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Abstract
Developing efficient MCMC algorithms is indispensable in Bayesian inference. In parallel tempering, multiple interacting
MCMC chains run to more efficiently explore the state space and improve performance. Themultiple chains advance indepen-
dently through local moves, and the performance enhancement steps are exchange moves, where the chains pause to exchange
their current sample amongst each other. To accelerate the independent local moves, they may be performed simultaneously
on multiple processors. Another problem is then encountered: depending on the MCMC implementation and inference prob-
lem, local moves can take a varying and random amount of time to complete. There may also be infrastructure-induced
variations, such as competing jobs on the same processors, which arises in cloud computing. Before exchanges can occur,
all chains must complete the local moves they are engaged in to avoid introducing a potentially substantial bias (Proposi-
tion 1). To solve this issue of randomly varying local move completion times in multi-processor parallel tempering, we adopt
the Anytime Monte Carlo framework of (Murray, L. M., Singh, S., Jacob, P. E., and Lee, A.: Anytime Monte Carlo. arXiv
preprint arXiv:1612.03319, (2016): we impose real-time deadlines on the parallel local moves and perform exchanges at these
deadlines without any processor idling. We show our methodology for exchanges at real-time deadlines does not introduce
a bias and leads to significant performance enhancements over the naïve approach of idling until every processor’s local
moves complete. The methodology is then applied in an ABC setting, where an Anytime ABC parallel tempering algorithm
is derived for the difficult task of estimating the parameters of a Lotka–Volterra predator-prey model, and similar efficiency
enhancements are observed.

Keywords Bayesian inference · Markov chain Monte Carlo (MCMC ) · Parallel tempering · Anytime Monte Carlo ·
Approximate Bayesian computation (ABC ) · Likelihood-free inference

1 Introduction

Consider a set of m observations y = {y1, . . . , ym} ∈ Y
following a probability model with underlying parameters
θ ∈ � and associated likelihood f (y1, . . . , ym | θ) which
we abbreviate to f (y | θ). In most cases, the posterior π(dθ)

of interest is intractable and must be approximated using
computational tools such as the commonly usedMetropolis-
Hastings (M-H) algorithm (Robert and Casella (2004)) with
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random walk proposals, for example. However, as models
becomemore complex, the exploration of the posterior using
such basicmethods quickly becomes inefficient (Beskos et al.
(2009)). Furthermore, the model itself can pose its own chal-
lenges such as the likelihood becoming increasingly costly
or even impossible to evaluate (Tavaré et al. (1997)); the
Lotka-Volterra predator-prey model of Sect. 5 is a concrete
example.

Parallel tempering, initially proposed by Swendsen and
Wang (1986) and further developed under the name Metro-
polis-coupled Markov chain Monte Carlo (MC)3 by Geyer
(1991), is a generic method for improving the efficiency of
MCMC that can be very effective without significantly alter-
ing the original MCMC algorithm, beyond perhaps tuning
its local proposals for each temperature. The parallel tem-
pering algorithm runs multiple interacting MCMC chains to
more efficiently explore the state space. ThemultipleMCMC
chains are advanced independently, in what is known as the
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local moves, and the performance enhancement steps are the
exchangemoves, where the chains pause and attempt to swap
their current sample amongst each other. Parallel tempering
allows for steps of various sizes to be made when exploring
the parameter space, which makes the algorithm effective,
even when the distribution we wish to sample from has mul-
tiple modes. In order to reduce the real time taken to perform
the independent local moves, they may be performed simul-
taneously on multiple processors, a feature we will focus on
in this work.

Let the parallel tempering MCMC chain be
(
X1:�
n

)∞
n=1 =

(
X1
n, . . . , X

�
n

)∞
n=1 with initial state

(
X1:�
0

)
and target distri-

bution

π(dx1:�) ∝
�∏

λ=1

πλ(dx
λ), (1)

where the πλ( · ) are independent marginals corresponding
to the target distribution of each of � chains, running in
parallel at different temperatures indexed by λ. One of these
chains, sayλ = �, is the cold chain, and its target distribution
π� = π is the posterior of interest. At each step n of parallel
tempering (Geyer (2011)), one of two types of updates is
used to advance the Markov chain X1:�

n to its next state:

1. Independent local moves: for example, a standard Gibbs
orMetropolis-Hastings update, applied to each tempered
chain Xλ

n in parallel.
2. Interacting exchange moves: propose to swap the states

x ∼ πλ and x ′ ∼ πλ′ of one or more pairs of adjacent
chains. For each pair, accept a swap with probability

aswap(x
′, x) = min

{
1,

πλ(x ′)πλ′(x)

πλ(x)πλ′(x ′)

}
, (2)

otherwise, the chains in the pair retain their current states.

With the cold chain providing the desired precision and the
warmer chains more freedom of movement when exploring
the parameter space, the combination of the two types of
update allows all chains to mix much faster than any one
of them would mix on its own. This provides a way to jump
frommode to mode in far fewer steps than would be required
under a standard non-tempered implementation using, say,
the Metropolis-Hastings algorithm.

A particular advantage of parallel tempering is that it is
possible to perform the independent local moves in parallel
on multiple processors in order to reduce the real time taken
to complete them.Unfortunately, this gives rise to the follow-
ing problem: depending on the MCMC implementation and
the inference problem itself, the local moves can take a vary-
ing and random amount of time to complete, which depends

on the part of the state space it is exploring (see the Lotka-
Volterra predator-prey model in Sect. 5.3 for a specific real
example). Thus, before the exchange moves can occur, all
chains must complete the local move they are engaged in to
avoid introducing a potentially substantial bias (see Proposi-
tion 1). Additionally, the time taken to complete local moves
may also reflect computing infrastructure induced variations,
for example, due to variations in processor hardware, mem-
ory bandwidth, network traffic, I/O load, competing jobs on
the same processors, as well as potential unforeseen interrup-
tions, all of which affect the compute time of local moves.
Local moves in parallel tempering algorithms can also have
temperature-dependent completion times. This is the case of
the approximate Bayesian computation (ABC) application
in Sect. 4. In Earl and Deem (2004), the authors consider a
similar problem of temperature λ dependent real completion
times of local moves. To tackle the problem, they redistribute
the chains among the processors in order to minimise pro-
cessor idling that occurs while waiting for all local moves to
finish. This strategy is a deterministic allocation of processor
time to simulation and entails completing part of a simula-
tion on one processor and then continuing on another. Our
approach to removing idling doesn’t involve redistributing
partially completed simulations, and instead imposes real-
time deadlines at which simulations are stopped to perform
exchange moves before resuming work on their respective
processors. The contributions of this paper are as follows.

Firstly, to solve the problem of randomly distributed local
move completion times when parallel tempering is imple-
mented on a multi-processor computing resource, we adopt
theAnytimeMonte Carlo framework ofMurray et al. (2016):
we guarantee the simultaneous readiness of all chains by
imposing real-time deadlines on the parallelly computed
local moves, and perform exchange moves at these dead-
lines without any idling, i.e. without waiting for the slowest
of them to complete their local moves. Idling is both a finan-
cial cost, for example in a cloud computing setting, and can
also significantly reduce the effective Monte Carlo sample
size returned. We show that hard deadlines introduce a bias
which wemitigate using the Anytime framework (see Propo-
sition 2).

Secondly, we illustrate our gains through detailed numer-
ical work. The first experiment considered is a mixture
model where the biased and de-biased target distributions
can be characterised for ease of comparison with the numer-
ical results. We then apply our Anytime parallel tempering
methodology in the realm of ABC ( Tavaré et al. (1997);
Pritchard et al. (1999)). In ABC, simulation is used instead
of likelihood evaluations, which makes it particularly useful
for Bayesian problems where the likelihood is unavailable
or too costly to compute. In Lee (2012), a more efficient
MCMC kernel for ABC (as measured by the effective sam-
ple size), called the 1-hit MCMC kernel, was devised to

123



Statistics and Computing (2021) 31 :74 Page 3 of 23 74

significantly improve the probability that a good proposal
in the direction of a higher posterior density is accepted,
thus more closely mimicking exact likelihood evaluations.
This newMCMC kernel was subsequently shown in Lee and
Łatuszyński (2014) to also theoretically outperform compet-
ing ABC methods. The 1-hit kernel has a random execution
time that depends on the part of the parameter space being
explored, and is thus a good candidate for our Anytime
parallel tempering method. In this paper, we show that we
can improve the performance of the 1-hit MCMC kernel by
introducing tempering and exchange moves, and embed the
resulting parallel tempering algorithm within the Anytime
framework to mitigate processor idling due to random local
move completion times. Parallel tempering forABChas been
proposed by Baragatti et al. (2013), but hasn’t been studied
in the Anytime context as we do for random local move com-
pletion times, nor has the more efficient 1-hit MCMC kernel
been employed.We perform a detailed numerical study of the
Lotka-Volterra predator-preymodel,which has an intractable
likelihood and is a popular example used to contrast meth-
ods in the ABC literature ( Fearnhead and Prangle (2012);
Toni et al. (2009); Prangle et al. (2017)). The time taken
to simulate from the Lotka-Volterra model is random and
parameter value dependent; this randomness is in addition to
that induced by the 1-hit kernel.

TheAnytimeparallel tempering framework can be applied
in several contexts. For example, another candidate for our
framework is reversible jumpMCMC (RJ-MCMC) byGreen
(1995), which is a variable-dimension Bayesian model infer-
ence algorithm. An instance of RJ-MCMC within a parallel
tempering algorithm is given in Jasra et al. (2007), where
multiple chains are simultaneously updating states of variable
dimensions (depending on the model currently considered
on each chain), and the real completion time of local moves
depends on the dimension of the state space under the current
model. Additionally, in the fixed dimension parallel temper-
ing setting, if the localmoves use anyof the followingMCMC
kernels, then they have a parameter dependent completion
time and thus could benefit from anAnytime formulation: the
no-U-turn sampler (NUTS) ( Hoffman and Gelman (2014))
and elliptical slice sampling (Murray et al. (2010); Nishihara
et al. (2014)). Even if the local moves do not take a variable
random time to complete by design ( Friel and Pettitt (2008);
Calderhead and Girolami (2009)), computer infrastructure
induced variations, such as memory bandwidth, competing
jobs, etc. can still affect the real completion time of local
moves in a parallel tempering algorithm, such as in Rodinger
et al. (2006). In the statistical mechanics literature, there are
also parallel tempering-based simulation problemswhere the
local move completion time is temperature- and parameter-
dependent as well as random, e.g. see Hritz and Oostenbrink
(2007); Karimi et al. (2011); Wang and Jordan (2003); Earl
and Deem (2004), and thus could benefit from our Anytime

formulation. Finally, the Anytime framework has not been
tested beyond the SMC2 example of Murray et al. (2016),
but it can be applied to any parallelisable population-based
MCMC algorithm which includes local moves and interact-
ing moves where all processors must communicate, such as
sequential Monte Carlo (SMC) samplers ( Del Moral et al.
(2006)), or parallelised generalised elliptical slice sampling
( Nishihara et al. (2014)).

