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Abstract

In this paper, we present a general framework for estimating regression models subject to a user-defined level of fairness.
We enforce fairness as a model selection step in which we choose the value of a ridge penalty to control the effect of
sensitive attributes. We then estimate the parameters of the model conditional on the chosen penalty value. Our proposal is
mathematically simple, with a solution that is partly in closed form and produces estimates of the regression coefficients that
are intuitive to interpret as a function of the level of fairness. Furthermore, it is easily extended to generalised linear models,
kernelised regression models and other penalties, and it can accommodate multiple definitions of fairness. We compare our
approach with the regression model from Komiyama et al. (in: Proceedings of machine learning research. 35th international
conference on machine learning ICML), vol 80, pp 2737-2746,2018), which implements a provably optimal linear regression
model and with the fair models from Zafar et al. (J Mach Learn Res 20:1-42, 2019). We evaluate these approaches empirically
on six different data sets, and we find that our proposal provides better goodness of fit and better predictive accuracy for
the same level of fairness. In addition, we highlight a source of bias in the original experimental evaluation in Komiyama
et al. (in: Proceedings of machine learning research. 35th international conference on machine learning (ICML), vol 80, pp

2737-2746, 2018).
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1 Introduction

Machine learning models are increasingly being used in
applications where it is crucial to ensure the accountability
and fairness of the decisions made on the basis of their out-
puts: some examples are criminal justice (Berk et al. 2021),
credit risk modelling (Fuster et al. 2020) and screening job
applications (Raghavan et al. 2020). In such cases, we are
required to ensure that we are not discriminating individuals
based on sensitive attributes such as gender and race, lead-
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ing to disparate treatment of specific groups. At the same
time, we would like to achieve the best possible predictive
accuracy from other predictors.

The task of defining a non-discriminating treatment,
though, does not come without challenges. The concept of
fairness itself, in fact, has been characterised in different ways
depending on the context. From an ethical and legal perspec-
tive, for example, it might depend on the type of distortion
we wish to limit, which in turns varies with the type of appli-
cation. Sometimes, we want to limit the adverse bias against
a specific group, while in other instances we wish to pro-
tect single individuals. Alongside the legal and philosophical
research debate, institutional regulations on the use of algo-
rithms in society have been proposed in the last decade: for
a comparison among the USA, EU and UK regulations, see
Cath et al. (2018). The European Commission has recently
released the first legal framework for the use of artificial intel-
ligence (European Commission 2021), which is now under
revision by the member states.

At the same time, there has been a growing interest
towards fairness-preserving methods in the machine learning
literature. From a statistical perspective, different charac-
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terisations of fairness translate into different probabilistic
models, which must then take into account the characteristics
of the data they may be applied to (say, whether the variables
are continuous or categorical, or whether a reliable ground
truth is available or not). Despite this variety, all characterisa-
tions of fairness follow one of the two following approaches:
individual fairness or group fairness (Del Barrio et al. 2020).
The former requires that individuals that are similar receive
similar predictions, while the latter aims at obtaining pre-
dictions that are similar across the groups identified by the
sensitive variables.

Group fairness has been explored the most in the liter-
ature. When defined as statistical or demographic parity,
it requires that predictions and the sensitive variables are
independent. If X is a matrix of predictors, S is a matrix
of sensitive attributes, y is the response variable and y are
the predictions provided by some model, statistical parity
translates into y being independent of S. Usually the require-
ment of complete independence is too strong for practical
applications, and it is relaxed into a constraint that limits the
strength of the dependence between S and y. Statistical par-
ity is a good definition when a reliable ground truth is not
available: otherwise, a perfect classifier on a data set which
is unbalanced in the outcome across groups would possi-
bly not satisfy the definition. While this is usually seen as a
weakness of this fairness definition, we must remember that
historical data often display some sort of bias and allowing
the perfect classifier to score optimally in the chosen met-
ric would mean to preserve it in future decisions. In light of
this, definitions that do not rely on ground truth are known
as “bias-transforming”, while notions that condition on the
truth are known as “bias-preserving” (Wachter et al. 2021).
A common bias-preserving definition of fairness is equality
of opportunity, which requires the predictions ¥ to be inde-
pendent from the sensitive attributes S after conditioning on
the ground truth y. In the case of a binary classifier and a
single categorical sensitive variable, it is commonly known
as equality of odds and translates into having the same false
positive and negative rates across different groups.

Learning fair black-box machine learning models such as
deep neural networks provides many hard challenges (see, for
instance, Choras et al. 2020) that are currently being inves-
tigated. For this reason, a large part of the literature focuses
on simpler models. In many settings, such models are prefer-
able because there are not enough data to train a deep neural
network, because of computational limitations, or because
they are more interpretable. Most such research focuses on
classification models. For instance, Woodworth et al. (2017)
investigated equality of odds for a binary sensitive attribute;
Zafar et al. (2019) investigated the unfairness of the decision
boundary in logistic regression and support-vector machines
under statistical parity; Russell et al. (2017) explored coun-
terfactual fairness in graphical models; Agarwal et al. (2018)
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used ensembles of logistic regressions and gradient-boosted
trees to reduce fair classification to a sequence of cost-
sensitive classification problems. For a review on the vast
field of fairness notions and methods, see Mehrabi et al.
(2021), Del Barrio et al. (2020) and Pessach and Shmueli
(2020). In our work, we will focus on models that satisfy
statistical parity.

Fair regression models (with a continuous response vari-
able) have not been investigated in the literature as thoroughly
as classifiers. Fukuchi et al. (2013) considered a generative
model that is neutral to a finite set of viewpoints. Calders
et al. (2013) focused on discrete sensitive attributes that may
be used to cluster observations. Pérez-Suay et al. (2017) used
kernels as a regulariser to enforce fairness while allowing
nonlinear associations and dimensionality reduction. Agar-
wal et al. (2019) chose to bound the regression error within
an allowable limit for each group defined by the sensitive
attributes; Berk et al. (2017) achieved a similar effect using
individual and group penalty terms. Chzhen et al. (2020)
used model recalibration on a discretised transform of the
response to leverage fairness characterisations used in classi-
fication models with a single binary sensitive attribute. Mary
et al. (2019) used the notion of Rényi correlation to pro-
pose two methods that achieve statistical parity and equality
of odds. Steinberg et al. (2020) implemented a similar idea
with mutual information.

Komiyama et al. (2018) proposed a quadratic optimisation
approach for fair linear regression models that constrains
least squares estimation by bounding the relative propor-
tion of the variance explained by the sensitive attributes,
falling into the statistical parity framework. In contrast with
the approaches mentioned above, both predictors and sen-
sitive attributes are allowed to be continuous as well as
discrete; any number of predictors and sensitive attributes
can be included in the model, and the level of fairness can
be controlled directly by the user, without the need of model
calibration to estimate it empirically. In the following, we
call this approach NCLM (as in non-convex linear model).
This approach comes with theoretical optimality guarantees.
However, it produces regression coefficient estimates that are
not in closed form and whose behaviour is not easy to inter-
pret with respect to the level of fairness, and it is difficult to
extend it beyond linear regression models.

