithm calls an NLP solver539

from multiple starting points, keeps all the feasible solutions found, and picks the540

best as the optimal solution of the problem (Ugray et al., 2005). The starting points541

are computed with a random sampling driver that uses independent normal random542

variables for initializing each decision variable. Contrarily to deterministic global543

optimization solvers, OQNLP does not certify that the final solution is a global optimum,544

but it has been successfully tested on a large set of global optimization problems. To545

build the initial sampling points the variables need to be bounded, which is what546

we have since the design space and the region of plausible values are all compact547

by assumption. The NLP solver called by OQNLP is CONOPT, which in turn uses the548

Generalized Reduced Gradient (GRG) algorithm (Drud, 1985).549

The maximum number of starting points allowed is set to 5000 and the procedure550

terminates when 100 consecutive NLP solver calls result in an improvement less than551

1 × 10−4. The absolute and relative tolerances of the solver were set equal to 1 × 10−5552

and 1 × 10−6, respectively, with the absolute tolerance being equal to 𝜁 which is the553

minimum value allowed for the diagonal entries in the FIM so that it is positive554

definite. All computations in §4 used an Intel Core i7 machine running a 64 bits555

Windows 10 operating system with a 2.80GHz processor.556

4 Locally optimal designs557

This section presents the locally D–optimal designs calculated for steady-state and558

time-discrete LTI models employing the formulations derived in §3. In Section 4.1559

we consider the steady-state LTI model, and in §4.2 the time-discrete LTI model is560

solved and optimal designs for dynamic experiments are obtained. For demonstration561

we consider the biochemical reaction network of Figure 1, and the corresponding562

state–space representations which involve 10 kinetic rates to be estimated.563

4.1 Locally optimal designs for SS-LTI model564

In this section we consider steady-state LTI models and analyze (i) the impact of p for565

which the design is to be obtained; (ii) the comparison of exact and continuous optimal566

designs for the same vectors of parameters; and (iii) the impact of constraining the567

individual elements in u𝑘 to smaller allowable maximum levels. We recall that this568

setup is adopted for static experiments, where the optimal vectors of actions (support569

points) found give the conditions for running different trials. In each trial, the system570

is observed after achieving the (new) steady-state. We take the vectors u𝑘 , 𝑘 ∈ J𝐾K,571

to be constrained to the unit simplex set, i.e. {u𝑘 ∈ R3, 𝑘 ∈ J𝐾K : 1ᵀ u𝑘 = 1},572

which represents the limitation of activating no more than one entering flux in each573

trial; 1 is the unitary vector of size 3. The exception occurs when the number of574

support points is restricted to 2; the optimal design may require fractionally activating575

more than one flux at once to assure the FIM is non-singular. This constraint is576

explicitly included in the design space, U, which may include additional bounds.577
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The first numerical cases reported in Tables 1-4, were solved limiting the upper578

bound of control actions to 1, corresponding to fully activating a single flux. This579

constraint assures bounded optimization problems since the determinant of the FIM580

depends on combinations of square vectors u, thus being naturally unbounded if581

u → ∞. Here, U = {u𝑘 ∈ R3, 𝑘 ∈ J𝐾K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 1}. The results in582

Tables 5-6 were obtained with an upper bound of 0.5 imposed to control actions583

which corresponds to fractionally activating the fluxes with upper limits of 50%.584

Now, we have U = {u𝑘 ∈ R3, 𝑘 ∈ J𝐾K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 0.5}.585

To study the impact of p on the optimal design and model identifiabil-586

ity, we consider two distinct scenarios where (i) the parameters 𝜃𝑖 , 𝑖 ∈ J𝑛𝜃K587

are all equal to 1, i.e. p1 = 1ᵀ𝑛𝜃 ; and (ii) the parameters 𝜃𝑖 , 𝑖 ∈ J𝑛𝜃K588

are chosen using a uniform random generator in interval [0.5, 1.5]; the589

main purpose of this numerical test is generalizing the application to ev-590

ery 𝜃𝜃𝜃 ∈ ΘΘΘ. Specifically, the vector obtained for the later scenario is p2 =591

[1.3147, 1.4057, 0.6269, 1.4133, 1.1323, 0.5975, 0.7784, 1.0468, 1.4575, 1.4648].592