This paper is structured as follows. Sections 2 and 3
develop our Anytime Parallel Tempering Monte Carlo
(APTMC) algorithm and then Sect. 4 extends our frame-
work further for the 1-hit MCMC kernel of Lee (2012) for
ABC. Experiments are run in Sect. 5 and include a carefully
constructed synthetic example to demonstrate the workings
and salient features of Anytime parallel tempering. Section 5
also presents an application of Anytime parallel tempering
to the problem of estimating the parameters of a stochastic
Lotka-Volterra predator-preymodel. Finally, Sect. 6 provides
a summary and some concluding remarks.

2 AnytimeMonte Carlo

Let (Xn)
∞
n=0 be a Markov chain with initial state X0, evolv-

ing on state space X , with transition kernel Xn | xn−1 ∼
κ(dxn|xn−1) and target distribution π(dx). Define the hold
time Hn−1 as the random and positive real time required
to complete the computations necessary to transition from
state Xn−1 to Xn via the kernel κ . Then let Hn−1 | xn−1 ∼
τ(dhn−1|xn−1) where τ is the hold time distribution.

Assume that the hold time H > ε > 0 for minimal
time ε, supx∈X E [H | x] < ∞, and the hold time distri-
bution τ is homogeneous in time. In general, nothing is
known about the hold time distribution τ except how to
sample from it, i.e. by recording the time taken by the
algorithm to simulate Xn | xn−1. Let κ(dxn, dhn−1|xn−1) =
κ(dxn|hn−1, xn−1)τ (dhn−1|xn−1) be a joint kernel. The tran-
sition kernel κ(dxn|xn−1) is the marginal of the joint kernel
over all possible hold times Hn−1. Denote by (Xn)

∞
n=0 and

(Hn)
∞
n=0 the states and hold times of the joint process, and

define the arrival time of the n-th state as

An :=
n−1∑

i=0

Hi , n ≥ 1,

where a0 := 0. A possible realisation of the joint process is
illustrated in Fig. 1.

Let the process N (t) := sup {n : An ≤ t} count the num-
ber of arrivals by time t . From this, construct a continuous
Markov jump process (X , L) (t) where X(t) := XN (t) and
L(t) := t − AN (t) is the lag time elapsed since the last jump.
This continuous process describes the progress of the com-
putation in real time.
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Fig. 1 (Murray et al. (2016), Fig. 1) Real-time realisation of a Markov chain with states (Xn)
∞
n=0, arrival times (An)

∞
n=0 and hold times (Hn)

∞
n=0.

Proposition 1 (Murray et al. (2016), Proposition 1) The
continuous Markov jump process (X , L) (t) has stationary
distribution given by

α(dx, dl) = F̄τ (l | x)
E [H ]

π(dx)dl, (3)

where F̄τ (l | x) = 1 − Fτ (l | x), and Fτ (l | x) is the cumu-
lative distribution function (cdf) of τ(dhn|xn).
Corollary 1 (Murray et al. (2016),Corollary 2) Themarginal
α(dx) of the density in (3) is length-biased with respect to
the target density π(dx) by expected hold time, i.e.

α(dx) = E [H | x]
E [H ]

π(dx). (4)

The proofs of Proposition 1 and Corollary 1 are given in
Murray et al. (2016).

The distributionα is referred to as the anytime distribution
and is the stationary distribution of theMarkov jump process.
Note that Proposition 1 suggests that when the real time taken
todrawa sample depends on the state of theMarkovchain, i.e.
E[H | x] 	= E[H ], a length bias with respect to computation
time is introduced. In other words, when interrupted at real
time t , the state of a Monte Carlo computation targeting π is
distributed according to the anytime distributionα, which can
essentially be seen as a length-biased target distribution. This
bias diminishes with time, and when an empirical approxi-
mation or average over all post burn-in samples is required, it
may be rendered negligible for a long enough computation.
However, the bias in the final state does not diminish with
time, andwhen this final state is important—which is the case
in parallel tempering—the bias cannot be avoided by run-
ning the algorithm for longer. We now discuss the approach
in Murray et al. (2016) to correct this bias. The main idea is
to make it so expected hold time is independent of X , which

leads to E [H | x] = E [H ] and hence α(dx) = π(dx), fol-
lowing Corollary 1. This is trivially the case for iid sampling
as κ(dx |xn−1) = π(dx), so the hold time Hn−1 for Xn−1 is
the time taken to sample Xn ∼ π(dx), and therefore inde-
pendent of the state Xn−1. One approach to non-iid sampling
involves simulating K + 1 Markov chains for K > 0, where
we assume for now that all the Markov chains are targeting
π and using the same transition kernel κ and hold time dis-
tribution τ . These K + 1 chains are simulated on the same
processor in a serial schedule. This ensures that whenever
the real-time deadline t is reached, states from all but one of
the chains, say the (K + 1)-th chain, are independently dis-
tributed according to the target π . Since the (K +1)-th chain
is the currently working chain, i.e. the latest to go through
the simulation process, its state at the real-time deadline is
distributed according to the anytime distribution α. Simply
discarding or ignoring the state of this (K +1)-th chain elim-
inates the length bias. See Murray et al. (2016) (Section 2.1)
for more details.

Using this multiple chain construction, it is thus possible
draw samples from π by interrupting the process at any time
t . This sets the basis for the focus of this paper: the Any-
time Parallel Tempering Monte Carlo (APTMC) algorithm,
described next. From this point onward, the number of chains
on a given worker or processor within the Anytime frame-
work is referred to as K rather than K + 1 for simplicity.

3 Anytime parallel temperingMonte Carlo
(APTMC)

3.1 Overview

Consider the problem in which we wish to sample from tar-
get distribution π(dx). In a parallel tempering framework,
construct � Markov chains where each individual chain λ

targets the tempered distribution
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πλ(dx) ∝ π(dx)
λ
�

and is associated with kernel κλ(dxn | dxn−1) and hold time
distribution τλ(dhn | xn). In this setting, the hold time distri-
bution is not assumed to be homogeneous across all chains,
andmay be temperature-dependent. Assume that all� chains
are running concurrently on � processors. We aim to inter-
rupt the computations on a real-time schedule of times
t1, t2, t3, . . . to perform exchange moves between adjacent
pairs of chains before resuming the local moves. To illustrate
the challenge of this task, we discuss the case where � = 2.
Let π2 be the desired posterior and π1 the ‘warm’ chain,
with associated hold time distributions τ1 and τ2, respec-
tively. When the two chains are interrupted at some time t ,
assume that the current sample on chain 1 is X1

m and that of
chain 2 is X2

n . It follows from Corollary 1 that

X1
m ∼ α1(dx) = E [H1 | x]

E [H1]
π1(dx) 	= π1(dx),

and similarly for X2
n . Exchanging the samples using the

acceptance probability in (2) is incorrect. Indeed, exchanging
using the current samples X1

m and X2
n , if accepted, will result

in the sample sets
{
X1
1, X

1
2, . . .

}
and

{
X2
1, X

2
2, . . .

}
being

corrupted with samples which arise from their respective
length-biased, anytime distributions α1 and α2, as opposed to
being exclusively from π1 and π2. Furthermore, the expres-
sions for α1 and α2 will most often be unavailable, since their
respective hold time distributions τ1 and τ2 are not explicitly
known but merely implied by the algorithm used to simu-
late the two chains. Finally, we could wait for chains 1 and
2 complete their computation of X1

m+1 and X2
n+1 respec-

tively, and then accept/reject the exchange
(
X1
m+1, X

2
n+1

) →(
X2
n+1, X

1
m+1

)
according to (2). This approach won’t intro-

duce a bias but can result in one processor idling while the
slower computation finishes. We show this can result in sig-
nificant idling in numerical examples.

In the next section, we describe how to correctly imple-
ment exchange moves within the Anytime framework.

3.2 Anytime exchangemoves

Here, we adapt the multi-chain construction devised to
remove the bias present when sampling from � Markov
chains, where each chain λ targets the distribution πλ for
λ = 1, . . . , �. Associated with each chain is MCMC kernel
κλ(dxλ

n | dxλ
n−1) and hold time distribution τλ(dh | x).

Proposition 2 Let πλ(dx), λ = 1 . . . , � be the station-
ary distributions of � Markov chains with associated
MCMC kernels κλ(dxλ

n | dxλ
n−1) and hold time distributions

τλ(dh | x). Assume the chains are updated sequentially and
let j be the index of the currently working chain. The joint

anytime distribution is the following generalisation of Propo-
sition 1

A(dx1:�, dl, j) = 1

�

E [H | j]
E [H ]

α j (dx
j , dl)

�∏

λ=1, λ	= j

πλ(dx
λ).

The proof of Proposition 2 is given in Appendix A.1. Con-
ditioning on x j , j and l we obtain

A(dx1:�\ j | x j , l, j) =
�∏

λ=1, λ	= j

πλ(dx
λ). (5)

Therefore, if exchange moves on the conditional
A(dx1:�\ j | x j , l, j) are performed by ‘eliminating’ the j-th
chain to obtain the expression in (5), they are being per-
formed involving only chains distributed according to their
respective targets πλ and thus the bias is eliminated.

3.3 Implementation

On a single processor, the algorithmmay proceed as in Algo-
rithm 1, where in Step 3 the � chains are simulated one at a
time in a serial schedule. Figure 2 provides an illustration of
how the algorithm works.

Algorithm 1 Anytime Parallel Tempering Monte Carlo on
one processor (APTMC-1)
1: Initialise real-time Markov jump process

(
X1:�, L, J

)
(0) =(

x1:�0 , 0, 1
)
.

2: Set n1:� := 0. � number of samples per chain
3: for i = 1, 2, . . . do

Simulate real- time Markov jump process
(
X1:�, L, J

)
(t)

until real time ti .
4: Perform local moves on x j

n j .
5: j := j + 1 mod �

6: n j := n j + 1
Perform exchange steps on the conditional in (5).

7: Select one or more pair(s) of adjacent chains with indices taken
from the set {1 : �} \ j .