These limitations motivated us to propose a simpler fair
ridge regression model (FRRM) which is easier to estimate,
to interpret and to extend. At the same time, we wanted to
match the key strengths that distinguish Komiyama et al.
(2018) from earlier work:

1. The ability to model any combination of discrete and con-
tinuous predictors as well as sensitive attributes;

2. The ability to control fairness directly via a tuning param-
eter with an intuitive, real-world interpretation.
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We achieve these aims by separating model selection and
model estimation. Firstly, we choose the ridge penalty to
achieve the desired level of fairness. Secondly, we estimate
the model parameters conditional on the chosen penalty
value. This is in contrast to other methods in the literature
that do not have a separate model selection phase.

The paper is laid out as follows. In Sect. 2, we briefly
review the NCLM approach from Komiyama et al. (2018),
its formulation as an optimisation problem (Sect. 2.1), and we
highlight a source of bias in its original experimental valida-
tion (Sect. 2.2). In Sect. 3 we discuss our proposal, FRRM,
including its practical implementation (Sect. 3.1). We also
discuss an analytical, closed-form estimate for ridge penalty
and for the regression coefficients of the sensitive attributes in
Sect. 3.2. We discuss several possible extensions of FRRM,
including that to generalised linear models (FGRRM) and to
different definitions of fairness in Sect. 4. In Sect. 5 we com-
pare FRRM with NCLM and with the approach proposed by
Zafar et al. (2019), investigating both linear (Sect. 5.1) and
logistic (Sect. 5.2) regression models. We also consider the
models from Steinberg et al. (2020) and Agarwal et al. (2018)
in Sect. 5.3, insofar as they can be compared to FRRM given
their limitations. Finally, we discuss the results in Sect. 6.

2 A nonconvex optimisation approach to
fairness

Let X be a matrix of predictors, S be a matrix of sensitive
attributes and y be a continuous response variable. Without
loss of generality, we assume that all variables in X, S and y
are centred and that any categorical variables in X and S have
been replaced with their one-hot encoding. Komiyama et al.
(2018) start by removing the association between X and S
using the auxiliary multivariate linear regression model

X =BTS +U.

They estimate the regression coefficients B by ordinary least
squares (OLS) as Bors = (STS)’ISTX, thus obtaining the
residuals

U=X-BJS. (1)

Due to the properties of OLS, S and U are orthogonal and
COV(S, ﬁ) = (), where 0 is a matrix of zeroes. ﬁgLsX can
then be interpreted as the component of X that is explained
by S, and U as the component of X that cannot be explained
by S (the de-correlated predictors).

Komiyama et al. (2018) then define their main predictive
model as the OLS regression

y =Sa +UB +e, 2)

where « is the vector of the coefficients associated with
the sensitive attributes S, and B is associated with the de-
correlated predictors U.In keeping with classical statistics,
they measure the goodness of fit of the model with the coeffi-
cient of determination R% (e, B), which can be interpreted as
the proportion of variance explained by the model. Further-
more, R%(et, B) is also proportional to the cross-entropy of
the model, which is a function of 1 — Rz(a, B). Since S and
U are orthogonal, and since (2) is fitted with OLS, R%(«, B)
decomposes as

VAR®E)  VAR(Se + Up)

VAR(Y)  VAR(Sa + UB + ¢)

3 oTVAR(S)a + BT VAR(U)B

"~ aTVAR(S)a + BT VAR(U)B + VAR(e)’

R*(e, B) =

3)

where ¥ are the fitted values produced by OLS, and VAR (ﬁ),
VAR (S) are the covariance matrices of X and S, respectively.
Both matrices are assumed to be full rank. The proportion
of the overall explained variance that is attributable to the
sensitive attributes then is

VAR(Sa) a’ VAR(S)a
VAR®) ~ «T VAR(S)a + BT VAR(U)B’
(4)

R, B) =

Komiyama et al. (2018) choose to bound Rg (e, B) to a value
r € [0, 1] that determines how fair the model is. Setting
r = 0 corresponds to a completely fair model (that is, sta-
tistical parity: ¥ is independent from S) because it implies
oT VAR(S)a = 0, which can only be true if all regression
coefficients « are equal to zero. On the other hand, set-
ting » = 1 means the constraint is always satisfied because
Ré (e, B) < 1 by construction.

2.1 The optimisation problem

Fitting (2) subject to Rg (e, B) < r by OLS can be formally
be written as

min B ((y —?)2)

(5)
s. t. Rg(a, B)<r
which in light of (3) and (4) takes the form
%1 a" VAR(S)x + BT VAR(U)B
—2 (E(ySTa) + E(yﬁTﬂ)) (6)

s.t. (1 —r)a’ VAR(S)a — BT VAR(U)B 0.

The optimisation in (6) is a quadratic programming problem
subject to quadratic constraints, and it is not convex in (e, ).
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Instead of solving (6), Komiyama et al. (2018) convert it into
the convex quadratic problem

min y
a.py

T o11[ VARS) 0 «
st [« ][ 0 VAR(ﬁ)} [ﬁ}
~2[BGS) EGD)] |5 | - 7 <0, @

o

B

VAR(S 0]
O e |
o
B

—2[EGS) EGU)] | 2| — ¥ <0,

using previous results from Yamada and Takeda (2018). (y
is an auxiliary parameter without a real-world interpreta-
tion.) The relaxed problem in (7) yields an optimal solution
(oNCLM, ,/B\NCLM) for (6), under the assumptions discussed
earlier as well as those in Yamada and Takeda (2018). It also
has two additional favourable properties: it can be solved by
off-the-shelf optimisers (the authors used Gurobi) and it can
be extended by replacing VAR(S) and VAR(fj) with more
complex estimators than the respective empirical covariance
matrices. Two examples covered in Komiyama et al. (2018)
are the use of kernel transforms to capture nonlinear relation-
ship and regularisation adding a ridge penalty term.

2.2 Avoiding bias in the auxiliary model

A key assumption that underlies the results in the previous
section is the use of OLS in creating the de-correlated predic-
tors in (1): it ensures that Uis orthogonal to S and therefore
that is does not contain any information from the sensitive
attributes. However, Komiyama et al. (2018) in their exper-
imental section state that “The features U were built from
X by de-correlating it from S by using regularised least
squares regressmn” ! where the “regularised least squares
regression” is aridge regression model. This divergence from
the theoretical construction leading to (7) introduces bias in
the model by making U correlated to S in proportion to the
amount of regularisation.