We recall that the formulations developed in §3 are for continuous designs. To593

determine exact optimal designs we solve the optimal design problem (16) after594

setting 𝑤𝑘 = 1/𝑛𝑠 , 𝑘 ∈ J𝑛𝑠K, i.e. the optimization problem aims at finding the support595

points maximizing the optimality criterion given that each one of them have equal596

weights 1/𝑛𝑠 . Obviously, for some values of 𝑛𝑠 , the exact optimal design may include597

replicates corresponding to support points with weights integer multiples of 1/𝑛𝑠 .598

The corresponding continuous designs are determined relaxing the weights 𝑤𝑘 and599

solving the problem (16) for both u𝑘 , 𝑘 ∈ J𝑛𝑠K, and 𝑤𝑘 . The continuous optimal600

designs will be at least as efficient as the equivalent exact optimal designs as they601

do not have to obey the constraint 𝑛𝑘 ∈ N. To evaluate the efficiency of the exact602

designs obtained for different values of 𝑛𝑠 (number of support points) we calculate the603

D–efficiency with (10). Here, the continuous designs obtained for 𝑛𝑠 = 3 in Tables 3604

and 4 are used as reference for evaluating the efficiency of the exact designs in Tables605

1 and 2 as well as that of the continuous designs obtained from 𝑛𝑠 = 2, also displayed606

in 3 and 4.607

To assess model identifiability we use the value of the minimum eigenvalue of the608

FIM at convergence and compare it with the tolerance imposed on the NLP solver, 𝜁 .609

If 𝜆min [M(𝜉𝐷 |u, 𝜃𝜃𝜃)] < 𝜁 the model is assumed unidentifiable (𝐼𝑑 = 0) otherwise it610

is locally identifiable with the identifier 𝐼𝑑 = 1. The designs presented in Tables 1–4611

were obtained for u𝑘 ∈ [0, 1]3, 𝑘 ∈ J𝑛𝑠Kwhere theminimum value (0) corresponds to612

inactive entering fluxes and (1) to active fluxes. For compactnesswe use {det[M]}1/𝑛𝜃613

for representing {det[M(𝜉 |u, 𝜃𝜃𝜃)]}1/𝑛𝜃 and 𝜆min [M] for 𝜆min [M(𝜉𝐷 |u, 𝜃𝜃𝜃)]. The Ta-614

bles also report the CPU time required to solve the ODoE problem with OQNLP which615

is relatively high because of the need of ensuring that global optimality is attained.616

Table 1 presents the exact optimal designs obtained for p1. To help in the interpre-617

tation of the results, each of columns 2 to 4 in the table is for one support point, with618

the respective weights listed below for 𝑛𝑠 ∈ {3, · · · , 6}. These extreme support points619

correspond to activation of just one flux. In contrast, the optimal design for 𝑛𝑠 = 2 in620

the last line of Table 1 contains one support point which is not extreme; the second621

support point indicates activation of a linear combination of inputs 𝑢2 and 𝑢3.622
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The efficiency of the exact designs in Table 1, computed using the continuous623

design for 𝑛𝑠 = 3 in Table 3 as reference, is close to 100%, and very similar for624

𝑛𝑠 ∈ {3, · · · , 6}. However, two patterns are discernible. The design for 𝑛𝑠 = 6 twice625

replicates the design for 𝑛𝑠 = 3, so the two designs have identical properties since the 𝜉626

are identical. The highest determinant is from 𝑛𝑠 = 5, which is a close approximation627

to the optimal continuous design in Table 3. The determinant of the FIM for 𝑛𝑠 = 2628

is one order of magnitude below the values obtained for other values of 𝑛𝑠 , with the629

efficiency being about 80%. Considering the criterion 𝜆min [M(𝜉𝐷 |u, 𝜃𝜃𝜃)], we notice630

the model is identifiable for 𝑛𝑠 ∈ {2, · · · , 6}.631

The exact optimal design obtained for 𝑛𝑠 = 2 includes a support point where632

the levels of 𝑢2 and 𝑢3 are fractional; a linear combination of both allows exciting633

the complete network as 𝑢2 and 𝑢3 excite different parts (i.e., 𝑢2 excites the fluxes634

