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Abstract
The junction-tree representation provides an attractive structural property for organising a decomposable graph. In this study,
we present two novel stochastic algorithms, referred to as the junction-tree expander and junction-tree collapser, for sequential
sampling of junction trees for decomposable graphs. We show that recursive application of the junction-tree expander, which
expands incrementally the underlying graph with one vertex at a time, has full support on the space of junction trees for any
given number of underlying vertices. On the other hand, the junction-tree collapser provides a complementary operation for
removing vertices in the underlying decomposable graph of a junction tree, while maintaining the junction tree property. A
direct application of the proposed algorithms is demonstrated in the setting of sequential Monte Carlo methods, designed
for sampling from distributions on spaces of decomposable graphs. Numerical studies illustrate the utility of the proposed
algorithms for combinatorial computations on decomposable graphs and junction trees. All the methods proposed in the paper
are implemented in the Python library trilearn.

Keywords Random graphs · Decomposable graphs · Junction trees · Graphical models · Sequential Monte Carlo

1 Introduction

Decomposable graphs, sometimes also called triangulated or
chordal graphs, are characterized by the property that every
cycle of length more than three has an edge (or chord) join-
ing two nonconsecutive vertices (Lauritzen 1996). Another
characteristic property is that these graphs can be recursively
decomposed into smaller graphs, called cliques, where every
pair of vertices are connected by an edge. In this paper we
rely on the fact that a graph is decomposable if and only if its
cliques can be arranged into a so-called junction tree. Figure 1
shows an example of a decomposable graph alongwith one of
its junction tree representations. Decomposable graphs and
their junction-tree representations as auxiliary data structure
have been used in various contexts; examples include com-
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putational geometry, estimation of large-scale random graph
models with local dependence, statistical inference (such as
sparse covariance- and concentration-matrix computation),
contingency-table analysis, probabilistic graphical models,
and message passing; see e.g. (Eppstein 2009; Lauritzen
1996; Pearl 1997).

This work is mainly driven by application of decom-
posability to probabilistic graphical models for representing
conditional independence relations. From a statistical point
of view, learning the underlying graph structure based on
observed data in such models is particularly convenient
since the graph likelihood has a closed form. However, the
complexity of the graph space makes estimators such as
the maximum likelihood graph estimates intractable, which
has lead to an increasing interest in Bayesian methods,
in particular in Monte Carlo methods for sampling-based
approximations of the graph posterior.

The available methods are based on Markov chain Monte
Carlo (MCMC) schemes (Tierney 1994), especially varia-
tions of the Metropolis–Hastings algorithm (Hastings 1970;
Metropolis et al. 1953), where new graphs are proposed by
means of random single-edge perturbations, and the set of
possiblemoves generated by subjecting a given graph to such
perturbations defines a neighborhood in the decomposable-
graph space; see e.g. (Frydenberg and Lauritzen 1989;
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Giudici and Green 1999; Green and Thomas 2013; Thomas
and Green 2009a). However, since the only vertices that
may be connected by an edge in a (connected) decompos-
able graph while maintaining decomposability are those that
already have a neighbour in common and the removable
edges are necessarily contained in exactly one clique, opera-
tions on the edge set are inherently local. As a consequence,
anMCMCsampler based on suchmoveswill most likely suf-
fer from mixing problems (Giudici and Green 1999; Green
and Thomas 2013).

Green and Thomas (2013) showed that edge moves on
decomposable graph space can sometimes be designed more
easily if one operates on the extended junction-tree space.
While this approach is mainly computationally motivated, it
is feasible also froma statistical point of view; indeed, a given
distribution on the space of decomposable graphs can always
be embedded into an extended version defined on the space of
junction trees in such away that the push-forward distribution
of the extended distribution with respect to the underlying
graph equals the given distribution on the decomposable-
graph space. Thus, by running anMCMC sampler producing
a trajectory of junction trees targeting the extended distribu-
tion, an MCMC trajectory targeting the original distribution
is obtained as a by-product by simply extracting the under-
lying graphs of the trees in the former sequence.

Against this background, it is desirable to explore alterna-
tive ways of simulating decomposable graphs. In the present
paper we take a different approach than the above, which
instead of altering the edge set of a graph with a fixed set of
vertices, builds new graphs incrementally, starting from the
empty graph and adding vertices one by one. More specifi-
cally, we present two novel stochastic algorithms operating
on junction-tree structures: the junction-tree expander (JTE,
or the Christmas-tree algorithm) and the junction-tree col-
lapser (JTC). The JTE (JTC) expands (collapses) a junction
tree by randomly adding (removing) one vertex to (from)
the underlying decomposable graph. As we shall see, the
JTE and JTC have two theoretical properties that are of fun-
damental importance in Monte Carlo simulation. First, the
transition probabilities of the induced Markov kernels are
available in a closed form and can be computed efficiently;
second, the JTE algorithm is able to generate, with positive
probability, when applied sequentially, all junction trees with
a given number of vertices in its underlying graph.

In order to illustrate their application potential, we employ
jointly the JTE and the JTC to construct a sequential Monte
Carlo (SMC) sampler (Del Moral et al. 2006), sampling
frommore or less arbitrary distributions defined on spaces of
decomposable graphs. In this construction, which relies on
the above-mentioned junction-tree embedding proposed by
Green and Thomas (2013), the JTC is used to extend the tar-
get distribution to a path space of junction trees of increasing

dimension, whereas the JTE is used to generating proposals
on this new space.

Using the SMC approach, we are able to provide unbiased
estimates of the numbers of decomposable graphs and junc-
tion trees for any given number of vertices. This importance-
sampling approach to the combinatorics of decomposable
graphs and junction trees is the first of its kind. In the
follow-up paper (Olsson et al. 2019), we cast further such
an SMC sampler into the framework of particle Gibbs sam-
plers (Andrieu et al. 2010). The resulting MCMC algorithm,
which relies heavily on on the JTE and JTC derived in the
present paper, allows for global MCMC moves across the
decomposable-graph space and, consequently, weakly cor-
related samples and fast mixing.

The JTE is related to other existing approaches of gener-
ating junction trees. For instance, the algorithm presented in
Markenzon et al. (2008) has similarities to ours in the sense
that it expands the underlying graph incrementally in each
step of the algorithm.However, unlike our proposed JTE, this
algorithm is restricted to connected decomposable graphs
and transition probabilities are not directly provided. A com-
pletely different strategy for decomposable-graph sampling
based on tree-dependent bipartiet graphs is presented in
Elmasri (2017a, b). A recent MCMC algorithm for joint
sampling of general undirected graphs and corresponding
concentration matrices in Gaussian graphical models is pre-
sented in van den Boom et al. (2022).

The rest of this paper is structured as follows. Sect. 2
introduces notational conventions and a short background on
decomposable graphs and junction trees. For a more detailed
presentation, the reader is referred to e.g. (Blair and Pey-
ton 1993) or (Lauritzen 1996). Sect. 3 and Sect. 4 present
the JTE and the JTC , respectively, along with their corre-
sponding transition probabilities. Sect. 5 provides a novel
factorisation of the number of junction trees of a decompos-
able graph and demonstrates its computational advantage.
The application of the JTE and the JTC in the framework
of SMC sampling is found in Sect. 6 and Sect. 7 contains
our numerical study. AppendixA contains detailed algorithm
descriptions along with the proofs of lemmas and theorems
stated in the paper, whereas Appendix B provides an algo-
rithm, originally presented in (Thomas and Green 2009b),
for randomly connecting a forest into a tree.

Finally, we remark that the code used for generating
the examples in the paper is contained in the Python
library trilearn available at https://github.com/felixleopoldo/
trilearn. The junction-tree expander is also available through
Benchpress (Rios et al. 2021), a recent software that enables
execution and seamless comparison between state-of-the-art
structure learning algorithms. The junction-tree expander is
implemented as a module in Benchpress to simulate graphs
underlying data for benchmarking.
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2 Preliminaries

2.1 Notational convention

For any finite set a, we denote its power set by ℘(a). The
uniform distribution over the elements in a is denoted by
Unif〈a〉.Weassume that all randomvariables arewell defined
on a common probability space (�,F, P).Abusing notation,
we will always use the same notation for a random variable
and a realisation of the same. Further, we will use the same
notation for a distribution and its corresponding probabil-
ity density function. For an arbitrary space X, the support
of a nonnegative function h defined on X is denoted by
Supp(h) := {x ∈ X : h(x) > 0}. For all sequences (a j )

�
j=1,

we apply the convention (a j )
0
j=1 := ∅. Moreover, for all

sequences (a j )
�
j=1 of sets and all nonempty sets b, we set

b ∩ (∪0
j=1a j ) := b. We denote by N the set of natural num-

bers {1, 2, . . . } and byNp the set {1, . . . , p} for some p ∈ N.
The notation, pr({w�}N

�=1) is used to denote the cate-
gorical distribution induced by a set {w�}N

�=1 of positive
(possibly unnormalised) numbers. More specifically, writ-
ing x ∼ pr({w�}N

�=1) means that the random variable x takes

on the value � ∈ NN with probability w�/
∑N

�′=1 w�′ .