8: Propose to swap the selected pair(s) of states (xλ
nλ , x

λ′
nλ′ ) according

to Algorithm 2.
9: end for

When multiple processors are available, the � chains can
be allocated to them.However, running a single chain on each
processor means that when the real-time deadline occurs,
all chains will be distributed according to their respective
anytime distributions αλ, and thus be biased as exchange
moves occur. Therefore, all processors must contain at least
two chains. A typical scenario would be each processor is
allocated two or more temperatures to sample from. The
implementation is defined as described in Algorithm 3. Note
that themultiple chain construction eliminates the intractable
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Fig. 2 Illustration of the progression of three chains in the APTMC
algorithm on a single processor. The green (local move) and blue
(exchange move) dots represent samples from the posterior being
recorded as their respective local and exchange moves are completed.
When exchange moves occur at t1, chain λ = 1 is currently moving

and cannot participate in exchange moves without introducing a bias.
Therefore it is ignored, and the exchange moves are performed on the
remaining (inactive) chains. Similarly, at time t2 chainλ = 2 is excluded
from the exchange. The widths of intervals t1 and t2 are for illustrating
the exchange procedure only. (Color figure online)

Algorithm 2 Exchange move between two chains

Input: states (xλ
n , xλ′

n′ ) where xλ
n ∼ πλ and xλ′

n′ ∼ πλ′ .

1: Compute exchange move acceptance probability aswap(xλ
n , xλ′

n′ )
given in (2).

2: Sample u ∼ Uniform(0, 1).
3: if u < aswap(xλ

n , xλ′
n′ ) then

4: (xλ
n+1, x

λ′
n′ +1

) = (xλ′
n′ , xλ

n )

5: else
6: (xλ

n+1, x
λ′
n′ +1

) = (xλ
n , xλ′

n′ )
7: end if
8: n := n + 1 and n

′ := n
′ + 1.

Output: updated states (xλ
n+1, x

λ′
n′ +1

).

densities in the acceptance ratio for the exchange step when
τ differs between processors, since exchange moves are per-
formed between chains that are not currently working (i.e.
on density (5) for a single processor and (6) for multiple
processors), so the hold time distribution does not factor in.

Depending on the problem at hand and computing
resources available, there are various approaches to distribut-
ing the chains across workers. We distinguish three possible
scenarios. The first is an ideal scenario, where the number
of processors exceeds � and the communication overhead
between workers is negligible. In this scenario, each worker
implements K = 2 chains running at the same temperature.
For example, with W = � workers, worker w = λ con-
tains 2 chains targeting πλ. The second scenario arises when
the number of workers available is limited, but communi-
cation overhead is still negligible. In this case, the chains,
sorted in increasing order of temperature, are divided evenly
among workers. For example, withW = �

2 workers, worker
w could contain two chains, one with target π2w−1 and one
with target π2w. The third scenario deals with non-negligible
inter-processor communication overhead (which only affects

the exchange moves). To account for this, exchange moves
are divided into two types:

1. Within-worker exchange move: performed on each indi-
vidual worker in parallel, between a pair of adjacent
chains. No communication betweenworkers is necessary
in this case.

2. Between-worker exchangemove: performed by selecting
a pair of adjacent workers and exchanging between the
warmest eligible chain from the first worker and coldest
from the second. Thus, an exchange move between two
adjacent chains is effectively being performed, except
this time communication between workers is required.

3.4 Tuning considerations

In this sectionwe discuss the issue of tuningAnytime parallel
tempering by drawing on various ideas from the literature.
The main concerns are the selection of the number of chains
and their temperatures, the tuning of the local moves for each
chain and the selection of appropriate hard deadlines for the
exchange moves to occur. In our setting, the computational
budget determines the number of chains �, and for such a
fixed budget we aim to improve sampling of the cold chain
through the adoption of parallel tempering stages. The issue
of determining the temperature of adjacent chains has been
considered in Rathore et al. (2005); Kone and Kofke (2005);
Atchadé et al. (2011) where it was shown that an exchange
success rate of approximately 20-25% for adjacent chains is
optimal, in an appropriate sense, and is demonstrated to con-
fer the most benefit to sampling the coldest chain. However,
the optimality curve (Kone and Kofke (2005); Atchadé et al.
(2011)) has a broad mode, and even 40% seems appropri-
ate. To achieve this 25% acceptance rate of exchange moves,
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Algorithm 3 Anytime Parallel Tempering Monte Carlo on
multiple processors (APTMC-W)
1: On worker w, initialise the real-time Markov jump process

(
X1:K

w , Lw, Jw
)
(0) =

(
x1:Kw,0 , 0, 1

)
.

2: Set n1:Kw := 0. � number of samples per chain
3: for i = 1, 2, . . . do

On each worker w, simulate the real- time Markov
jump process

(
X1:K

w , Lw, Jw
)
(t) until real time ti .

4: Perform local moves on x jw
w,n jw

w

.

5: jw := jw + 1 mod K
6: n jw

w := n jw
w + 1

Across all workers, perform exchange steps on the
conditional

A(dx1:K\ j | x j , l, j) =
W∏

w=1

K∏

k=1, k 	= jw

πw(dxkw), (6)

where dx1:K\ j =
(
dx1:K\ j1

1 , . . . , dx1:K\ jW
W

)
, x j =

(
x j1
1 , . . . , x jW

W

)
, l = l1:W and j = j1:W .

7: For the exchange moves, combine all chains by relabelling the
state indices as follows:

zl(w,k)
ml(w,k) = xl(w,k)

w,nl(w,k)
w

,

where l(w, k) = (w −1)K + l for k = 1, . . . K and w = 1, . . . ,W .
8: Select one or more pair(s) of adjacent chains with indices taken

from the set {1 : �} \ l(1 : W , j).
9: Propose to swap the selected pair(s) of states (zλ

mλ , z
λ′
mλ′ ) accord-

ing to Algorithm 2.
10: end for

other than employing pilot runs, adaptive tuning is possible
and Miasojedow et al. (2013) use a Robbins-Munro scheme
to adjust the temperatures to target a 25%acceptance rate dur-
ing runtime. The next issue is local proposals, and how large a
change of state one should attempt (for the local accept/reject
step). This subject has received ample attention in the liter-
ature following the seminal paper by Roberts et al. (2001),
where a 25% local move acceptance rate is again optimal.
The local proposal can be a Gaussian proposal whose mean
and covariance matrix are tuned online (Miasojedow et al.
(2013)) via a Robbins-Munro scheme to achieve the 25%
local move acceptance rate. The tuning of Gaussian propos-
als for MCMC in general was popularised by the seminal
paper of Haario et al. (2001).

When performing exchange moves, rather than selecting
a single pair of adjacent chains from {(1, 2), (2, 3), . . . ,
(� − 1,�)} for an exchange, it is common to propose to
swapmultiple pairs of chains simultaneously, as the exchange
move is relatively cheap. To avoid selecting the same chain
twice, they are divided into odd {(1, 2), (3, 4), . . .} and even
{(2, 3), (4, 5), . . .}pairs of indices inLingenheil et al. (2009),
and all odd or even pairs are selected for exchange with equal
probability. It is however shown in Syed et al. (2019) that it

is better to deterministically cycle between exchanging odd
and even pairs.

Although thus far we have suggested tuning the num-
ber of chains and annealing schedule for APTMC as if one
were tuning a standard parallel tempering algorithm, there
are some caveats which we now highlight. Selecting chains
for exchange moves can be applied by omitting the currently
working chains and relabelling the indices of the remaining,
inactive or eligible chains.However, note that by the nature of
theAnytime exchangemoves, theAnytimeversion of anopti-
mised parallel tempering algorithm can be suboptimal, since
one or more temperature(s) might be missing from exchange
moves. Considering the example in Fig. 2 and assuming the
chains are all running at increasing temperatures, at t2, chain
2 is working, so the exchange move is performed between
chains 1 and 3. In a practical example, these chains would be
further apart, which would lead to a lower exchange move
acceptance rate. Selecting adjacent chains to target a slightly
higher successful exchange rate, say 40%, would mitigate
this issue; noting that even 40% is close to optimal Kone and
Kofke (2005); Atchadé et al. (2011). In our implementation,
we only experienced a small drop in acceptance rate due to
attempting to swap two eligible chains that are not imme-
diately adjacent, and this event becomes less likely as the
number of chains increases.

Another important facet of tuning APTMC is the issue
of determining the real-time schedule t1, t2, . . . of exchange
moves. Let δ be the real-time interval or deadline between
exchange moves, so that ti = iδ for i = 1, 2, . . . We now
present guidelines for calibrating δ. Let K be the number
of chains, labelled k = 1, . . . , K , on the slowest proces-
sor ws (generally the one containing the cold chain), our
experiments have shown that exchange moves should occur
once every chain on this processor has completed at least one
local move (see Dupuis et al. (2012) for an alternative view
advocating an infinite exchange frequency version of paral-
lel tempering). The expected hold time of one set of local
moves on processor ws , denoted H := ∑K

k=1 E[Hk], can be
estimated by repeatedly measuring the time taken for one set
of local moves to complete, and averaging across all mea-
surements. Using a pilot run, an estimate Ĥ of this expected
hold time can be obtained, then set δ = Ĥ for running the
APTMC algorithm. This δ value can also be calibrated in
real time, denoted δ(t) where t is the real time. At t = 0, ini-
tialise δ(0) = δ0 such that δ0 > 0 is an initial, user-defined
guess. Similarly as before, record a hold time sample every
time a set of local move occurs on processor ws , then after
every exchange move, recompute Ĥ and update δ(t) = Ĥ.
An advantage of this second approach is that δ(t) then adapts
to a potentially time-inhomogeneous hold time, due e.g. to
competing jobs on the processors starting mid-algorithm and
suddenly slowing down the computation time of localmoves.
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A scenario we encountered in our experiments was non-
negligible communication overhead betweenworkers to exe-
cute the exchange moves, and this overhead was comparable
to local move times which were themselves lengthy. To mit-
igate the communication overhead, as described in Sect. 3.3,
exchangemoves are divided into within- and between- work-
ers. On a givenworker with K chains, a set of worker specific
moves is performed before inter-worker exchanges. These
were K local moves, one (set of) within-worker exchange
moves, then K more local moves, before inter-worker com-
munication occurs for between-worker exchange moves.
Given that within-worker exchanges are instant, this amounts
in real time to performing 2K local moves on this worker
before inter-worker communication occurs. Therefore, the
real-time deadline in the Anytime version of the algorithm
for this scenario is set to be δ = 2H and can be determined
as above. See Sect. 5.3.2 for an example.

Finally, Sect. 5.1.3 details other, empirical tools that help
with tuning by assessing the efficiency of each chain. These
include evaluating the sample autocorrelation function (acf),
as well as the integrated autocorrelation time (I AT ) and
effective sample size (ESS).

4 Application to approximate Bayesian
computation (ABC)

In this section we adapt the APTMC framework to ABC.

4.1 Overview of ABC

The notion of ABC was developed by Tavaré et al. (1997)
and Pritchard et al. (1999). It can be seen as a likelihood-free
way to performBayesian inference, using instead simulations
from the model or system of interest, and comparing them to
the observations available.