𝑥2 → 𝑥3, 𝑥3 → output, 𝑥2 → 𝑥5, 𝑥5 → 𝑥6 and 𝑥6 → output while 𝑢3 excites635

𝑥4 → 𝑥5, 𝑥5 → 𝑥6 and 𝑥6 → output). The activation of 𝑢1 excites the full network636

but only provides 6 measurements, insufficient to identify the model.637

Table 2 contains the exact optimal designs for a different parameter vector p2.638

Although the parameters are different, the designs are the same as those in Table 1. The639

model is again identifiable for 𝑛𝑠 ∈ {2, · · · , 6}, and the behavior of det[M(𝜉 |u, 𝜃𝜃𝜃)]640

and 𝜆min [M(𝜉𝐷 |u, 𝜃𝜃𝜃)] with the number of support points is similar to that observed641

for the previous paremeter vector. Although the model is identifiable for both of the642

vectors p tested, model identifiability is pointwise in the space of parameters, and643

no general conclusion can be extended to the global identifiability of the model. The644

efficiency of the exact designs computed using the continuous designs in Table 4 for645

reference is again very close to 100%, except for 𝑛𝑠 = 2.646

The diagnosis of global identifiability of the state–space model describing the647

network in Figure 1 is out of the scope of this paper as it requires symbolic algebra-648

based approaches, see Saccomani et al. (1997). The lower eigenvalue of the FIM649

at convergence can only be used for checking local identifiability; there are many650

models that are locally identifiable despite being globally non-identifiable (Guillaume651

et al., 2019). However, to check the global identifiability of the space-state model652

representing the network we ran the analysis in DAISY, a software tool developed for653

testing the global identifiability of state–space models (Bellu et al., 2007). Practically,654

we tested the model (1) representing the network in Figure 1, and the result is that it655

is globally identifiable. Thus, we expect local identifiability holds for all parameter656

vectors used for finding optimal experimental designs.657

Table 3 presents the continuous optimal designs obtained for p1. Only the designs658

obtained for 𝑛𝑠 ∈ {2, 3} are listed’ since the numerical experiments for 𝐾 > 3659

produce designs identical to that for 𝑛𝑠 = 3 after collapsing some support points. The660

D–optimal designs obtained for a single output (𝑛𝑦 = 1) and 𝑛𝑠 = 𝑛𝜃 allocate equal661

weights 𝑤𝑖 = 1/𝑛𝜃 to each support point. We note the designs in Table 3 do not follow662

this rule because 𝑛𝑦 > 1.663

Practically, D–optimal designs based on two or more support points allow full664

identification of the model; designs with more than 3 support points collapse into the665

3 support point design. As for the exact designs, the continuous optimal designs for666

𝑛𝑠 = 2 include a support point formed by a fractional combination of 𝑢2 and 𝑢3; the667

weights of the support are unequal but close to 1/2. Table 4 shows the optimal designs668
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Table 1 Steady state model: exact optimal experimental designs for p1 (U = {u𝑘 ∈ R3, 𝑘 ∈
J𝐾 K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 1}).

Support points

𝑛𝑠

(1.0000
0.0000
0.0000

) (0.0000
1.0000
0.0000

) (0.0000
0.0000
1.0000

)
{det[M] }1/𝑛𝜃 𝜆min [M] 𝐼 𝑑 Eff𝐷 (%) CPU (s)

3 1/3 1/3 1/3 0.2176 4.9911 × 10−3 1 99.10 28.31
4 2/4 1/4 1/4 0.2157 3.7783 × 10−3 1 98.25 30.69
5 2/5 2/5 1/5 0.2192 5.0072 × 10−3 1 99.80 35.15
6 2/6 2/6 2/6 0.2176 4.9911 × 10−3 1 99.10 31.65

Support points(1.0000
0.0000
0.0000

) (0.0000
0.8383
0.1617

)
2 1/2 1/2 0.1746 2.1388 × 10−3 1 79.50 24.13

Table 2 Steady state model: exact optimal experimental designs for p2 (U = {u𝑘 ∈ R3, 𝑘 ∈
J𝐾 K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 1}).