2.2 Graph theory

A pair (V , E) of a vertex set V and an edge set E , where E
is a set of unordered pairs (y, y′) ∈ V × V such that y 
= y′,
is called an undirected graph. Two vertices y and y′ in V
are adjacent if they are directly connected by an edge, i.e.,
(y, y′) = (y′, y) belongs to E . The neighbors N(V ,E)(y)

of a vertex y is the set of vertices in V adjacent to y. A
sequence (y j )

�
j=1 of distinct vertices is called an y1-y�-path,

denoted by y1 ∼ y�, if for all j ∈ {2, . . . , �}, (y j−1, y j )

belongs to E . Two vertices y and y′ are said to be connected
if there exists an y-y′-path. Moreover, a graph is said to be
connected if all pairs of vertices are connected. A graph is
called a tree if there is a unique path between any pair of
vertices in the graph. A connectivity component of a graph is
a subset of vertices that are pairwise connected. A graph is
a forest if all connectivity components induce distinct trees.
Further, two graphs are said to be isomorphic if they have
the same number of vertices and equivalent edge sets when
disregarding the labels of the vertices.

Now, consider a general graph (V , E) which we call G.
The order and the size of G refer to the number of vertices
|V | and the number of edges |E |, respectively. Let a, b, and
s be subsets of V ; then the set s separates a from b if for all
y ∈ a and y′ ∈ b, all paths y ∼ y′ intersect s. We denote this
by a ⊥G b | s. The graph G is complete if all vertices are
adjacent to each other. A graph (V ′, E ′) is a subgraph of G if
V ′ ⊆ V and E ′ ⊆ E . A subtree is a connected subgraph of a

tree. For V ′ ⊆ V , the induced subgraph G[V ′] = (V ′, E ′) is
the subgraph of G with vertices V ′ and edge set E ′ given by
the set of edges in E having both endpoints in V ′. A subset
of V is a complete set if it induces a complete subgraph. A
complete subgraph is called a clique if it is not an induced
subgraph of any other complete subgraph.

The primer interest of this paper regards decomposable
graphs and the junction-tree representation.

Definition 1 A graph G is decomposable if its cliques can be
arranged in a so-called junction tree, i.e. a tree whose nodes
are the cliques in G, and where for any pair of cliques c and
c′ in G, the intersection c ∩ c′ is contained in each of the
cliques on the unique path c ∼ c′.

Note that a decomposable graph may have many junction-
tree representations (referred to as a junction tree for the
specific graph) whereas for any specific junction tree, the
underlying graph is uniquely determined. For clarity, from
now on we follow Green and Thomas (2013) and reserve the
terms vertices and edges for the elements of G. Vertices and
edges of junctions trees will be referred to as nodes and links,
respectively. Each link (a, b) in a junction tree is associated
with the intersection a∩b, which is referred to as a separator
and denoted by sa,b. Note that, the empty set is also a valid
separator and could separate any pair of cliques that belong to
distinct connected components. The set of distinct separators
in a junction tree with graph G is denoted by S(G). Since
all junction-tree representations of a specific decomposable
graph have the same set of separators, we may talk about
the separators of a decomposable graph. In the following we
consider a fixed sequence (yi )

p
i=1, of vertices and denote by

Gp the space of decomposable graphs with vertex set {yi }p
i=1.

The space of junction-tree representations for graphs in Gp

is analogously denoted by Tp. The graph corresponding to
a junction tree T is denoted by g(T ). We let Ts denote the
subtree induced by the nodes of a junction tree T containing
the separator s and let Fs(T ) denote the forest obtained by
deleting, in T , the links associated with s.

3 Expanding and collapsing junction trees

At the highest level, the JTE can be described in a few main
steps illustrated in Fig. 3. In the first step, the algorithm starts
by drawing, at random, a subtree T ′ of the given tree T (see
Step 1 in Fig. 3). In the second step, a new vertex y is con-
nected to a random subset of each of the cliques in T ′ to form
a new subtree T ′′, which is isomorphic to T ′. The edges in T ′
are then removed and each of the nodes in T ′′ are connected
to the nodes in T ′ to which they stem from, while maintain-
ing the junction tree property (see Step 2-4 in Fig. 3). On
the other hand, the JTC starts by selecting the unique sub-
tree T ′′ induced by a given vertex y′ (see Step 4 in Fig. 3).
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The second step amounts to drawing, for each clique c′ in
T ′′, a neighboring clique c not containing y′, for which c′ is
substituted while maintaining the junction tree property (see
Step 3-1 in Fig. 3). The two algorithms are complementary
in the sense that the output obtained by subjecting a given
tree T to either the JTE followed by the JTC, or, vice versa,
the JTC followed by the JTE, coincides with T with positive
probability.

3.1 Sampling subtrees

Before presenting ourmain algorithm for expanding junction
trees, we present one of its crucial subroutines: an algorithm
for random sampling of subtrees of a given, arbitrary tree. It
takes two tuning parameters, (α, β) ∈ (0, 1)2,which together
control the number of vertices in the subtree. The algorithm
either, with probability 1 − β, returns the empty tree or a
breadth first tree traversal is performed, where new nodes
are visited with probability α. Thus, the parameter α con-
trols the number of vertices in the subgraph given that it is
nonempty. We call this algorithm the stochastic breath-first
tree traversal and provide an outline below. Full details are
given in Algorithm 3 in Appendix A.

Stochastic breadth-first tree traversal Let T = (V , E) be a
tree.

Step 1. Perform a Bernoulli trial that with probability β

determines if the subtree T ′ will be nonempty.

If the empty tree was sampled, return it. Otherwise, proceed
according to the following steps.

Step 2. Sample a node uniformly at random from V and
add it to a list a.

Step 3. Remove the first item, say y, from a and add it to
the set V ′.

Step 4. Add independently each of the non-visited neigh-
bors of y to the end of a with probability α.

Step 5. If a is not empty, go to Step 2.
Step 6. Return the induced subtree T ′ = T [V ′].

The probability of extracting the induced subtree T ′ from T
by following the above steps is given by

S(T , T ′) =
{
1 − β, if T ′ = (∅,∅)

β|V ′|α|V ′|−1(1 − α)w/|V |, otherwise,

where w = w(T , T ′) is the number of components in the
forest T [V \ V ′]. The factor |V ′| stems from the fact that
any vertex in V ′ is a valid starting vertex in the breadth-first
traversal-like procedure and the probability of extracting a
certain subtree is equal for each choice.

3.2 Expanding junction trees

In this section we present the main contribution of this
paper, namely an algorithm for expanding randomly a given
junction tree T ∈ Tm , m ∈ N, into a new junction tree
T+ ∈ Tm+1 such that g(T ) is the induced subgraph of
g(T+). This operation defines a Markov transition kernel
Km : Tm × ℘(Tm+1) → [0, 1], whose expression is derived
at the end of this section. The full procedure, which in the
following will be referred to as the junction-tree expander,
is given below. Further details of these steps are provided in
Algorithm 4 in Appendix A.

Junction tree expander Let T be a junction tree in Tm.

Step 1. Sample a random subtree T ′ = (V ′, E ′) of T .

If T ′ is empty, proceed as follows:

Step 2. Create a new node containing merely the vertex
ym+1 and connect it to an arbitrary node in T .

Step 3. Cut the new tree at the empty separator to obtain
a forest.

Step 4. Randomly reconnect the forest into a tree (see
Appendix B).

If T ′ is non-empty, enumerate the nodes in V ′ as (c j )
|V ′|
j=1,

and let, for each j , z j be defined as the union of the separators
associated with c j in T ′. Proceed as follows:

Step 2∗. For each node c j , draw uniformly at random a (pos-
sibly empty) subset q j of c j \ z j to create a new
unique node d+

j , consisting of d j := z j ∪ q j and
the vertex ym+1. Note that for d+

j to be unique, q j

has to be non-empty if any separator associated
with c j in T ′ equals z j . If c j was engulfed in d+

j
(i.e. d j = c j ), simply delete c j .

Step 3∗. To the nodes in (d+
j )

|V ′|
j=1, assign links which repli-

cate the structure of T ′. Then remove the links in T ′
and connect by a link each c j to its corresponding
new node d+

j .
Step 4∗. For each node c j , the neighbors whose links can

be moved to d+
j while maintaining an equivalent

junction tree, are distributed uniformly between c j

and d+
j . The set of neighbors of d+

j is denoted by
n j .

When using the subtree sampler provided in Algorithm 3
at Step 1, the parameters α and β have clear impacts on the
sparsity of the outcome T+ of the JTE; more specifically,
since each node in the selected subtree will give rise to a new
node in T+, α controls the number of nodes containing the
new vertex ym+1. The parameter β is simply interpreted as
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the probability of ym+1 being connected to some vertex in
g(T ).

Example 1 We illustrate two possible scenarios for how the
junction tree in Fig. 1 with underlying vertex set V =
{1, . . . , 9} could be expanded by the vertex 10. Figure 2
shows the possible scenario where the subtree picked at
Step 1 is empty. Figure 3 demonstrates the possible sce-
nario where the subtree sampled at Step 1 contains the nodes
c1 = {3, 4}, c2 = {1, 4, 5}, and c3 = {2, 5, 6}, colored in
blue. The new nodes, colored in red, are d+

1 = {3, 4, 10},
d+
2 = {4, 5, 10}, and d+

3 = {5, 6, 10}, built from the sets
z1 = {4}, z2 = {4, 5}, z3 = {5} and q1 = {3}, q2 = ∅,
q3 = {6}. The sets of moved neighbors are n1 = ∅, n2 = ∅
and n3 = {{5, 6, 9}}. The resulting underlying graphs for
these two examples are shown in Fig. 4.