As noted in van Wieringen (2018), the residuals in a ridge
regression are not orthogonal to the fitted values for any
penalisation coefficient A > 0. Let U be the ridge estimate
of U, that is, U=Xx- ﬁ;\X. Let X; be the ith column of X
(that is, one of the predictors) and ﬁi be the corresponding
column of U. Then

1 We substituted their notation with ours for clarity.
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U = X; —S(S"S + AD~'STx;

while the corresponding OLS estimate from Uis
U = X; —SSTS)~'sTx;.

Their difference is

U, — U =SSTS)~'STx; — S(STS + AD~!8Tx;

=S [(STS)—1 — (STS + 7\1>—1] STx;. 8)

Given the spectral decomposition STS = A3AT, where 3 =
diag(/;), (8) can be rewritten as

b -0,=S [A3—1AT — (A3AT + 7\1)—1] STx,

1 1
:S[Adiag(l' l_+}\>AT]STX1,
j j

thus giving

- 1 1
ST(U; — U;) =S™S |Adiag | — — AT|STx
(Wi =0 [ ]ag(lj lj+7\) } ’

1
= A3ATA diag (— - > ATSTx;
I 1j+A
=Adiag (1 - —,— |ATSTx
e ( lj+ 7\) ’

Since STﬁ, = ST(ﬁi — (7,~) due to STI7,~ = 0, and
COV(S, U;) « STU;, we have that COV(S, U;) vanishes as
A — 0and By — BoLs. On the other hand, | COV (S, U;)]
becomes increasingly large as A— 0, eventually reaching
COV(S, X;). If we replace U with U the denominator of
RZ(at, B) then becomes

= VAR(Se + UB)
— VAR(Sa) + VAR(UB)

VAR )
—2COV(Sa, UB)

which can be either larger or smaller than that of the R§ (e, B)
in (4).

Example 1 Consider three predictors X = {X1, X5, X3} and
three sensitive attributes S = {S1, S, S3} distributed as

X 0 1 0.303030.30.3

X5 0 03 1 03030303

X3 | N 0 0303 1 030303

S1 0171030303 1 0303 ’
Y 0 03030303 1 0.3

S3 0 0303030303 1
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Fig.1 Biasintroduced by penalised regression in Rg (e, B). The shaded

area corresponds to the range of optimal values for A used in computing
B

giving the response variable y by way of the linear model
y=2X1+3Xo+4x3+5S1 +65+7S3+¢

with with independent and identically distributed errors &; ~
N(0, 100). Hence B = [2,3,4]T and @ = [5, 6, 7]" using
the notation established in (2).

Figure 1 shows the ratio between

VAR (S&ncLm)
VAR (Setncim) + VAR(UBnerm) —
2 COV (Satncim: UBnerm)

and

VAR (Setncim)
VAR (Satncim) + VAR(UBneLm)

for various values of the penalisation coefficient A and r =
0.01, 0.02, 0.05, 0.10. The shaded area represents the range
of the optimal As for the various 0, i, chosen as those within 1
standard error from the minimum in 10-fold cross-validation
as suggested in Hastie et al. (2009). The relative difference
between the two is between 3 and 5% for small values like
r = 0.01, 0.02, and it can grow as large as 16% for r =
0.10. Note that variables are only weakly correlated in this
example; higher degrees of collinearity will result in even
stronger bias.

Using ridge regression to estimate (1) can be motivated
by the need to address collinearity in S, which would make

§OLS numerically unstable or impossible to estimate. As an
alternative, we can replace S with a lower-dimensional, full-
rank approximation based on a reduced number of principal
components in both (1) and (7). This satisfies the assumption
that VAR(S) is full rank in the process of deriving (7).

3 An alternative penalised regression
approach

The approach proposed by Komiyama et al. (2018) has four
limitations that motivated our work.

1. The dimension of the optimisation problem that is solved
numerically in (7) scales linearly in the number of vari-
ables.

2. The formulation of (7) allows us to use numeric solvers
that can handle quadratic programming with quadratic
constraints, but cannot be translated to regression models
other than a linear regression.

3. The second constraint in (7) is undefined in the limit case
r = 0 and can potentially make (&NcrM, ﬁNCLM) numer-
ically unstable as r — 0.

4. The behaviour of the estimated regression coefficients is
not intuitive to interpret. The constraints in (7) are func-
tions of both & and B: as a result, @ncLy and ﬁNCLM
are not independent as they would be in an unconstrained
OLS regression (because S and Uare orthogonal). Chang-
ing the value of the bound r then affects the coefficients
ENCLM’ shrinking or inflating them, as well as the @NxcLM-

Example 1 (continued) Consider again the example from
Sect. 2.2. The estimates of the regression coefficients given
by NCLM over r € [0, 1] are shown in the profile plot in Fig.
2. As expected, we can see that we have all ancLy converge
to zero as r — 0 because EZITICLM VAR (S)ancim — O.
For r = 0, we can say that axcLy = 0 for continuity.
As r increases, all @ncpm gradually increase in magnitude.
The constraint becomes inactive when Ré (@oLs, EOLS) <r,
hence NCLM reverts back to a standard OLS regression
model for large values of r. As a result, all coefficients stop
changing once r > 0.85.

The behaviour of the ENCLM is, however, difficult to
explain on an intuitive level. They do not change monoton-
ically as r increases, unlike what happens, for instance, in
ridge regression (Hoerl and Kennard 1970) or the LASSO
(Tibshirani 1996). They first increase above EOLS’ which
helps in reducing Ré(&NCLMaENCLm) by increasing its
denominator. They then plateau around » = 0.3, and start
decreasing  as Rg(&NCLM, ENCLM) is allowed to
grow.

@ Springer
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r

Fig.2 Profile plot for the coefficients estimated by NLCM as a function
of the bound r for the example in Sect. 3

3.1 Fairness by ridge penalty

In order to overcome the issues of NCLM we just discussed,
we propose an alternative constrained optimisation frame-
work we call the fair ridge regression model (FRRM). The
key idea behind our proposal is to solve the constrained opti-
misation problem stated in (5) by imposing a ridge penalty
on « while leaving 8 unconstrained. Formally,

min  E (v-97)

st [lell3<r(r)

(€))

where #(r)>0 is such that Ré (o, B) <r by bounding
oT VAR(S)a through ||a||%. Equivalently, we can write (9)
as

(@rRRM, BrrRRM) = argn;in ly — Se — UBII3 + A(r) ll(80)
o,

where A(r) > 0 is the value of the ridge penalty that makes
Rg(oc, B) < r. There is a one-to-one relationship between the
values of 7(r) and A(r), so we choose to focus on the latter.
Asr — 0, A(r) should diverge so that all @grrM converge
to zero asymptotically and & aFRRM VAR(S)drrrM — O as
in NCLM. Note that zero is a valid value for r in (9) while
it is not for NCLM in (7). Furthermore, note that (9) is not
specifically tied to Ré (o, B) (we will show how to replace it
with different fairness constraints in Sect. 4.3) and that it can
be easily reformulated with other penalties (which we will
discuss in Sect. 4.2).