Let y ∈ R
d be some data with underlying unknown

parameters θ ∼ p(dθ), where p(θ) denotes the prior for
θ ∈ �. Suppose we are in the situation in which the like-
lihood f (y | θ) is either intractable or too computationally
expensive, which means that MCMC cannot be performed
as normal. Assuming that it is possible to sample from the
density f ( · | θ) for all θ ∈ �, approximate the likelihood by
introducing an artificial likelihood f ε of the form

f ε(y | θ) = Vol(ε)−1
∫

Bε(y)
f (x | θ)dx, (7)

where Bε(y) denotes ametric ball centred at y of radius ε > 0
andVol(ε) is its volume. The resulting approximate posterior
is given by

pε(θ | y) = p(θ) f ε(y | θ)
∫
p(ϑ) f ε(y | ϑ)dϑ

.

The likelihood f ε(y | θ) cannot be evaluated either, but an
MCMC kernel can be constructed to obtain samples from the
approximate posterior πε(θ, x) defined as

πε(θ, x) = pε(θ, x | y)
∝ p(θ) f (x |θ)1ε(x)Vol(ε)

−1,

where 1ε(x) is the indicator function for x ∈ Bε(y). This is
referred to as hitting the ball Bε(y). In the MCMC kernel,
one can propose θ ′ ∼ q(dθ ′ | θ) for some proposal density q,
simulate the dataset x ∼ f (dx | θ ′) and accept θ ′ as a sample
from the posterior if x ∈ Bε(y).

The 1-hit MCMC kernel, proposed by Lee (2012) and
described in Algorithm 4 introduces local moves in the form
of a ‘race’: given current and proposed parameters θ and
θ ′, respectively simulate corresponding datasets x and x ′
sequentially. The state associated with the first dataset to hit
the ball Bε(y) ‘wins’ and is accepted as the next sample in
the Markov chain. The proposal θ ′ is also accepted if both x
and x ′ hit the ball at the same time.

Algorithm 4 1-hit MCMC kernel for ABC
Input: current state (θn, xn).

1: Propose θ ′ ∼ q(dθ | θn). � propose a local move
2: Compute preliminary acceptance probability. � prior check

a(θn, θ
′) = min

{
1,

p(θ ′)q(θn | θ ′)
p(θn)q(θ ′ | θn)

}
.

3: Sample u ∼ Uniform(0, 1) .
4: if u < a(θn, θ

′) then
5: race := true
6: else
7: race := false
8: Retain (θn+1, xn+1) = (θn, xn). � reject θ ′ as it is unlikely to

win race
9: end if
10: while race do
11: Simulate x ∼ f (dx | θn) and x ′ ∼ f (dx ′ | θ ′).
12: if x ∈ Bε (y) or x ′ ∈ Bε (y) then � stop the race once either x

or x ′ hits the ball
13: race := false
14: end if
15: end while
16: if x ′ ∈ Bε (y) then � accept or reject move
17: Set (θn+1, xn+1) = (

θ ′, x ′).
18: else
19: Retain (θn+1, xn+1) = (θn, x).
20: end if

Output updated state (θn+1, xn+1).
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4.2 Anytime parallel temperingMonte Carlo for
approximate Bayesian computation
(ABC-APTMC)

Including the 1-hit kernel in the localmoves of a parallel tem-
pering algorithm is straightforward. Exchange moves must
however be adapted to this new likelihood-free setting. Addi-
tionally, the race that occurs takes a random real time to
complete, and this time is temperature-dependent, as it is
quicker to hit a ball of larger radius. This provides good
motivation for the use of Anytime Monte Carlo.

4.2.1 Exchangemoves

The exchange moves for ABC are derived similarly as in
Baragatti et al. (2013). Let (θ, x) and (θ ′, x ′) be the states
of two chains targeting πε and πε′

, respectively, where ε′ >

ε. Here, this is equivalent to saying θ ′ is the state of the
‘warmer’ chain. We already know that x ′ falls within ε′ of
the observations y, i.e. x ′ ∈ Bε′(y). Similarly, we also know
that x ∈ Bε(y), and trivially that x ∈ Bε′(y). If x ′ also falls
within ε of y, then swap the states, otherwise do not swap.
The odds ratio is

πε′
(θ, x)πε(θ ′, x ′)

πε(θ, x)πε′
(θ ′, x ′)

= p(θ) f (x | θ)Vol(ε′)p(θ ′) f (x ′ | θ ′)1ε(x ′)Vol(ε)
p(θ) f (x | θ)Vol(ε)p(θ ′) f (x ′ | θ ′)Vol(ε′)

= 1ε(x
′),

so the probability of the swap being accepted is the proba-
bility of x ′ also hitting the ball of radius ε centred at y. This
type of exchange move is summarised in Algorithm 5.

Algorithm 5 ABC: exchange move between two chains
Input: states ωn = (

(θ, x), (θ ′, x ′)
)
where θ ∼ π , x ∼ f (dx | θ)

and θ ′ ∼ π ′, x ′ ∼ f (dx ′ | θ ′).
� both (θ, x) and (θ ′, x ′) are outputs from Algorithm 4 for different
ε′ > ε

1: if x ′ ∈ Bε (y) then � accept or reject swap depending on whether
x ′ also hits the ball of radius ε

2: Set ωn+1 = (
(θ ′, x ′), (θ, x)

)
.

3: else
4: Retain ωn+1 = ωn .
5: end if
6: n := n + 1

Output: updated states ωn+1.

4.2.2 Implementation

The full implementation of the ABC-APTMC algorithm on
a single processor (ABC-APTMC-1) is described in Algo-

rithm 6. The multi-processor algorithm can similarly be
modified to reflect these new exchange moves and the result-
ing algorithm is referred to as ABC-APTMC-W.

Algorithm 6 ABC: Anytime Parallel Tempering Monte
Carlo Algorithm (ABC-APTMC-1)
1: Initialise the real-time Markov jump process (θ1:�, L, J ) =

(θ1:�0 , 0, 1).
2: Set n := 0.
3: for i := 1, 2, . . . do

Simulate the real- time Markov jump process (θ, L, J )(t)
until real time ti .

4: Perform local moves on
(
θ
j
n , x j

n

)
according to Algorithm 4.

5: j := j + 1 mod �

Perform exchange steps on the conditional:

A(dθ1:� | θ j , l, j) =
�∏

λ=1,λ	= j

πλ(dθ
λ).

6: Perform exchange moves onωn =
(
(θλ

n , xλ
n ), (θλ′

n , xλ′
n )

)
accord-

ing to Algorithm 5.
7: end for

5 Experiments

In this section, we first illustrate the workings of the algo-
rithms presented in Sect. 3.3 on a simple model, in which
real-time behaviour is simulated using virtual time and an
artificial hold distribution. The model is also employed to
demonstrate the gain in efficiency provided by the inclusion
of exchangemoves. Then, theABCversion of the algorithms,
as presented in Sect. 4, is applied to two case studies. The
first case is a simple model and serves to verify the workings
of the ABC algorithm, including bias correction. The second
case considers the problem of estimating the parameters of
a stochastic Lotka-Volterra predator-prey model − in which
the likelihood is unavailable − and serves to evaluate the
performance of the Anytime parallel tempering version of
the ABC-MCMC algorithm, as opposed to the standard ver-
sions (with and without exchange moves) on both a single
and multiple processors. The exchange moves are set up so
that multiple pairs could be swapped at each iteration. All
experiments in this paper were run onMatlab and the code
is available at https://github.com/alixma/ABCAPTMC.git.

5.1 Analytic example: Gammamixture model

In this example we attempt to sample from an equal mixture
of two Gamma distributions using the APTMC algorithm.
Define the target π(dx) and an ‘artificial’ hold time τ(dh | x)
distribution as follows:
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X ∼ φ Gamma(k1, θ1) + (1 − φ)Gamma(k2, θ2),

H | x ∼ ψ Gamma

(
x p

θ1
, θ1

)
+(1−ψ)Gamma

(
x p

θ2
, θ2

)
,

withmixture coefficients φ = 1
2 andψ , where Gamma( · , · )

denotes the probability density function of aGammadistribu-
tion, with shape and scale parameters (k1, θ1) and (k2, θ2) for
each components, respectively, and with polynomial degree
p, assuming it remains constant for both components of the
mixture.

In the vast majority of experiments, the explicit form of
the hold time distribution τ is not known, but observed in the
form of the time taken by the algorithm to simulate X . For
this example, so as to avoid external factors such as compet-
ing jobs affecting the hold time, we assume an explicit form
for τ is known and simulate virtual hold times. This consists
of simulating a hold time h ∼ τ(dh | x) and advancing the
algorithm forward for h units of virtual time without updat-
ing the chains, effectively ‘pausing’ the algorithm. These
virtual hold times are introduced such that what in a real-
time example would be the effects of constant (p = 0),
linear (p = 1), quadratic (p = 2) and cubic (p = 3) com-
putational complexity can be studied. Another advantage is
that the anytime distribution α�(dx) of the cold chain can be
computed analytically and is the following mixture of two
Gamma distributions

α�(dx) = ϕ(p, k1:2, θ1:2)Gamma (k1 + p, θ1)

+ [1 − ϕ(p, k1:2, θ1:2)]Gamma (k2 + p, θ2) , (8)

where

ϕ(p, k1:2, θ1:2) =
(

1 + Γ (k1)Γ (p + k2)θ
p
2

Γ (k2)Γ (p + k1)θ
p
1

)−1

.

We refer the reader to Appendix A.2 for the proof of (8).
In the anytime distribution, one of the components of the
Gamma distribution will have an associated mixture coeffi-
cient ϕ(p, k1:2, θ1:2) or 1 − ϕ(p, k1:2, θ1:2) which increases
with pwhile the coefficient of the other component decreases
proportionally. Note that for constant (p = 0) computational
complexity, the anytime distribution is equal to the target dis-
tribution π .

5.1.1 Implementation

Ona single processor, theAnytimeParallel TemperingMonte
Carlo algorithm (referred to as APTMC-1) is implemented
as follows: simulate � = 8 Markov chains, each targeting

the distribution πλ(dx) = π(dx)
λ
� . To construct a Markov

chain (Xλ)∞n=0 with target distribution

πλ(x) ∝
[
1

2
Gamma (k1, θ1) + 1

2
Gamma (k2, θ2)

] λ
�

for λ = 1, . . . , �, use aRandomWalkMetropolis update, i.e.
symmetric Gaussian proposal distribution N (xλ

n , σ 2) with
mean xλ

n and standard deviation σ = 0.5. Set (k1, k2) =
(3, 20), (θ1, θ2) = (0.15, 0.25) and use p ∈ {0, 1, 2, 3}. The
single processor algorithm is run for T = 108 units of virtual
time, with exchange moves alternating between occurring on
all odd (1, 2), (3, 4), (5, 6) and all even (2, 3), (4, 5), (6, 7)
pairs of inactive chains every δ = 5 units of virtual time.
When the algorithm is running, a sample is recorded every
time a local or exchange move occurs.