Support points

𝑛𝑠

(1.0000
0.0000
0.0000

) (0.0000
1.0000
0.0000

) (0.0000
0.0000
1.0000

)
{det[M] }1/𝑛𝜃 𝜆min [M] 𝐼 𝑑 Eff𝐷 (%) CPU (s)

3 1/3 1/3 1/3 0.1853 3.4247 × 10−3 1 99.34 34.88
4 2/4 1/4 1/4 0.1837 2.5821 × 10−3 1 98.50 40.57
5 2/5 2/5 1/5 0.1859 3.3626 × 10−3 1 99.67 39.20
6 2/6 2/6 2/6 0.1853 3.4247 × 10−3 1 99.34 33.85

Support points(1.0000
0.0000
0.0000

) (0.0000
0.8474
0.1526

)
2 1/2 1/2 0.1437 1.2233 × 10−3 1 77.02 20.34

for p2. Although the designs are not identical to those of Table 3, we observe similar669

trends to those found for p1.670

Now we consider a constrained design region with U = {u ∈ R3 : 0 ≤ u ≤ 0.5}.671

The exact optimal designs obtained for p1 are in Table 5, and the corresponding672

continuous optimal designs in Table 6. The efficiency of the exact designs relative to673

the continuous design for 𝑛𝑠 = 3 is close to 100%. The comparison of the determinant674

values with those for the designs in Tables 1 and 2 reveals that the constraint on input675

variables decreases the efficiency by about 30%. In Tables 1–2 the optimal designs676

take measurements when each input in turn equals one, with the other two zero. The677

effect of the constraint on the values of the 𝑢𝑘 in the designs of Tables 5–6 is to have678

two inputs at the maximum for each design point and one at zero. The weights for679

the continuous optimal design in Table 6 are less equal than those for the continuous680

design in Table 3, with the effect in Table 5 that 3 trials are at support point 1 when681

𝑛𝑠 = 6.682
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Table 3 Steady state model: continuous optimal experimental designs for p1 (U = {u𝑘 ∈ R3, 𝑘 ∈
J𝐾 K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 1}).

Support points

𝑛𝑠

(1.0000
0.0000
0.0000

) (0.0000
1.0000
0.0000

) (0.0000
0.0000
1.0000

)
{det[M] }1/𝑛𝜃 𝜆min [M] 𝐼 𝑑 Eff𝐷 (%) CPU (s)

3 0.3887 0.3757 0.2356 0.2196 4.9949 × 10−3 1 100.00 78.42

Support points(1.0000
0.0000
0.0000

) (0.0000
0.8381
0.1619

)
2 0.5143 0.4857 0.1746 2.1233 × 10−3 1 79.51 44.18

Table 4 Steady state model: continuous optimal experimental designs for p2 (U = {u𝑘 ∈ R3, 𝑘 ∈
J𝐾 K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 1}).

Support points

𝑛𝑠

(1.0000
0.0000
0.0000

) (0.0000
1.0000
0.0000

) (0.0000
0.0000
1.0000

)
{det[M] }1/𝑛𝜃 𝜆min [M] 𝐼 𝑑 Eff𝐷 (%) CPU (s)

3 0.3836 0.3649 0.2515 0.1865 3.3758 × 10−3 1 100.00 93.21

Support points(1.0000
0.0000
0.0000

) (0.0000
0.8471
0.1529

)
2 0.5188 0.4812 0.1437 1.2128 × 10−3 1 77.05 40.21

Table 5 Steady state model: exact optimal experimental designs for p1 (U = {u𝑘 ∈ R3, 𝑘 ∈
J𝐾 K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 0.5}).

Support points

𝑛𝑠

(0.5000
0.5000
0.0000

) (0.5000
0.0000
0.5000

) (0.0000
0.5000
0.5000

)
{det[M] }1/𝑛𝜃 𝜆min [M] 𝐼 𝑑 Eff𝐷 (%) CPU (s)

2 1/2 1/2 0 0.1516 9.2594 × 10−4 1 98.23 21.35
3 1/3 1/3 1/3 0.1511 1.3115 × 10−3 1 97.92 39.15
4 2/4 1/4 1/4 0.1522 1.3212 × 10−3 1 98.69 42.38
5 2/5 2/5 1/5 0.1536 1.5323 × 10−3 1 99.54 45.68
6 3/6 2/6 1/6 0.1541 1.4961 × 10−3 1 99.87 37.06