@ Springer

The IB\FRRM are now independent from the &prrym because
the ridge penalty does not involve the former. Starting from
the classical estimator for the coefficients of a ridge regres-
sion (as it can be found in van Wieringen (2018) among
others), and taking into account that S and ﬁ are orthogonal,
it is easy to show that

O FRRM ST = 7\(}’)10 ! ST
] = (&) s+ [9]) (&)
C[STS+AG)T 0 7' [sT
= 0 oro| |oT|Y

(STS+AmL) STy
[ OT0)- I%T . (11)

The /B\FRRM can be estimated in closed form, only depend
on ﬁ, and do not change as r varies. The aprry depend on
S and also on r through A(r), and they must be estimated
numerically. However, the form of @grrym in (11) makes it
possible to reduce the dimensionality and the complexity
of the numeric optimisation compared to NCLM. We can
estimate them as follows:

1. Apply (1) to S, X to obtain S, U.
2. Estimate Bpppy = (UTU) 1 UTy.
3. Estimate @ors = (STS)~'STy. Then:

(a) If Ri(@oLs. BoLs) <, set GrrrM = @oLs.-
(b) Otherwise, find the value of A(r) that satisfies

r =T ~
o' VAR(S)a = -— Brrem VARU)Brrpy - (12)

and estimate the associated @grry in the process.

As far as determmmg the value of A(r) that results in
R32 §(@FRRM: ﬂFRRM) < r is concerned, we can treat ﬁFRRM
as a constant that can be pre-computed from U indepen-
dently of S and r. Furthermore, @prrM is available as a
closed-form function of r through A(r), and we know that
O FRRM VAR(S)aFRRM — 0 monotonically as A(r) — oo
from the fundamental properties of ridge regression. As a
result, (9) is guaranteed to have a single solution in A(r) which
can be found with a simple, univariate root-finding algorithm.
Selecting A(r) can be though of as model selection, since
A(r) is a tuning parameter that affects the distribution of the
arrrM. Estimating the @prrM given A(r) is then a separate
model selection phase.

In the particular case that Ré (@oLs, EOLS) < r, a trivial
solution to (12) is to set A(r) = 0 and thus ®FrrM = ®OLS:
if the constraint is inactive because the bound we set is
larger than the proportion of the overall variance that is
attributable to the sensitive attributes, then the OLS estimate
of B minimises the objective. This agrees with the behaviour
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of NCLM shown in Fig. 2. On the other hand, if the constraint
is active the objective is minimised when T VAR(S)« takes
is largest admissible value, which implies Ré (a, B) = 7.
Rewriting (4) as an equality and moving all known terms to
the right hand gives (12).

In the general case, the ridge penalty parameter is defined
on R*. However, in (12) we can bound it above and below
using the equality. From Lipovetsky (2006), we have that in
aridge regression with parameter A

. li +2A(r)
TVAR(S)a = y'SA d LT ) ATST
a Sa =y iag TESYO)E y

where A3AT = A diag(/; YAT is again the eigenvalue decom-
position of VAR(S). If we replace all the /; on the right-hand
side with the smallest (respectively, the largest) eigenvalue,
we can bound e VAR(S)« in

|: Imin + 2A(r)

Imax + 2A(r) ]
(Imin + 7\(7’))2

' (Imax + )\(,))2

where d = y'SAATSTy. We can then replace the bounds
above and solve (12) as an equality in A(r) to obtain upper
and lower bounds for the ridge penalty parameter. If we let

c= fTrEIT;RRM VAR(ﬁ)EFRRM, the resulting equations are
Imin + 2A(r) Imax + 2A(r)

5 (= and ————=c=

(Imin +A(r)) (Imax + A(r))

which are quadratic equations with one positive solution
each. (Clearly, the respective negative solutions are not
admissible since A(r) > 0.)

Example 1 (continued) Consider one more time our exam-
ple: the regression coefficients (€rrrM, EFRRM) are shown
in Fig. 3. The regression coefficients @prrm for S, S
and S3 still converge to zero as r — 0, ensuring that
OERRM VAR(S)EZERRM — 0, as in Fig. 2. However, the coef-
ficients EFRRM for X1, X2 and X3 donotchange as r changes:
they are equal to their OLS estimates for all values of r as
implied by (11).

3.2 Analytical solution for independent S

In some instances, it is possible to solve (10) exactly and
in closed form instead of relying on numerical optimisation.
This allows us to better explore the behaviour of A(r) and
arrrM. as well as the effect of relaxing the constraint of
statistical parity.

Assume that S is a ¢ x n matrix of sensitive attributes which
are mutually independent, thatis, each S; is independent of S;
foralli, j =1,...,q,i # j.Furthermore, assume that each
S is scaled to VAR(S;) = 1in addition to being centred. Let
X, instead, be a p x n matrix of predictors which are allowed

S3

S1

us

coefficients

u2

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

r

Fig.3 Profile plot for the coefficients estimated by FRRM as a function
of the bound r for the example in Sect. 3

to be correlated. Then, it is possible to write the solution of
(12) with respect to A in closed form.

Let ¢ be defined as ¢ := IB\ERRM VAR(ﬁ)EFRRM (note
that this is slightly different from the previous definition of
¢). Then (12) becomes

1 T 1 r
L,STy) I, (——1I,STy ) = 2,
(n+)\" y) q<n+7\" y) 11—

using the fact that STS = nl,, where I is the identity matrix
of size g. Solving the matrix products we get

q 5 ,
Z(S]Ty) —1 _rc2(11+?\)2 =0,
j=1

which has solution

IS"yII3

N (=]

(13)

where ||STy||% = (;:1(S;Fy)2 is the squared Euclidean
norm in R”. Plugging (13) into (12) gives

r STy

— = (14)
1 —r|ISTyl|l3

OFRRM = €

From (14), we see that the @prrM increase in magnitude (that
is, move away from zero) as a function of r.

As we noted in Sect. 3.1, » = 0 satisfies statistical parity
exactly: @prrM = 0 and therefore ¥ is independent of S. As r
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increases, eprrM grows and so does the correlation between
yandS:

COV (aprrMS + EFRRMﬁ, S)

JVARDI,

OFRRM

. —~ =~
\/ @2zrum VAR(S) + Brrry VAR(U)

COR(, S) =

which is again proportional to /r/(1 — r) and equal to 0
when r = 0.