Note that in this example, c3 is a leaf node in the resulting
tree, making it look like decoration in a Christmas tree.

Example 2 Figure 5 should be read in chunks of two rows
(except for the first row) and shows the junction trees, the
corresponding decomposable graphs and the subgraphs gen-
erated by the JTE form ∈ {1, . . . , 5}. The left column shows
the expansion of the junction trees and the right column
shows the underlyingdecomposable graphs. Subtrees are col-
ored in blue and the new nodes are colored in red. Unaffected
nodes are black. Vertices in the underlying graphs are col-
ored analogously. For example, the subtree T ′

2 selected in the
generation of T3 on Row 5 is found on Row 4. The under-
lying nodes in T ′

2 for creating T3 are also found on Row 4,
and so on. Note that the subtree T ′

2 used in the creation of T3,
is the empty tree, thus T ′

2 is black. The tuning parameters of
the junction tree expander are set to α = 0.3 and β = 0.9.

Themain reason for operating on junction trees as opposed
to decomposable graphs directly is computational tractabil-
ity. Next we provide explicit expressions of the transition
kernel Km of the JTE, for any given m ∈ N.

For T ∈ Tm and T+ generated by the JTE, let T(T , T+)

denote the set of possible subtrees bridging T and T+ through
thefirst step of the JTE.This set contains, depending on T and
T+, either one unique or two different trees, whose explicit
forms are provided by Proposition 1.

Proposition 1 Let m ∈ N, T ∈ Tm, and T+ be generated by
the JTE. If the subtree of T+ induced by the nodes containing
the vertex ym+1 has a single node {ym+1}∪s with exactly two
neighbors c1 and c2 such that sc1,c2 = s, then T(T , T+) =
{({c1},∅), ({c2},∅)}; otherwise, T(T , T+) = {(V ′, E ′)} (a
single tree), where V ′ = {c j ∈ V : d+

j ∈ V+} and E ′ =
{(c j , ck) ∈ E : (d+

j , d+
k ) ∈ E ′

+}. Here d+
j := d j ∪{ym+1} and

d+
k := dk ∪{ym+1} denote new nodes in T+ and c j := d j ∪r j

and ck := dk ∪rk are the corresponding nodes in T . The sets
r j and rk may be empty.

From a computational point of view, Proposition 1 is crucial
since it guarantees a tractable expression of Km . Before we
state this expression we introduce some further notation. We
let νg(T )(s) denote the number of possible ways that Fs(T ),
the tree obtained by cutting Ts at the separator s, can be
connected to form a tree; this number is described in more
detail in Theorem 5. Now, the transition probability of the
JTE takes the following form

Km(T , T+) =
∑

T ′∈T(T ,T+)

P(T+ | T ′, T )S(T , T ′), (3.1)

where P(T+ | T ′, T ) is understood as the probability that
the JTE generates T+ with T as input given that T ′ was
drawn at Step 1. We stress again that the sum in (3.1) has
either one or two terms and it is thus easily computed. The
conditional probability P(T+ | T ′, T ) takes two different
forms depending on whether T ′ is empty or not. If T ′ is
empty, sinceT+ is randomised at∅, all theνg(T+)(∅)obtainable
equivalent junction trees have equal probability. Otherwise,
in case of T ′ non-empty, the probability of the subsets q j

are calculated according to the uniform subset distributions
in Step 2∗. Observe that, given T and T ′, the resulting tree

T+ is completely determined by {q j }|V
′|

j=1 and {n j }|V
′|

j=1. Since

the pairs (q j , n j )
|V ′|
j=1 are drawn conditionally independently

given T ′ and T we obtain

P(T+ | T ′, T )

=
{
1/νg(T+)(∅) if T ′ = (∅, ∅),
∏|V ′|

j=1 P(q j | T ′, T )P(n j | q j , T ′, T ) otherwise.
(3.2)

We examine the probabilities in (3.2) in the case where
T ′ is nonempty. Since for each j , the existence of a node
c ∈ NT ′(c j ) such that z j = sc,c j forces q j to be nonempty,
it holds that

P(q j | T ′, T )

=
{
1/(2|c j \z j | − 1) if z j = sc,c j for some c ∈ NT ′(c j ),

1/2|c j \z j | otherwise.

Conditionally upon T ′, T , and q j , the probability of each
neighbor set n j at Step 4∗ follows straightforwardly; indeed,
the distribution of n j takes two different forms depending on
whether c j was engulfed into d+

j (i.e. d j = c j ) or not. If so,
all of the neighbors of c j are moved to d+

j with probability 1.
Otherwise, it has equal probability over all subsets of U j :=
{c ∈ NT (c j ) \ V ′ : sc,c j ⊆ d j } giving

P(n j | q j , T ′, T ) =
{
1 if d j = c j ,

1/2|U j | otherwise.
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Fig. 1 A decomposable graph
(left panel) and one of its
junction tree representations
(right panel)

Fig. 2 A possible expansion of
the junction tree in Fig. 1, where
the empty subtree is drawn at
Step 1

Fig. 3 A possible outcome of
the JTE where a non-empty
subtree was drawn in the
expansion of the junction tree in
Fig. 1

Fig. 4 Two decomposable
graphs resulting from expanding
the graph in Fig. 1 by the
vertex 10
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Fig. 5 Example of a recursive application of the JTEwith parameters
α = 0.3 and β = 0.9

Observe that the simplicity of (3.1) is appealing from a com-
putational point of view. In particular, as shown in Sect. 7,
whenKm is used as a proposal kernel in an SMC algorithm,
fast computation of the transition probability is crucial, espe-
cially as the graph space increases.

An important property of the JTE is that for anym ∈ N and
T ∈ Tm , a tree T+ generated by the JTE is also a junction tree.
In addition, g(T ) is an induced subgraph of g(T+), having
one additional vertex.

Theorem 1 For any m ∈ N and T ∈ Tm it holds that

(i) Supp(Km(T , ·)) ⊆ Tm+1,
(ii) g(T+)[{y�}m

�=1] = g(T ) for all T+ ∈ Supp(Km(T , ·)).

The following theorem states that for any m ∈ N, all
junction trees in Tm can be generated with positive proba-
bility using recursive application of the JTE. More specif-
ically, we may define the marginal probability Km(Tm) :=
∑

T ∈Tm−1
Km−1(T )Km−1(T , Tm), for any Tm ∈ Tm, where

K1(({{y1}},∅)) = 1 and state the following theorem.

Theorem 2 For any ordering of vertices (y�)
m
�=1, m ∈ N, it

holds that

Supp(Km) = Tm .

For comparison, the algorithm for sequential a sampling
of junction trees presented byMarkenzon et al. (2008) corre-
sponds to recursive application of a special case of the JTE,
where α = 0, β = 1, and where Step 4 is omitted. Note that
Theorem 2 does not hold under such assumptions since the
algorithm is forced to operate on a restricted space of junction
trees for connected decomposable graphs. Markenzon et al.
(2008) also proposes a final step that merges neighboring
cliques an unspecified number of times in order to increase
the number of edges in the underlying graphs. While this
step has the intended effect on the graphs, the space is still
restricted and calculating the transitionprobabilities becomes
intractable in general.

4 Collapsing junction trees

In this section, we present the junction-tree collapser, a
reversed version of the JTE, introduced in the previous sec-
tion. The idea is to collapse a junction tree T+ ∈ Tm+1 into
a new tree T ∈ Tm by removing ym+1 from the underlying
graph in such a way that T ∈ Supp(Km(·, T+)). As will be
proved in this section, this procedure defines aMarkov kernel
Rm : Tm+1 × ℘(Tm) → [0, 1].

Next follows a description of the different suboperations
in the sampling procedure for Rm . The details of the steps
are given in Algorithm 5 in Appendix A.

Junction tree collapser Let T+ be a junction tree in Tm+1.
Similarly to the JTE, the JTC takes two different forms
depending on whether {ym+1} is present as a node in T+
or not.

If {ym+1} is a node in T+ proceed as follows:

Step 1. Remove {ym+1} and it incident links to obtain a
forest, possibly containing only one tree.

Step 2. Randomly connect the forest into a tree.

If {ym+1} is not a node in T+ proceed as follows:

Step 1∗. Let T ′
+ = (V ′

+, E ′
+) be the subtree of T+ induced by

the nodes containing the vertex ym+1 and enumer-

ate the nodes in V ′
+ by (d+

j )
|V ′+|
j=1 .
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Step 2∗. For all j ∈ {1, . . . , |V ′
+|}, draw at random c j from

M j , the set of neighbors of d+
j in T+ having the

associated separator d+
j \{ym+1}. If no such neigh-

bor exists, let c j = d+
j \ {ym+1}.

Step 3∗. Replace each node d+
j by the corresponding node

c j in the sense that c j is assigned all former neigh-
bors of d+

j .

The next example illustrates a reversed version of Example 1.

Example 3 Consider collapsing the junction tree in the bot-
tom right panel of Fig. 3 by the vertex 10. The induced
subgraph T+, having the nodes d+

1 = {3, 4, 10}, d+
2 =

{4, 5, 10}, and d+
3 = {5, 6, 10} is colored in red in the

same subfigure. Further we see that M1 = ∅ implies that
c1 = {3, 4} and M2 = {{1, 4, 5}} implies c2 = {1, 4, 5}. By
drawing c3 = {2, 5, 6} from M3 = {{2, 5, 6}, {5, 6, 9}}, the
junction tree in the top left panel of Fig. 3 is obtained.