On multiple processors, the APTMC algorithm (referred
to as APTMC-W) is implemented similarly. A number of
W = � = 8 processors is used, where each worker
w = λ contains K = 2 chains, all targeting the same πλ for
λ = 1, . . . , �. The multiple processor algorithm is run for
T = 107 units of virtual time, with exchange moves alternat-
ing between occurring on all odd (1, 2), (3, 4), (5, 6), (7, 8)
and all even (2, 3), (4, 5), (6, 7) pairs of workers every δ = 5
units of virtual time. On each worker, the chain which was
not working when calculations were interrupted is the one
included in the exchange moves.

5.1.2 Verification of bias correction

To check that the single and multiple processor algorithms
are successfully correcting for bias, they are also run uncor-
rected, i.e. not excluding the currently working chain. This
means that exchange moves are also performed on samples
distributed according to α instead of π , thus causing the
algorithm to yield biased results. Since the bias is intro-
duced by the exchange moves (when they are performed
on α), we attempt to create a ‘worst case scenario’, i.e.
maximise the amount of bias present when the single pro-
cessor algorithm is uncorrected. The algorithm is further
adjusted such that local moves are not performed on the cold
chain and it is instead solely made up of samples resulting
from exchange moves with the warmer chains. The multi-
processor APTMC-W algorithm is not run in a ‘worst case
scenario’, so local moves on the cold chain of the multi-
processor algorithm are therefore allowed. This is meant to
reveal how the bias caused by failing to correct when per-
forming exchange moves across workers is still apparent, if
less strongly.

Figure 3 shows kernel density estimates of the post burn-
in cold chains resulting from runs of the APTMC-1 and
APTMC-W algorithms, uncorrected and corrected for bias. As
expected, when the hold time does not depend on x , which
corresponds to the case there p = 0, no bias is observed. On
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Fig. 3 Density estimates of the cold chain for bias corrected and uncor-
rected runs of the single (APTMC-1) and multi-processor (APTMC-W)
algorithms on various hold time distributions p ∈ {0, 1, 2, 3}. In the
single-processor case, the cold chain is made up entirely of updates
resulting from exchange moves. The solid dark grey line represents the
true posterior density π and the solid light grey line the anytime distri-
bution α. The case p = 0 represents an instance in which, in a real-time

situation, the local moves do not take a random time to complete, and
therefore all densities are identical. The twogreen dashed lines represent
bias corrected densities and the red dot-dashed represent uncorrected
densities. For p ≥ 1, the two corrected densities are identical to the pos-
terior, indicating that the bias correction was successful. (Color figure
online)

the other hand, the cold chains for the single-processor algo-
rithmwith computational complexity p ∈ {1, 2, 3} have been
corrupted by biased samples and converged to a shifted dis-
tributionwhich putsmoreweight the secondGammamixture
component, instead of an equal weight. Additionally, the bias
becomes stronger as computational complexity p increases.
A similar observation can be made for the cold chains from
themulti-processor experiment−whichdisplay amilder bias
due to local moves occurring on the cold chain. The green
dashed densities indicate that when the algorithms are cor-
rected, i.e. when the currently working chain is not included
in exchange moves, it successfully eliminates the bias for
all p ∈ {1, 2, 3} to return the correct posterior π − despite
even this being the ‘worst case scenario’ in the case of the
APTMC-1 algorithm. Note that the uncorrected density esti-
mates do not exactly correspond to the anytime distributions.
This has nothing to dowith burn-in, butwith the proportion of
biased samples (from exchange moves) present in the chain.

5.1.3 Performance evaluation

Next we verify that introducing the parallel tempering ele-
ment to the Anytime Monte Carlo algorithm improves
performance. A standard MCMC algorithm is run for compu-
tational complexities p ∈ {0, 1, 2, 3}, applying the random
walk Metropolis update described in Sect. 5.1.1. The single
and multiple processor APTMC algorithms are run again for
the same amount of virtual time, with exchangemoves occur-
ring every δ0:2 = 5 units of virtual time for p ≤ 2 and every
δ3 = 30 units when p = 3. The single processor version is
run on �s = 8 chains, and the multi-processor on W = 8
workers, with K = 2 chains per worker, so �m = 16 chains
in total. This time, local moves are performed on the cold
chain of the single processor APTMC-1 algorithm.

To compare results, kernel density estimates of the poste-
rior are obtained from the post burn-in cold chains for each
algorithmusing thekde function inMATLAB (2019), devel-
oped by Botev et al. (2010). It is also important to note
that even though all algorithms run for the same (virtual)
duration, the standard MCMC algorithm is performing local
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Table 1 Integrated autocorrelation time (IAT) and effective sample size
(ESS) for runs of the single, multi-processor Anytime parallel temper-
ing and standard MCMC algorithms. The algorithms were run for 106

units of virtual time for computational complexity p = 0 and 107 units

for p ≥ 1, and the resulting ESSs were scaled down for consistency
with p = 0. The ESS and IAT values for chains that have not converged
to their posterior (their resulting kernel density estimates significantly
under or overestimate modes in Fig. 4) have been omitted

p Multi-processor Single-processor Standard

APTMC-W APTMC-1 MCMC
I AT ESS I AT ESS I AT ESS

0 53.925 12049 81.156 1202.2 1739.0 287.46

1 45.942 5888.3 95.104 708.74 2818.2 64.047

2 80.871 1168.4 132.79 448.92 – –

3 131.91 116.51 – – – –

moves on a single chain uninterrupted until the deadline,
while the APTMC-1 algorithm has to update � = 8 chains
in sequence, and each worker w of the APTMC-W algorithm
has to update K = 2 chains in sequence before exchange
moves occur. Therefore, by (virtual) time T the algorithms
will not have returned samples of similar sizes. For a fair
performance comparison, the sample autocorrelation func-
tion (acf) is estimated first of all. When available, the acf is
averaged over multiple chains to reduce variance in its esti-
mates. Other tools employed are

– Integrated Autocorrelation Time (I AT ), the computa-
tional inefficiency of an MCMC sampler. Defined as

I ATs = 1 + 2
∞∑

�=1

ρs(�),

where ρs(�) is the autocorrelation at the �-th lag of chain
s. It measures the average number of iterations required
for an independent sample to be drawn, or in other
words the number of correlated samples with same vari-
ance as one independent sample. Hence, a more efficient
algorithm will have lower autocorrelation values and
should yield a lower I AT value. Here, the I AT is esti-
mated using a method initially suggested in Sokal (1997)
and Goodman and Weare (2010), and implemented in
the Python package emcee by Foreman-Mackey et al.
(2013) (Section 3). Let

ˆI AT s = 1 + 2
M∑

�=1

ρ̂s(�),

where M is a suitably chosen cutoff, such that noise at
the higher lags is reduced. Here, the smallestM is chosen
such that M ≥ C ρ̂s(M)whereC ≈ 6. More information
on the choice of C is available in Sokal (1997).

– Effective Sample Size (ESS), the amount of information
obtained from an MCMC sample. It is closely linked to

the I AT by definition:

ESSs = Ns

I ATs
,

where Ns is the size of the current sample s. The ESS
measures the number of independent samples obtained
from MCMC output.

As per Foreman-Mackey et al. (2013), when multiple repeat
runs of an experiment are performed (see Sect. 5.3), the I AT
for a given algorithm is obtainedby averaging the acf returned
by this algorithm over the repeat runs, and the resulting ESSs
of each run are summed to obtain a cumulative ESS for this
algorithm.

The resulting ESS and I AT for different algorithms
and computational complexities are computed and shown
in Table 1. If an exchange move is accepted, the new state
of the chain does not depend on the value of the previous
state. This means that the autocorrelation in a chain contain-
ing a significant proportion of (accepted) samples originating
from exchange moves will be lower. For low p, significantly
more local moves occur before each deadline, as hold times
are short, while for a higher p, the hold times are longer
and hence fewer local moves are able to occur. Therefore,
higher values of p will yield a higher proportion of samples
from exchange moves, and thus a more notable increase in
efficiency.

In Fig. 4 we observe, that the quality of the posterior
estimates decreases as p increases. As a matter of fact, 107

units of virtual time tend to not be enough for the some of
the posterior chains to completely converge. Indeed, while
the standard MCMC algorithm performs reasonably well for
p = 0, it becomes increasingly harder for it to fully converge
for higher computational complexities. Similarly, the single
processor APTMC-1 algorithm returns reasonably accurate
posterior estimates for p ≤ 2 but then visibly underestimates
the first mode of the true posterior for p = 3. In general, the
multi-processor APTMC-W algorithm returns results closest
to the true cold posterior for all p.
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Fig. 4 Density estimates of the cold posterior for runs of the single
(orange) and multiple (blue) processor APTMC algorithms (APTMC-1
and APTMC-W, respectively) as well as the standard (green)MCMC algo-
rithm. The grey line represents the true posterior density π . Each plot
corresponds to a different hold time distribution p ∈ {0, 1, 2, 3}. While

the multi processor density has successfully converged for all p − as
evidenced by the perfect overlap between the grey and dark blue lines
−, the other two algorithms tend to struggle more and more to estimate
the first mode of the posterior as p increases. (Color figure online)

As for efficiency, Table 1 displays a much lower I AT and
muchhigher ESS for bothAPTMC algorithms, indicating that
they are much more efficient than the standard MCMC algo-
rithm. This is further supported by the sample autocorrelation
decaying much more quickly for APTMC algorithms than for
the MCMC algorithm for all p in Fig. 5. The multi-processor
APTMC-W algorithm also yields I AT values that are lower
than those returned by the single processor APTMC-1 algo-
rithm for p < 3, and similarly yields ESSs that are higher
for all p. The ESS and I AT values for chains that have
not converged to their posterior (their resulting kernel den-
sity estimates significantly under or overestimate modes in
Fig. 4) have been omitted from the table.

Next, we consider an application of the APTMC frame-
work to ABC, a class of algorithms that are well-adapted
to situations in which the likelihood is either intractable or
computationally prohibitive. ABC features a real hold time
at each MCMC iteration, making it an ideal candidate for
adaptation to the Anytime parallel tempering framework.