If the sensitive attributes are not mutually independent,
solving (12) exactly is not possible in general and we revert
to the root-finding algorithm described in Sect. 3. Even with
just two sensitive attributes S = [S], S»], the right hand side
of (12) becomes:

AT Tn+A ¢ 77'T1 €7n+r ¢ 774
[B] [ C n+?\j| [51“ Cc n+)\] [B]
_ (A(n+A) —BC)? 4+ (B(n+A) — AC)?

N (1 +1)? — C2)?
2C/n(A(n +A) — BC)(B(n +A) — AC)
((n+N)?2 —C2)?

(n +N)? (A% + B2+ 2ABC/n)
- (n+ )2 =€)
2C(n+A) (2AB + CA?/n + CB?/n)
- (1 +2)? — €22
C? (A? + B> 4+2ABC/n)
(n+N)?—C?)?

where A = STy, B = S]y, C = SIS, = 57 for brevity.
Equating the expression above to c¢?r /(1 —r) will give a 4th-
degree polynomial in A. The solutions to this equation can
be computed exactly, but the resulting expression for A does
not provide any immediate insights.

4 Possible extensions

FRRM has a simple and modular construction that can
accommodate a wide range of extensions: some examples
are modelling nonlinear relationships, incorporating differ-
ent and more complex penalties, using different definition of
fairness and handling different types of responses with gener-
alised linear models. The separation between model selection
(the choice of A(r)) and model estimation (estimating @ rrRrM
and ﬁFRRM) makes it possible to change how either or both
are performing drawing extensively from established statis-
tical literature.

@ Springer

4.1 Nonlinear regression models

We can incorporate kernels into FRRM by fitting the model
in the transformed feature spaces Zg(S) and Zﬁ(ﬁ) pro-
duced by some positive kernel function, as in Komiyama
et al. (2018). Combining the kernel trick with a ridge penalty
produces a kernel ridge regression model (Saunders et al.
1998), which can be estimated efficiently following Zhang
et al. (2015). Furthermore, this approach suggests further
extensions to Gaussian process regressions, since the two
models are closely related as discussed in Kanagawa et al.
(2018).

4.2 Different penalties

We may also want to regularise the 8 coefficients to improve
predictive accuracy and to address any collinearity present
in the data. One option is to add a ridge penalty to the f
in addition to that on the «. Ideally, without making &rrrM
and EFRRM dependent to preserve the intuitive behaviour of
the regression coefficient estimates produced by FRRM. A
simple way is to add a second penalty term to (10),

(CFRRM, EFRRM)
= argn;in ly — Se — XBI3 + A1 () llell3 + A2 1B,
o,

resulting in

BrrrM

|:§FRRM:| _ (STS + A, (F)I)il STy (15)
OO+ r0) " 0Ty |

This is sufficient to ensure there are no unaddressed collinear-
ities as S and U are orthogonal by construction.

Example 1 (continued) Figure 4 shows the estimates (€FrrM,
EFRRM) obtained with A, = 10 as a function of r. If we
compare these new coefficients (solid lines) with those from
Fig. 3 (dashed lines with the same colours), we can see
that the EFRRM are still independent from r. At the same
time, they have been shrunk towards zero and that means
that EFRRM VAR(ﬁ)ﬁERRM is also smaller than before. As a
result, we need a larger A(r) to produce estimates of ®prrM
small enough to satisfy the bound in (4). The &prrpM in Fig.
4 are smaller than the corresponding &prrm in Fig. 3.

It is also interesting to note that (9) can be implemented
with penalised models other than a ridge regression. Any
model that can shrink the coefficients associated with the sen-
sitive attributes towards zero, thus decreasing the proportion
of variance they explain in the response, can control the value
of the bound Rg(oe, B) as a function of the tuning parameter.
One possibility is to replace the ridge penalty with a LASSO
penalty in order to perform feature selection on the sensitive
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coefficients

Fig.4 Regression coefficients estimated by FRRM with Ay = 10 (solid
lines) compared to those estimated without penalising the s (dashed
lines, reported from Fig. 3). Lines in the same colour correspond to the
same coefficient. (Color figure online)

attributes, a problem also investigated in Grgi¢-Hlaca et al.
(2018), Kazemi et al. (2018) and Khodadadian et al. (2021).
Or we can combine it with the ridge penalty to obtain an
elastic net model (Zou and Hastie 2005), which will often
provide better predictive accuracy.

4.3 Different definitions of fairness

The modular approach to fairness used in (9) makes it possi-
ble to change the definition of fairness and its implementation
in the bound used in model selection without affecting the
estimation of « and S.

For instance, (10) uses Rg(oc, B) < r as abound to enforce
fairness as defined by statistical parity. But we can replace it
with a similar bound for equality of opportunity, such as

VAR(S¢)

2 _
Reo @) = GaR v + 5¢)

where ¥ is defined as before and ¢, v are the coefficients of
the regression model

V=YV +S¢+e".

If equality of opportunity holds exactly, ¥ is independent from
S giveny and COV (Y, S | y) = 0. Then all ¢ are equal to zero
and R%O(gb Y¥) = 0. FRRM can acl achieve that asymptotlcally
as A(r) — oo because y — UﬁFRRM and U is orthogo-
nal to S. If, on the other hand, A(r) — O the constraint

becomes inactive because the &prrM converge to the corre-
sponding @ors. For finite, positive values of A(r), we have
that ¥ = UBgrry + S&rrry and therefore | COV (Y, S | y)|
will decrease as A(r) increases. This allows us to control
R%O(q), ¥) in the same way as we did Rg(a, B) in Sect. 3.1.

A further advantage of enforcing fairness in this way is
that we can control both statistical parity and equality of
opportunity as a function of r (through A(r)) at the same
time. So, for instance, we could replace the constraint in (9)
with max{Rz(oc B), R20(¢ Y)} or a convex combination
sz(oz B)+(1— w)R: 50(®, ¥), w € (0, 1). Few approaches
in the literature combine different definitions of fairness in
the same model; one example is Berk et al. (2017).

We can also choose to enforce individual fairness. Fol-
lowing along the lines of Berk et al. (2017), we can start by
defining a penalty function

fle,y,S) = Zi,j d(yi, yj)(sie —sje)?

that penalises models in which individuals i and j with pro-
files (y;, w;, s;) and (y;, u;, s;) receive differential treatment
in proportion to (S; et —S joc)z. If two individuals take the same
values for the sensitive attributes, s; = s; and their term van-
ish from the sum. If s; # s, the corresponding term increases
with both the difference in the outcomes, measured by some
distance d(y;, y;), and with the difference in their sensitive
attributes s; and s;.

If A(r) — oo, then (s;@FrrM — Sj@FrRRM)> — O because
all coefficients in @prrM are shrunk towards zero. As a result,
f(@grrM, ¥, S) converges to zero as well. On the other hand,
if A(r) — O then f(aprrM,Y.S) — f(aoLs,y,S) to take
its maximum value.