The induced transition probability of collapsing T+ ∈
Tm+1 into a tree T ∈ Supp(Rm(T+, ·)) has the form

Rm(T+, T ) =
{
1/νg(T )(∅) if {ym+1} ∈ V+,

1/
∏|V ′+|

j=1 max(1, |M j |) otherwise,

where, as before,V ′
+ is the set of nodes in T+ containing ym+1.

The max operation is needed in order to make the expression
well defined even when M j is empty.

The JTC is a reversed version of the JTE in the sense that
for all m ∈ N, a junction tree T ∈ Tm , generated by the JTC
from a junction tree T+ ∈ Tm+1, can be used as input to the
JTE to generate T+. This property is formulated in the next
theorem.

Theorem 3 For all m ∈ N and T+ ∈ Tm+1,

(i) Supp(Rm(T+, ·)) ⊆ Tm,
(ii) Supp(Rm(T+, ·)) ⊆ Supp(Km(·, T+)),
(iii) g(T ) = g(T+)[{y�}m

�=1] for any T ∈ Supp(Rm(T+, ·)).

Theorem 3 proves to be crucial in the SMC context
described in Sect. 6 and in particular in the refreshment step
of the particle Gibbs sampler detailed in Olsson et al. (2019).

5 Counting the number of junction trees for
an expanded decomposable graph

Thomas and Green (2009b) provide an expression for count-
ing the number of equivalent junction trees of a given
decomposable graph. In this section we derive a factorisation
of the same expressionwhich shows to alleviate the computa-
tional burden when calculated for expanded graphs. For sake

of completeness, we restate three theorems from (Thomas
and Green 2009b). The first counts the number of ways a
forest can be reconnected into a tree and was first established
in Moon (1967).

Theorem 4 (Moon (1967)) The number of distinct ways that
a forest of order m comprising q subtrees of orders r1, . . . , rq

can be connected into a single tree by adding q − 1 edges is

mq−2
q∏

i=1

ri .

For a given junction tree T , let ts denote the order of the
subtree Ts induced by the separator s. Now, let ms be the
number of links associated with s and let f1, . . . , fms+1 be
the orders of the tree components in Fs(T ). Then, by Theo-
rem 4 the following is obtained.

Theorem 5 (Thomas and Green (2009b)) The number of
ways that the components of Fs(T ), where s is a separa-
tor in a graph G with junction tree T , can be connected into
a single tree by adding the appropriate number of links is
given by

νG(s) = tms−1
s

ms+1∏

j=1

f j .

Theorem 6 (Thomas and Green (2009b)) The number of
junction trees for a decomposable graph G is given by

μ(G) =
∏

s∈S(G)

νG(s).

In the sequential sampling context considered in this
paper it is useful to exploit that any decomposable graph
G+ ∈ Gm+1 can be regarded as an expansion of another
decomposable graph G ∈ Gm , in the sense that G+ is
obtained by expanding G with the vertex ym+1. This follows
for example by induction using (Lauritzen 1996, Corollary
2.8).

The key insight when calculating μ(G+) is that when a
vertex is added to G, not all separators will necessarily be
affected. This implies that νG(s) = νG+(s) for some separa-
tors.

Theorem 7 Let G+ ∈ Gm+1 be an expansion of some graph
G ∈ Gm by the extra vertex ym+1. Let S� ⊆ S(G+) be the
set of unique separators created (note that S� ∩ S(G) might
be non-empty) by the expansion. Then

μ(G+) =
∏

s∈A(G+) νG+(s)
∏

s∈A(G) νG(s)
μ(G), (5.1)
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where A(G) := {s ∈ S(G) : ∃s′ ∈ S� such that s ⊆ s′} is
the set of separators in G contained in some separator in S�.

The potential computational gain obtained by using the
factorisation in Theorem 7 is illustrated by the following
example.

Example 4 Let G+ ∈ Gm+1 be an expansion of a graph G ∈
Gm in the sense that ym+1 is connected to every vertex in one
of the cliques in G. Then, since the set of separators is the
same in the two graphs, it holds that μ(G+) = μ(G).

6 Applications to sequential Monte Carlo
sampling

Sequential Monte Carlo (SMC) methods (Chopin and
Papaspiliopoulos 2020) are a class of simulation-based algo-
rithms that offers a principled way of sampling online from
very general sequences of distributions, known up to normal-
ising constants only, by propagating recursively a population
of random draws, so-called particles, with associated impor-
tance weights. The particles evolve randomly and iteratively
through selection and mutation. In the selection step, the
particles are duplicated or eliminated depending on their
importance, while the mutation operation disseminates ran-
domly the particles in the state space and assigns new
importance weights to the same for further selection at the
next iteration. SMCmethods have been particularly success-
ful when it comes to online approximation of state posteriors
in general state-space hiddenMarkov models (Arulampalam
et al. 2002).

In this section we demonstrate how the JTE and the JTC
can be cast into the framework of SMC methods—or, more
precisely, the SMC samplers proposed in Del Moral et al.
(2006)—in order to sample from a sequence (ηm)m∈N of
probability distributions, where each ηm is a distribution on
Tm . For every m we assume that ηm is known only up to a
normalising constant, i.e., ηm ∝ γm , where γm is a tractable,
unnormalised function. Following (Del Moral et al. 2006),
we introduce path spaces T1:m := T1 × · · · × Tm and let

η̄m(T1:m) :=
m−1∏

�=1

η�+1(T�+1)

η�(T�)
R�(T�+1, T�), T1:m ∈ T1:m,

(6.1)

be extended target distributions. Importantly, each target ηm

is the marginal of η̄m with respect to the mth component. In
many applications, the aim is to sample from a given dis-
tribution π on some junction-tree space Tn induced by n
vertices, and in this case one may let ηn = π and (η�)

n−1
m=1

be the marginals of π (if these are known up to normalising
constants), serving to guide the distribution flow towards the
target π .

Now, introduce, for all m, proposal distributions

ρ̄m(T1:m) :=
m−1∏

�=1

K�(T�, T�+1), T1:m ∈ T1:m . (6.2)

Since Theorem 3 implies that
Supp(R�(·, T�)) ⊆ Supp(K�(T�, ·)) for all � ∈ {1, . . . , m −
1}, it is readily checked that Supp(η̄m) ⊆ Supp(ρ̄m).
This property, along with Theorems 1 and 2, allows the
extended target distributions (6.1) to be sampled bymeans of
an importance-sampling procedure, where independent tree
paths τ i

1:m = (τ i
1, . . . , τ

i
m) generated sequentially using the

JTE, are assigned importance weights

ωi
m :=

m−1∏

�=1

γ�+1(τ
i
�+1)R�(τ

i
�+1, τ

i
�)

γ�(τ
i
�)K�(τ

i
�, τ

i
�+1)

∝ η̄m(τ i
1:m)

ρ̄m(τ i
1:m)

. (6.3)

Here N is the Monte Carlo sample size. Thanks to the
Markovian structure of the proposal (6.2) and the multi-
plicative structure of the weights (6.3), this procedure can
be implemented sequentially by applying recursively the
update described in Algorithm 1. This yields a sequence
(τ i

m, ωi
m)N

i=1, m ∈ N, of weighted samples, where, since
ηm is the marginal of η̄m with respect to the last com-
ponent,

∑N
i=1 ωi

mh(τ i
m)/�N

m , with �N
m := ∑N

i=1 ωi
m , is a

strongly consistent self-normalised estimator of the expec-
tation ηm(h) := ∑

T ∈Tm
h(T )ηm(T ) of any real-valued test

function h under ηm . In the SMC literature, the draws (τ i
m)N

i=1
are typically referred to as particles.

Input: (τ i
m , ωi

m)N
i=1

Output: (τ i
m+1, ω

i
m+1)

N
i=1

1 for i ← 1, . . . , N do
2 draw τ i

m+1 ∼ Km(τ i
m , ·);

3 set ωi
m+1 ← γm+1(τ

i
m+1)Rm(τ i

m+1, τ
i
m)

γm(τ i
m)Km(τ i

m , τ i
m+1)

ωi
m ;

4 return (τ i
m+1, ω

i
m+1)

N
i=1

Algorithm 1: Sequential importance sampling.

Even though this sequential importance sampling proce-
dure, which is described in Algorithm 1, appears appealing
at a first sight, the multiplicative weight updating formula
(6.3) (Line 3 in Algorithm 1) is problematic in the sense
that it will, inevitably, lead to severe weight skewness and,
consequently, high Monte Carlo variance. In fact, it can be
shown that updating the weights in this naivemanner leads to
aMonte Carlo variance that increases geometrically fast with
m; see e.g. (Cappé et al. 2005, Chapter 7.3) for a discussion.
Needless to say, this is impractical for most applications
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In order to copewith theweight-degeneracyproblem,Gor-
don et al. (1993) proposed furnishing the previous sequential
importance sampling algorithm with a selection step, in
which the particles are resampled, with replacement, in pro-
portion to their importance weights. Upon selection, all
particles are assigned the unit weight, and the particles and
importance weights are then updated as in Algorithm 1. Such
selection is a key ingredient in SMC methods, and it can be
shown mathematically that the resulting sequential impor-
tance sampling with resampling algorithm, which is given
in Algorithm 2, is indeed numerically stable Chopin and
Papaspiliopoulos (2020), Del Moral (2004).