The convergence of the global optimizer ensures the global optimality of all683

the designs obtained in subsequent sections. Nonetheless, the optimality of the static684

designs was checked graphically by plotting the dispersion function and validating the685

equivalence theorem. Here, for demonstration purposes we consider the continuous686

D–optimal design with three support points obtained for vector p2 (in Table 4), and687

compute the directional derivative (9). The display is shown in Figure 3; the dispersion688

function is bounded from above by zero and is maximized at the support points, so689

the design is indeed locally D-optimal. We note the design problem has three decision690
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Table 6 Steady state model: continuous optimal experimental designs for p1 (U = {u𝑘 ∈ R3, 𝑘 ∈
J𝐾 K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 0.5}).

Support points

𝑛𝑠

(0.5000
0.5000
0.0000

) (0.5000
0.0000
0.5000

) (0.0000
0.5000
0.5000

)
{det[M] }1/𝑛𝜃 𝜆min [M] 𝐼 𝑑 Eff𝐷 (%) CPU (s)

2 0.5502 0.4498 0.0000 0.1519 8.6006 × 10−4 1 98.47 32.18
3 0.4864 0.3757 0.1379 0.1543 1.4393 × 10−3 1 100.00 46.40

variables but because of the constraint
∑3
𝑘=1 𝑢𝑘 = 1 it reduces to variables 𝑢1 and 𝑢2,691

and the directional derivate can be represented in a three-dimensional plot. Similar692

plots were constructed for all designs obtained for static experiments and all satisfy693

the optimality conditions.

Figure 3 Directional derivative (9) of the continuous D–optimal design for p2 assuming 3 support points
(see Table 4).

694

4.2 Locally optimal designs for TD-LTI model695

We now consider optimal design for time-discrete LTI models and solve the optimiza-696

tion problem (17). This setup is adopted for dynamic experiments, where the optimal697

sequence of actions found serve to run a single experiment. The sequence of actuations698

prescribed as well as the process sampling are implemented at a previously defined699

grid of discrete time instants of the experimental horizon. We set 𝜅max to 6 and varied700

the interval Δ𝜏 between sampling (and control) instants. In all dynamic experiments701

considered in this section, the factor domain isU = {u ∈ R𝜅max : ∑3
𝑘=1 𝑢𝑘 = 1, u ≥ 0}.702

The impact of p on local model identifiability is also assessed. For testing the formu-703

lation we used the parameter vectors considered in §4.1, i.e. p1 and p2. The optimal704

designs are presented as the set of values of the control factors 𝑢𝑖 , 𝑖 ∈ J𝑛𝑦K, at705
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each discrete time instant 𝜅 ∈ {0, · · · , 𝜅max − 1}. The state and measurement (alge-706

braic) equations (11) and the respective sensitivity equations (12a-12b) are solved for707

ℓ ∈ {0, · · · , ℓmax − 1} at once. Initially, at time 𝑡 = 0 (corresponding to discrete time708

𝑡0) the network is considered deactivated, consequently xin = 0.709

The sampling interval Δ𝜏 should be lower than the Shannon period for the input710

signal (Franklin et al., 1990). That is, Δ𝜏 should be smaller than 1/2 of the time711

constant associated with the slowest system dynamics. For vector p1, this is governed712

by the eigenvalue 𝜆 = −1. Thus, we consider Δ𝜏 = 1/3 and subsequently reduce it to713

1/6 to analyze the impact of the sampling interval reduction on the optimal design.714

The time interval Δ𝑡 at which the model predictions and sensitivities are updated is715

Δ𝑡 = 1/6 in all the numerical experiments, which is the minimum value of Δ𝜏 tested.716

Consequently, in these experiments we set ℓmax = 12 which allows comparing optimal717

designs independently of the grid at which the variables are recalculated. We thus718

disaggregate the influence on the amount of information gathered of the integration719

interval from that of the sampling interval and the horizon of the experiment.720