5.2 ABC example: univariate Normal distribution

To validate the results of Sect. 4.2, consider another simple
example, initially featured in Lee (2012), and adapted here
within the APTMC framework. Let Y be a Gaussian random
variable, i.e. Y ∼ N (θ, σ 2), where the standard deviation σ

is known but the mean θ is not. The ABC likelihood here is

f ε(y | θ) = �

(
y + ε − θ

σ

)
− �

(
y − ε − θ

σ

)

for ε > 0 where�( · ) is the cumulative distribution function
(cdf) of a standard Gaussian. Using numerical integration
tools in Matlab, it is possible to obtain a good approxi-
mation of the true posterior for any ε for visualisation. Let
y = 3 be an observation of Y and σ 2 = 1, and put the
prior p(θ) = N (0, 5) on θ . In this example, the exact pos-
terior distribution for θ can straightforwardly be shown to be

N
(
5
2 ,

5
6

)
.

When performing local moves (Algorithm 4), use a Gaus-
sian random walk proposal with standard deviation ξ = 0.5.
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Fig. 5 Plots of the sample autocorrelation function up to lag 2500 of
the post burn-in cold chain for runs of the single (orange) and mul-
tiple (blue) processor APTMC algorithms (APTMC-1 and APTMC-W,
respectively) as well as for the output of the standard Anytime Monte
Carlo (MCMC) algorithm (green). Each plot corresponds to a different

computational complexity p ∈ {0, 1, 2}. The two APTMC algorithms
perform considerably better than standard MCMC for all p. The sam-
ple acf plot for p = 3 has been omitted due to both the APTMC-1 and
MCMC chains not having fully converged to their posterior. (Color figure
online)

Fig. 6 Kernel density estimates of all chains for corrected and uncor-
rected runs of the single processor ABC-APTMC algorithm. In each
subplot, the light grey line is fixed and represents the cold posterior
for reference, the dark grey line represents each chain’s target posterior
(obtained by numerical integration), the dot-dashed green lines are ker-

nel density estimates of the chain’s posterior returned by the corrected
algorithm and are indistinguishable from the dark grey line. The orange
lines are kernel density estimates for the uncorrected algorithm, and do
not agree with the dark grey line, as expected. (Color figure online)

The real-time Markov jump process is run using � = 10
chains. The algorithm is run on a single processor for one
hour or T = 3600 seconds in real time after a 30 second
burn-in,with exchangemoves occurring every δT = 5×10−4

seconds (or 0.5 milliseconds). The radii of the balls ε1:� are
defined to vary between ε1 = 0.1 and ε� = 1.1.

We verify that bias correction must be applied for all
chains to converge to the correct posterior. This is done by

visually comparing density estimates of eachof the post burn-
in chains to the true corresponding posterior (obtained by
numerical integration). When bias correction is not applied,
the ABC-APTMC algorithm does not exclude the currently
working chain j in its exchange moves. In this case, every
chain converges to an erroneous distribution which overesti-
mates the mode of its corresponding posterior, as is visible
in Fig. 6. On the other hand, correcting the algorithm for
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Table 2 Algorithm information
and settings for stochastic
Lotka-Volterra predator-prey
model on a single processor

Label Workers Chains Chains per Exchange moves Anytime
W � worker K (every)

ABC 1 1 1 None No

ABC-PTMC-1 1 6 6 6 local moves No

ABC-APTMC-1 1 6 6 2.59 seconds Yes

such bias ensures that every chain converges to the correct
corresponding posterior.

Next, we compare the performance of the ABC-APTMC
algorithm to that of a standard ABC (referred to as stan-
dard ABC) algorithm. For that, a more applied parameter
estimation example is considered, for which the adoption of
a likelihood-free approach is necessary.

5.3 Stochastic Lotka-Volterra model

In this section, we consider the stochastic Lotka-Volterra
predator-prey model ( Lotka (1926), Volterra (1927)), a
model which has been explored in the past ( Wilkinson
(2011); Boys et al. (2008)), including in an ABC setting (Lee
and Łatuszyński (2014); Fearnhead and Prangle (2012); Toni
et al. (2009); Prangle et al. (2017)). Let X1:2(t) be a bivariate,
integer-valued pure jump Markov process with initial values
X1:2(0) = (50, 100), where X1(t) represents the number of
prey and X2(t) the number of predators at time t . For small
time interval �t , we describe the predator-prey dynamics in
the following way:

P {X1:2(t + �t) = z1:2 | X1:2(t) = x1:2}

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ1x1�t + o(�t), if z1:2 = (x1 + 1, x2),

θ2x1x2�t + o(�t), if z1:2 = (x1 − 1, x2 + 1),

θ3x2�t + o(�t), if z1:2 = (x1, x2 − 1),

o(�t), otherwise.

In this example, the only observations available are the num-
ber of prey, i.e. X1 at 10 discrete time points. Following the-
ory in Wilkinson (2011) (Chapter 6), the process can be sim-
ulated and discretised using the Gillespie (1977) algorithm,
in which the inter-jump times follow an exponential distribu-
tion. The observations employed were simulated in Lee and
Łatuszyński (2014)with true parameters θ = (1, 0.005, 0.6),
giving y = {88, 165, 274, 268, 114, 46, 32, 36, 53, 92} at
times {1, . . . , 10}.

This case study presents various challenges. The first
challenge is that the posterior is intractable, and some of
the components of the parameters θ := θ1:3 (namely θ2
and θ3) exhibit strong correlations. Therefore, ABC must
be employed, and the ‘ball’ considered takes the following

form for ε > 0:

Bε(y)

= {X1(t) : |log [X1(i)] − log [y(i)]| ≤ ε,∀i = 1, . . . , 10} .

(9)

So a set of simulated X1(t) is considered as ‘hitting the ball’
if all 10 simulated data points are atmost eε times (and at least
e−ε times) the magnitude of the corresponding observation
in y.

In Lee and Łatuszyński (2014) (Algorithm 3), the 1-hit
MCMC kernel (referred to here as standard ABC) is shown
to return the most reliable results by comparison with other
MCMC kernels, which are not considered here. The second
challenge is that while this algorithm can be reasonably fast,
it is highly inefficient as it has a very low acceptance rate,
and thus the autocorrelation between samples for low lags is
very high.

We have established that the race step in Algorithm 4
takes a random time to complete. In addition to that, its
hold time distribution for the Lotka-Volterra model is a mix-
ture between quick and lengthy completion times, as the
simulation steps within the 1-hit kernel race are capable of
taking a considerable amount of time despite often being
almost instant. Indeed, when simulating observations using
the discretised Gillespie algorithm, if the number of preda-
tors is low, prey numbers will flourish and the simulation
will take longer. Hence, the third challenge in this partic-
ular model is that the race can sometimes get stuck for
extended periods of time if the number of prey to simulate
is especially high. Therefore, we aim to first of all improve
performances by introducing exchange moves on a single
processor (ABC-PTMC). Then− and most importantly−we
further improve the algorithm by implementing it within the
Anytime framework (ABC-APTMC), a method which works
especially well on multiple processors.

5.3.1 One processor

The first part of this case study is run on a single processor
and serves to demonstrate the gain in efficiency introduced
by the exchange moves described in Algorithm 5. Define the
prior on θ ∈ [0,∞)3 for the single processor experiment to
be p(θ) = exp {−θ1 − θ2 − θ3}. The proposal distribution
is a truncated normal, i.e. θ ′ | θ ∼ T N (θ,�), θ ′ ∈ (0, 10)
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with mean θ and covariance � = diag (0.25, 0.0025, 0.25).
The truncated normal is used in order to ensure that all pro-
posals remain non-negative. For reference, 2364 independent
samples from the posterior are obtained via ABC rejection
sampling with ε = 1 and the density estimates in Figure
6 of Lee and Łatuszyński (2014) are reproduced. To obtain
these posterior samples, 107 independent samples from the
priorwere required, yielding the very low0.024%acceptance
rate. This method of sampling from the posterior is therefore
extremely inefficient, and the decision to resort to MCMC
kernels in order to improve efficiency is justified.

On a single processor, the three algorithms considered are
the vanilla 1-hit MCMC kernel (standard ABC) defined in
Algorithm 4, the single processor version of the algorithm
with added exchange moves (ABC-PTMC-1) and the same
but within the Anytime framework (ABC-APTMC-1). They
are run nine times for 100800 seconds (28 hours) − after
3600 seconds (1 hour) of burn-in − and their main settings
are summarised in Table 2.

Given the aim is to compare the performance of these algo-
rithms, it is important to note that the parallel tempering algo-
rithms, having to deal with updating multiple chains sequen-
tially, are likely to return cold chains with fewer samples.
The algorithms must therefore be properly set up such that
the gain in efficiency introduced by exchange moves is not
overshadowed by the greater number of chains and compu-
tational cost of having to update them all. In this experiment,
the parallel tempering algorithms are run on � = 6 chains,
each targeting posteriors associated with balls of radii ε1:6 =
{1, 1.1447, 1.3104, 1.5, 11, 15} and the proposal distribution
has covariance �1:6 where �λ = diag

(
σλ, σλ10−2, σ λ

)

and σ 1:6 = {0.008, 0.025, 0.05, 0.09, 0.25, 0.5}. Exchange
moves are performed as described in Algorithm 5 and alter-
nate between odd (1, 2), (3, 4), (5, 6) (excluding (5, 6) in
the Anytime version) and even (2, 3), (4, 5) pairs of eli-
gible chains. As per Sect. 3.4, exchange moves for the
ABC-PTMC-1 algorithm are performed every � = 6 local
moves, and the real-time deadline δ for exchange moves in
the ABC-APTMC-1 algorithm is determined by repeatedly
measuring the times taken by the ABC-PTMC-1 algorithm
to perform these 6 moves and setting δ to be the median over
all measured times.

5.3.2 Multiple processors

Next, we demonstrate the gain in efficiency introduced
by running the parallel tempering algorithm within the
Anytime framework on multiple processors. The algo-
rithms considered are the multi-processor ABC-PTMC-W
and ABC-APTMC-W algorithms and their single proces-
sor counterparts ABC-PTMC-1 and ABC-APTMC-1 . This
time, we define a uniform prior between 0 and 3. The pro-
posal distribution is still a truncated normal, but with tighter

limits (corresponding to the prior) i.e. θ ′ | θ ∼ TN (θ,�),
θ ′ ∈ (0, 3).

The two algorithms are run on � = 20 chains, each
targeting posteriors associated with balls of radii ranging
from ε1 = 1 to ε20 = 11 and proposal distribution covari-
ances �1:20 where �λ = diag

(
σλ, σλ10−2, σ λ

)
for chain

λ = 1, . . . , 20 and where values range from σ 1 = 0.008 to
σ 20 = 0.5 (see Table 6). The algorithms are run four times
for 864000 seconds (24 hours) and their main settings are
summarised in Table 3. Given the non-negligible 1.1 second
communication overhead, this experiment is run according
to the third scenario from Sect. 3.3, i.e. dividing exchange
moves into within- and between-worker exchange moves.
As described in Sect. 3.4, a full set of parallel moves here
consists of K = 5 local moves, followed by within-worker
exchange moves between a pair of adjacent chains selected
at random, followed by 5 more local moves. The between-
worker exchange moves are performed after a full set of
parallel moves on the master by selecting a pair of adjacent
workers at random and exchanging between the warmest eli-
gible chain from the first worker and coldest from the second
so that they are adjacent.