Input: (τ i
m , ωi

m)N
i=1

Output: (τ i
m+1, ω

i
m+1)

N
i=1

1 resample (τ̃ i
m)N

i=1 among (τ i
m)N

i=1 in proportion to (ωi
m)N

i=1;
2 for i ← 1, . . . , N do
3 draw τ i

m+1 ∼ Km(τ̃ i
m , ·);

4 set ωi
m+1 ← γm+1(τ

i
m+1)Rm(τ i

m+1, τ̃
i
m)

γm(τ̃ i
m)Km(τ̃ i

m , τ i
m+1)

;

5 return (τ i
m+1, ω

i
m+1)

N
i=1

Algorithm 2: Sequential importance sampling with resam-
pling.

In standard self-normalised importance sampling, the
average weight provides an unbiased estimator of the nor-
malising constant of the target. However, when the particles
are resampled systematically, as in Algorithm 2, this simple
estimator is no longer valid. Instead, it is possible to show
that for every m, the estimator

γ N
m (h) := 1

N m

(
m−1∏

�=1

�N
�

)
N∑

i=1

ωi
mh(τ i

m),

with �N
�

:= ∑N
i=1 ωi

�, is an unbiased estimator of γm(h) for
any real-valued test function h. In particular,

γ N
m (1Tm ) = 1

N m

m∏

�=1

�N
� (6.4)

provides an unbiased estimator of the normalising constant
γm(1Tm ) of ηm . This estimator will be illustrated in the next
section.

7 Numerical study

We demonstrate two applications of Algorithm 2 for esti-
mating the cardinalities |Gm | and |Tm | of the spaces of
decomposable graphs and junction trees, respectively.

7.1 Estimating |Gm|
Wormald (1985) provides an exact expression for |Gm | and
evaluates the same for m ≤ 13. In the same reference, the
author also establishes the asymptotic expression |Gm | ∼
∑m

�=1

(m
�

)
2�(m−�). Another exact algorithm that calculates

|Gm | for m ≤ 10 is proposed in Kawahara et al. (2018).
In this study we will use Algorithm 2 for estimating |Gm |,

m ∈ N, on the basis of the target probability distributions

ηm(Tm) ∝ γm(Tm) = 1

μ(g(Tm))
1Tm (Tm).

Note that the normalising constant γm(1Tm ) of ηm equals
|Gm |.; indeed,

γm(1Tm ) =
∑

Gm∈Gm

∑

Tm :g(Tm )=Gm

1

μ(g(Tm))
1Tm (Tm)

=
∑

Gm∈Gm

1

μ(Gm)

∑

Tm :g(Tm )=Gm

1Tm (Tm)

= |Gm |.

With this formulation, unbiased estimates of |Gm |,m ∈ N,
can be obtained directly using (6.4). Note that in this setting
Line 4 of Algorithm 2 reduces to

γm+1(Tm+1)

γm(Tm)
= μ(g(Tm))

μ(g(Tm+1))
, (7.1)

where Tm ∈ Tm , Tm+1 ∈ Tm+1, for which, as demonstrated
by Example 4, the computational burden can be substan-
tially reduced using the factorisation (5.1) since Tm+1 ∈
Supp(Km(Tm, ·)).

Table 1 showsmeans and standard errors based on 10 esti-
mates |̂Gm | of |Gm | for m ∈ N15. The upper panel of the table
shows |̂Gm |while the lower panel shows |̂Gm |/2m(m−1)/2, i.e.
estimates of the fraction of undirected graphs that are decom-
posable. For m ≤ 13 the exact enumerations are given in the
second column.We ran the SMC sampler with tuning param-
eters α = 0.5, β = 0.5 and the number of particles was set
to N = 10000. Figure 6 displays the asymptotic behavior
of |Gm | and |̂Gm | for m ≤ 50, along with the exact values
for m ≤ 13, justifying a concordance with the exact results.
Each of the 10 estimates took about 10 minutes to calculate.

Finally, we also explored other parameterisations for α

and β and found that, in this case, the estimates seem to
be less accurate in terms of standard error when using high
values ofα about 0.9 and lowvalues ofβ about 0.3.However,
for α and β about 0.3 and 0.9, respectively, the performance
of the estimator was similar to that for the parameterisaion
α = β = 0.5 considered above.
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Table 1 Sequential Monte Carlo estimation of the number of decom-
posable graphs and the fraction of graphs which are decomposable

p |Gp| |̂Gp| SE

4 61 60.4 0.40

5 822 815 16.2

6 1.82 1.78 0.37 ×104

7 6.18 5.92 0.15 ×105

8 3.09 3.00 0.13 ×107

9 2.19 2.14 0.09 ×109

10 2.15 2.11 0.10 ×1011

11 2.88 2.80 0.18 ×1013

12 5.17 5.15 0.51 ×1015

13 1.23 1.21 0.17 ×1018

14 – 3.74 0.62 ×1020

15 – 1.53 0.30 ×1023

p |Gp|/2p(p−1)/2 |̂Gp|/2p(p−1)/2 SE

4 9.53 9.44 0.06 ×10−1

5 8.03 7.96 0.16 ×10−1

6 5.54 5.43 0.11 ×10−1

7 2.95 2.82 0.07 ×10−1

8 1.15 1.12 0.05 ×10−1

9 3.19 3.11 0.13 ×10−2

10 6.12 5.99 0.28 ×10−3

11 7.99 7.78 0.51 ×10−4

12 7.00 6.98 0.70 ×10−5

13 4.09 3.99 0.55 ×10−6

14 – 1.51 0.25 ×10−7

15 – 3.77 0.74 ×10−9

Fig. 6 The number of decomposable graphs as a function of the number
of vertices

Fig. 7 Estimates of the expected number of junction trees per decom-
posable graph

7.2 Estimating |Tm|
As far as we know there is no method available in the lit-
erature for efficiently calculating |Tm | := ∑

G∈Gm
μ(G).

However, for m ≤ 5 it is computationally tractable to first
find all the 822 graphsGm byMonte Carlo sampling and then
evaluate μ for each of them.

As in Sect. 7.1 we find an unbiased estimator of |Tm | by
constructing target distributions

ηm(Tm) ∝ γm(Tm) = 1Tm (Tm),

so that the normalising constant γm(1Tm ) equals |Tm |, and
then use (6.4). Note that with this setting the first factor in
Line 4 in Algorithm 2 simplifies as

γm+1(Tm+1)

γm(Tm)
= 1, (7.2)

for all Tm ∈ Tm , Tm+1 ∈ Supp(Km(Tm, ·)).
The third and fourth columns of the upper panel in Table 2

show estimated means and standard deviations of |̂Tm | for
m ≤ 15 based on 10 replicates. The true values for are shown
in the first column for m ≤ 5. The lower panel of Table 2
displays estimates of the number of junction trees per decom-
posable graph, |Tp|/|Gp|, for different numbers of vertices.
True numbers as are shown in the first column, and estimated
means and standard deviations of |̂Tp|/|̂Gp| are shown in the
third and fourth columns. Interestingly, Figure 7 indicates an
exponential growth rate of the estimated junction trees per
decomposable graph for p ≤ 50. Each of the 10 estimates
took about 6 minutes to compute.
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Table 2 Sequential Monte Carlo estimation of the number junction
trees and the expected number of junction trees per decomposable graph

p |Tp| |̂Tp| SE

1 1 1 0.00

2 2 2 0.00

3 10 10 0.03

4 108 106 1.41

5 2.09 2.03 0.03 ×103

6 - 6.10 0.10 ×104

7 - 2.76 0.08 ×106

8 - 1.79 0.07 ×108

9 - 1.63 0.11 ×1010

10 - 2.00 0.18 ×1012

11 - 3.37 0.32 ×1014

12 - 7.45 0.88 ×1016

13 - 2.12 0.30 ×1019

14 - 7.87 1.34 ×1021

15 - 3.88 0.80 ×1024

p |Tp|/|Gp| |̂Tp|/|̂Gp| SE

1 1 1 0.00

2 1 1 0.00

3 1.25 1.25 0.00

4 1.77 1.76 0.03

5 2.54 2.49 0.07

6 – 3.43 0.1

7 – 4.66 0.23

8 – 5.99 0.45

9 – 7.67 0.64

10 – 9.51 0.90

11 – 12.1 1.35

12 – 14.6 1.98

13 – 17.9 3.11

14 – 21.5 4.23

15 – 26.1 6.16

8 Discussion

In this paper we have presented the JTE and the JTC for
stochastically generating and collapsing junction trees for
decomposable graphs in a vertex-by-vertex fashion. The
Markovian nature of these procedures enables the develop-
ment of sophisticated sampling technology such as SMC and
particle MCMC methods; see (Olsson et al. 2019).

Several MCMC methods for approximating distributions
on the space of decomposable graphs have been proposed in
the literature. Still, inmost of thesemethods, anMCMCchain
of graphs (or junction trees) is evolved by means of locally

limited random perturbations, leading generally to bad mix-
ing (Giudici and Green 1999; Green and Thomas 2013). The
main benefit of casting the JTE and JTC procedures into
the particle Gibbs framework is a substantial improvement
of the mixing properties of the resulting MCMC chain; this
improvement is possible since the JTE procedure allows the
produced chain of junction trees to make long-range, global
transitions across the state space.