Table 7 presents the optimal designs for Δ𝜏 = 1/3; we observe the inputs take721

extreme values corresponding to activation/deactivation of inflow fluxes. It is well722

known that D–optimal designs for linear models choose experimental points at the723

extremes of the design region. The same is found by Zarrop (1979) for D–optimal724

designs for linear control systems, resulting in persistent excitation in which at least725

one control is non-zero. Here, the optimal profiles of actions likewise require extreme726

variations of the input, going suddenly from lower to upper bounds or vice-versa. The727

two optimal designs are identical, having one input at its maximum and the others at728

the zero, the input at the maximum changing over the horizon of the experiment.729

We found that the matrix of eigenvectors, 𝑉 (𝜃𝜃𝜃), for the first vector of parameters730

(p1) is non-invertible, so 𝑉−1 (𝜃𝜃𝜃) cannot be computed. To overcome this issue the731

matrix exponential exp[𝐴(p) Δ𝑡] is computed using the power series method with 30732

terms, i.e. exp[𝐴(p) Δ𝑡] = ∑29
𝑖=0 [𝐴(p) Δ𝑡]𝑖/𝑖!.733

The optimum design forΔ𝜏 = 1/3 and p2 is plotted in Figure 4where 4(a) is for the734

sequence of control actions and 4(b) for measurement predictions. Figure 4(a) high-735

lights the “bang-bang” form of actions when the goal is to maximize the information736

content gathered from dynamic experiments.737

Table 7 Discrete-time dynamic model: D–optimal experimental designs (Δ𝜏 = 1/3, 𝐻 = 2).

Values of u

p1 p2
𝜅 𝑢1 𝑢2 𝑢3 𝑢1 𝑢2 𝑢3

0 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
1 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
2 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
3 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
4 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
5 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000

{det[M] }1/𝑛𝜃 0.2002 0.1779
𝜆min [M] 2.8527 × 10−4 1.5119 × 10−4
CPU (s) 167.86 221.51
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Figure 4 Optimal experimental design for TD-LTI model; Δ𝜏 = 1/3 and p2: (a) control factors; (b)
measurements.

Table 8 shows the optimal designs obtained for the same parameter vectors by738

reducing the horizon and considering a smaller sampling interval, Δ𝜏 = 1/6 such739

that the number of observations obtained is equal to that of the previous setup. Here,740

Δ𝜏 = Δ𝑡; consequently, ℓmax = 6. Practically, we analyze the effect of reducing the741

sampling interval keeping the number of observations produced from the experimental742

plan fixed as well as the interval at which variables are updated. The model is still743

identifiable for both parameter vectors since the minimum eigenvalue of the FIM at744

convergence is larger than 1 × 10−5. The efficiencies of the designs in Table 7 (𝐻 = 2745

and Δ𝜏 = 1/3) relative to those of Table 8 (𝐻 = 1 and Δ𝜏 = 1/6) are 94.57% and746

97.97% for vectors p1 and p2, respectively. We note that the experiments with smaller747

sampling interval are slightly more efficient when the number of sampling points is748

fixed, although the difference is small. This finding is due to appreciable information749

at the beginning of the experiment, as the responses change relatively rapidly, which750

is partially lost if Δ𝜏 is too large. A further advantage is the economic one that a751

shorter experiment is cheaper to run. Nevertheless, these findings are dependent on752

the model and sampling interval, and cannot be generalized.753

Table 8 Discrete-time dynamic model: D–optimal experimental design (Δ𝜏 = 1/6, 𝐻 = 1).

Values of u

p1 p2
𝜅 𝑢1 𝑢2 𝑢3 𝑢1 𝑢2 𝑢3

0 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
1 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000
2 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
3 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
4 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
5 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000

{det[M] }1/𝑛𝜃 0.2117 0.1816
𝜆min [M] 1.8816 × 10−4 3.6568 × 10−5
CPU (s) 191.31 280.64
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To analyze the impact of varying Δ𝜏 but conserving the horizon we solved the754

problem for Δ𝜏 = Δ𝑡 = 1/6 and 𝐻 = 2 with the two sets of parameter values of755

Table 7. Here, we analyze the effect of doubling the number of observations. Now756

𝜅max = ℓmax = 12 and the optimal designs obtained are in Table 9. The comparison757

of the results of Table 9 with those of Table 7 shows an increase in information when758

the horizon is maintained and the sampling interval is reduced to one half. This effect759

is stronger for the parameter value in the right-hand half of the table.760

Table 9 Discrete-time dynamic model: D–optimal experimental designs (Δ𝜏 = 1/6, 𝐻 = 2).