For consistency with Rg(oc, B) and R%O(oc, B), we then
construct the constraint to use in (9) by normalising f (e, y, S)
as

f(@FrrM, Y. S)
Dfp=——1—"-—

f@oLs,y.S)
so that the bound r is defined in [0, 1] as before. This is
convenient for interpretation and to include Dy in a convex
combination with other fairness definitions.

Example 1 (continued) Consider the example from Sect. 2.2
one last time. Figure 5 shows the estlmates of R20(¢ W)
and Dig as a function of RZ (thRRM ﬂFRRM) =r €
[0, 1]. For the sake of the example we choose d(y;, yi) =
lyi — yj| in Dip. As r increases, that is, as A(r) — 0,
all of R2 (OCFRRM, ﬂFRRM) REO(qS Y¥) and Dy increase
monotonlcally. Hence any function that preserves their joint
monotonicity can be used to enforce a user-specified com-
bination of statistical parity, equality of opportunity and
individual fairness.
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Fig. 5 Réo(q),W) (green) and Dip (orange) as a function of
R3@prrM., Brrry) = 7 (yellow). (Color figure online)

4.4 Generalised linear models

Another possible extension of FRRM is to adapt (10) to gen-
eralised linear models (GLMs; McCullagh and Nelder 1989)
including Cox’s proportional hazard models (Cox 1972).
This makes it possible to introduce fair modelling in the
extensive range of applications in which GLMs are a de facto
standard while still being able to follow the best practices
developed in the literature for those applications (signifi-
cance testing, model comparison, confidence intervals for
parameters, meta analysis, etc.).

Minimising the sum of squared residuals in a linear regres-
sion is a particular case of minimising the deviance D(-) (that
is, —2 times the log-likelihood) of a generalised linear model,
which we can constrain to ensure that we achieve the desired
level of fairness. Starting from the general formulation of a
GLM

E(y) = i, =g ', 1 = Sa + U,

where g(-) is the link function, we can draw on Friedman
et al. (2010) and replace (10) with

(@krrM, Brrry) = argmin D(a, B) + A lleclf3. (16)

a.p
The ridge penalty A(r) can then be estimated to give

D@, B)=DO.B) _
D(a,B) — D(0,0) =

7)
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We call this approach a fair generalised ridge regression
model (FGRRM).

For a Gaussian GLM, (16) is identical to (10) because
the deviance is just the residual sum of squares, and (17)
simplifies to Ré(a, B) <r. For a Binomial GLM with the
canonical link function y = log(x/(1—p)), that is, alogistic
regression, (17) bounds the difference made by S« in the
classification odds. For a Poisson GLM with the canonical
link » = log u, that is, a log-linear regression, (17) bounds
the difference in the intensity (that is, the expected number
of arrivals per unit of time).

In the case of Cox’s proportional hazard model for survival
data, we can write the hazard function as

h(t; U, S) = ho(t) exp (S + UB)

where hq(¢) is the baseline hazard at time ¢. The correspond-
ing deviance can be used as in (16) and (17) to enforce
the desired level of fairness, bounding the ratio of haz-
ards through the difference in the effects of the sensitive
attributes. The computational details of estimating this model
are described in Simon et al. (2011).

Friedman et al. (2010) and Simon et al. (2011) describe
how to fit GLMs and Cox’s proportional hazard models with
an elastic net penalty, which is a further extension to the
application of FRRM to this class of models. We may also
consider adapting one of the several pseudo-R? coefficients
available in the literature, such as Nagelkerke (1991)’s or
Tjur (2009)’s, to replace (17).

Finally, we note that the EFGRRM are not constant over r in
GLMs with a fixed scale factor (such as logistic and log-linear
regressions): their values depend on the residual deviance,
which changes as a function of r through the @gGrrM. This
phenomenon is described in detail in Mood (2010), and we
illustrate it with the example below.

Example 2 Consider again the X and S from Example 1, this
time in the context of a logistic regression with linear com-
ponent

n=1+05X;+0.6X,+0.7X3 4+ 0.8X4 +0.9X¢.5 + Xs.

The estimates of the regression coefficients given by FGRRM
overr € [0, 1] are shown in Fig. 6. The &pgrrM are all equal
to zero when r = 0, and they gradually increase to reach
corresponding @oy s as in Fig. 3. In doing that, they gradually
explain more and more of the deviance of the model, which
forces the EFGRRM to increase as well. However, they increase
monotonically, unlike the ﬁNCLM, with a speed that matches
that of the @rgrrM. The change in scale is driven by the
implicit constraint that a standard logistic distribution has a
fixed variance: any increases in the variance explained by the
®FGRRM also affect the variance of the residuals, thus forcing
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Fig.6 Profile plot for the coefficients estimated by FGRRM as a func-
tion of the bound r for the model in Example 2

a rescaling of all coefficients to satisfy the constraint. We
find this behaviour more intuitive to explain than NCLM’s
because it closely matches that of an unconstrained logistic
regression as described in Mood (2010). The estimates of the
B produced by the fair logistic regression model proposed
by Zafar et al. (2019), which we will use in the experimental
validation in Sect. 5.2, change non-monotonically in 7 like
the ENCLM (figure not shown for brevity). Note that using
a quasi-Binomial GLM would remove the constraint on the
scale factor and thus allow the EFGRRM to be constant with
respect to r.

5 Experimental evaluation

We evaluate the performance of F(G)RRM using NCLM and
the fair regression models from Zafar et al. (2019) as base-
lines. We will label the latter as ZLM (Zafar’s linear model)
and ZLRM (Zafar’s logistic regression model) in the follow-
ing. All six data sets used in this section are available in the
fairml R package (Scutari 2021); we refer the reader to its
documentation for further details on each data set including
how they have been preprocessed. F(G)RRM, NCLM and
ZL(R)M are also implemented in fairml.

We choose ZL(R)M because it is a current, strong baseline
(Zafar et al. 2019 shows that it outperforms four other meth-
ods from recent literature) and because it uses a definition of
fairness that is comparable to that in (17):

— ZLRM controls the effect of the sensitive attributes on
the response by bounding | COV (7, S;)| marginally for
each S;;

— ZLM equivalently bounds | COV(y, S;)|, since =¥ in
a linear regression model.

If |COV(7, S;)| = 0, then ¥ is independent from S;, giving
statistical parity. If | COV (7, S;)| > 0, then its magnitude
controls the proportion of the variance of 7 explained in
the simple regression model of 7 against S;. This propor-
tion maps to the proportion of explained variance directly in
ZLM, and to the proportion of explained deviance through
the link function g(-) in ZLRM. The key difference between
ZL(R)M and F(G)RRM is that ZI.(R)M controls the overall
proportion of variance or deviance explained by the sensitive
attributes marginally for each S;, while F(G)RRM controls
it jointly for all ;.