The appealing properties of our approach do not come
without a certain price. For instance, relying on the junction-
tree representationwhen sampling fromagivendecomposable-
graph distribution imposes an additional computational bur-
den associated with calculating the number of possible
junction-tree representations of each of the sampled graphs.
In the present paper, we have been able to alleviate this
burden by means of the factorisation property derived in
Theorem 7, allowing for faster dynamic updates. Another
factor that is challenging when using the SMC procedure in
Algorithm2 for sampling distributions over spaces of decom-
posable graphs with a very large number p of vertices stems
from thewell-known particle-path degeneracy phenomenon;
see (Jacob et al. 2015;Koskela et al. 2020).More specifically,
since the graphs propagated by Algorithm 2 are resampled
systematically, many of them will, eventually, as the number
of SMC iterations increases, have parts of their underlying
graph in common. This may lead to high variance when
p is large compared to the sample size N , and the O(N )

bound on the resampling-induced particle-path coalescing
time obtained recently in Koskela et al. (2020) suggests that
p and N should be of at least the same order in order to keep
the Monte Carlo error under control. In the particle Gibbs
approach developed in Olsson et al. (2019) the particle-path
degeneracy phenomenon is handled by means of an addi-
tional JTC-based backward-sampling operation.

As an alternative approach to the JTE, which incremen-
tally constructs a junction tree by adding one vertex at a
time to the underlying graph, one may suggest a method that
operates directly on the space of decomposable graphs. The
main difficulty arising when designing such a scheme is to
express the transition probabilities in a tractable form while
maintaining the ability to generate any decomposable graph
with a given number of vertices, qualities possessed by the
methods that we propose.

Finally, we expect that tailored data structures for the junc-
tion tree implementation which respect the sequential nature
of the algorithms could greatly increase the computational
speed. For instance, when propagating the particles in Algo-
rithm 2, the junction trees are not altered but rather copied
and expanded (since several trees must be able to stem from
the same ancestor); thus, to use persistent data structures—
which are widely used in functional programming to avoid
the copying of data—in the SMC context of the present paper
is an interesting line of research.
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Appendix A

A.1 Stochastic breath-first tree traversal

Algorithm 3 provides the detailed steps in the stochastic
breath-first tree traversal algorithm outlined in Sect. 3.1. The
functionpush_back adds a newelement to the end of a list and
the function pop_front returns and removes the first element
of a list.

Input: A tree T = (V , E), parameters (α, β) ∈ (0, 1)2

Output: T ′ subtree of T
1 draw u ∼ Bernoulli(β);
2 if u = 0 then
3 return (∅,∅)

4 else
5 draw y ∼ Unif〈V 〉;
6 q := []; // empty list of vertices to visit
7 q.push_back(y);
8 v := []; // empty list of visited nodes
9 while q 
= ∅ do

10 y := q.pop_ f ront();
11 v.push_back(y);
12 for y′ ∈ NT (y) \ v do
13 draw u ∼ Bernoulli(α);
14 if u = 1 then
15 q.push_back(y′);

16 let T ′ = T [v];
17 return T ′;

Algorithm 3: Stochastic breadth-first tree traversal.

A.2 Junction-tree expander (detailed steps)

Below follows a more detailed description of the JTE. The
full algorithm is given in Algorithm 4.

Input: T ∈ Tm
Output: T+ ∈ Tm+1
// Step 1.

1 draw T ′ = (V ′, E ′) ∼ S(T , ·);
2 let T+ be a copy of T ;
3 if T ′ = (∅,∅) then

// Step 2.
4 add a link from {ym+1} to one of the nodes in T+;

// Step 3.
5 cut T+ at the separator ∅;

// Step 4.
6 randomly connect T+ into a forest;
7 return T+;
8 else

// Step 2∗.
9 enumerate the nodes in T ′ by c1, . . . , c|V ′ |;

10 for j = 1 → |V ′| do
11 set z j ← ⋃

c∈NT ′ (c j )

sc j ,c;

12 if there exists some c ∈ NT ′ (c j ) such that z j = sc j ,c then
13 draw q j ∼ Unif〈℘(c j \ z j ) \ {∅}〉;
14 else
15 draw q j ∼ Unif〈℘(c j \ z j )〉;
16 set d j ← z j ∪ q j and d+

j ← d j ∪ {ym+1};
17 add d+

j to T+;

18 if d j = c j then
19 remove c j and its incident links from T+;

// Step 3∗.
20 foreach link (c j , ck) in T ′ do
21 remove (c j , ck) from T+; // if not removed on

Line 19
22 add (d+

j , d+
k ) to T+;

23 for j = 1 → |V ′| do
24 if d j = c j then
25 let NT (c j ) \ V ′ be neighbors of d+

j in T+;

26 for j = 1 → |V ′| do
27 if d+

j and c j are nodes in T+ then
28 add the link (c j , d+

j ) to T+;

// Step 4∗.
29 for j = 1 → |V ′| do
30 if d j 
= c j then
31 draw n j ∼ Unif〈℘({c ∈ NT+ (c j ) : sc,c j ⊆ d j })〉;
32 move the neighbors n j of c j to be neighbors of d+

j

instead;

33 return T+

Algorithm 4: Junction-tree expander.
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Step 1: Subtree simulation

In this step, a random subtree T ′ = (V ′, E ′) of T is sampled
from Sα,β(T , ·) (Line 1). After this, a new tree T+ is initiated
as a copy of T (Line 2), and all the manipulations described
below refers to T+. Depending onwhether T ′ is empty or not,
the algorithm proceeds in two substantially different ways.

Step 2: Node creation

If T ′ is empty, the new vertex ym+1 is added as a node {ym+1}
in its own and connected to one arbitrary existing node.

Step 3 and 4: Randomising the tree

The tree is then cut at each link associated with the empty
separator and reconstructed, a process we call randomisation
at the separator ∅ (Lines 4–6); see Appendix B or (Thomas
and Green 2009b) for details. The randomisation step might
seem superfluous at a first glance; however, it turns out to
be needed in order to ensure that every junction tree has, as
stated in Theorem 2, a positive probability of being produced
by iterative application of the algorithm.

Step 2∗: Node creation

If T ′ is nonempty, the idea is to replicate its structure so that
at the end of the algorithm, a subtree T ′

+ of T+ has been cre-
ated where every node contains ym+1. More specifically, for
each node c j , j ∈ {1, . . . , |V ′|}, in T ′, a new node d+

j is
created by connecting ym+1 to a subset of c j while ensur-
ing that the decomposability of g(T+) is still maintained. If
T ′ has more than one node, it is, for each j , in order to
avoid that a 4-cycle is formed in g(T+), necessary to con-
nect ym+1 to all vertices in z j := ⋃

c∈NT ′ (c j )
sc j ,c. For the

rest of the vertices in c j , a subset q j is sampled uniformly
at random, and d+

j is formed as the union of q j , z j , and
{ym+1} (Lines 11–16). In the case where z j is identical to
one of the separators sc j ,c, c ∈ NT ′(c j ), it is necessary that
q j is nonempty in order to prevent the new node from being
engulfed by some of its neighbors in T ′

+ (Line 15). In the case
where ym+1 is connected to every vertex in c j , c j is replaced
by d+

j (Lines 17–19).

Step 3∗: Structure replication

Having created the new nodes
(

d+
j

)|V ′|
j=1

, links will be added

between d+
j and d+

k whenever there is a link between c j and
ck in T ′ (Line 22). In this case, the link between c j and ck is
removed (Line 21) in order to avoid a 4-cycle to be formed
on Line 28. By this measure, T ′

+ replicates the structure of

T ′. In order to connect T+ into a tree, links are added between
each pair of nodes d+

j and c j (Line 28).

Step 4∗: Neighbor relocation

Finally, we observe that for all j ∈ {1, . . . , |V ′|}, any poten-
tial neighbor c ∈ NT+(c j ) such that sc,c j ⊆ d j can be moved
to be a neighbor of d+

j instead while maintaining the junc-
tion tree property (Lines 31–32). In the special case where
the node c j is substituted by d+

j , all the neighbors of c j will
simply be neighbors of d+

j instead (Line 25).

A.3 Junction-tree collapser (detailed steps)

Below follows some more detailed description of the JTC.
The full algorithm is given in Algorithm 5.

Input: T+ = (V+, E+) ∈ Tm+1
Output: T ∼ Rm(T+, ·)

1 let T be a copy of T+;
2 if {ym+1} ∈ V+ then
3 remove {ym+1} and its incident edges from T ;
4 connect T into a tree using Algorithm A.4 (Appendix B);
5 else
6 let T ′

+ be the subtree of nodes in T+ containing ym+1;
7 enumerate the nodes in T ′

+ by d+
1 , . . . , d+

|V ′+|;
8 for j → 1, . . . , |V ′

+| do
9 let M j ← {c ∈ NT+ (d+

j ) : sc,d+
j

= d+
j \ {ym+1}};

10 if M j = ∅ then
11 c j ← d+

j \ {ym+1};
12 else
13 draw c j ∼ Unif〈M j 〉;
14 let NT+ (d+

j ) \ c j be neighbors of c j in T ;

15 remove d+
j and its incident links from T ;

16 return T ;
Algorithm 5: Junction-tree collapser.