Values of u

p1 p2
𝜅 𝑢1 𝑢2 𝑢3 𝑢1 𝑢2 𝑢3

0 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
1 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000
2 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000
3 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
4 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
5 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000
6 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
7 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
8 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
9 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
10 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000
11 0.0000 1.0000 0.0000 1.0000 0.0000 0.0000

{det[M] }1/𝑛𝜃 0.3040 0.2754
𝜆min [M] 6.7658 × 10−4 4.2541 × 10−4
CPU (s) 558.28 740.26

To compare the amount of information gathered from the experimental plans761

obtained for (i) Δ𝜏 = 1/3, 𝐻 = 2; (ii) Δ𝜏 = 1/6, 𝐻 = 1; and (iii) Δ𝜏 = 1/6, 𝐻 = 2,762

we compute the D–optimal efficiency of the two former designs using Eq. (10) with763

the reference design used for computation being that obtained for setup (iii). The764

efficiency of the reference design is omitted from Table 10 since it is 100% by765

assumption. The D–optimal efficiencies are in Table 10, and is noteworthy that the766

number of observations of the plan increases the amount of information. The reference767

design involves 12 observations and the other two only 6. We note the D–efficiency768

of the latter two is around 65%. The consequence is that it is more efficient to repeat769

independent observations with multiple sensors in setups (i) and (ii) than to use (iii).

Table 10 Discrete-time dynamic model: D–optimal efficiency obtained for parameter vectors p1 and p2
(expressed in percentage). The reference design is that obtained for Δ𝜏 = 1/6, 𝐻 = 2 (see Table 9).

Setup p1 p2
Δ𝜏 = 1/3, 𝐻 = 2 65.86 64.62
Δ𝜏 = 1/6, 𝐻 = 1 69.64 65.96

770
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Now, we compare the volume of the parametric confidence regions estimated771

from static experimental setup with U = {u𝑘 ∈ R3, 𝑘 ∈ J𝐾K : 1ᵀ u𝑘 = 1, u𝑘 ≤ 1}772

(see Tables 1-4) and dynamic setup with Δ𝜏 = 1/6, 𝐻 = 1 (see Table 8) for plans773

producing the same number of measurements using the metric {det[M(𝜉 |u, 𝜃𝜃𝜃)]}1/𝑛𝜃 .774

The aim is to determine if any of the approaches have clear advantages. Specifically,775

we compared static plans obtained for 𝑛𝑠 = 6 with the dynamic plan in Table 8.776

The dynamic experiment allows obtaining 97.29% and 98.00% of the information777

gathered from the exact static design for p1 and p2, respectively, and 96.40% and778

97.37% of the information produced by equivalent continuous designs. Consequently,779

the confidence region obtained from static experimental design is slightly smaller but780

it requires 6 trials while the dynamic experimental plan requires only one setting of781

the control factors, although the system is, of course, sampled at 6 time instants.782

We conclude with a simulation to illustrate the effect of the proposed approach783

in accurately estimating the parameters 𝜃. We could, as in the preceding paragraph,784

compare the values of determinants of information matrices for two designs, but785

we instead provide simulated confidence intervals for the values of the individual786

parameters. We take 𝐻 = 2, Δ𝜏 = 1/3 with 𝜃 = p2. The precision of the estimated 𝜃 is787

computed by simulation for the profile of actions resulting from the optimal dynamic788

design and for an alternative (non-optimal) design. To construct the reference scenario789

we used the design obtained from solving the ODoE problem. Then, the response790

variables were simulated and corrupted with observational error normally distributed791

where each component 𝜖𝑖 is described by an i.i.d. Gaussian probability distribution792