5.3.3 Performance evaluation

All algorithms returned density estimates that were close to
those obtained via rejection sampling. In order to compare
the performance of the algorithms, they are set to run for
the same real time period. The I AT and cumulative ESS
over all repeat runs are computed for all algorithms. The
ESS is particularly important here, as it gives us how many
effective samples the different algorithms can return within
a fixed time frame. For example, a very fast algorithm could
still return a higher ESS even if it has a much higher I AT .
Additionally, to illustrate how the Anytime version of the
parallel tempering algorithms works compared to standard
ABC-PTMC, the real times all algorithms take to perform
local and exchange moves are measured and their timelines
plotted in Fig. 8.

One processor
Both the ABC-PTMC-1 and ABC-APTMC-1 algorithm

display an improvement in performances: they return I AT s
that are respectively 3.2 and 1.6 times lower on average than
those of the standard ABC algorithm in Table 4, and display
a steeper decay in sample autocorrelation in Fig. 7. In the 28
hours (post burn-in) during which the algorithms ran, both
parallel algorithms also yielded an increased ESS. The effect
of the Anytime framework on the behaviour of the parallel
tempering algorithm is demonstrated in Fig. 8. The timeline
of local moves for the ABC-PTMC-1 algorithm illustrates
the fact that local moves take a random amount of time to
complete. In the Anytime version of the algorithm, this is
mitigated since a deadline was implemented. As a result, the
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Table 3 Algorithm information and settings for stochastic Lotka-Volterra predator-prey model on multiple processors

Label Workers Chains Chains per Communication Exchange moves (every) Anytime
W � worker K overhead

ABC-PTMC-1 1 20 20 – 20 local moves No

ABC-APTMC-1 1 20 20 – 11 seconds Yes

ABC-PTMC-W 4 20 5 1.1 seconds 5 local moves No

ABC-APTMC-W 4 20 5 1.1 seconds 5 local moves (Within workers)
15.3 seconds (between workers)

Yes

bottom plot in Fig. 8 displays more consistent local move
times.

Note that in Table 4, while the improvement in I AT is
significant, the increase in ESS after 28 hours is not particu-
larly huge. This is due to the previously mentioned erratic
behaviour of the hold time distribution for this example.
Other examples explored such as the moving average exam-
ple in Marin et al. (2012) (not reported here) yielded a much
more significant increase in ESS after introducing exchange
moves. We also note that in this example, the ABC-PTMC-1
algorithm returned a lower I AT than its Anytime counter-
part but Anytime had a larger ESS. There are two potential
reasons to account for the I AT . The first is the many swaps
which are cycling the same samples among the held chains
of Anytime. The second, as mentioned in Sect. 3.4, is that
the Anytime algorithms cannot always exchange the sam-
ples of adjacent chains, because they must exclude the chain
that is currently computing, and this causes a slightly higher
rejection rate compared to the standard version (in the multi-
processor example with more chains, this is mitigated).
However, the many more swap moves of Anytime does then
result in more returned samples, which leads to a higher
ESS. The single processor experiment was mainly designed
to demonstrate the performance improvements brought by
adding exchange moves to the 1-hit MCMC kernel (referred
to as standard ABC) and to show that Anytime does match
the performance of parallel tempering on a single processor.
Since a single processor is never idling, the strength of the
Anytime framework is best illustrated in a multi-processor
setting.

5.3.4 Multiple processors

In the multi-processor case study, both the ABC-PTMC-1
and ABC-PTMC-W were set so that on each worker, an
exchange move occurred after all chains had been updated
locally once, as described in Table 3. The total number of
samples returned by the ABC-PTMC-W algorithm is higher
for all chains (see Table 6). However, the ABC-PTMC-W
algorithm is just as affected by the distribution of the hold
times being a mixture of quick and lengthy completion times
as its single processor counterpart, and is just as prone to get-

ting stuck in a race for an extended period. During this time,
all processors sit idle while waiting for the race to complete,
as illustrated in Fig. 9. Therefore, the ABC-PTMC-W algo-
rithm struggles to properly boost the total sample size output
by the cold chain, and the ESS is not markedly higher on
average in Table 5. On the other hand, thanks to the real
time deadlines implemented, the ABC-APTMC-W algorithm
is able to more than double the total size of the samples out-
put (see Table 6), and the ESSs for the cold chain returned
in Table 5 are on average 3.41 times higher than those of the
single processor version.

As for the main comparison − namely Anytime vs
standardABCwith exchangemoves− both single andmulti-
processorAnytime algorithms return an ESS larger than their
respective standard versions in Table 5. While the improve-
ment on a single processor is modest, the ESS has more than
quadrupled on multiple processors. Figures 9 and 10 illus-
tratewell the advantage of implementing a real-time deadline
to local moves. At most local moves, the issue in which all
workers sit idle waiting for the slowest to finish arises for the
ABC-PTMC-W algorithm. On the other hand, Fig. 10 shows
that the Anytime version of the algorithm is making better
use of the allocated computational resources. The Anytime
framework ensures that none of the workers need to wait for
the slowest among them to finish, allowing for more explo-
ration of the sample space in the faster workers. Additionally,
the real time deadline ensures that even if chain k on worker
w remains stuck in a race for an extended period of time, the
other workers are still updating. Therefore, while the remain-
ing four chains on worker w wait for chain k to complete its
race, they also continue to be updated at regular intervals
thanks to the exchange moves with other workers. The addi-
tion ofABCexchangemoves in his case studyproved fruitful,
as the ESS for the parameters of the Lotka-Volterra model
was increased.

6 Conclusion

In an effort to increase the efficiency ofMCMCalgorithms, in
particular for use on multiple processors, and for situations
in which compute times of the algorithms depend on their
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Table 4 Integrated autocorrelation time (I AT ) and cumulative effec-
tive sample size (ESS) over nine 28-hour runs of the standard ABC,
ABC-PTMC-1 and ABC-APTMC-1 algorithms to estimate the pos-

terior distributions of the parameters θ = (θ1, θ2, θ3) of a stochastic
Lotka-Volterra model. Improvements in performance are modest in this
example. (Color figure online)

Standard ABC ABC-PTMC-1 ABC-APTMC-1

I AT ESS I AT ESS I AT ESS

θ1 69.476 7018.1 22.404 7618.6 44.071 7963.8

θ2 122.73 3973 35.381 4824.2 69.803 5028

θ3 150.74 3234.6 50.035 3411.3 98.929 3547.7

Fig. 7 Plots of the sample autocorrelation function up to lag 200 of
the cold chain for runs of the standard ABC (green), ABC-PTMC-1
(blue) and ABC-APTMC-1 (orange) algorithms to estimate the pos-
terior distributions of the parameters θ = (θ1, θ2, θ3) of a stochastic

Lotka-Volterra model. The inclusion of exchange moves boosts effi-
ciency and leads to a steeper decay in the parallel tempering algorithms.
(Color figure online)

current states, the APTMC algorithm was developed. The
algorithm combines the enhanced exploration of the state
space, provided by the between-chain exchange moves in
parallel tempering, with control over the real-time budget
and robustness to interruptions available within the Anytime
Monte Carlo framework. Then, an application of APTMC to
problems where the likelihood is unavailable and an ABC
MCMC kernel, in particular the 1-hit MCMC kernel, must
be employed instead was considered.

Initially, the construction of the Anytime Monte Carlo
algorithm with the inclusion of exchange moves on a single
and multiple processors was verified on a Gamma mixture
example. The performance improvements they brought were

then demonstrated by comparing the algorithm to a stan-
dard MCMC algorithm. Subsequently, the exchange moves
were adapted for pairing with the 1-hit MCMC kernel, a
simulation-based algorithm within ABC framework, which
provides an attractive, likelihood-free approach to MCMC.
The construction of the adapted ABC algorithm was veri-
fied using a univariate normal example. Then, the increased
efficiency of the inclusion of exchange moves was demon-
strated in comparison to that of a standard ABC algorithm
on a parameter estimation problem. The problem involved
the parameters of a stochastic Lotka-Volterra predator-prey
model based on partial and discrete data, and the likelihood of
this model is intractable. On a single processor, it was shown
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Fig. 8 Timeline of local and exchange moves for the ABC-PTMC-1
and ABC-APTMC-1 algorithms for the first 300 seconds. The exchange
moves are represented by the white and red lines and the local moves
by the dark blue and orange coloured blocks. Local moves take a
random amount of time to complete, as illustrated by the times con-

sumed by local moves for the ABC-PTMC-1 algorithm. The Anytime
(ABC-APTMC-1) version effectively implements a hard deadline for
the exchange moves (without introducing a bias), as can be seen by the
regularity of local move times in the bottom figure. (Color figure online)

Table 5 Integrated autocorrelation time (I AT ) and cumulative effec-
tive sample size (ESS) over four 24-hour runs of the ABC-PTMC-1,
ABC-APTMC-1, ABC-PTMC-W and ABC-APTMC-W algorithms to

estimate the posterior distributions of the parameters θ = (θ1, θ2, θ3)

of a stochastic Lotka-Volterra model

One processor Multiple processors

ABC-PTMC-1 ABC-APTMC-1 ABC-PTMC-W ABC-APTMC-W

I AT ESS I AT ESS I AT ESS I AT ESS

θ1 39.535 269.89 72.475 362.62 48.621 266.7 39.898 1452.5

θ2 72.908 146.35 88.446 297.14 67.395 192.4 72.79 796.14

θ3 82.464 129.39 138.56 189.68 87.635 147.97 101.57 570.57

that introducing exchange moves provides an improvement
in performance and an increase in the effective sample size
compared to that of the standard, single chain ABC algo-
rithm. The Anytime results for a single processor matches
the efficiency of standard parallel tempering, which is to be
expected since the single processor is never idling in both the
Anytime and non-Anytime versions. The ESS gains of Any-
timebecome significant in amulti-processor setting since one
slow processor will lead to all the others idling in standard
parallel tempering.