Similarly to the JTE, the JTC takes two different forms
depending on whether {ym+1} is present as a node in T+ or
not. Specifically, if {ym+1} ∈ V+, then {ym+1} is removed
from T+ and the resulting forest is reconnected uniformly at
random (Lines 2–4 in Algorithm 5).

Otherwise, if {ym+1} /∈ V+ we denote by {d+
j }|V ′+|

j=1 the
nodes in the subtree T ′

+ induced by the nodes containing
the vertex ym+1. The aim is now to identify the nodes that
can serve as a subtree in Algorithm 4 to produce T+. Since
each node in the subtree sampled initially in Algorithm 4
will give rise to a new node, it is enough to determine, for
each j ∈ {1, . . . , |V ′|}, the node c j that can be used for
producing d+

j (reversing Lines 10–19 in Algorithm 4). For
each j , we define a set of candidate nodes M j = {c ∈ V+ :
d+

j ∩ c = d j }. If M j = ∅, we let c j = d+
j \ {ym+1} (Line 11

in Algorithm 5). Otherwise, c j is drawn at random from the
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uniform distribution over M j (Line 13). In either case, the
edges incident to d+

j are moved to c j (Line 14).

A.4 Proofs and lemmas

Lemma 1 Let T be a tree where each node is a subset of some
finite set. Then T satisfies the junction tree property if and
only if for any path c1 ∼ c� = (c1, . . . , c�) in T it holds that

c1 ∩ c� ⊂
�⋂

j=2

sc j−1,c j .

Proof The statement of the lemma follows by noting that

�⋂

j=1

c j =
�⋂

j=2

(c j−1 ∩ c j ) =
�⋂

j=2

sc j−1,c j ,

which implies that

c1 ∩ c� ⊂
�⋂

j=1

c j ⇐⇒ c1 ∩ c� ⊂
�⋂

j=2

sc j−1,c j .

��

Proof of Theorem 1 We prove this theorem by taking a gen-
erative perspective in the sense that we rely on the sampling
procedure of Km(T , ·) given by Algorithm 4. We also adopt
the same notation as in Algorithm 4.

In order to prove (i) we assume that T+ is generated by
Algorithm 4 with input T and show that T+ ∈ Tm+1 by going
through the algorithm in a step-by-step fashion. At Line 1
a subtree T ′ is drawn. We treat the cases T ′ = (∅,∅) and
T ′ 
= (∅,∅) separately.

First, assume that T ′ = (∅,∅). Since the node {ym+1}
does not intersect any other node in T , it can be connected to
an arbitrary node with separator ∅without violating the junc-
tion tree property (Line 4). In addition, Thomas and Green
(2009a) show that randomising a tree at a given separator
preserves the junction tree property (Line 6).

For T ′ 
= (∅,∅), we first show that T+ produced on
Lines 9–28 is a tree that satisfies the junction tree property.
Indeed, T+ is a tree since the subtrees produced up to Line 25

are all reconnected through the same tree T+[{d+
j }|V ′|

j=1] by
the operations on Lines 26–28. To ensure the junction tree
property of T+, consider a general path

(a1, . . . , a�1 , cr1 , d+
r1 , . . . , d+

r�2
, cr�2

, b1, . . . , b�3)

passing through T ′
+ in T+, where (a j )

�1
j=1 and (b j )

�2
j=1 are

nonempty sequences of nodes which also belong to T .

The fact that (d+
r j

)
�2
j=1 is the d+

r1 -d
+
r�2

path in T+ implies

that (cr j )
�2
j=1

is the cr1 -cr�2
path in T , since, by construction (Lines 20–

22), (c j , ck) ∈ E ′ if and only if (d+
j , d+

k ) ∈ E+. Thus,

(a1, . . . , a�1 , cr1 , . . . , cr�2
, b1, . . . , b�3)

is the a-b path in T . The junction tree property of T ensures
that a ∩ b ⊂ Ia∼b, where

Ia∼b :=
⎛

⎝
�1⋂

j=1

a j

⎞

⎠ ∩
⎛

⎝
�2⋂

j=1

cr j

⎞

⎠ ∩
⎛

⎝
�3⋂

j=1

b j

⎞

⎠ . (A.1)

Now, consider the intersection

I +
a∼b :=

⎛

⎝
�1⋂

j=1

a j

⎞

⎠ ∩ cr1 ∩
⎛

⎝
�2⋂

j=1

d+
r j

⎞

⎠ ∩ cr�2
∩

⎛

⎝
�3⋂

j=1

b j

⎞

⎠

of the nodes in a ∼ b in T+. For �2 = 1, it holds that d+
r1 =

cr1 ∪{ym+1}, corresponding to the case where cr1 is engulfed
into d+

r1 . For �2 ≥ 2, the junction tree property in T ensures
via Lemma 1 that

�2⋂

j=1

d+
r j

=
�2⋂

j=2

sd+
r j−1 ,d+

r j
=

⎛

⎝
�2⋂

j=2

scr j−1 ,cr j

⎞

⎠ ∪ {ym+1}

=
⎛

⎝
�2⋂

j=1

cr j

⎞

⎠ ∪ {ym+1}.

It hence holds that a ∩ b ⊂ Ia∼b ⊂ I +
a∼b.

Now, consider the final version of T+ obtained after the
relocation step onLines 29–32. Let c ∈ n j and let Tsc j ,c

be the
subtree of T+ induced by the nodes containing the separator
sc j ,c. In addition to c and c j , it is clear that d+

j is also a node
in Tsc j ,c

since sc j ,c ⊆ sd+
j ,c. Now the fact that sc j ,c ⊆ sd+

j ,c

also implies that the tree obtained by letting c be a neighbor
of d+

j instead of c j also satisfies the junction tree property by
Thomas and Green (2009b).

Finally, (ii) follows directly since the only new vertex
added to g(T ) in order to get g(T+) is ym+1 and no edges
have been removed between the vertices {y j }m

j=1. ��
Proof of Theorem 2 In this proof we use the property (ii) of
Rm provided by Theorem 3 and proved independently below.

The space containing the trivial junction tree is T1 =
{({y1},∅)}. We proceed by induction over the number of
vertices. For the base case m = 2, T2 = {T1, T2},
where T1 = ({{y1, y2}},∅) is the unique tree constructed
from ({{y1}},∅) via the subtree ({{y1}},∅) and T2 =
({{y1}, {y2}}, {({y1}, {y2})}) is the unique tree constructed
from ({{y1}},∅) via the subtree (∅,∅).
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For m ≥ 3, assume inductively that Supp(Km−1(·)) =
Tm−1 and let T ∈ Tm be an arbitrary junction tree. It
suffice to show that there exists a junction tree T− ∈
Tm−1 such that Km−1(T−, T ) > 0 since then Km(T ) ≥
Km−1(T−)Km−1(T−, T ) > 0. But this follows directly by
drawing any T− ∼ Rm−1(T , ·) since Supp(Rm−1(T , ·)) ⊆
Supp(Km−1(·, T )) (by (ii) in Theorem 3), meaning that
T ∈ Supp(Km−1(T−, ·)). Thus, every junction tree in Tm

can be constructed, and we conclude the proof by induction.
��

Proof of Proposition 1 In this proof, we take a generative per-
spective in the sense that we rely on the sampling procedure
given by Algorithm 4 and regard T+ as an expansion of T .
We further adopt the same notation as in Algorithm 4 when
possible.

Let V ′
+ = {d+

j }|V ′+|
j=1 be the set of nodes in T+ containing the

vertex ym+1. The induced subgraph T+[V ′
+] will necessarily

be a subtree of T+ (see e.g. Blair and Peyton (1993)), which
we denote by T ′

+ = (V ′
+, E ′

+). For each j ∈ {1, . . . , |E ′
+|},

we define a set M j = {c ∈ V+ : d+
j ∩ c = d j }, which

we interpret as the candidate nodes in V from which each
d+

j = d j ∪ {ym+1} ∈ V+ could potentially have emerged.
We distinguish between two main situations for T(T , T+)

depending on |V ′
+|.

For |V ′
+| = 1,

• If |M1| = 0, then c1 = d+
1 \ {ym+1} so that T(T , T+) =

{({c1},∅)} due to Lines 17–19.
• If |M1| = 1, then clearly T(T , T+) = {({c1},∅)}, where

{c1} = M1 due to Lines 26–28.
• If |M1| ≥ 2, consider the enumeration M1 = {c̃ j }|M1|

j=1 .
The set T(T , T+) is clearly non-empty, thus we can
assume that ({c̃1},∅) ∈ T(T , T+). Note that, since M1

consists of more than one element, all nodes in {c̃ j }|M1|
j=2

are former neighbors of c̃1 by Lines 29–32. Thus, every
node in {c̃ j }|M1|

j=2 are neighbors of c̃1 in T . This implies
that for |M1| = 2, the subtree could also be ({c̃2},∅) since
the c̃1 could be moved at Lines 29–32. Thus T(T , T+) =
{({c̃1},∅), ({c̃2},∅)}. For |M1| ≥ 3, ({c̃1},∅) is neces-
sarily the unique subtree in T(T , T+) since if there would
exist another subtree ({c̃2},∅), both c̃1 and c̃2 would have
c̃3 as neighbor in T , which would form a cycle.