N(0, 𝜎𝑖). Here, we set 𝜎𝑖 = 2 × 10−3 for all the components.793

Each simulated sample provides a total of 6×𝑛𝑦 measurements used to estimate the794

model parameters with a multiresponse least squares (MLS) method. This problem is795

formulated as aNLP problem thatminimizes
∑𝑛𝑦

𝑖=1
∑𝜅max

𝑗=1 (𝜂obs𝑖, 𝑗 −𝜂𝑖, 𝑗 )𝑉−1 (𝜂obs
𝑖, 𝑗

−𝜂𝑖, 𝑗 )ᵀ,796

and is solved for each simulated sample.797

To construct non-optimal profiles of actions we randomly sample a 6-element798

vector from the set of integers {1, 2, 3}. Then, a 6 × 3 matrix of zeros is constructed799

and the elements with row indices equal to the vector of integers previously generated800

are set to 1. Next, this profile allows estimating the response variables, which are then801

corrupted with noise with the same characteristics applied to reference scenario, and802

used to estimate the model parameters with MLS. This procedure is also repeated803

500 times. The complete set of parameter estimates allows computing the average and804

95% confidence intervals. The results are displayed in Table 11. Column 2 shows805

the true values used for generating the data, column 3 the estimates obtained with806

the profile of actions prescribed by the optimal design, and in the last column are the807

estimates obtained with the non-optimal sequence of actions. The estimates resulting808

from the optimal design are closer to the true values and, more importantly, for most809

of the parameters the confidence intervals are tighter. Consequently, the size of the810

parametric confidence regions for the individual parameters found from data obtained811

with the optimal profile of actions is smaller, which is the primary objective of ODoE.812

813

The convergence of the global optimizer indicates the global optimality of all the814

designs obtained in this section. A full certification requires using a spatial branch815

and bound algorithm.816



28 B.P.M. Duarte et al.

Table 11 Simulation-based analysis for Δ𝜏 = 1/3, 𝐻 = 2, p2 and 500 simulated samples. (in the
representation 𝑥.𝑥𝑥𝑥𝑥 ± 𝑦.𝑦𝑦𝑦𝑦 the first number indicates the mean and the second the 95% confidence
limits)

Value obtained from Value obtained from
Parameter True value reference simulated samples non-optimal simulated samples

𝜃1 1.3147 1.3165±0.0699 1.3610±0.0748
𝜃2 1.4057 1.4058±0.0410 1.3963±0.1054
𝜃3 0.6269 0.6231±0.0682 0.6116±0.1241
𝜃4 1.4133 1.4141±0.0485 1.3918±0.1290
𝜃5 1.1323 1.1331±0.0653 1.2744±0.1118
𝜃6 0.5975 0.6045±0.1163 0.6285±0.1835
𝜃7 0.7784 0.7777±0.0169 0.7897±0.0419
𝜃8 1.0468 1.0456±0.0382 1.0658±0.0674
𝜃9 1.4575 1.4557±0.0660 1.4382±0.0396
𝜃10 1.4648 1.4667±0.0551 1.4535±0.0555

5 Conclusions817

Wehave considered the optimal design of experiments for Linear Time Invariant State-818

Space models, and have proposed general formulations for finding locally optimal819

designs for steady-state and time-discrete representations. Here, the formulations820

were applied to the identification of biochemical reaction networks; the analysis of the821

Fisher Information Matrix at convergence provides a check on the local identifiability822

of the model through comparison of the minimum eigenvalue of the FIM with a823

previously set threshold value.824

The static experimental designs for the SS-LTI model demonstrate only a very825

slight loss in D–efficiency from small exact designs compared with the optimal con-826

tinuous designs. The actual number of experiments should be chosen to reflect the827

required level of accuracy in the estimates of the parameters, or derived confidence828

intervals. The dynamic optimal experimental designs for the TD-LTI model show that829

the sampling interval is a crucial factor in design efficiency; however, the optimal830

sampling interval depends on the specific system under analysis.831

Our formulation addresses the D–optimality criterion and includes: (i) the gen-832

eration of the sensitivity coefficients; and (ii) the computation of the determinant of833

the FIM. This approach can be applied to any criterion formulated as the maximiza-834

tion/minimization of a convex function of the FIM such as those of the Kiefer (1974)835

class. The first step requires solving/expanding the sensitivity equations derived from836

the chain rule of differentiation, and the second allows optimizing concave/convex837

functions of the FIM, such as the determinant. The resulting optimization problem for838

approximate and exact designs can have multiple local optima, so a global optimizer839

is required to ensure that a global optimum is attained.840
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