One major class of applications with local moves that
have state-dependent real completion times and could benefit
from the APTMC framework are transdimensional appli-
cations, such as RJ-MCMC ( Green (1995)), which has a
parallel tempering implementation in Jasra et al. (2007).
The performance of parallel tempering algorithms with
temperature-dependent completion times, as addressed in
Earl and Deem (2004), can also be improved by the Any-
time framework. Examples of such algorithms occur in Hritz
and Oostenbrink (2007); Karimi et al. (2011); Wang and Jor-
dan (2003). From a purely computing infrastructure-related
perspective, exogenous factors such as processor hardware,

competing jobs, memory bandwidth, network traffic or I/O
load also affect the completion time of local moves even
if they are not state-dependent within the algorithm itself.
This is the case in Rodinger et al. (2006). In a more general
setting, any population-based MCMC algorithm such as par-
allel tempering, SMC samplers ( Del Moral et al. (2006)), or
parallelised generalised elliptical slice sampling ( Nishihara
et al. (2014)), which combines a parallel updates step (e.g.
localmoves) and an inter-processor communication step (e.g.
exchange moves, resampling) can benefit from the APTMC
framework in future implementations.

As a final comment, we note the potential relevance of the
work of Dupuis et al. (2012) in studying efficiency as a func-
tion of exchange frequency. As exchange steps of Anytime
parallel tempering become more frequent, i.e. many occur
between the stalled chains before the local move completes,
it would be interesting to explore if ourAnytime parallel tem-
pering algorithm could be understood in the framework of the
infinite swapping limit version of parallel tempering which
has been shown inDupuis et al. (2012) to dominate in numer-
ical examples and in a specific theoretical context. However,
their analysis ignores the cost of performing exchanges,
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Fig. 9 Timeline of local and exchange moves for the ABC-PTMC-W
algorithm for the first 300 seconds. Within and between worker
exchange moves are represented by the white lines on the Global time-
line and blue lines on the various Worker timelines, respectively. Local
moves on each worker are represented by the light blue coloured blocks

and the dark blue coloured blocks correspond to the global time all
workers spend running in parallel, including communication overhead.
Significant idle time is apparent on all workers as they always have to
wait for the slowest among them to complete its set of local moves.
(Color figure online)

Fig. 10 Timeline of local and exchange moves for the ABC-APTMC-W
algorithm for the first 300 seconds. Within and between worker
exchange moves are represented by the red lines. Local moves on each
worker are represented by the various orange coloured blocks, with

the brighter blocks corresponding to the global time all workers spend
running in parallel, including communication overhead. The significant
idle time from Fig. 9 has been greatly reduced thanks to the deadlines
implemented

which is non-negligible when communicating across pro-
cessors, and thus cannot be plainly advocated without more
consideration.
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A Proofs

A.1 Proof of Proposition 2

The continuous time chain of Proposition 2 is described in
steps 1 to 6 (excluding the exchange steps) of Algorithm 1.
The Markov transition kernel of this chain is
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Table 6 Average sample sizes
per chain returned over four
24-hour runs of the
ABC-PTMC-1,
ABC-APTMC-1,
ABC-PTMC-W,
ABC-APTMC-W algorithms to
estimate the posterior
distributions of the parameters θ

of a stochastic Lotka-Volterra
model on multiple processors in
Sect. 5.3.3. The ball radius εk

and proposal distribution
covariance
diag

(
σ k , σ k10−2, σ k

)

associated with each chain k are
displayed for information

Chain k εk σ k ABC-PTMC-1 ABC-PTMC-W ABC-APTMC-1 ABC-APTMC-W

1 1 0.008 2667.5 3241.8 6570.3 14488

2 1.046 0.009 2790 3564.8 6934.8 16902

3 1.094 0.011 2796.8 3567.5 6941 16837

4 1.145 0.012 2797.3 3604.5 6924.8 17264

5 1.197 0.014 2793.8 3719.8 6931.3 15710

6 1.253 0.016 2786.3 3748.8 6951.5 17157

7 1.31 0.019 2784.8 3629.3 6961.3 18947

8 1.371 0.022 2795.5 3615 6941.5 18551

9 1.434 0.025 2805.5 3608.5 6950.8 18759

10 1.5 0.029 2803.5 3711.5 6962.8 17276

11 1.661 0.034 2798.5 3799.8 6962.3 46350

12 1.84 0.039 2803.3 3693.3 6983 53716

13 2.038 0.045 2814.8 3656.5 6995.3 53289

14 2.257 0.052 2799 3658.3 7008.8 53458

15 2.5 0.06 2783.5 3796.3 7029.8 46597

16 3.362 0.092 2787.5 4054.5 7038.5 68953

17 4.522 0.14 2783.8 3936.5 7009.5 79231

18 6.082 0.214 2781 3912.5 6982.5 78917

19 8.179 0.327 2780.8 3919.5 7002.8 79038

20 11 0.5 2665.8 3598.5 6604.3 67725

(Pt f )(x
1:�, l, j)

= E

{
f (X1:�(t), L(t), J (t))|

(
X1:�, L, J

)
(0) =

(
x1:�, l, j

)}

= E

{
f (X1:�(t), L(t), J (t))I{L(t)≥t}|x1:�, l, j

}

+ E

{
f (X1:�(t), L(t), J (t))I{L(t)<t}|x1:�, l, j

}
,

where in the second line, the conditioning on the state at time
0 has been abbreviated, and the two events {L(t) ≥ t} and
{L(t) < t} have been introduced to simplify the calculation.

The event {L(t) ≥ t} implies that chain j hasn’t com-
pleted its local move by time t . It follows then that

E

{
f (X1:�(t), L(t), J (t))I{L(t)≥t}|x1:�, l, j

}

= f (x1:�, l + t, j)
F̄j (l + t |x j )

F̄j (l|x j )
,

where F̄j (l|x j ) = 1 − Fj (l|x j ) and Fj (l|x j ) is the cdf
of the hold time density of τ j (h|x j )dh for chain j . Note
that the conditioning on (x1:�, l, j) gives rise to the term
F̄j (l|x j ) in the denominator, and thus the ratio is the proba-
bility P

(
L(t) ≥ t |x1:�, l, j

)
.

To simplify the calculation for the event {L(t) < t},
assume t ≤ ε where ε is the assumed (in Sect. 2) mini-
mum hold time. That is, the hold time (variable L(t) here)
exceeds ε > 0 with probability 1. Thus, the event {L(t) < t}
for t ≤ ε corresponds to a single possible scenario where

chain j completes its local move at some time s in the time
interval (0, t], and thus holds for a total time of l + s. Chain
j + 1 is next to be worked on, and is still being worked on
at time t , thus J (t) = j + 1 and L(t) = t − s. Applying this
reasoning, we have

E

{
f (X1:�(t), L(t), J (t))I{L(t)<t}|x1:�, l, j

}

=
∫ t

0

(∫
(Pt−s f )(x

1: j−1, y, x j+1:�, 0, j + 1)

κ j (y|x j , l + s)dy
)

× τ j (l + s|x j )

F̄j (l|x j )
ds,

where the inner integral averages over the new state for
chain x j → y when the hold time is l + s, while other
states x1: j−1 and x j+1:� are unchanged. The outer inte-
gral averages over the hold time distribution conditioned on
L(0) = l. The usual semigroup property (see Del Moral and
Penev (2017) for general background) for a Markov process
(Pt f ) (x1:�, l, j) = (Ps(Pt−s f )) (x1:�, l, j), is also being
employed.

A final simplification is applied to the integrand

(Pt−s f )(x
1: j−1, y, x j+1:�, 0, j + 1)

= f (x1: j−1, y, x j+1:�, t − s, j + 1)

since t − s ≤ ε and thus the hold time of chain j advances
to t − s from 0.
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Using the specific form of A(dx1:�, dl, j) given in Propo-
sition 2 and the integrand (Pt f )(x1:�, l, j) developed above,
gives the desired result, namely for any t ≤ ε, we have

�∑

j=1

∫
(Pt f )(x

1:�, l, j)A(dx1:�, dl, j)

=
�∑

j=1

∫
f (x1:�, l, j)A(dx1:�, dl, j).

The results thus generalises to any t > ε by the semigroup
property: (Pt+h f ) = Ph (Pt f ).

A.2 Anytime distribution of the Gammamixture cold
chain

To obtain the anytime distribution in the Gamma mixture
example in Sect. 5.1, compute the three components of the
expression in Equation (4):

1. The density of X

π(dx) = xk1−1

2Γ (k1)θ
k1
1

e
− x

θ1 + xk2−1

2Γ (k2)θ
k2
2

e
− x

θ2 dx,

where Γ ( · ) is the gamma function.
2. The expectation of H | x given by

E [H | x] = ψx p + (1 − ψ)x p = x p.

The ψ factors cancel out, meaning that the anytime dis-
tribution is independent of ψ and therefore its value can
be chosen to be 1 for convenience.

3. To computeE [H ], use a property of conditional expecta-
tion and thehonesty conditions of theGamma(k1 + p, θ1)
and Gamma(k2 + p, θ2) distributions:

E [H ] = E [E (H | x)] = E
[
x p]

=
∫

x p+k1−1

2Γ (k1)θ
k1
1

e
− x

θ1 dx +
∫

x p+k2−1

2Γ (k2)θ
k2
2

e
− x

θ2 dx

= Γ (k2)Γ (p + k1)θ
p
1 + Γ (k1)Γ (p + k2)θ

p
2

2Γ (k1)Γ (k2)

= C

2Γ (k1)Γ (k2)
,

letting C = Γ (k2)Γ (p + k1)θ
p
1 + Γ (k1)Γ (p + k2)θ

p
2 .

Combining the three components,

α(dx)

= 2Γ (k1)Γ (k2)

C

(
x p+k1−1

2Γ (k1)θ
k1
1

e
− x

θ1 + x p+k2−1

2Γ (k2)θ
k2
2

e
− x

θ2

)

dx

= Γ (k2)Γ (p + k1)θ
p+k1
1

Cθ
k1
1︸ ︷︷ ︸

ϕ(p,k1:2,θ1:2)

x p+k1−1

Γ (p + k1)θ
p+k1
1

e
− x

θ1

︸ ︷︷ ︸
Gamma(p+k1,θ1)

+ Γ (k1)Γ (p + k2)θ
p+k2
2

Cθ
k2
2︸ ︷︷ ︸

ϕ′(p,k1:2,θ1:2)

x p+k2−1

Γ (p + k2)θ
p+k2
2

e
− x

θ2

︸ ︷︷ ︸
Gamma(p+k2,θ2)

dx .

And now substituting back the expression C in ϕ:

ϕ(p, k1:2, θ1:2) =
(

1 + Γ (k1)Γ (p + k2)θ
p
2

Γ (k2)Γ (p + k1)θ
p
1

)−1

.

Similarly,we canobtainϕ′(p, k1:2, θ1:2) = 1−ϕ(p, k1:2, θ1:2).
Therefore, the anytime distribution α(dx) is the following
mixture of two Gamma distributions:

α(dx) = ϕ(p, k1:2, θ1:2)Gamma (k1 + p, θ1)

+ [1 − ϕ(p, k1:2, θ1:2)]Gamma (k2 + p, θ2) .

.
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