For |V ′
+| ≥ 2, by construction, for each link (d+

j , d+
k ) ∈

E ′
+, where d+

j = d j ∪ {ym+1} and d+
k = dk ∪ {ym+1} we can

associate a link (c j , ck) ∈ E , where c j = d j ∪ r j and ck =
dk ∪ rk are emerging nodes in T and r j and rk may be empty
sets. Thus we can form the subtree T ′ = (V ′, E ′) which we
regard as the subtree in Algorithm 4 (Line 1), where V ′ =
{c j ∈ V : d+

j ∈ V ′
+} and E ′ = {(c j , ck) ∈ E : (d+

j , d+
k ) ∈

E ′
+}. Now, suppose that there exists another subtree T ′′ =

(V ′′, E ′′), isomorphic to T ′, where V ′′ = {c′
j = d j ∪ r ′

j :

d+
j ∈ V ′′

+ }, c′
j 
= c j for some j and E ′′ = {(c′

j , c′
k) ∈ E :

(d+
j , d+

k ) ∈ E ′
+}. Enumerate the nodes such that c′

1 
= c1 and
let for simplicity c′

2 = c2 ∈ N(c′
1). Then, since the neighbors

of d+
1 except for c1 are neighbors of c1 in T , the link (c1, c′

1)

would be present in T . Also the link (c1, c2) is present in T
since T ′ is a subtree of T . Similarly, since T ′′ is a subtree
of T , the link (c′

1, c2) would also be present in T . Thus we
would have a 3-cycle in T which contradicts the assumption
of T being a tree. Thus T(T , T+) = {T ′}. ��
Proof of Theorem 3 We prove this theorem by taking a gen-
erative perspective in the sense that we rely on the sampling
procedures of Km and Rm+1 given by Algorithm 4 and 5
respectively. We also adopt the same notation as in these
algorithms. To show (i) and (ii) we distinguish between the
cases {ym+1} ∈ V+ and {ym+1} /∈ V+. For both cases, we let
T ∈ Supp(Rm+1(T+, ·)). We prove (i) by following the steps
in Algorithm 5 with input T+. For (ii), we show that T+ could
be obtained by Algorithm 4 with input T .

If {ym+1} ∈ V+, then no other node in T+ will contain
the vertex ym+1 which in turn implies that each neighbor in
NT+({ym+1}) will have ∅ as associated separator. Removing
one node from a tree will always result in a forest possibly
containing only one tree. Thus the removal of {ym+1} from T
on Line 3will result in a forest. Since {ym+1} is not contained
in any of the trees in the forest, these will all trivially satisfy
the junction tree property and the connection of T into a tree
byLine 4will give a random junction tree for g(T+)[{y�}m

�=1],
which proves (i) in this case. For the (ii) part, we simply
observe that T+ can be constructed from T by first drawing
the empty subtree on Line 1 and then obtaining T+ at the
randomization on Line 6 in Algorithm 4.

Now, assume that {ym+1} /∈ V+. We proceed by show-
ing (i), i.e. that T ∈ Tm . We first show that T is a tree. Since
for every j ∈ {1, . . . , |V ′

+|}, all elements inNT+(d+
j )\ c j are

set to be neighbors of c j in T , for all j, k ∈ {1, . . . , |V ′
+|} it

follows that

(d+
j , d+

k ) ∈ E+ ⇐⇒ (c j , ck) ∈ E .

Hence, since T ′
+ is a subtree of T+, T ′ = (V ′, E ′) is a tree,

where V ′ = {c j }|V
′+|

j=1 and E ′ = {(c j , ck) ∈ E : (d+
j , d+

k ) ∈
E+}. Further, since elements ofNT+(d+

j ) \ c j are not mutual
neighbors, and parts of distinct subtrees of T , T ′ is a subtree
of T . As a consequence, we may assume that an arbitrary
path (of length at least 2) in T is of form

(a1, . . . , a�1 , cr1 , . . . , cr�2
, b1, . . . , b�3),

where �1 ≥ 0, �2 ≥ 0, �3 ≥ 0 and {cr j }�2j=1 ⊆ V ′. Let a and
b be the first and last element in this path, respectively. Let
the intersection Ia∼b be defined by (A.1).Wemust prove that
a∩b ⊂ Ia∼b.We know that in T+, the node a�1 was connected
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to either cr1 (in which case (cr1 , d+
r1) ∈ E+) or to d+

r1 and b1
was connected to either cr�2

(in which case (cr�2
, d+

r�2
) ∈ E+)

or to d+
�2
. First, assume that a�1 was connected to d+

r1 and b1
was connected to d+

�2
, then the a-b path in T+ is of form

(a1, . . . , a�1 , d+
r1 , . . . , d+

r�2
, b1, . . . , b�3).

Let

I +
a∼b =

⎛

⎝
�1⋂

j=1

a j

⎞

⎠ ∩
⎛

⎝
�2⋂

j=1

d+
r j

⎞

⎠ ∩
⎛

⎝
�3⋂

j=1

b j .

⎞

⎠

We know that, since T+ is a junction tree, a ∩ b ⊂ I +
a∼b.

Moreover, by Lemma 1 it holds that
⋂�2

j=1 d+
r j

= ⋂�2
j=1 cr j ∪

{ym+1}. But, ym+1 /∈ a and ym+1 /∈ b, thus Ia∼b = I +
a∼b so

thata∩b ⊂ Ia∼b. Now, note that I +
a∼b∩(cr1∩cr�2

) = I +
a∼b, so

that adding cr1 and cr�2
to the path does not change anything,

thus the junction tree property also holds in the case where
a�1 was connected to cr1 or b1 was connected to cr�2

.
To show (ii) in this case, observe that T can be expanded

to T+ by first drawing the subtree T ′ on Line 1. Then, by
identifying d j = d+

j ∩ c j and z j = ⋃
c∈NT ′+ (d+

j ) sd+
j ,c, there

is a positive probability for obtaining q j = d j \ z j for j ∈
{1, . . . , |V ′|} at Lines 13–15 (Algorithm 4). The neighbors
of d+

j for the resulting tree can now be set to be identical to
that in T+ by letting n j = NT+(d+

j ) \ c j \ V ′
+ on Line 31.

To show (iii) we simply observe that the only ver-
tex removed from T+ compared to T is ym+1 so that
g(T+)[{y�}m

�=1] = g(T ). ��
Proof of Theorem 7 To reduce some notation we define A :=
A(G) and A+ := A(G+). Consider the partitions of the
separator sets S(G) = A ∪ Ac and S(G+) = A+ ∪ Ac+.
In order to show that the factorisation holds it is enough to
establish that

1. S(G+) = A+ ∪ Ac,
2. Ts = (T+)s for s ∈ Ac,

where T and T+ are arbitrary junction tree representations of
the graphs G and G+ respectively. Note that, showing (1) is
equivalent to showing that Ac+ = Ac.

First let s ∈ Ac+. It suffice to show that s ∈ S(G) since
then it follows that s ∈ Ac. But since s is in S(G+) and was
not created by the expansion (s /∈ S�), it has to come from
G, i.e. s ∈ S(G). It follows that Ac+ ⊆ Ac.

For the other inclusion, let s ∈ Ac. It suffices to show that
s ∈ S(G+) since then it follows that s ∈ Ac+. But if s ∈ S(G)

and s is not subset of any separator in S(G+), it cannot have
been removed by the expansion meaning that s ∈ S(G+).
Thus, Ac ⊆ Ac+. It follows that Ac = Ac+.

To show 2, let s ∈ Ac and consider the tree Ts spanned by
the nodes in T associated with separators which are subsets
of s. Assume that the tree (T+)s , spanned by the nodes in T+
associated with separators which are subsets of s, is different
from Ts . This could only occur in two ways: (i) some new
separator s� that contains s has been created or (ii) some
separator containing s has been removed.However, (i) cannot
happen since then s� would be a new separator in S� that
would also contain s whichwas not true by assumption. Thus,
(ii) must hold. But the only way a separator s′ of Ts can be
removed is if a new separator s′ ∪ {ym+1} also is created. But
then s′ ∪{ym+1}would be a new separator in S� containing s,
leading to a contradiction. This implies that νG(s) = νG+(s).

��

Appendix B

Randomize junction tree at separator (Thomas and Green
(2009b)) Given any particular junction tree representation
T , we can choose uniformly at random from the set of equiv-
alent junction trees by applying the following algorithm to
the forests Fs(T ) defined by the distinct separators s in T .
Following the notation in Theorem 4, ri refers to the size of
subtree i .

Step 1. Label each vertex of the forest {i, j} where 1 ≤
i ≤ q and 1 ≤ j ≤ ri , so that the first index
indicates the subtree the vertex belongs to and the
second reflects some ordering within the subtree.
The ordering of the subtrees and of vertices within
subtrees are arbitrary.

Step 2. Construct a list v containing q − 2 vertices each
chosen uniformly at random with replacement from
the set of all p vertices.

Step 3. Construct a set w containing q vertices, one chosen
uniformly at random from each subtree.

Step 4. Find in w the vertex x with the largest first index
that does not appear as a first index of any vertex in
v. Because the length of v is 2 less than the size of
w, there must always be at least two such vertices.

Step 5. Connect x to y, the vertex at the head of the list v.
Step 6. Remove x from the set w, and delete y from the

head of the list v.
Step 7. Repeat from step 4 until v is empty. At this point w

contains two vertices. Connect them.
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