Overall, we find that F(G)RRM is at least as good as the
best between NCLM and ZL(R)M in terms of both predictive
accuracy and goodness of fit. In particular:

— FRRM outperforms NCLM for all but one data set when
r>0.

— F(G)RRM outperforms ZL(R)M for all considered data
sets and for low values of r, that is, for models that have
strong fairness constraints like those we may find in prac-
tical applications.

5.1 Fair linear regression models

We compare FRRM with NCLM and ZLM using the four
real-world data sets that were also used in Komiyama et al.
(2018) as well as the German Credit data set (Dua and Graff
2017). Our results for NCLM differ from those in Komiyama
et al. (2018) due to the bias issue described in Sect. 2.2,
although they do largely agree overall.

The Communities and Crime data set (C&C, 810 obser-
vations, 101 predictors) comprises socio-economic data
and crime rates in communities in the USA: we take the
normalised crime rate as the response variable, and the pro-
portion of African American people and foreign-born people
as the sensitive attributes. The COMPAS data set (COMPAS,
5855 observations, 13 predictors) comprises demographic
and criminal records of offenders in Florida: we take recidi-
vating within two years as the response variable and the
offender’s gender and race as the sensitive attributes. The
National Longitudinal Survey of Youth data set (NLSY, 4908
observations, 13 predictors) is a collection of statistics from
the U.S. Bureau of Labour Statistics on the labour market
activities and life events of several groups: we take income in
1990 as the response variable, and gender and age as the sen-
sitive attributes. The Law School Admissions Council data
set (LSAC) is a survey among U.S. law school students: we
take the GPA score of each student as the response variable,
and the race and the age as the sensitive attributes. The Ger-
man Credit data set (GCR, 1000 observations, 42 predictors)
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Fig. 7 Predictive RMSE for NCLM (orange), FRRM (blue) and ZLM (green) on the data sets described in Sect. 5.1. Bars show 90% confidence

intervals. Lower values are better. (Color figure online)

is a collection of 700 “good” loans and 300 “bad” loans with
a set of attributes that can be used to classify them as good
or bad credit risks. We take the rate as the response variable,
and the age, gender and foreign-born status as the sensitive
attributes.

We evaluate both NCLM and FRRM using 50 runs
of 10-fold cross-validation with constraint values r =
{0, 0.01, 0.02, 0.05, 0.10, 0.20, 0.50}. We then measure the
largest resulting | COV (¥, S;)| for each r and we use that as
the bound in ZLM to compare the accuracy of all models for
the same level of fairness. To reduce simulation variability,
in each run of cross-validation we use the same folds for all
algorithms. We measure performance with:

— The predictive root-mean-square error (RMSE) produced
by the model on the validation sets in the cross-validation;

— The training RMSE produced by the model on the train-
ing sets in the cross-validation.

The predictive RMSE is shown in Fig. 7. FRRM consis-
tently achieves a smaller RMSE than NCLM across all data
sets and r > 0. FRRM also achieves a smaller RMSE than
ZIM in NLSY, COMPAS and LSAC forr > 0. In the case of
C&C and GCR, FRRM achieves a lower RMSE than NCLM
and ZLM but the difference is negligible for practical pur-
poses.

@ Springer

For r = 0, FRRM and NCLM estimate the same model
containing only the decorrelated predictors U and therefore
have the same predictive RMSE. On the other hand, ZLM
has a much higher RMSE than FRRM and NCLM because
it estimates a model that only includes those predictors
that are orthogonal to all sensitive attributes simultaneously
(ICOV(y, Si)| o« |COV(X, S;)| = 0 for all S;). However,
the empirical covariances between predictors and sensitive
attributes are usually numerically different from zero even
when their theoretical counterparts are not. Hence ZLM ends
up dropping more and more predictors as r — 0 and esti-
mates an intercept-only model for » = 0.

The training RMSE is shown in Fig. 8, and follows a sim-
ilar pattern to the predictive RMSE in Fig. 7. However, it
is notable that both FRRM and ZLM outperform NCLM,
despite its theoretical optimality guarantees, for »r > 0 in
NLSY, LSAC and GCR, and for » > 0.05 in COMPAS.
This is possible because the assumptions made in Yamada
and Takeda (2018) and Komiyama et al. (2018) do not
hold. Firstly, Yamada and Takeda (2018) assume that the
constraint must be active, which is not the case whenever
Rg(QOLS,EOLS) >r. Secondly, both Yamada and Takeda
(2018) and Komiyama et al. (2018) assume that both VAR (S)
and VAR(ﬁ) are full rank. While this is technically true for
all data sets, we note that VAR (S) has at least one eigenvalue
smaller than 107° in each of COMPAS, LSAC, NLSY and
GCR. The fact that FRRM outperforms NCLM for all these
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Fig.8 Training RMSE for NCLM (orange), FRRM (blue) and ZLM (green) on the data sets described in Sect. 5.1. Bars showing 90% confidence
intervals are too small to be visible. Lower values are better. (Color figure online)

data sets, but not for C&C, suggests that it is more numer-
ically robust in this respect; which is expected since ridge
regression does not make any assumption on the nature of S.

All algorithms achieve the desired level of fairness on both
on the training and the validation sets in the cross-validation
whenever the bound r is active, that is, when the estimated
model does not revert to an OLS regression. In particular, the
level of fairness observed in the predictions for the validation
sets is matches that required when training the models.

5.2 Fair logistic regression models

We now compare FGRRM with ZLRM, following the same
steps in Sect. 5.1. However, we measure both predictive accu-
racy and goodness of fit with the F1 score (the harmonic
average between precision and recall).

For this purpose, we will use the ADULT and BANK
data sets that were also used in Zafar et al. (2019) as well
as COMPAS. The ADULT data set (30162 observations, 14
predictors) contains a set of answers to the U.S. 1994 Census
that are relevant for predicting whether arespondent’s income
exceeds $50K. We take the binary income indicator (whether
income is above or below $50K) as the response variable, and
sex and age as the sensitive attributes. Note that we enforce
fairness for both sensitive attributes simultaneously, while
Zafar et al. (2019) only considered them individually in sep-

arate models. The BANK data set (41,188 observations, 19
variables) contains information on the phone calls conducted
by a Portuguese banking institution’s direct marketing cam-
paigns to convince prospective clients to subscribe a term
deposit. We take the age as the sensitive attribute and whether
the call resulted in a subscription as the response. The COM-
PAS data set is the same as in Sect. 5.1, but we now treat the
response variable as a discrete binary variable.

The results for predictive accuracy are shown in Fig. 9.
FGRRM systematically outperforms ZLRM for r < 0.05 for
both ADULT and COMPAS, and the two models have equiv-
alent performance for r > 0.1. In the first case the bounds are
active; in the latter they are not, and both FGRRM and ZLRM
revert back to unconstrained logistic regression models. As
for the BANK data set, FGRRM and ZLRM have equivalent
performance for all values of » because BANK contains just
one sensitive attribute. Therefore, controlling the proportion
of deviance explained by sensitive attributes marginally (in
ZLRM) is the same as controlling it jointly (in FGRRM).
For r = 0, ZLRM suffers a catastrophic loss in predictive
accuracy for the same reasons as ZLM.

The observed goodness of fit follows the same patterns
as predictive accuracy for all data sets, save for the fact that
the F1 scores are higher by up to 0.02. Furthermore, both
FGRRM and ZLM achieve the desired level of fairness as
was the case for the models in Sect. 5.1.
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Fig. 9 Predictive F1 score for ZLRM (green) and FGRRM (blue) on the data sets described in Sect. 5.2. Bars showing 90% confidence intervals

are too small to be visible. Higher values are better. (Color figure online)

5.3 Comparison with other fair models in the
literature

The limitations intrinsic to other fair models in the literature
prevent us from comparing them with F(G)RRM as thor-
oughly as we did for NCLM and ZL(R)M. Nevertheless, we
candraw some limited results to get a partial view of how their
performance relates to that of F(G)RRM. Here we consider
the models built on statistical parity proposed by Steinberg
et al. (2020) and Agarwal et al. (2018).

The fair regression model proposed by Steinberg et al.
(2020) uses an auxiliary logistic regression model to con-
trol the effect of a single binary sensitive attribute on y. The
optimal regression is chosen as the model that maximises
a penalised loglikelihood score computed as follows for a
given penalty y:

— They estimate the main regression model
y = SBs + XBx to obtain'y.

— They approximate an auxiliary logistic regression of S on
¥ and then approximate the mutual information between
S and its fitted values S.

— They add a penalty term equal to y times the mutual infor-
mation above to the loglikelihood of the main regression
model to promote fairness.

Steinberg et al. (2020) do not provide an implementation
of their proposed linear regression model. In our own imple-
mentation, we extend it in two ways to allow for a meaningful
comparison with FRRM:

— We allow more than one binary sensitive attribute in the
model by adding a separate penalty term for each, all with
the same coefficient y;

— We allow sensitive attributes with more than two values
by using a multinomial logistic regression as the auxiliary
model.

@ Springer

Even so, we are limited to the COMPAS data (same sen-
sitive attributes as before), the NLSY data (gender as the
only sensitive attribute) and the LSAC data (race as the only
sensitive attribute). Furthermore, we are unable to control
exactly due to the highly nonlinear relationship between y
and r. The predictive RMSE for FRRM and for the model
from Steinberg et al. (2020) are shown in Fig. 10: the former
dominates the latter for » < 0.1 for all three data sets. The
right-most point in the curves for the model from Steinberg
et al. (2020) corresponds to y = 0, that is, the regression
model where the constraint is inactive. No further reduc-
tions of the penalty encoding the fairness are possible: since
the model from Steinberg et al. (2020) does not outperform
FRRM even then, we conclude that FRRM dominates it even
for larger values of .

Agarwal et al. (2018) estimate a fair classifier by choosing
an optimal model over the set A of randomised classifiers
subject to an inequality constraint that enforces fairness:

gliIAl err(Q) subject to Mu(Q) <c+e (18)
€

where u € RIEIXIZI and ¢ e RIF! describe the linear con-
straints for the chosen definition of fairness, M(Q) € R
is a vector of conditional moments of functions of the clas-
sifier Q and € € RIX! controls the level of fairness. The
choice of M, p and ¢ is subject to the chosen definition of
fairness. The solution to (18) is found through a series of cost-
sensitive classification problems by rewriting it as a saddle
point problem with a Lagrangian multiplier and applying the
exponentiated gradient reduction proposed by Freund and
Schapire (1997) and Kivinen and Warmuth (1997).
Agarwal et al. (2018) provide an implementation of their
approach in Fairlearn (Bird et al. 2020). It supports both
regression and classification but it does not support statis-
tical parity for regression: hence we compare it only with
FGRRM. To match fairml, we use as base classifier the logis-
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Fig. 10 Predictive RMSE for FRRM (blue) and the approach from Steinberg et al. (2020, violet) on the data sets to which both apply. Bars showing
90% confidence intervals are too small to be visible. Lower values are better. (Color figure online)

tic regression of scikit-learn with no penalty and “newton-cg”
solver. For computational reasons, we only evaluate € = 0.1,
which was also considered in Agarwal et al. (2018), and we
fix all other parameters to their default values. Furthermore,
Fairlearn only allows a single categorical sensitive attribute:
this is not a limitation for the COMPAS data (we merged the
two sensitive attributes into a single variable), but it is for the
the ADULT data (we used sex as the only sensitive attribute).
Finally, Fairlearn did not converge for the BANK data. The
average F1 we obtain for both data sets (F1 = 0.6787 for
COMPAS and F1 = 0.5805 for ADULT) is smaller than
those produced by FGRRM ([0.6891, 0.7029] for COMPAS
and [0.6141, 0.6489] for ADULT) over all the considered
values of 7 .

6 Conclusions

In this paper, we presented a general framework for learn-
ing fair regression models that comprises both linear and
generalised linear models. Our proposal, which we call
F(G)RRM for fair (generalised) ridge regression models,
uses a ridge penalty to reduce the proportion of variance
(deviance) explained by the sensitive attributes over the total
variance (deviance) explained by the model. Unlike most
other approaches in the literature, it F(G)RRM can handle
arbitrary types and combinations of predictors and sensitive
attributes and different types of response variables.

Compared to the other approaches we have considered,
we show that F(G)RRM achieve a better predictive accuracy
and a better goodness of fit for the same level of fairness.
(This is despite the optimality guarantees of NCLM, which
we show may not hold in practical applications.) In addi-
tion, we argue that F(G)RRM produces regression coefficient
estimates whose behaviour is more intuitive than the other
models we investigated in this paper.

F(G)RRM compares favourably with NLCM and ZL(R)M
in two other respects as well. Firstly, it is mathematically
simpler and easier to implement since the only numeric
optimisation it requires is root finding in a single vari-
able bounded in a finite interval; the coefficient estimates
are either available in closed form (for FRRM) or can be
estimated with standard software (for FGRRM). Secondly,
F(G)RRM is more modular than NLCM and ZL(R)M: it can
be extended to use kernels for modelling nonlinear relation-
ships, different penalties, and different definitions of fairness.
It can accommodate multiple definitions of fairness simulta-
neously as well.
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